Exercise 10.1

1. Identify the terms, their numerical as well as literal coefficients in each of the following expressions:
(i) $12 x^{2} y z-4 x y^{2}$
(ii) $\mathbf{8 + m n}+\mathbf{n l}-\mathbf{l m}$
(iii) $x^{2} / 3+y / 6-x y^{2}$
(iv) $-4 p+2.3 q+1.7 r$

Solution:

	Terms	Numerical coefficient	Literal coefficient
(i) (ii)	$12 x^{2} y z$	12	$x^{2} y z$
	$-4 x y^{2}$	-4	$x y^{2}$
	8	8	-
	$m n$	1	$m n$
	$n l$	1	$n l$
	$-l m$	-1	lm
(iii)	$\frac{x^{2}}{3}$	$\frac{1}{3}$	x^{2}
(iv)	$\frac{y}{6}$	$\frac{1}{6}$	y
	$-x y^{2}$	-1	$x y^{2}$
	$-4 p$	-4	p
	$2.3 q$	2.3	q
	$1.7 r$	1.7	r

2. Identify monomials, binomials, and trinomials from the following algebraic expressions :
(i) $5 p \times q \times \mathbf{r}^{2}$
(ii) $3 x^{2}+y \div 2 z$
(iii) $-3+7 x^{2}$
(iv) $\left(5 a^{2}-3 b^{2}+c\right) / 2$
(v) $7 \mathrm{x}^{5}-3 \mathrm{x} / \mathrm{y}$
(vi) $5 \mathbf{p} \div 3 q-3 \mathbf{p}^{2} \times \mathbf{q}^{2}$

Solution:
(i) $5 \mathrm{p} \times \mathrm{q} \times \mathrm{r}^{2}=5 \mathrm{pqr}^{2}$

As this algebraic expression has only one term, its therefore a monomial.
(ii) $3 x^{2}+y \div 2 z=3 x^{2} / 2 z+y / 2 z$

As this algebraic expression has two terms, its therefore a binomial.
(iii) $-3+7 x^{2}$

As this algebraic expression has two terms, its therefore a binomial.
(iv) $\frac{5 a^{2}-3 b^{2}+c}{2}=\frac{5 a^{2}}{2}-\frac{3 b^{2}}{2}+\frac{c}{2}$

As this algebraic expression has three terms, its therefore a trinomial.
(v) $7 x^{5}-3 x / y$

As this algebraic expression has two terms, its therefore a binomial.
(vi) $5 p \div 3 q-3 p^{2} \times q^{2}=5 p / 3 q-3 p^{2} q^{2}$

As this algebraic expression has two terms, its therefore a binomial.
3. Identify which of the following expressions are polynomials. If so, write their degrees.
(i) $2 / 5 x^{4}-\sqrt{ } 3 x^{2}+5 x-1$
(ii) $7 x^{3}-3 / x^{2}+\sqrt{ } 5$
(iii) $4 a^{3} b^{2}-3 \mathbf{a b}^{4}+5 a b+2 / 3$
(iv) $2 x^{2} y-3 / x y+5 y^{3}+\sqrt{ } 3$

Solution:
(i) It is a polynomial and the degree of this expression is 4.
(ii) It is not a polynomial.
(iii) It is a polynomial and the degree of this expression is 5 .
(iv) It is not a polynomial.

4. Add the following expressions:

(i) ab-bv, bv-ca, ca-ab
(ii) $5 \mathbf{p}^{2} \mathbf{q}^{2}+\mathbf{4 p q}+7,3+9 p q-2 \mathbf{p}^{2} q$
(iii) $\mathbf{l}^{2}+\mathbf{m}^{2}+\mathbf{n}^{2}, \mathbf{l m}+\mathbf{m n}, \mathbf{m n}+\mathbf{n l}, \mathbf{n l}+\mathbf{l m}$
(iv) $4 x^{3}-7 x^{2}+9,3 x^{2}-5 x+4,7 x^{3}-11 x+1,6 x^{2}-13 x$

Solution:
(i) $a b-b c, b c-c a, c a-a b$

On adding the expressions, we have
$\Rightarrow \mathrm{ab}-\mathrm{bc}+\mathrm{bc}-\mathrm{ca}+\mathrm{ca}-\mathrm{ab}=0$
(ii) $5 \mathrm{p}^{2} \mathrm{q}^{2}+4 \mathrm{pq}+7,3+9 \mathrm{pq}-2 \mathrm{p}^{2} \mathrm{q}^{2}$

On adding the expressions, we have
$=5 p^{2} q^{2}+4 p q+7+3+9 p q-2 p^{2} q^{2}$
$=5 p^{2} q^{2}-2 p^{2} q^{2}+4 p q+9 p q+7+3$
$=3 p^{2} q^{2}+13 p q+10$
(iii) $\mathrm{l}^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}, \mathrm{~lm}+\mathrm{mn}, \mathrm{mn}+\mathrm{nl}, \mathrm{nl}+\mathrm{lm}$

On adding the expressions, we have
$=\mathrm{l}^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}+\mathrm{lm}+\mathrm{mn}+\mathrm{mn}+\mathrm{nl}+\mathrm{nl}+\mathrm{lm}$
$=l^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}+21 \mathrm{~m}+2 \mathrm{mn}+2 \mathrm{nl}$
(iv) $4 x^{3}-7 x^{2}+9,3 x^{2}-5 x+4,7 x^{3}-11 x+1,6 x^{2}-13 x$

On adding the expressions, we have
$=4 x^{3}-7 x^{2}+9+3 x^{2}-5 x+4+7 x^{3}-11^{2}+1+6 x^{2}-13 x$
$=4 \mathrm{x}^{2}+7 \mathrm{x}^{3}-7 \mathrm{x}^{2}+3 \mathrm{x}^{2}+6 \mathrm{x}^{2}-5 \mathrm{x}-11 \mathrm{x}-13 \mathrm{x}+9+4+1$
$=11 x^{3}-2 x^{2}-29 x+14$
5. Subtract:
(i) $8 \mathbf{a}+3 \mathrm{ab}-2 \mathrm{~b}+7$ from $14 \mathrm{a}-5 \mathrm{ab}+7 \mathrm{~b}-5$
(ii) $8 \mathrm{xy}+4 \mathrm{yz}+5 \mathrm{zx}$ from $12 \mathrm{xy}-3 \mathrm{yz}-4 \mathrm{zx}+5 \mathrm{xyz}$
(iii) $4 p^{2} q-3 p q+5 p q^{2}-8 p+7 q-10$ from $18-3 p-11 q+5 p q-2 p q^{2}+5 p^{2} q$

Solution:
(i) Subtracting $8 a+3 a b-2 b+7$ from $14 a-5 a b+7 b-5$, we have
$=(14 a-5 a b+7 b-5)-(8 a+3 a b-2 b+7)$
$=14 a-5 a b+7 b-5-8 a-3 a b+2 b-7$
$=6 a-8 a b+9 a b-12$
(ii) Subtracting $8 x y+4 y z+5 z x$ from $12 x y-3 y z-4 z x+5 x y z$, we have
$=(12 x y-3 y z-4 z x+5 x y z)-(8 x y+4 y z+5 z x)$
$=12 x y-3 y z-4 z x+5 x y z-8 x y-4 y z-5 z x$
$=4 x y-7 y z-9 z x+5 x y z$
(iii) Subtracting $4 p^{2} q-3 p q+5 q^{2}-8 p+7 q-10$ from $18-3 p-11 q+5 p q-2 q^{2}+5 p^{2} q$, we have $=\left(18-3 p-11 q+5 p q-2 q^{2}+5 p^{2} q\right)-\left(4 p^{2} q-3 p q+5 q^{2}-8 p+7 q-10\right)$
$=18-3 \mathrm{p}-11 \mathrm{q}+5 \mathrm{pq}-2 \mathrm{pq}^{2}+5 \mathrm{p}^{2} \mathrm{q}-7 \mathrm{p}^{2} \mathrm{q}+3 \mathrm{pq}-5 \mathrm{pq}^{2}+8 \mathrm{p}-7 \mathrm{q}+10$
$=28+5 p-78 q+8 p q-7 q^{2}+p^{2} q$
6. Subtract the sum of $3 x^{2}+5 x y+7 y^{2}+3$ and $2 x^{2}-4 x y-3 y^{2}+7$ from $9 x^{2}-8 x y+11 y^{2}$

Solution:

First, adding $3 x^{2}+5 x y+7 y^{2}+3$ and $2 x^{2}-4 x y-3 y^{2}+7$, we have
$=3 x^{2}+5 x y+7 y^{2}+3+2 x^{2}-4 x y-3 y^{2}+7$
$=5 x^{2}+x y+4 y^{2}+10$
Now,
Subtracting $5 x^{2}+x y+4 y^{2}+10$ from $9 x^{2}-8 x y+11 y^{2}$
$=\left(9 x^{2}-8 x y+11 y^{2}\right)-\left(5 x^{2}+x y+4 y^{2}+10\right)$
$=9 x^{2}-8 x y+11 y^{2}-5 x^{2}-x y-4 y^{2}-10$
$=4 x^{2}-9 x y+7 y^{2}-10$
7. What must be subtracted from $3 a^{2}-5 a b-2 b^{2}-3$ to get $5 a^{2}-7 a b-3 b^{2}+3 a$?

Solution:

From the question, its understood that we have to subtract $5 a^{2}-7 a b-3 b^{2}+3 a$ from $3 a^{2}-5 a b-2 b^{2}-3$
$=3 \mathrm{a}^{2}-5 \mathrm{ab}-2 \mathrm{~b}^{2}-3-\left(5 \mathrm{a}^{2}-7 \mathrm{ab}-3 \mathrm{~b}^{2}+3 \mathrm{a}\right)$
$=3 \mathrm{a}^{2}-5 \mathrm{ab}-2 \mathrm{~b}^{2}-3-5 \mathrm{a}^{2}+7 \mathrm{ab}+3 \mathrm{~b}^{2}-3 \mathrm{a}$
$=-2 a^{2}+2 a b+b^{2}-3 a-3$
8. The perimeter of a triangle is $7 p^{2}-5 p+11$ and two of its sides are $p^{2}+2 p-1$ and $3 p^{2}-6 p+3$. Find the third side of the triangle.

Solution:

Given,
Perimeter of a triangle $=7 p^{2}-5 p+11$
And, two of its sides are $p^{2}+2 p-1$ and $3 p^{2}-6 p+3$
We know that,
Perimeter of a triangle $=$ Sum of three sides of triangle
$\Rightarrow 7 \mathrm{p}^{2}-5 \mathrm{p}+11=\left(\mathrm{p}^{2}+2 \mathrm{p}-1\right)+\left(3 \mathrm{p}^{2}-6 \mathrm{p}+3\right)+($ Third side of triangle $)$
$7 p^{2}-5 p+11=\left(4 p^{2}-4 p+2\right)+($ Third side of triangle $)$
\Rightarrow Third side of triangle $=\left(7 p^{2}-5 p+11\right)-\left(4 p^{2}-4 p+2\right)$

$$
\begin{aligned}
& =\left(7 \mathrm{p}^{2}-4 \mathrm{p}^{2}\right)+(-5 \mathrm{p}+4 \mathrm{p})+(11-2) \\
& =3 \mathrm{p}^{2}-\mathrm{p}+9
\end{aligned}
$$

Thus, the third side of the triangle is $3 \mathrm{p}^{2}-\mathrm{p}+9$.

Exercise 10.2

1. Find the product of:
(i) $4 x^{3}$ and $-3 x y$
(ii) 2 xyz and 0
(iii) $-(2 / 3) p^{2} q,(3 / 4) \mathbf{p q}^{2}$ and $5 p q r$
(iv) $-7 \mathbf{a b},-3 \mathbf{a}^{3}$ and $-(2 / 7) \mathbf{a b}^{2}$
(v) $-1 / 2 x^{2}-(3 / 5) x y,(2 / 3) y z$ and $(5 / 7) x y z$

Solution:
Product of:
(i) $4 x^{3}$ and $-3 x y=4 x^{3} \times(-3 x y)=-12 x^{3+1} y=-12 x^{4} y$
(ii) $2 x y z$ and $0=2 x y z \times 0=0$
(iii) $\left(-\frac{2}{3} p^{2} q\right) \times\left(\frac{3}{4} p q^{2}\right) \times(5 p q r)$

$$
\begin{aligned}
& =-\frac{2}{3} \times \frac{3}{4} \times 5 \times p^{2} q \times p q^{2} \times p q r \\
& =-\frac{5}{2} p^{4} q^{4} r
\end{aligned}
$$

(iv) $(-7 a b) \times\left(-3 a^{3}\right) \times\left(-\frac{2}{7} a b^{2}\right)$
$=(-7) \times(-3) \times\left(-\frac{2}{7}\right) \times a b \times a^{3} \times a b^{2}$
$=-6 a^{5} b^{3}$.
(v) $\left(-\frac{1}{2} x^{2}\right) \times\left(-\frac{3}{5} x y\right) \times\left(\frac{2}{3} y z\right) \times\left(\frac{5}{7} x y z\right)$
$=\left(-\frac{1}{2}\right) \times\left(-\frac{3}{5}\right) \times\left(\frac{2}{3}\right) \times\left(\frac{5}{7}\right) \times x^{2} \times x y \times y z+x y z$
$=\frac{1}{7} x^{4} y^{3} z^{2}$
2. Multiply:
(i) $(3 x-5 y+7 z)$ by $-3 x y z$
(ii) $\left(2 p^{2}-3 p q+5 q^{2}+5\right) b y-2 p q$
(iii) $\left(2 / 3 a^{2} b-4 / 5 a b^{2}+2 / 7 a b+3\right)$ by $35 a b$
(iv) $\left(4 x^{2}-10 x y+7 y^{2}-8 x+4 y+3\right)$ by $3 x y$

Solution:
(i) $-3 x y z \times(3 x-5 y+7 z)$
$=(-3 x y z) \times 3 x+(-3 x y z) \times(-5 y)+(-3 x y z) \times(7 z)$
$=-9 x^{2} y z+15 x y z^{2}-21 x^{2} z^{2}$
(ii) $-2 \mathrm{pq} \times\left(2 \mathrm{p}^{2}-3 \mathrm{pq}+5 \mathrm{q}^{2}+5\right)$
$=(-2 p q) \times 2 p^{2}+(-2 p q) \times(-3 p q)+(-2 p q) \times\left(5 q^{2}\right)+(-2 p q) \times 5$
$=-4 p^{3} q+6 p^{2} q^{2}-10 p q^{3}-10 p q$
(iii) $\left(\frac{2}{3} a^{2} b-\frac{4}{5} a b^{2}+\frac{2}{7} a b+3\right)$ by 35 ab
$=(2 / 3) \mathrm{a}^{2} \mathrm{~b} \times 35 \mathrm{ab}-(4 / 5) \mathrm{ab}^{2} \times 35 \mathrm{ab}+(2 / 7) \mathrm{ab} \times 35 \mathrm{ab}+3 \times 35 \mathrm{ab}$
$=(70 / 3) a^{3} b^{2}-28 a^{2} b^{3}+10 a^{2} b^{2}+105 a b$
(iv) $\left(4 x^{2}-10 x y+7 y^{2}-8 x+4 y+3\right)$ by $3 x y$
$=4 x^{2} \times 3 x y-10 x y \times 3 x y+7 y^{2} \times 3 x y-8 x \times 3 x y+4 y \times 3 x y+3 \times 3 x y$
$=12 x^{3} y-30 x^{2} y^{2}+21 x y^{3}-24 x^{2} y+12 x y^{2}+9 x y$
3. Find the areas of rectangles with the following pairs of monomials as their lengths and breadths respectively:
(i) $\left(\mathbf{p}^{2} \mathbf{q}, \mathbf{p q}^{2}\right)$
(ii) $\left(5 x y, 7 x y^{2}\right)$

Solution:
(i) Given, sides of a rectangle are $\mathrm{p}^{2} \mathrm{q}$ and pq^{2}

Hence,
Area $=\mathrm{p}^{2} \mathrm{q} \times \mathrm{pq}^{2}=\mathrm{p}^{2+1} \times \mathrm{q}^{2+1}=\mathrm{p}^{3} \mathrm{q}^{3}$
(ii) Given, sides are $5 x y$ and $7 x y^{2}$

Hence,
Area $=5 x y \times 7 x^{2}=35 x^{1+1} \times y^{1+2}=35 x^{2} y^{3}$
4. Find the volume of rectangular boxes with the following length, breadth and height respectively:
(i) 5ab, $3 a^{2} b, 7^{4} b^{2}$
(ii) $\mathbf{2 p q}, \mathbf{4 q}^{\mathbf{2}}, \mathbf{8 r p}$

Solution:
Given are the length, breadth and height of a rectangular box:
(i) $5 \mathrm{ab}, 3 \mathrm{a}^{2} \mathrm{~b}, 7 \mathrm{a}^{4} \mathrm{~b}^{2}$
\therefore Volume $=$ Length \times breadth \times height

$$
\begin{aligned}
& =5 \mathrm{ab} \times 3 \mathrm{a}^{2} \mathrm{~b} \times 7 \mathrm{a}^{4} \mathrm{~b}^{2} \\
& =5 \times 3 \times 7 \times \mathrm{a}^{1+2+4} \times \mathrm{b}^{1+1+2} \\
& =105 \mathrm{a}^{7} \mathrm{~b}^{4}
\end{aligned}
$$

(ii) $2 \mathrm{pq}, 4 \mathrm{q}^{2}, 8 \mathrm{rp}$
\therefore Volume $=$ Length \times breadth \times height

$$
\begin{aligned}
& =2 \mathrm{pq} \times 4 \mathrm{q}^{2} \times 8 \mathrm{rp} \\
& =2 \times 4 \times 8 \times \mathrm{p}^{1+1} \times \mathrm{q}^{1+2} \times \mathrm{r} \\
& =64 \mathrm{p}^{2} \mathrm{q}^{3} \mathrm{r}
\end{aligned}
$$

5. Simplify the following expressions and evaluate them as directed:
(i) $x^{2}\left(3-2 x+x^{2}\right)$ for $x=1 ; x=-1 ; x=2 / 3$ and $x=-1 / 2$
(ii) $5 x y(3 x+4 y-7)-3 y\left(x y-x^{2}+9\right)-8$ for $x=2, y=-1$

Solution:

(i) $x^{2}\left(3-2 x+x^{2}\right)$

For $x=1 ; x=-1 ; x=2 / 3$ and $x=-1 / 2$
$x^{2}\left(3-2 x+x^{2}\right)=3 x^{2}-2 x^{3}+x^{4}$
(a) For $x=1$

$$
\begin{aligned}
3 x^{2}-2 x^{3}+x^{4} & =3(1)^{2}-2(1)^{3}+(1)^{4} \\
& =3 \times 1-2 \times 1+1 \\
& =3-2+1=2
\end{aligned}
$$

(b) For $x=-1$

$$
\begin{aligned}
3 x^{2}-2 x^{3}+x^{4} & =3(-1)^{2}-2(-1)^{3}+(-1)^{4} \\
& =3 \times 1-2 \times(-1)+1 \\
& =3+2+1=6
\end{aligned}
$$

(c) For $x=2 / 3$

$$
\begin{aligned}
3 x^{2}-2 x^{3}+x^{4} & =3(2 / 3)^{2}-2(2 / 3)^{3}+(2 / 3)^{4} \\
& =3 \times(4 / 9)-2 \times(8 / 27)+(16 / 81) \\
& =(4 / 3)-(16 / 27)+(16 / 81) \\
& =(108-48+16) / 81 \\
& =(124-48) / 81 \\
& =76 / 81
\end{aligned}
$$

(d) For $x=-1 / 2$

$$
\begin{aligned}
3 \mathrm{x}^{2}-2 \mathrm{x}^{3}+\mathrm{x}^{4} & =3(-1 / 2)^{2}-2(-1 / 2)^{3}+(-1 / 2)^{4} \\
& =3 \times(1 / 4)-2 \times(-1 / 8)+(1 / 16) \\
& =(3 / 4)+1 / 4+(1 / 16) \\
& =(12+4+1) / 16 \\
& =17 / 16
\end{aligned}
$$

(ii) $5 x y(3 x+4 y-7)-3 y\left(x y-x^{2}+9\right)-8$
$=15 x^{2} y+20 x y^{2}-35 x y-3 x y^{2}+3 x^{2} y-21 y-8$
$=18 x^{2} y+17 x y^{2}-35 x y-27 y-8$
When $\mathrm{x}=2, \mathrm{y}=-1$, we have
$=18(2)^{2} \times(-1)+17(2)(-1)^{2}-35(2)(-1)-27(-1)-8$
$=18 \times 4 \times(-1)+17 \times 2 \times 1-35 \times 2 \times(-1)-27 \times(-1)-8$
$=-74+34+70+27-8$
$=131-80=51$

6. Add the following:

(i) $4 p\left(2-p^{2}\right)$ and $8 p^{3}-3 p$
(ii) $7 x y(8 x+2 y-3)$ and $4 x y^{2}(3 y-7 x+8)$

Solution:

Adding,
(i) $4 \mathrm{p}\left(2-\mathrm{p}^{2}\right)$ and $8 \mathrm{p}^{3}-3 \mathrm{p}$
$=8 \mathrm{p}-4 \mathrm{p}^{3}+8 \mathrm{p}^{3}-3 \mathrm{p}$
$=5 p+4 p^{3}$
$=4 \mathrm{p}^{3}+5 \mathrm{p}$
(ii) $7 x y(8 x+2 y-3)$ and $4 x y^{2}(3 y-7 x+8)$
$=56 x^{2} y+14 x y^{2}-21 x y+12 x y^{3}-28 x^{2} y^{2}+32 x y^{2}$
$=12 x y^{3}-28 x^{2} y^{2}+56 x^{2} y+46 x y^{2}-21 x y$

7. Subtract:

(i) $6 x(x-y+z)-3 y(x+y-z)$ from $2 z(-x+y+z)$
(ii) $7 x y\left(x^{2}-2 x y+3 y^{2}\right)-8 x\left(x^{2} y-4 x y+7 x y^{2}\right)$ from $3 y\left(4 x^{2} y-5 x y+8 x y^{2}\right)$

Solution:

Subtracting,
(i) $6 x(x-y+z)-3 y(x+y-z)$ from $2 z(-x+y+z)$
$\Rightarrow 6 x^{2}-6 x y+6 x z-3 x y-3 y^{2}+3 y z$ from $-2 x z+2 y z+2 z^{2}$
$=\left(-2 x z+2 y z+2 z^{2}\right)-\left(6 x^{2}-6 x y+6 x z-3 x y-3 y^{2}+3 y z\right)$
$=-2 x z+2 y z+2 z^{2}-6 x^{2}+6 x y-6 x z+3 x y+3 y^{2}-3 y z$
$=9 x y-y z-8 z x-6 x^{2}+3 y^{2}+2 z^{2}$
(ii) $7 x y\left(x^{2}-2 x y+3 y^{2}\right)-8 x\left(x^{2} y-4 x y+7 x y^{2}\right)$ from $3 y\left(4 x^{2} y-5 x y+8 x y^{2}\right)$ $\Rightarrow 7 x^{3} y-14 x^{2} y^{2}+21 x y^{3}-8 x^{3} y+32 x^{2} y-56 x^{2} y^{2}$ from $12 x^{2} y^{2}-15 x y^{2}+24 x y^{3}$
$=\left(12 x^{2} y^{2}-15 x y^{2}+24 x y^{3}\right)-\left(7 x^{3} y-14 x^{2} y^{2}+21 x y^{3}-8 x^{3} y+32 x^{2} y-56 x^{2} y^{2}\right.$
$=12 x^{2} y^{2}-15 x y^{2}+24 x y^{3}-7 x^{3} y+14 x^{2} y^{2}-12 x y^{3}+8 x^{3} y-32 x^{2} y+56 x^{2} y^{2}$
$=82 x^{2} y^{2}+3 x y^{3}+x^{3} y-15 x y^{2}-32 x^{2} y$

Exercise 10.3

1. Multiply:
(i) $(5 x-2)$ by $(3 x+4)$
(ii) $(\mathbf{a x}+\mathrm{b})$ by $(\mathbf{c x}+\mathrm{d})$
(iii) $(4 p-7)$ by $(2-3 p)$
(iv) $\left(2 x^{2}+3\right)$ by $(3 x-5)$
(v) $(1.5 a-2.5 b)$ by $(1.5 a+2.56)$
(vi) $\left(\frac{3}{7} p^{2}+4 q^{2}\right)$ by $7\left(p^{2}-\frac{3}{4} q^{2}\right)$

Solution:

(i) $(5 x-2)$ by $(3 x+4)$
$=(5 \mathrm{x}-2) \times(3 \mathrm{x}+4)$
$=5 \mathrm{x}(3 \mathrm{x}+4)-2(3 \mathrm{x}+4)$
$=15 \mathrm{x}^{2}+20 \mathrm{x}-6 \mathrm{x}-8$
$=15 \mathrm{x}^{2}+14 \mathrm{x}-8$
(ii) $(\mathrm{ax}+\mathrm{b})$ by $(\mathrm{cx}+\mathrm{d})$
$=(a x+b) \times(c x+d)$
$=\mathrm{ax}(\mathrm{cx}+\mathrm{d})+\mathrm{b}(\mathrm{cx}+\mathrm{d})$
$=a c x^{2}+a d x+b c x+b d$
(iii) $(4 p-7)$ by $(2-3 p)$
$=(4 p-7) \times(2-3 p)$
$=4 p(2-3 p)-7(2-3 p)$
$=8 \mathrm{p}-12 \mathrm{p}^{2}-14+21 \mathrm{p}$
$=29 p-12 p^{2}-14$
(iv) $\left(2 x^{2}+3\right)$ by $(3 x-5)$
$=\left(2 x^{2}+3\right)(3 x-5)$
$=2 x^{2}(3 x-5)+3(3 x-5)$
$=6 \mathrm{x}^{3}-10 \mathrm{x}^{2}+9 \mathrm{x}-15$
(v) ($1.5 \mathrm{a}-2.5 \mathrm{~b})$ by $(1.5 \mathrm{a}+2.5 \mathrm{~b})$
$=(1.5 a-2.5 b)(1.5 a+2.5 b)$
$=1.5 \mathrm{a}(1.5+2.5 \mathrm{~b})-2.5 \mathrm{~b}(1.5 \mathrm{a}+2.5 \mathrm{~b})$
$=2.25 a^{2}+3.75 a b-3.75 a 6-6.25 b^{2}$
$=2.25 \mathrm{a}^{2}-6.25 \mathrm{~b}^{2}$
(vi) $\left(\frac{3}{7} p^{2}+4 q^{2}\right)$ by $7\left(p^{2}-\frac{3}{4} q^{2}\right)$

$$
=\left(\frac{3}{7} p^{2}+4 q^{2}\right) \times 7\left(p^{2}-\frac{3}{4} q^{2}\right)
$$

$$
=7\left(\frac{3}{7} p^{2}+4 q^{2}\right)\left(p^{2}-\frac{3}{4} q^{2}\right)
$$

$$
=7\left[\frac{3}{7} p^{2}\left(p^{2}-\frac{3}{4} q^{2}\right)+4 q^{2}\left(p^{2}-\frac{3}{4} q^{2}\right)\right]
$$

$$
=7\left[\frac{3}{7} p^{4}-\frac{9}{28} p^{2} q^{2}+4 p^{2} q^{2}-3 q^{4}\right]
$$

$$
=3 p^{4}-\frac{9}{4} p^{2} q^{2}+28 p^{2} q^{2}-21 q^{4}
$$

$$
=3 p^{4}-\frac{9 p^{2} q^{2}+112 p^{2} q^{2}}{4}-21 q^{4}
$$

$$
=3 p^{4}+\frac{103}{4} p^{2} q^{2}-21 q^{4}
$$

2. Multiply:
(i) $(x-2 y+3)$ by $(x+2 y)$
(ii) $\left(3-5 x+2 x^{2}\right)$ by $(4 x-5)$

Solution:
(i) $(x-2 y+3)$ by $(x+2 y)$
$=(x-2 y+3) \times(x+2 y)$
$=\mathrm{x}(\mathrm{x}+2 \mathrm{y})-2 \mathrm{y}(\mathrm{x}+2 \mathrm{y})+3(\mathrm{x}+2 \mathrm{y})$
$=x^{2}+2 x y-2 x y-4 y^{2}+3 x+6 y$
$=x^{2}-4 y^{2}+3 x+6 y$
(ii) $\left(3-5 x+2 x^{2}\right)$ by $(4 x-5)$
$=(4 \mathrm{x}-5)\left(3-5 \mathrm{x}+2 \mathrm{x}^{2}\right)$
$=4 \mathrm{x}\left(3-5 \mathrm{x}+2 \mathrm{x}^{2}\right)-5\left(3-5 \mathrm{x}+2 \mathrm{x}^{2}\right)$
$=12 \mathrm{x}-20 \mathrm{x}^{2}+8 \mathrm{x}^{3}-15+25 \mathrm{x}-10 \mathrm{x}^{2}$
$=8 x^{3}-30 x^{2}+37 x-15$
3. Multiply:
(i) $\left(3 x^{2}-2 x-1\right)$ by $\left(2 x^{2}+x-5\right)$
(ii) $\left(2-3 y-5 y^{2}\right)$ by $\left(2 y-1+3 y^{2}\right)$

Solution:

(i) $\left(3 x^{2}-2 x-1\right)$ by $\left(2 x^{2}+x-5\right)$
$=\left(3 \mathrm{x}^{2}-2 \mathrm{x}-1\right)\left(2 \mathrm{x}^{2}+\mathrm{x}-5\right)$
$=3 \mathrm{x}^{2}\left(2 \mathrm{x}^{2}+\mathrm{x}-5\right)-2 \mathrm{x}\left(2 \mathrm{x}^{2}+\mathrm{x}-5\right)-1\left(2 \mathrm{x}^{2}+\mathrm{x}-5\right)$
$=6 x^{4}+3 x^{3}-15 x^{2}-4 x^{3}-2 x^{2}+10 x-2 x^{2}-x+5$
$=6 x^{4}-x^{3}-19 x^{2}+9 x+5$
(ii) $\left(2-3 y-5 y^{2}\right)$ by $\left(2 y-1+3 y^{2}\right)$
$=\left(2-3 y-5 y^{2}\right) \times\left(2 y-1+3 y^{2}\right)$
$=2\left(2 y-1+3 y^{2}\right)-3 y\left(2 y-1+3 y^{2}\right)-5 y^{2}\left(2 y-1+3 y^{2}\right)$
$=4 y-2+6 y^{2}-6 y^{2}+3 y-9 y^{3}-10 y^{3}+5 y^{2}-15 y^{4}$
$=-15 y^{4}-19 y^{3}+5 y^{2}+7 y-2$
4. Simplify:
(i) $\left(x^{2}+3\right)(x-3)+9$
(ii) $(x+3)(x-3)(x+4)(x-4)$
(iii) $(x+5)(x+6)(x+7)$
(iv) $(\mathbf{p}+\mathbf{q}-2 \mathbf{r})(2 \mathbf{p}-\mathbf{q}+\mathbf{r})-4 \mathbf{q r}$
(v) $(\mathbf{p}+\mathbf{q})(\mathbf{r}+\mathbf{s})+(\mathbf{p}-\mathbf{q})(\mathbf{r}-\mathbf{s})-2(\mathbf{p r}+\mathbf{q s})$
(vi) $(x+y+z)(x-y+z)+(x+y-z)(-x+y+z)-4 z x$

Solution:

(i) $\left(x^{2}+3\right)(x-3)+9$
$=\mathrm{x}^{2}(\mathrm{x}-3)+3(\mathrm{x}-3)+9$
$=\mathrm{x}^{2}-3 \mathrm{x}^{2}+3 \mathrm{x}-9+9$
$=\mathrm{x}^{3}-3 \mathrm{x}^{2}+3 \mathrm{x}$
(ii) $(x+3)(x-3)(x+4)(x-4)$
$=\{(x+3)(x-3)\} \times\{(x+4)(x-4)\}$
$=\{x(x-3)+3(x-3)\}\{x(x-4)+4(x-4)\}$
$=\left(\mathrm{x}^{2}-3 \mathrm{x}+3 \mathrm{x}-9\right)\left\{\mathrm{x}^{2}-4 \mathrm{x}+4 \mathrm{x}-16\right\}$
$=\left(x^{2}-9\right)\left(x^{2}-16\right)$
$=x^{2}\left(x^{2}-16\right)-9\left(x^{2}-16\right)$
$=x^{4}-16 x^{2}-9 x^{2}+144$
$=x^{4}-25 x^{2}+144$
(iii) $(x+5)(x+6)(x+7)$
$=\{(x+5) \times(x+6)\}(x+7)$
$=\left(\mathrm{x}^{2}+6 \mathrm{x}+5 \mathrm{x}+30\right)(\mathrm{x}+7)$
$=\left(x^{2}+11 x+30\right)(x+7)$
$=\mathrm{x}\left(\mathrm{x}^{2}+11 \mathrm{x}+30\right)+7\left(\mathrm{x}^{2}+11 \mathrm{x}+30\right)$
$=x^{3}+11 x^{2}+30 x+7 x^{2}+77 x+210$
$=x^{3}+18 x^{2}+107 x+210$
(iv) $(p+q-2 r)(2 p-q+r)-4 q r$
$=p(2 p-q+r)+q(2 p-q+r)-2 r(2 p-q+r)-4 q r$
$=2 \mathrm{p}^{2}-\mathrm{pq}+\mathrm{pr}+2 \mathrm{pq}-\mathrm{q}^{2}+\mathrm{qr}-4 \mathrm{pr}+2 \mathrm{qr}-2 \mathrm{r}^{2}-4 \mathrm{qr}$
$=2 \mathrm{p}^{2}-\mathrm{q}^{2}-2 \mathrm{r}^{2}+\mathrm{pq}-3 \mathrm{pr}-2 \mathrm{qr}$

$$
\begin{aligned}
& (\mathrm{v})(\mathrm{p}+\mathrm{q})(\mathrm{r}+\mathrm{s})+(\mathrm{p}-\mathrm{q})(\mathrm{r}-\mathrm{s})-2(\mathrm{pr}+\mathrm{qs}) \\
& =(\mathrm{pr}+\mathrm{ps}+\mathrm{qr}+\mathrm{qs})+(\mathrm{pr}-\mathrm{ps}-\mathrm{qr}+\mathrm{qs})-2 \mathrm{pr}-2 \mathrm{qs} \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
& \text { (vi) }(x+y+z)(x-y+z)+(x+y-z)(-x+y+z)-4 z x \\
& =x^{2}-x y+x z+x y-y^{2}+y z+x z-y z+z^{2}-x^{2}+x y+x z \\
& -x y+x^{2}+y x+x z-y z-z^{2}-4 z x \\
& =0
\end{aligned}
$$

5. If two adjacent sides of a rectangle are $5 x^{2}+25 x y+4 y^{2}$ and $2 x^{2}-2 x y+3 y^{2}$, find its area. Solution:

Given,
The adjacent sides of a rectangle are $5 x^{2}+25 x y+4 y^{2}$ and $2 x^{2}-2 x y+3 y^{2}$
So,
Area of rectangle $=$ Product of two adjacent sides

$$
\begin{aligned}
& =\left(5 x^{2}+25 x y+4 y^{2}\right)\left(2 x^{2}-2 x y+3 y^{2}\right) \\
& =10 x^{4}-10 x^{3} y+15 x^{2} y^{2}+50 x^{3} y-50 x^{2} y^{2}+75 x y^{3}+8 x^{2} y^{2}-8 x y^{3}+12 y^{4} \\
& =10 x^{4}+40 x^{3} y-27 x^{2} y^{2}+67 x y^{3}+12 y^{4}
\end{aligned}
$$

Thus,
The area of the rectangle is $10 x^{4}+40 x^{3} y-27 x^{2} y^{2}+67 x y^{3}+12 y^{4}$.

Exercise 10.4

1. Divide:
(i) $-39 p^{2} \mathbf{r}^{5} b y-24 p^{3} q^{3} r$
(ii) $-a^{2} b^{3}$ by $a^{3} b^{2}$

Solution:
(i) $-39 \mathrm{pq}^{2} \mathrm{r}^{5}(\div)-24 \mathrm{p}^{3} \mathrm{q}^{3} \mathrm{r}$

$$
=-39 p q^{2} r^{5} /-24 p^{3} q^{3} r
$$

$$
=\left(\frac{-39}{-24}\right) \times\left(\frac{p q^{2} r^{5}}{p^{3} q^{3} r}\right)
$$

$$
=\frac{13}{8} \times \frac{r^{4}}{p^{2} q}=\frac{13 r^{4}}{8 p^{2} q}
$$

(ii) $\frac{-3}{4} a^{2} b^{3} \div \frac{6}{7} a^{3} b^{2}$

$$
\begin{aligned}
& =\frac{\frac{-3}{4} a^{2} b^{3}}{\frac{6}{7} a^{3} b^{2}} \\
& =\left(\frac{\frac{-3}{4}}{\frac{6}{7}}\right) \times\left(\frac{a^{2} b^{3}}{a^{3} b^{2}}\right) \\
& =\left(\frac{-3}{4} \times \frac{7}{6}\right) \times\left(\frac{b}{a}\right) \\
& =\frac{-7}{8} \times \frac{b}{a}=\frac{-7 b}{8 a}
\end{aligned}
$$

2. Divide:
(i) $9 \mathrm{x}^{4}-8 \mathrm{x}^{3}-12 \mathrm{x}+3$ by 3 x
(ii) $14 p^{2} q^{3}-32 p^{3} q^{2}+15 p q^{2}-22 p+18 q$ by $-2 p^{2} q$.

Solution:
(i) $\frac{9 x^{4}-8 x^{3}-12 x+3}{3 x}$

$$
\begin{aligned}
& =\frac{9 x^{4}}{3 x}-\frac{8 x^{3}}{3 x}-\frac{12 x}{3 x}+\frac{3}{3 x} \\
& =3 x^{3}-\frac{8}{3} x^{2}-4+\frac{1}{x}
\end{aligned}
$$

(ii) $\frac{14 p^{2} q^{3}-32 p^{3} q^{2}+15 p q^{2}-22 p+18 q}{-2 p^{2} q}$

$$
\begin{aligned}
& =\frac{14 p^{2} q^{3}}{-2 p^{2} q}-\frac{32 p^{3} q^{2}}{-2 p^{2} q}+\frac{15 p q^{2}}{-2 p^{2} q}-\frac{22 p}{-2 p^{2} q}+\frac{18 q}{-2 p^{2} q} \\
& =-7 q^{2}+16 p q-\frac{15 q}{2 p}+\frac{11}{p q}-\frac{9}{p^{2}}
\end{aligned}
$$

3. Divide:
(i) $6 x^{2}+13 x+5$ by $2 x+1$
(ii) $1+y^{3}$ by $1+y$
(iii) $5+x-2 x^{2}$ by $x+1$
(iv) $x^{3}-6 x^{2}+12 x-8$ by $x-2$

Solution:
(i) $6 x^{2}+13 x+5 \div 2 x+1$

$$
\begin{gathered}
2 x + 1 \longdiv { 6 x ^ { 2 } + 1 3 x + 5 (3 x + 5 } \\
6 x^{2}+3 x \\
\frac{-\quad-}{10 x+5} \\
10 x+5 \\
-\quad- \\
-
\end{gathered}
$$

\therefore Quotient $=3 \mathrm{x}+5$ and remainder $=0$
(ii) $1+y^{3} \div 1+y$

$$
\begin{gathered}
y+1 \begin{array}{l}
\begin{array}{l}
y^{3}+1 \\
y^{3}+y^{2}
\end{array} \\
-\quad- \\
\frac{-y^{2}+1}{}-y+1 \\
-y^{2}-y \\
+\quad+ \\
\hline \frac{y+1}{y+1} \\
\frac{-}{0}
\end{array}
\end{gathered}
$$

\therefore Quotient $=\mathrm{y}^{2}-\mathrm{y}+1$ and remainder $=0$
(iii) On arranging the terms of dividend in descending order of powers of x and then dividing, we get $-2 x^{2}+x+5 \div x+1$

$$
\begin{gathered}
x+1)-2 x^{2}+x+5(-2 x+3 \\
-2 x^{2}-2 x \\
+\quad+ \\
\begin{array}{l}
3 x+5 \\
3 x+3
\end{array} \\
\frac{-\quad-}{2}
\end{gathered}
$$

\therefore Quotient $=-2 \mathrm{x}+3$ and remainder $=2$
(iv) $\mathrm{x}^{3}-6 \mathrm{x}^{2}+12 \mathrm{x}-8 \div \mathrm{x}-2$
$x-2) \overline{x^{3}-6 x^{2}+12 x-8\left(x^{2}-4 x+4\right.}$
$x^{3}-2 x^{2}$
$\frac{-+}{-4 x^{2}+12 x}$

$$
-4 x^{2}+8 x
$$

$$
\frac{+\quad-}{4 x-8}
$$

$$
4 x-8
$$

$$
\frac{-+}{0}
$$

\therefore Quotient $=\mathrm{x}^{2}-4 \mathrm{x}+4$ and remainder $=0$
4. Divide:
(i) $6 x^{3}+x^{2}-26 x-25$ by $3 x-7$
(ii) $m^{3}-6 m^{2}+7$ by $m-1$

Solution:
(i) $6 x^{3}+x^{2}-26 x-25 \div 3 x-7$

$$
\begin{gathered}
3 x-7 \begin{array}{l}
6 x^{3}+x^{2}-26 x-25 \\
6 x^{3}-14 x^{2} \\
-\quad+ \\
\frac{15 x^{2}-26 x-25}{2}+5 x+3 \\
15 x^{2}-35 x \\
-\quad+ \\
\frac{9 x-25}{9 x-21} \\
\frac{-}{-4}
\end{array}
\end{gathered}
$$

\therefore Quotient $=2 \mathrm{x}^{2}+5 \mathrm{x}+3$ and remainder $=-4$
(ii) $m^{3}-6 m^{2}+7 \div m-1$
$m - 1 \longdiv { m ^ { 3 } - 6 m ^ { 2 } + 7 } (m ^ { 2 } - 5 m - 5$

$$
m^{3}-m^{2}
$$

$$
-\quad+
$$

$$
\begin{aligned}
& -5 m^{2} \\
& -5 m^{2}+5 m
\end{aligned}+7
$$

$$
-5 m^{2}+5 m
$$

$$
\begin{aligned}
& +\quad- \\
& \hline
\end{aligned}
$$

$\frac{+\quad-}{2}$
\therefore Quotient $=\mathrm{m}^{2}-5 \mathrm{~m}-5$ and remainder $=2$.
5. Divide:
(i) $a^{3}+2 a^{2}+2 a+1$ by $a^{2}+a+1$
(ii) $12 x^{3}-17 x^{2}+26 x-18$ by $3 x^{2}-2 x+5$

Solution:
(i) $\mathrm{a}^{3}+2 \mathrm{a}^{2}+2 \mathrm{a}+1 \div \mathrm{a}^{2}+\mathrm{a}+1$

$$
\begin{gathered}
a ^ { 2 } + a + 1 \longdiv { a ^ { 3 } + 2 a ^ { 2 } + 2 a + 1 } (a + 1 \\
a^{3}+a^{2}+a \\
-\quad-\quad- \\
\frac{a^{2}+a+1}{a^{2}+a+1}
\end{gathered}
$$

\therefore Quotient $=\mathrm{a}+1$ and remainder $=0$.
(ii) $12 \mathrm{x}^{3}-17 \mathrm{x}^{2}+26 \mathrm{x}-18 \div 3 \mathrm{x}^{2}-2 \mathrm{x}+5$

$$
\begin{gathered}
\left.3 x^{3}-2 x+5\right) 12 x^{3}-17 x^{2}+26 x-18(4 x-3 \\
12 x^{3}-8 x^{2}+20 x
\end{gathered}
$$

$$
\frac{+\quad-}{-9 x^{2}+6 x-18}
$$

$$
-9 x^{2}+6 x-15
$$

$$
\begin{array}{r}
+\quad-\quad+ \\
\hline
\end{array}
$$

\therefore Quotient $=4 \mathrm{x}-3$ and remainder $=-3$
6. If the area of a rectangle is $8 x^{2}-45 y^{2}+18 x y$ and one of its sides is $4 x+15 y$, find the length of adjacent side.

Solution:

Given,
Area of rectangle $=8 x^{2}-45 y^{2}+18 x y$
And, one side $=4 \mathrm{x}+15 \mathrm{y}$
\therefore Second (adjacent) side $=$ Area of rectangle/ One side

$$
=8 x^{2}-45 y^{2}+18 x y \div 4 x+15 y
$$

$$
\begin{array}{r}
4 x+15 y) \frac{2 x-3 y}{8 x^{2}+18 x y-45 y^{2}} \\
8 x^{2}+30 x y \\
=-\quad- \\
\frac{-12 x y-45 y^{2}}{} \\
\frac{+12 x y-45 y^{2}+}{0}
\end{array}
$$

Thus, length of the adjacent side is $2 \mathrm{x}-3 \mathrm{y}$.

Exercise 10.5

1. Using suitable identities, find the following products:
(i) $(3 x+5)(3 x+5)$
(ii) $(9 y-5)(9 y-5)$
(iii) $(4 x+11 y)(4 x-11 y)$
(iv) $(3 m / 2+2 n / 3)(3 m / 2-2 n / 3)$
(v) $(2 / a+5 / b)(2 a+5 / b)$
(vi) $\left(\mathbf{p}^{2} / 2+2 / q^{2}\right)\left(p^{2} / 2-2 / q^{2}\right)$

Solution:
(i) $(3 x+5)(3 x+5)$
$=(3 \mathrm{x}+5)^{2}$
$=(3 \mathrm{x})^{2}+2 \times 3 \mathrm{x} \times 5+(5)^{2}$
$\left[\right.$ Using, $\left.(a+b)^{2}=a^{2}+2 a b+b^{2}\right]$
$=9 x^{2}+30 x+25$
(ii) $(9 y-5)(9 y-5)$
$=(9 y-5)^{2}$
$=(9 y)^{2}-2 \times 9 \mathrm{y} \times 5+(5)$
[Using, $\left.(a-b)^{2}=a^{2}-2 a b+b^{2}\right]$
$=81 \mathrm{y}^{2}-90 \mathrm{y}+25$
(iii) $(4 x+11 y)(4 x-11 y)$
$=(4 \mathrm{x})^{2}-(11 \mathrm{y})^{2}$
$=16 x^{2}-121 y^{2}$
$\left[\right.$ Using, $\left.(a+b)(a-b)=a^{2}-b^{2}\right]$
(iv) $(3 m / 2+2 n / 3)(3 m / 2-2 n / 3)$
$=(3 m / 2)^{2}-(2 n / 3)^{2}$
$=9 \mathrm{~m}^{2} / 4-4 \mathrm{n}^{2} / 9$
$\left[\right.$ Using, $\left.(a+b)(a-b)=a^{2}-b^{2}\right]$
(v) $(2 / a+5 / b)(2 a+5 / b)$
$=(2 / a+5 / b)^{2}$
$=(2 / a)^{2}+2(2 / a)(5 / b)+(5 / b)^{2} \quad\left[\right.$ Using, $\left.(a+b)^{2}=a^{2}+2 a b+b^{2}\right]$
$=4 / \mathrm{a}^{2}+20 \mathrm{a} / \mathrm{b}+25 / \mathrm{b}^{2}$
(vi) $\left(p^{2} / 2+2 / q^{2}\right)\left(p^{2} / 2-2 / q^{2}\right)$
$=\left(p^{2} / 2\right)^{2}-\left(2 / q^{2}\right)^{2}$
$\left[\right.$ Using, $\left.(a+b)(a-b)=a^{2}-b^{2}\right]$
$=\mathrm{p}^{4} / 4-4 / \mathrm{q}^{4}$
2. Using the identities, evaluate the following:
(i) 81^{2}
(ii) 97^{2}
(iii) 105^{2}
(iv) 997^{2}
(v) 6.1^{2}
(vi) 496×504
(vii) 20.5×19.5

ML Aggarwal Solutions for Class 8 Maths Chapter 10: Algebraic Expressions and Identities

(viii) 9.62

Solution:

(i) $(81)^{2}=(80+1)^{2}$
$=(80)^{2}+2 \times 80 \times 1+(1)$
$=6400+160+1$
$=6561$
(ii) $(97)^{2}=(100-3)^{2}$
$=(100)^{2}-2 \times 100 \times 3+(3)^{2}$
[Using, $\left.(a-b)^{2}=a^{2}-2 a b+b^{2}\right]$
$=10000-600+9$
$=10009-600$
$=9409$
(ii) $(105)^{2}=(100+5)^{2}$
$=(100)^{2}+2 \times 100 \times 5+(5)^{2} \quad\left[\right.$ Using, $\left.(a+b)^{2}=a^{2}+2 a b+b^{2}\right]$
$=10000+1000+25$
$=11025$
(iv) $(997)^{2}=(1000-3)^{2}$
$=(1000)^{2}-2 \times 1000 \times 3+(3)^{2} \quad\left[\right.$ Using, $\left.(a-b)^{2}=a^{2}-2 a b+b^{2}\right]$
$=1000000-6000+9$
$=1000009-6000$
$=994009$
(v) $(6.1)^{2}=(6+0.1)^{2}$
$=(6)^{2}+2 \times 6 \times 0.1+(0.1)^{2}$
$=36+1.2+0.01$
$=37.21$
(vi) 496×504
$=(500-4)(500+4)$
$=(500)^{2}-(4)^{2}$
$=250000-16$
$=249984$
[Using, $\left.(a+b)(a-b)=a^{2}-b^{2}\right]$
(vii) 20.5×19.5
$=(20+0.5)(20-0.5)$
$\left[\right.$ Using, $\left.(a+b)(a-b)=a^{2}-b^{2}\right]$
$=(20)^{2}-(0.5)^{2}$
$=400-0.25$
$=399.75$
(viii) $(9.6)^{2}=(10-0.4)^{2}$
$=(10)^{2}-2 \times 10 \times 0.4+(0.4)^{2} \quad\left[\right.$ Using, $\left.(a-b)^{2}=a^{2}-2 a b+b^{2}\right]$
$=100-8.0+0.16$
$=92.16$
$\left[\right.$ Using, $\left.(a+b)^{2}=a^{2}+2 a b+b^{2}\right]$
3. Find the following squares, using the identities:
(i) $(p q+5 r)^{2}$
(ii) $(5 a / 2-3 b / 5)^{2}$
(iii) $(\sqrt{ } 2 a+\sqrt{ } 3 b)^{2}$
(iv) $(2 x / 3 y-3 y / 2 x)^{2}$

Solution:
(i) $(\mathrm{pq}+5 \mathrm{r})^{2}$
$=(\mathrm{pq})^{2}+2 \times \mathrm{pq} \times 5 \mathrm{r}+(5 \mathrm{r})^{2} \quad$ [Using, $\left.(\mathrm{a}+\mathrm{b})^{2}=\mathrm{a}^{2}+2 \mathrm{ab}+\mathrm{b}^{2}\right]$
$=\mathrm{p}^{2} \mathrm{q}^{2}+10 \mathrm{pqr}+25 \mathrm{r}^{2}$
(ii) $(5 \mathrm{a} / 2-3 \mathrm{~b} / 5)^{2}$
$=(5 \mathrm{a} / 2)^{2}-2 \times(5 \mathrm{a} / 2) \times(-3 \mathrm{~b} / 5)+(3 \mathrm{~b} / 5)^{2} \quad\left[\right.$ Using, $\left.(\mathrm{a}-\mathrm{b})^{2}=\mathrm{a}^{2}-2 \mathrm{ab}+\mathrm{b}^{2}\right]$
$=25 \mathrm{a}^{2} / 4-3 \mathrm{ab}+9 \mathrm{~b}^{2} / 25$
(iii) $(\sqrt{ } 2 a+\sqrt{ } 3 b)^{2}$
$=(\sqrt{ } 2 \mathrm{a})^{2}+2 \times \sqrt{ } 2 \mathrm{a} \times \sqrt{ } 3 \mathrm{~b}+(\sqrt{ } 3 \mathrm{~b})^{2} \quad\left[\right.$ Using, $\left.(a+b)^{2}=\mathrm{a}^{2}+2 \mathrm{ab}+\mathrm{b}^{2}\right]$
$=2 a^{2}+2 \sqrt{ } 6 a b+3 b^{2}$
(iv) $(2 x / 3 y-3 y / 2 x)^{2}$
$=\left(\frac{2 x}{3 y}\right)^{2}-2 \times \frac{2 x}{2 y} \times \frac{3 y}{2 x}+\left(\frac{3 y}{2 x}\right)^{2}\left\{(a-b)^{2}=a^{2}-2 a b+b^{2}\right\}$
$=\frac{4 x^{2}}{9 y^{2}}-2+\frac{9 y^{2}}{4 x^{2}}$
4. Using the identity, $(x+a)(x+b)=x^{2}+(a+b) x+a b$, find the following products:
(i) $(x+7)(x+3)$
(ii) $(3 x+4)(3 x-5)$
(iii) $\left(\mathbf{p}^{2}+2 q\right)\left(\mathbf{p}^{2}-3 q\right)$
(iv) $(a b c+3)(a b c-5)$

Solution:
(i) $(x+7)(x+3)$
$=(\mathrm{x})^{2}+(7+3) \mathrm{x}+7 \times 3$
$=x^{2}+10 \mathrm{x}+21$
(ii) $(3 \mathrm{x}+4)(3 \mathrm{x}-5)$
$=(3 \mathrm{x})^{2}+(4-5)(3 \mathrm{x})+4 \times(-5)$
$=9 \mathrm{x}^{2}-3 \mathrm{x}-20$
(iii) $\left(P^{2}+2 q\right)\left(p^{2}-3 q\right)$
$=\left(p^{2}\right)^{2}+(2 q-3 q) p^{2}+2 q \times(-3 q)$
$=p^{4}-p^{2} q-6 p q$
(iv) $(a b c+3)(a b c-5)$
$=(a b c)^{2}+(3-5) a b c+3 \times(-5)$
$=a^{2} b^{2} c^{2}-2 a b c-15$
5. Using the identity, $(x+a)(x+b)=x^{2}+(a+b) x+a b$, evaluate the following:
(i) 203×204
(ii) 8.2×8.7
(iii) 107×93

Solution:

(i) 203×204
$=(200+3)(200+4)$
$=(200)^{2}+(3+4) \times 200+3 \times 4$
$=40000+1400+12$
$=41412$
(ii) 8.2×8.7
$=(8+0.2)(8+0.7)$
$=(8)^{2}+(0.2+0.7) \times 8+0.2 \times 0.7$
$=64+8 \times(0.9)+0.14$
$=64+7.2+0.14$
$=71.34$
(iii) 107×93
$=(100+7)(100-7)$
$=(100)^{2}+(7-7) \times 100+7 \times(-7)$
$=10000+0-49$
$=9951$
6. Using the identity $a^{2}-b^{2}=(a+b)(a-b)$, find
(i) $53^{2}-47^{2}$
(ii) $(\mathbf{2 . 0 5})^{2}-(0.95)^{2}$
(iii) $(14.3)^{2}-(5.7)^{2}$

Solution:

(i) $53^{2}-47^{2}$
$=(50+3)(50-3)$
$=(50)^{2}-(3)^{2}$
$=2500-9$
$=2491$
(ii) $(2.05)^{2}-(0.95)^{2}$
$=(2.05+0.95)(2.05-0.95)$
$=3 \times 1.10$
$=3.3$
(iii) $(14.3)^{2}-(5.7)^{2}$
$=(14.3+5.7)(14.3-5.7)$
$=20 \times 8.6$
$=172$
7. Simplify the following:
(i) $(2 x+5 y)^{2}+(2 x-5 y)^{2}$
(ii) $(7 a / 2-5 b / 2)^{2}-(5 a / 2-7 b / 2)^{2}$
(iii) $\left(\mathbf{p}^{2}-\mathbf{q}^{2} \mathbf{r}\right)^{2}+2 \mathbf{p}^{2} \mathbf{q}^{2} \mathbf{r}$

Solution:
(i) $(2 x+5 y)^{2}+(2 x-5 y)^{2}$
$\left[\right.$ Using, $\left.(a \pm b)^{2}=a^{2} \pm 2 a b+b^{2}\right]$
$=(2 \mathrm{x})^{2}+2 \times 2 \mathrm{x} \times 5 \mathrm{y}+(5 \mathrm{y})^{2}+(2 \mathrm{x})^{2}-2 \times 2 \mathrm{x} \times 5 \mathrm{y}+(5 \mathrm{y})^{2}$
$=4 x^{2}+20 x y+25 y^{2}+4 x^{2}-20 x y+25 y^{2}$
$=8 \mathrm{x}^{2}+50 \mathrm{y}^{2}$
(ii) $(7 \mathrm{a} / 2-5 \mathrm{~b} / 2)^{2}-(5 \mathrm{a} / 2-7 \mathrm{~b} / 2)^{2}$
$=\left[\left(\frac{7}{2} a\right)^{2}-2 \times \frac{7}{2} a \times \frac{5}{2} b-\left(\frac{5}{2} b\right)^{2}\right]-\left[\left(\frac{5}{2} a\right)^{2}-2 \times \frac{5}{2} a \times \frac{7}{2} b+\left(\frac{7}{2} b\right)^{2}\right]$
$=\left[\frac{49}{4} a^{2}-\frac{35}{2} a b+\frac{25}{4} b^{2}\right]-\left[\frac{25}{4} a^{2}-\frac{35}{2} a b+\frac{49}{4} b^{2}\right]$
$=\frac{49}{4} a^{2}-\frac{35}{2} a b+\frac{25}{4} b^{2}-\frac{25}{4} a^{2}+\frac{35}{2} a b-\frac{49}{4} b^{2}$
$=\frac{49}{4} a^{2}-\frac{25}{4} a^{2}+\frac{25}{4} b^{2}-\frac{49}{4} a^{2}$
$=\frac{24}{4} a^{2}+\frac{-24}{4} b^{2}$
$=6 a^{2}-6 b^{2}$
(iii) $\left(p^{2}-q^{2} r\right)^{2}+2 p^{2} q^{2} r$
[Using, $\left.(a-b)^{2}=a^{2}-2 a b+b^{2}\right]$
$=\left(p^{2}\right)^{2}-2 \times p^{2} \times q^{2} r+\left(q^{2} r\right)^{2}+2 p^{2} q^{2} r$
$=p^{4}-2 p^{2} q+q^{4} r^{2}+2 p^{2} q^{2} r$
$=p^{4}+q^{4} r^{2}$

8. Show that:

(i) $(4 x+7 y)^{2}-(4 x-7 y)^{2}=112 x y$
(ii) $(3 p / 7-7 q / 6)^{2}+p q=9 p^{2} / 49+49 q^{2} / 36$
(iii) $(\mathbf{p}-\mathbf{q})(\mathbf{p}+\mathbf{q})+(\mathbf{q}-\mathbf{r})(\mathbf{q}+\mathbf{r})+(\mathbf{r}-\mathbf{p})(\mathbf{r}+\mathbf{p})=\mathbf{0}$

Solution:
(i) Taking LHS, we have

$$
\begin{aligned}
\text { LHS } & =(4 \mathrm{x}+7 \mathrm{y})^{2}-(4 \mathrm{x}-7 \mathrm{y})^{2} \quad\left[\text { Using, }(\mathrm{a} \pm \mathrm{b})^{2}=\mathrm{a}^{2} \pm 2 \mathrm{ab}+\mathrm{b}^{2}\right] \\
& =\left[(4 \mathrm{x})^{2}+2 \times 4 \mathrm{x} \times 7 \mathrm{y}+(7 \mathrm{y})^{2}\right]-\left[(4 \mathrm{x})^{2}-2 \times 4 \mathrm{x}+7 \mathrm{y}+(7 \mathrm{y})^{2}\right] \\
& =\left(16 \mathrm{x}^{2}+56 \mathrm{xy}+49 \mathrm{y}^{2}\right)-\left(16 \mathrm{x}^{2}-56 \mathrm{xy}+49 \mathrm{y}^{2}\right) \\
& =16 \mathrm{x}^{2}+56 \mathrm{xy}+49 \mathrm{y}^{2}-16 \mathrm{x}^{2}+56 \mathrm{xy}-49 \mathrm{y}^{2}
\end{aligned}
$$

$$
=112 x y=\text { RHS }
$$

(ii) Taking LHS, we have

$$
\begin{aligned}
\text { LHS } & =\left(\frac{3}{7} p-\frac{7}{6} q\right)^{2}+p q \\
& =\left(\frac{3}{7} p\right)^{2}-2 \times \frac{3}{7} p \times \frac{7}{6} q+\left(\frac{7}{6} q\right)^{2}+p q \quad\left\{(a-b)^{2}=a^{2}-2 a b+b^{2}\right\} \\
& =\frac{9}{49} p^{2}-p q+\frac{49}{36} q^{2}+p q \\
& =\frac{9}{49} p^{2}+\frac{49}{36} q^{2}=\text { RHS }
\end{aligned}
$$

(iii) Taking LHS, we have

$$
\begin{aligned}
\text { LHS } & =(p-q)(p+q)+(q-r)(q+r)+(r-p)(r+p) \\
& =p^{2}-q^{2}+q^{2}-r^{2}+r^{2}-p^{2} \quad\left[U \operatorname{sing},(a+b)(a-b)=a^{2}-b^{2}\right] \\
& =0=\text { RHS }
\end{aligned}
$$

9. If $x+1 / x=2$, evaluate:
(i) $x^{2}+1 / x^{2}$
(ii) $\mathrm{x}^{4}+1 / \mathbf{x}^{4}$

Solution:

(i) We have, $x+1 / x=2$

On squaring on both sides, we get
$(x+1 / x)^{2}=2^{2}$
$x^{2}+2 \times x \times 1 / x+1 / x^{2}=4$
$x^{2}+2+1 / x^{2}=4$
$x^{2}+1 / x^{2}=4-2$
Thus,
$x^{2}+1 / x^{2}=2$
(ii) Again squaring, we get
$\left(\mathrm{x}^{2}+1 / \mathrm{x}^{2}\right)^{2}=2^{2}$
$x^{4}+2 \times x^{2} \times 1 / x^{2}+1 / x^{4}=4$
$x^{4}+2+1 / x^{4}=4$
$\mathrm{x}^{4}+1 / \mathrm{x}^{4}=4-2$
Thus,
$x^{4}+1 / x^{4}=2$
10. If $x-1 / x=7$, evaluate:
(i) $x^{2}+1 / x^{2} \quad$ (ii) $x^{4}+1 / x^{4}$

Solution:
We have, $x-1 / x=7$
On squaring on both sides, we get
$(\mathrm{x}-1 / \mathrm{x})^{2}=7^{2}$
$x^{2}-2 \times x^{2} \times 1 / x^{2}+1 / x^{2}=49$
$x^{2}-2+1 / x^{2}=49$
$x^{2}+1 / x^{2}=49+2$
Thus,
$x^{2}+1 / x^{2}=51$
(ii) Again squaring, we get
$\left(x^{2}+1 / x^{2}\right)^{2}=51^{2}$
$x^{4}+1 / x^{4}+2 \times x^{2} \times 1 / x^{2}=2601$
$x^{4}+1 / x^{4}+2=2601$
$x^{4}+1 / x^{4}=2601-2$
Thus,
$\mathrm{x}^{4}+1 / \mathrm{x}^{4}=2599$
11. If $x^{2}+1 / x^{2}=23$, evaluate:
(i) $x+1 / x$
(ii) $x-1 / x$

Solution:

We have, $x^{2}+1 / x^{2}=23$
(i) $(x+1 / x)^{2}=x^{2}+1 / x^{2}+2$

$$
\begin{aligned}
& =23+2 \\
& =25
\end{aligned}
$$

Taking square root on both sides, we get $(x+1 / x)= \pm 5$
Thus, $x+1 / x=5$ or -5
(ii) $(x-1 / x)^{2}=x^{2}+1 / x^{2}-2$

$$
\begin{aligned}
& =23-2 \\
& =21
\end{aligned}
$$

Taking square root on both sides, we get
$(x+1 / x)= \pm \sqrt{21}$
Thus, $x+1 / x=\sqrt{ } 21$ or $-\sqrt{ } 21$
12. If $a+b=9$ and $a b=10$, find the value of $a^{2}+b^{2}$.

Solution:
Given,
$a+b=9$ and $a b=10$
Now, squaring $\mathrm{a}+\mathrm{b}=9$ on both sides, we have
$(a+b)^{2}=(9)$
$\mathrm{a}^{2}+\mathrm{b}^{2}+2 \mathrm{ab}=81$
$\mathrm{a}^{2}+\mathrm{b}^{2}+2 \times 10=81$
$a^{2}+b^{2}+20=81$
$\mathrm{a}^{2}+\mathrm{b}^{2}=81-20=61$
$\therefore \mathrm{a}^{2}+\mathrm{b}^{2}=61$
13. If $a-b=6$ and $a^{2}+b^{2}=42$, find the value of Solution:

Given
$a-b=6$ and $a^{2}+b^{2}=42$
$a-b=6$
Now, squaring $\mathrm{a}-\mathrm{b}=6$ on both sides, we have
$(a-b)^{2}=(6)^{2}$
$a^{2}+b^{2}-2 a b=36$
$42-2 \mathrm{ab}=36$
$2 \mathrm{ab}=42-36=6$
$a b=6 / 2=3$
$\therefore \mathrm{ab}=3$
14. If $a^{2}+b^{2}=41$ and $a b=4$, find the values of (i) $\mathbf{a}+\mathbf{b}$
(ii) $\mathbf{a}-\mathbf{b}$

Solution:
Given, $\mathrm{a}^{2}+\mathrm{b}^{2}=41$ and $\mathrm{ab}=4$
(i) $(a+b)^{2}=a^{2}+b^{2}+2 a b$

$$
\begin{aligned}
& =41+2 \times 4 \\
& =41+8 \\
& =49
\end{aligned}
$$

$\therefore \mathrm{a}+\mathrm{b}= \pm 7$
(ii) $(a-b)^{2}=a^{2}+b^{2}-2 a b$

$$
=41-2 \times 4
$$

$$
=41-8
$$

$$
=33
$$

$\therefore \mathrm{a}-\mathrm{b}= \pm \sqrt{ } 33$

Check Your Progress

1. Add the following expressions:
(i) $-5 x^{2} y+3 x y^{2}-7 x y+8,12 x^{2} y-5 x y^{2}+3 x y-2$
(ii) $9 \mathrm{xy}+3 \mathrm{yz}-5 \mathrm{zx}, 4 \mathrm{yz}+9 \mathrm{zx}-5 \mathrm{y},-5 \mathrm{xz}+2 \mathrm{x}-5 \mathrm{xy}$

Solution:
(i) $\left(-5 x^{2} y+3 x y^{2}-7 x y+8\right)+\left(12 x^{2} y-5 x y^{2}+3 x y-2\right)$
$=7 x^{2} y-2 x y^{2}-4 x y+6$
(ii) $(9 x y+3 y z-5 z x)+(4 y z+9 z x-5 y,-5 x z+2 x-5 x y)$ $=4 x y+7 y z-z x+2 x-5 y$

2. Subtract:

(i) $5 a+3 b+11 c-2$ from $3 a+5 b-9 c+3$
(ii) $10 x^{2}-8 y^{2}+5 y-3$ from $8 x^{2}-5 x y+2 y^{2}+5 x-3 y$

Solution:
(i) $5 \mathrm{a}-3 \mathrm{~b}+11 \mathrm{c}-2$ from $3 \mathrm{a}+5 \mathrm{~b}-9 \mathrm{c}+3$
$=(3 a+5 b-9 c+3)-(5 a-3 b+11 c-2)$
$=3 \mathrm{a}+5 \mathrm{~b}-9 \mathrm{c}+3-5 \mathrm{a}+3 \mathrm{~b}-11 \mathrm{c}+2$
$=-2 a+8 b-20 c+5$
(ii) $10 x^{2}-8 y^{2}+5 y-3$ from $8 x^{2}-5 x y+2 y^{2}+5 x-3 y$
$=\left(8 x^{2}-5 x y+2 y^{2}+5 x-3 y\right)-\left(10 x^{2}-8 y^{2}+5 y-3\right)$
$=8 x^{2}-5 x y+2 y^{2}+5 x-3 y-10 x^{2}+8 y^{2}-5 y+3$
3. What must be added to $5 x^{2}-3 x+1$ to get $3 x^{3}-7 x^{2}+8$?

Solution:
From the question, the required expression is
$=\left(3 \mathrm{x}^{3}-7 \mathrm{x}^{2}+8\right)-\left(5 \mathrm{x}^{2}-3 \mathrm{x}+1\right)$
$=3 \mathrm{x}^{3}-7 \mathrm{x}^{2}+8-5 \mathrm{x}^{2}+3 \mathrm{x}-1$
$=3 \mathrm{x}^{3}-12 \mathrm{x}^{2}+3 \mathrm{x}+7$
4. Find the product of
(i) $3 x^{2} y$ and $-4 x y^{2}$
(ii) $-(4 / 5) \mathrm{xy},(5 / 7) \mathrm{yz}$ and $-(14 / 9) \mathrm{zx}$

Solution:

Product of:
(i) $3 x^{2} y$ and $-4 x y^{2}$
$=3 x^{2} \times\left(-4 x^{2}\right)$
$=-12 x^{2+1} y^{1+2}$
$=12 \mathrm{x}^{3} \mathrm{y}^{3}$
(ii) $-(4 / 5) \mathrm{xy},(5 / 7) \mathrm{yz}$ and $-(14 / 9) \mathrm{zx}$
$=-(4 / 5) \mathrm{xy} \times(5 / 7) \mathrm{yz} \times-(14 / 9) \mathrm{zx}$
$=-(4 / 5) \times(5 / 7) \times-(14 / 9) x^{2} y^{2} z^{2}$
$=(8 / 9) x^{2} y^{2} z^{2}$
5. Multiply:
(i) $\left(3 p q-4 p^{2}+5 q^{2}+7\right)$ by $-7 p q$
(ii) $\left(3 / 4 x^{2} y-4 / 5 x y+5 / 6 x y^{2}\right)$ by $-15 x y z$

Solution:
(i) $\left(3 \mathrm{pq}-4 \mathrm{p}^{2}+5 \mathrm{q}^{2}+7\right) \times(-7 \mathrm{pq})$
$=-7 \mathrm{pq} \times 3 \mathrm{pq}-7 \mathrm{pq} \times\left(-4 \mathrm{p}^{2}\right)+(-7 \mathrm{pq})\left(5 \mathrm{q}^{2}\right)-7 \mathrm{pq} \times 7$
$=-21 p^{2} q^{2}+28 p^{3} q-35 p q^{3}-49 p q$
(ii) $\left(3 / 4 x^{2} y-4 / 5 x y+5 / 6 x y^{2}\right) \times(-15 x y z)$
$=-15 x y z\left(\frac{3}{4} x^{2} y-\frac{4}{5} x y+\frac{5}{6} x y^{2}\right)$
$=-15 x y z \times \frac{3}{4} x^{2} y-15 x y z \times\left(\frac{-4}{5} x y\right)-15 x y z\left(\frac{5}{6} x y^{2}\right)$
$=\frac{-45}{4} x^{3} y^{2} z+12 x^{2} y^{2} z-\frac{25}{2} x^{2} y^{3} z$
6. Multiply:
(i) $\left(5 x^{2}+4 x-2\right)$ by $\left(3-x-4 x^{2}\right)$
(ii) $\left(7 x^{2}+12 x y-9 y^{2}\right)$ by $\left(3 x^{2}-5 x y+3 y^{2}\right)$

Solution:
(i) $\left(5 x^{2}+4 x-2\right) \times\left(3-x-4 x^{2}\right)$
$=5 \mathrm{x}^{2}\left(3-\mathrm{x}-4 \mathrm{x}^{2}\right)+4 \mathrm{x}\left(3-\mathrm{x}-4 \mathrm{x}^{2}\right)-2\left(3 \mathrm{x}-\mathrm{x}-4 \mathrm{x}^{2}\right)$
$=15 \mathrm{x}^{2}-5 \mathrm{x}^{3}-20 \mathrm{x}^{4}+12 \mathrm{x}-4 \mathrm{x}^{2}-16 \mathrm{x}^{3}-6 \mathrm{x}+2 \mathrm{x}+8 \mathrm{x}^{2}$
$=-20 x^{4}-21 x^{3}+19 x^{2}+14 x-6$
(ii) $\left(7 x^{2}+12 x y-9 y^{2}\right) x\left(3 x^{2}-5 x y+3 y^{2}\right)$
$=7 x^{2}\left(3 x^{2}-5 x y+3 y^{2}\right)+12 x y\left(3 x^{2}-5 x y+3 y^{2}\right)-9 y^{2}\left(3 x^{2}-5 x y+3 y^{2}\right)$
$=21 x^{4}-35 x^{3} y+21 x^{2} y^{2}+36 x^{3} y-60 x^{2} y^{2}+36 x y^{3}-27 x^{2} y^{2}+45 x y^{3}-27 y^{4}$
$=21 x^{4}+x^{3} y+81 x y^{3}-66 x^{2} y^{2}-27 y^{4}$
7. Simplify the following expressions and evaluate them as directed:
(i) $\left(\mathbf{3 a b}-2 \mathbf{a}^{2}+5 b^{2}\right) \times\left(2 b^{2}-5 a b+3 a^{2}\right)+8 a^{3} b-7 b^{4}$ for $a=1, b=-1$
(ii) $(1.7 x-2.5 y)(2 y+3 x+4)-7.8 x^{2}-10 y$ for $x=0, y=1$.

Solution:
(i) $\left(3 a b-2 a^{2}+5 b^{2}\right) \times\left(2 b^{2}-5 a b+3 a^{2}\right)+8 a^{3} b-7 b^{4}$
$=3 a b\left(2 b^{2}-5 a b+3 a^{2}\right)-2 a^{2}\left(2 b^{2}-5 a b+3 a^{2}\right)+5 b^{2}\left(2 b^{2}-5 a b+3 a^{2}\right)+8 a^{3} b-7 b^{4}$
$=6 a b^{32}-15 a^{2} b^{2}+9 a^{3} b-4 a^{2} b^{2}+10 a^{3} b-6 a^{4}+10 b^{4}-25 a^{3}+15 a^{2} b^{2}+8 a^{3} b-7 b^{4}$
$=27 a^{3} b-4 a^{2} b^{2}-19 a b^{3}-6 a^{4}+3 b^{4}$
Putting, $\mathrm{a}=1$ and $\mathrm{b}=(-1)$
$=27(1)^{3}(-1)-4(1)^{2}(-1)^{2}-19(1)(-1)^{3}-6(1)^{4}+3(-1)^{4}$
$=-27-4+19-6+3$
$=-37+22$
$=-15$
(ii) $(1.7 x-2.5 y)(2 y+3 x+4)-7.8 x^{2}-10 y$
$1.7 x(2 y+3 x+4)-2.5 y(2 y+3 x+4)-7.8 x^{2}-10 y$
$=3.4 x y+5.1 x^{2}+6.8 x-5 y^{2}-7.5 x y-10 y-7.8 x^{2}-10 y$
$=-2.7 x^{2}-4.1 x y-5 y^{2}+6.8 x-20 y$
Putting, $x=0$ and $y=1$
$=-2.7 \times 0-4.1 \times 0 \times 1-5(1)^{2}+6.8 \times 0-20 \times 1$
$=0+0-5+0-20$
$=-25$
8. Carry out the following divisions:
(i) $66 p^{2} \mathbf{r}^{3} \div 11 \mathrm{qr}^{2}$
(ii) $\left(x^{3}+2 x^{2}+3 x\right) \div 2 x$

Solution:

(i) $66 \mathrm{pq}^{2} \mathrm{r}^{3} / 11 \mathrm{qr}^{2}$
$=6 \mathrm{pq}^{2-1} \mathrm{r}^{3-2}$
$=6 \mathrm{pqr}$
(ii) $\left(\mathrm{x}^{3}+2 \mathrm{x}^{2}+3 \mathrm{x}\right) / 2 \mathrm{x}$
$=x^{3} / 2 x+2 x^{2} / 2 x+3 x / 2 x$
$=1 / 2 x^{2}+x+3 / 2$
9. Divide $10 x^{4}-19 x^{3}+17 x^{2}+15 x-42$ by $2 x^{2}-3 x+5$.

Solution:
$\left(10 x^{4}-19 x^{3}+17 x^{2}+15 x-42\right) \div\left(2 x^{2}-3 x+5\right)$
Performing long division, we have

$$
\begin{array}{r}
\frac{5 x^{2}-2 x-7}{\left.2 x^{2}-3 x+5\right) 10 x^{4}-19 x^{3}+17 x^{2}+15 x-42} \\
10 x^{4}-15 x^{2}+25 x^{2} \\
\quad+\quad+\quad-4 x^{3}-8 x^{2}+15 x \\
-4 x^{3}+6 x^{2}-10 x \\
+\quad+\quad+ \\
+14 x^{2}+25 x-42 \\
-14 x^{2}+21 x-35 \\
+\quad-+ \\
\hline
\end{array}
$$

Thus, Quotient $=5 x^{2}-2 x-7$ and Remainder $=4 x-7$
10. Using identities, find the following products:
(i) $(3 x+4 y)(3 x+4 y)$
(ii) $(5 a / 2-b)(5 a / 2-b)$
(iii) $(3.5 m-1.5 n)(3.5 m+1.5 n)$
(iv) $(7 x y-2)(7 x y+7)$

Solution:

(i) $(3 x+4 y)(3 x+4 y)$
$=(3 x+4 y)^{2}$
$=(3 x)^{2}+2 \times 3 x \times 4 y+(4 y)^{2} \quad\left[\right.$ Using, $\left.(a+b)^{2}=a^{2}+2 a b+b^{2}\right]$
$=9 x^{2}+24 x y+16 y^{2}$
(ii) $(5 \mathrm{a} / 2-\mathrm{b})(5 \mathrm{a} / 2-\mathrm{b})$
$=(5 \mathrm{a} / 2-\mathrm{b})^{2}$
$=(5 \mathrm{a} / 2)^{2}+2 \times 5 \mathrm{a} / 2 \times(-\mathrm{b})+(\mathrm{b})^{2} \quad\left[\right.$ Using, $\left.(\mathrm{a}-\mathrm{b})^{2}=\mathrm{a}^{2}-2 \mathrm{ab}+\mathrm{b}^{2}\right]$
$=25 \mathrm{a}^{2} / 4-5 \mathrm{ab}+\mathrm{b}^{2}$
(iii) $(3.5 m-1.5 n)(3.5 m+1.5 n)$
$=(3.5 \mathrm{~m})^{2}-(1.5 \mathrm{n})^{2} \quad\left[\right.$ Using, $\left.(\mathrm{a}-\mathrm{b})(\mathrm{a}+\mathrm{b})=\mathrm{a}^{2}-\mathrm{b}^{2}\right]$
$=12.25 \mathrm{~m}^{2}-2.25 \mathrm{n}^{2}$
(iv) $(7 x y-2)(7 x y+7)$
$=(7 x y)^{2}+(-2+7) \times(7 x y)+(-2) \times 7\left[\right.$ Using, $\left.(x+a)(x+b)=x^{2}+(a+b) x+a b\right]$
$=49 x^{2} y^{2}+35 x y-14$
11. Using suitable identities, evaluate the following:
(i) 105^{2}
(ii) 97^{2}
(iii) 201×199
(iv) $87^{2}-13^{2}$
(v) 105×107

Solution:

(i) $(105)^{2}=(100+5)^{2}$
$=(100)^{2}+2 \times 100 \times 5+(5)^{2} \quad\left[\right.$ Using, $\left.(a+b)^{2}=a^{2}+2 a b+b^{2}\right]$
$=10000+1000+25$
$=11025$
(ii) $(97)^{2}=(100-3)^{2}$
$=(100)^{2}-2 \times 100 \times 3+(3)^{2} \quad\left[\right.$ Using, $\left.(a-b)^{2}=a^{2}-2 a b+b^{2}\right]$
$=10000-600+9$
$=10009-600$
$=9409$
(iii) $201 \times 199=(200+1)(200-1)$

$$
\begin{aligned}
& =(200)^{2}-(1)^{2} \\
& =40000-1 \\
& =39999
\end{aligned}
$$

$$
\left[\text { Using, }(a+b)(a-b)=a^{2}-b^{2}\right]
$$

(iv) $87^{2}-13^{2}$
$=(87+13)(87-13)$
$=100 \times 74$
$=7400$
(v) 105×107
$=(100+5)(100+7)$
$=(100)^{2}+(5+7) \times 100+5 \times 7$
$\left[\right.$ Using, $\left.(x+a)(x-b)=x^{2}+(a+b) x+a b\right]$
$=10000+1200+35$
$=11235$

12. Prove that following:

(i) $(\mathbf{a}+\mathrm{b})^{2}-(\mathrm{a}-\mathrm{b})^{2}+4 \mathbf{a b}$
(ii) $(2 a+3 b)^{2}+(2 a-3 b)^{2}=8 a^{2}+18 b^{2}$

Solution:

(i) Taking the RHS, we have

$$
\begin{aligned}
\text { RHS } & =(a-b)^{2}+4 a b \\
& =a^{2}-2 a b+b^{2}+4 a b \\
& =a^{2}+2 a b+b^{2} \\
& =(a+b)^{2}=\text { L.H.S. }
\end{aligned}
$$

(ii) Taking the LHS, we have

$$
\begin{aligned}
\text { LHS } & =(2 a+3 b)^{2}+(1 a-3 b)^{2} \\
& =(2 a)^{2}+2 \times 2 a \times 3 b+(3 b)^{2}+(2 a)^{2}-2 \times 2 a \times 3 b+(3 b)^{2} \\
& =4 a^{2}+12 a b+9 b^{2}+4 a^{2}-12 a b+9 b^{2} \\
& =8 a^{2}+18 b^{2}=\text { RHS }
\end{aligned}
$$

13. If $x+1 / x=5$, evaluate
(i) $x^{2}+1 / x^{2}$
(ii) $\mathrm{x}^{4}+1 / \mathrm{x}^{4}$

Solution:
(i) We have, $x+1 / x=5$

On squaring on both sides, we get
$(x+1 / x)^{2}=5^{2}$
$\mathrm{x}^{2}+1 / \mathrm{x}^{2}+2 \times \mathrm{x} \times 1 / \mathrm{x}=25$
$x^{2}+2+1 / x^{2}=25$
$x^{2}+1 / x^{2}=25-2$
Hence, $x^{2}+1 / x^{2}=23$
(ii) Again, squaring $x^{2}+1 / x^{2}=23$ on both sides, we get

$$
\begin{aligned}
& \left(x^{2}+1 / x^{2}\right)^{2}=23^{2} \\
& x^{4}+1 / x^{4}+2 \times x^{4} \times 1 / x^{4}=529 \\
& x^{4}+1 / x^{4}+2=529 \\
& x^{4}+1 / x^{4}=529-2
\end{aligned}
$$

Hence,

$$
x^{4}+1 / x^{4}=527
$$

14. If $a+b=5$ and $a^{2}+b^{2}=13$, find $a b$.

Solution:
Given,

$$
\mathrm{a}+\mathrm{b}=5 \text { and } \mathrm{a}^{2}+\mathrm{b}^{2}=13
$$

On squaring $\mathrm{a}+\mathrm{b}=5$ both sides, we get

$$
\begin{aligned}
& (a+b)^{2}=(5)^{2} \\
& a^{2}+b^{2}+2 a b=25 \\
& 13+2 a b=25 \Rightarrow 2 a b=25-13=12 \\
& \Rightarrow a b=12 / 2=6 \\
& \therefore a b=6
\end{aligned}
$$

