Exercise 12

1. Lengths of sides of triangles are given below. Determine which of them are right triangles. In case of a right triangle, write the length of its hypotenuse:
(i) $\mathbf{3 c m}, 8 \mathrm{~cm}, 6 \mathrm{~cm}$
(ii) $13 \mathrm{~cm}, 12 \mathrm{~cm}, 5 \mathrm{~cm}$
(iii) $1.4 \mathrm{~cm}, 4.8 \mathrm{~cm}, 5 \mathrm{~cm}$

Solution:

We use the Pythagoras theorem to check whether the triangles are right triangles.
We have $h^{2}=b^{2}+a^{2} \quad$ [Pythagoras theorem]
Where h is the hypotenuse, b is the base and a is the altitude.
(i)Given sides are $3 \mathrm{~cm}, 8 \mathrm{~cm}$ and 6 cm
$b^{2}+a^{2}=3^{2}+6^{2}=9+36=45$
$h^{2}=8^{2}=64$
here $45 \neq 64$
Hence the given triangle is not a right triangle.
(ii) Given sides are $13 \mathrm{~cm}, 12 \mathrm{~cm}$ and 5 cm
$\mathrm{b}^{2}+\mathrm{a}^{2}=12^{2}+5^{2}=144+25=169$
$h^{2}=13^{2}=169$
here $b^{2}+a^{2}=h^{2}$
Hence the given triangle is a right triangle.
Length of the hypotenuse is 13 cm .
(iii) Given sides are $1.4 \mathrm{~cm}, 4.8 \mathrm{~cm}$ and 5 cm
$\mathrm{b}^{2}+\mathrm{a}^{2}=1.4^{2}+4.8^{2}=1.96+23.04=25$
$\mathrm{h}^{2}=5^{2}=25$
here $b^{2}+a^{2}=h^{2}$
Hence the given triangle is a right triangle.
Length of the hypotenuse is 5 cm .
2. Foot of a 10 m long ladder leaning against a vertical well is $\mathbf{6 m}$ away from the base of the wall. Find the height of the point on the wall where the top of the ladder reaches.

Solution:

Let PR be the ladder and QR be the vertical wall.
Length of the ladder $\mathrm{PR}=10 \mathrm{~m}$
$P Q=6 \mathrm{~m}$
Let height of the wall, $\mathrm{QR}=\mathrm{h}$
According to Pythagoras theorem,
$\mathrm{PR}^{2}=\mathrm{PQ}^{2}+\mathrm{QR}^{2}$
$10^{2}=6^{2}+\mathrm{QR}^{2}$
$100=36+Q^{2}$
$\therefore \mathrm{QR}^{2}=100-36$
$\therefore \mathrm{QR}^{2}=64$
Taking square root on both sides,
$\therefore Q R=8$
Hence the height of the wall where the top of the ladder reaches is 8 m .
3. A guy attached a wire 24 m long to a vertical pole of height 18 m and has a stake attached to the other end. How far from the base of the pole should the stake be driven so that the wire will be tight?

Solution:

Let $A C$ be the wire and $A B$ be the height of the pole.
$\mathrm{AC}=24 \mathrm{~cm}$
$\mathrm{AB}=18 \mathrm{~cm}$
According to Pythagoras theorem,
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
$24^{2}=18^{2}+\mathrm{BC}^{2}$
$576=324+\mathrm{BC}^{2}$
$\Rightarrow \mathrm{BC}^{2}=576-324$
$\Rightarrow B C^{2}=252$
Taking square root on both sides,
$B C=\sqrt{ } 252$
$=\sqrt{ }(4 \times 9 \times 7)$
$=2 \times 3 \sqrt{7}$
$=6 \sqrt{7} \mathrm{~cm}$
Hence the distance is $6 \sqrt{7} \mathrm{~cm}$.
4. Two poles of heights $\mathbf{6 m}$ and 11 m stand on a plane ground. If the distance between their feet is $\mathbf{1 2 \mathrm { m }}$, find the distance between their tops.

Solution:

Let AB and CD be the poles which are 12 m apart.
$\mathrm{AB}=6 \mathrm{~m}$
$C D=11 \mathrm{~m}$
$\mathrm{BD}=12 \mathrm{~m}$
Draw AE II BD
$C E=11-6=5 \mathrm{~m}$
$\mathrm{AE}=12 \mathrm{~m}$
According to Pythagoras theorem,
$\mathrm{AC}^{2}=\mathrm{AE}^{2}+\mathrm{CE}^{2}$
$\mathrm{AC}^{2}=12^{2}+5^{2}$
$\mathrm{AC}^{2}=144+25$
$\mathrm{AC}^{2}=169$
Taking square root on both sides
$\mathrm{AC}=13$
Hence the distance between their tops is 13 m .
5. In a right-angled triangle, if hypotenuse is 20 cm and the ratio of the other two sides is $4: 3$, find the sides.

Solution:

Given hypotenuse, $\mathrm{h}=20 \mathrm{~cm}$
Ratio of other two sides, $a: b=4: 3$
Let altitude of the triangle be 4 x and base be 3 x .
According to Pythagoras theorem,
$h^{2}=b^{2}+\mathrm{a}^{2}$
$\therefore 20^{2}=(3 x)^{2}+(4 x)^{2}$
$\therefore 400=9 \mathrm{x}^{2}+16 \mathrm{x}^{2}$
$\Rightarrow 25 \mathrm{x}^{2}=400$
$\Rightarrow x^{2}=400 / 25$
$\Rightarrow \mathrm{x}^{2}=16$
Taking square root on both sides

$$
x=4
$$

so base, $\mathrm{b}=3 \mathrm{x}=3 \times 4=12$
altitude, $a=4 x=4 \times 4=16$
Hence the other sides are 12 cm and 16 cm .
6. If the sides of a triangle are in the ratio 3:4:5, prove that it is right-angled triangle.

Solution:

Given the sides are in the ratio 3:4:5.
Let $A B C$ be the given triangle.
Let the sides be $3 \mathrm{x}, 4 \mathrm{x}$ and hypotenuse be 5 x .
According to Pythagoras theorem,
$\mathrm{AC}^{2}=\mathrm{BC}^{2}+\mathrm{AB}^{2}$
$\mathrm{BC}^{2}+\mathrm{AB}^{2}=(3 \mathrm{x})^{2}+(4 \mathrm{x})^{2}$
$=9 \mathrm{x}^{2}+16 \mathrm{x}^{2}$
$=25 \mathrm{x}^{2}$
$\mathrm{AC}^{2}=(5 \mathrm{x})^{2}=25 \mathrm{x}^{2}$
$\therefore \mathrm{AC}^{2}=\mathrm{BC}^{2}+\mathrm{AB}^{2}$
Hence $\triangle \mathrm{ABC}$ is a right angled triangle.
7. For going to a city B from city A, there is route via city C such that $A C \perp C B, A C=2 x k m$ and $C B=2(x+$ 7) km . It is proposed to construct a 26 km highway which directly connects the two cities A and B. Find how much distance will be saved in reaching city B from city A after the construction of highway.

Solution:

Given $\mathrm{AC}=2 \mathrm{x} \mathrm{km}$
$\mathrm{CB}=2(\mathrm{x}+7) \mathrm{km}$
$\mathrm{AB}=26$
Given $\mathrm{AC} \perp \mathrm{CB}$.
According to Pythagoras theorem,
$\mathrm{AB}^{2}=\mathrm{CB}^{2}+\mathrm{AC}^{2}$
$\therefore 26^{2}=(2(x+7))^{2}+(2 x)^{2}$
$676=4\left(x^{2}+14 x+49\right)+4 x^{2}$
$\Rightarrow 4 x^{2}+56 x+196+4 x^{2}=676$
$\Rightarrow 8 x^{2}+56 x+196=676$
$\Rightarrow 8 \mathrm{x}^{2}+56 \mathrm{x}+196-676=0$
$\Rightarrow 8 x^{2}+56 x-480=0$
$\Rightarrow x^{2}+7 x-60=0$
$\Rightarrow(\mathrm{x}-5)(\mathrm{x}+12)=0$
$\Rightarrow(\mathrm{x}-5)=0$ or $(\mathrm{x}+12)=0$
$\Rightarrow \mathrm{x}=5$ or $\mathrm{x}=-12$
Length cannot be negative. So $\mathrm{x}=5$
$\therefore \mathrm{BC}=2(\mathrm{x}+7)=2(5+7)=2 \times 12=24 \mathrm{~km}$
$\mathrm{AC}=2 \mathrm{x}=2 \times 5=10 \mathrm{~km}$
Total distance $=\mathrm{AC}+\mathrm{BC}=10+24=34 \mathrm{~km}$
Distance saved $=34-26=8 \mathrm{~km}$
Hence the distance saved is 8 km .
8. The hypotenuse of right triangle is $\mathbf{6 m}$ more than twice the shortest side. If the third side is $\mathbf{2 m}$ less than the hypotenuse, find the sides of the triangle.

Solution:

Let the shortest side be x .
Then hypotenuse $=2 \mathrm{x}+6$
Third side $=2 \mathrm{x}+6-2=2 \mathrm{x}+4$
According to Pythagoras theorem,
$\mathrm{AB}^{2}=\mathrm{CB}^{2}+\mathrm{AC}^{2}$
$(2 x+6)^{2}=x^{2}+(2 x+4)^{2}$
$4 x^{2}+24 x+36=x^{2}+4 x^{2}+16 x+16$
$\Rightarrow \mathrm{x}^{2}-8 \mathrm{x}-20=0$
$\Rightarrow(\mathrm{x}-10)(\mathrm{x}+2)=0$
$\Rightarrow \mathrm{x}-10=0$ or $\mathrm{x}+2=0$
$x=10$ or $x=-2$
x cannot be negative.

So shortest side is 10 m .
Hypotenuse $=2 \mathrm{x}+6$
$=2 \times 10+6$
$=20+6$
$=26 \mathrm{~m}$
Third side $=2 \mathrm{x}+4$
$=2 \times 10+4$
$=20+4$
$=24 \mathrm{~m}$
Hence the shortest side, hypotenuse and third side of the triangle are $10 \mathrm{~m}, 26 \mathrm{~m}$ and 24 m respectively.
9. ABC is an isosceles triangle right angled at C . Prove that $\mathrm{AB}^{2}=2 \mathrm{AC}^{2}$.

Solution:

Let ABC be the isosceles right angled triangle .
$\angle \mathrm{C}=90^{\circ}$
$\mathrm{AC}=\mathrm{BC} \quad$ [isosceles triangle]
According to Pythagoras theorem,
$\mathrm{AB}^{2}=\mathrm{BC}^{2}+\mathrm{AC}^{2}$
$\mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{AC}^{2} \quad[\because \mathrm{AC}=\mathrm{BC}]$
$\therefore \mathrm{AB}^{2}=2 \mathrm{AC}^{2}$
Hence proved.
10. In a triangle $A B C, A D$ is perpendicular to $B C$. Prove that $A B^{2}+C D^{2}=A C^{2}+B D^{2}$.

Solution:

Given $\mathrm{AD} \perp \mathrm{BC}$.
So $\triangle \mathrm{ADB}$ and $\triangle \mathrm{ADC}$ are right triangles.
In $\triangle \mathrm{ADB}$,
$\mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2}$
[Pythagoras theorem]
$\mathrm{AD}^{2}=\mathrm{AB}^{2}-\mathrm{BD}^{2}$
In $\triangle \mathrm{ADC}$,
$\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{CD}^{2}$
[Pythagoras theorem]
$\mathrm{AD}^{2}=\mathrm{AC}^{2}-\mathrm{CD}^{2}$
Comparing (i) and (ii)
$\mathrm{AB}^{2}-\mathrm{BD}^{2}=\mathrm{AC}^{2}-\mathrm{CD}^{2}$
$\therefore \mathrm{AB}^{2}+\mathrm{CD}^{2}=\mathrm{AC}^{2}+\mathrm{BD}^{2}$
Hence proved.
11. In $\triangle P Q R, P D \perp Q R$, such that D lies on $Q R$. If $P Q=a, P R=b, Q D=c$ and $D R=d$, prove that $(a+b)(a-b)=(c+d)(c-d)$.

Solution:

Given $\mathrm{PQ}=\mathrm{a}, \mathrm{PR}=\mathrm{b}, \mathrm{QD}=\mathrm{c}$ and $\mathrm{DR}=\mathrm{d}$.
$\mathrm{PD} \perp \mathrm{QR}$.
So $\triangle P D Q$ and $\triangle P D R$ are right triangles.
In $\triangle \mathrm{PDQ}$,
$\mathrm{PQ}^{2}=\mathrm{PD}^{2}+\mathrm{QD}^{2}$
$\therefore \mathrm{PD}^{2}=\mathrm{PQ}^{2}-\mathrm{QD}^{2}$
$\therefore \mathrm{PD}^{2}=\mathrm{a}^{2}-\mathrm{c}^{2}$
In $\triangle \mathrm{PDR}$,
$\mathrm{PR}^{2}=\mathrm{PD}^{2}+\mathrm{DR}^{2}$
[Pythagoras theorem]
$\therefore \mathrm{PD}^{2}=\mathrm{PR}^{2}-\mathrm{DR}^{2}$
$\therefore \mathrm{PD}^{2}=\mathrm{b}^{2}-\mathrm{d}^{2}$
$[\because \mathrm{PQ}=\mathrm{a}$ and $\mathrm{QD}=\mathrm{c}]$
[Pythagoras theorem]
$[\because P R=b$ and $D R=d]$
Comparing (i) and (ii)
$a^{2}-c^{2}=b^{2}-d^{2}$
$\mathrm{a}^{2}-\mathrm{b}^{2}=\mathrm{c}^{2}-\mathrm{d}^{2}$
$\therefore(a+b)(a-b)=(c+d)(c-d)$
Hence proved.
12. $A B C$ is an isosceles triangle with $A B=A C=12 \mathrm{~cm}$ and $B C=8 \mathrm{~cm}$. Find the altitude on $B C$ and Hence, calculate its area.

Solution:

Let $A D$ be the altitude of $\triangle \mathrm{ABC}$.
Given $\mathrm{AB}=\mathrm{AC}=12 \mathrm{~cm}$
$\mathrm{BC}=8 \mathrm{~cm}$
The altitude to the base of an isosceles triangle bisects the base.
So BD = DC
$\therefore B D=8 / 2=4 \mathrm{~cm}$
DC $=4 \mathrm{~cm}$
$\triangle \mathrm{ADC}$ is a right triangle.
$\therefore \mathrm{AB}^{2}=\mathrm{BD}^{2}+\mathrm{AD}^{2}$
[Pythagoras theorem]
$\therefore \mathrm{AD}^{2}=\mathrm{AB}^{2}-\mathrm{BD}^{2}$
$\therefore \mathrm{AD}^{2}=12^{2}-4^{2}$
$\therefore \mathrm{AD}^{2}=144-16$
$\therefore \mathrm{AD}^{2}=128$
Taking square root on both sides,
$\mathrm{AD}=\sqrt{ } 128=\sqrt{ }(2 \times 64)=8 \sqrt{ } 2 \mathrm{~cm}$
Area of $\triangle \mathrm{ABC}=1 / 2 \times$ base \times height
$=1 / 2 \times 8 \times 8 \sqrt{ } 2$
$=4 \times 8 \sqrt{ } 2$
$=32 \sqrt{ } 2 \mathrm{~cm}^{2}$
Hence the area of triangle is $32 \sqrt{ } 2 \mathrm{~cm}^{2}$.
13. Find the area and the perimeter of a square whose diagonal is $\mathbf{1 0} \mathbf{~ c m ~ l o n g . ~}$

Solution:

Given length of the diagonal of the square is 10 cm .
$\mathrm{AC}=10$
Let $\mathrm{AB}=\mathrm{BC}=\mathrm{x} \quad$ [Sides of square are equal in measure]
$\angle \mathrm{B}=90^{\circ}$
[All angles of a square are 90°]
$\triangle \mathrm{ABC}$ is a right triangle.
$\therefore \mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
$\therefore 10^{2}=\mathrm{x}^{2}+\mathrm{x}^{2}$
$100=2 \mathrm{x}^{2}$
$\mathrm{x}^{2}=50$
$x=\sqrt{ } 50=\sqrt{ }(25 \times 2)$
$\therefore \mathrm{x}=5 \sqrt{ } 2$
So area of square $=x^{2}$
$=(5 \sqrt{ } 2)^{2}=50 \mathrm{~cm}^{2}$
Perimeter $=4 \mathrm{x}$
$=4 \times 5 \sqrt{ } 2$
$=20 \sqrt{2} \mathrm{~cm}$
Hence area and perimeter of the square are $50 \mathrm{~cm}^{2}$ and $20 \sqrt{ } 2 \mathrm{~cm}$.
14. (a) In fig. (i) given below, ABCD is a quadrilateral in which $\mathrm{AD}=13 \mathrm{~cm}, \mathrm{DC}=12 \mathrm{~cm}, \mathrm{BC}=3 \mathrm{~cm}, \angle$ $A B D=\angle B C D=90^{\circ}$. Calculate the length of $A B$.
(b) In fig. (ii) given below, ABCD is a quadrilateral in which $\mathrm{AB}=\mathrm{AD}, \angle \mathrm{A}=90^{\circ}=\angle \mathrm{C}, \mathrm{BC}=\mathbf{8} \mathrm{cm}$ and $\mathrm{CD}=$ 6 cm . Find $A B$ and calculate the area of $\triangle A B D$.

Solution:

(i)Given $\mathrm{AD}=13 \mathrm{~cm}, \mathrm{DC}=12 \mathrm{~m}$
$\mathrm{BC}=3 \mathrm{~cm}$
$\angle \mathrm{ABD}=\angle \mathrm{BCD}=90^{\circ}$
$\triangle B C D$ is a right triangle.
$\therefore \mathrm{BD}^{2}=\mathrm{BC}^{2}+\mathrm{DC}^{2}$
[Pythagoras theorem]
$\therefore \mathrm{BD}^{2}=3^{2}+12^{2}$
$\therefore \mathrm{BD}^{2}=9+144$
$\therefore \mathrm{BD}^{2}=153$
$\triangle \mathrm{ABD}$ is a right triangle.
$\therefore \mathrm{AD}^{2}=\mathrm{AB}^{2}+\mathrm{BD}^{2}$
[Pythagoras theorem]
$\therefore 13^{2}=A B^{2}+153$
$\therefore 169=\mathrm{AB}^{2}+153$
$\therefore \mathrm{AB}^{2}=169-153$
$\therefore \mathrm{AB}^{2}=16$
Taking square root on both sides,
$\mathrm{AB}=4 \mathrm{~cm}$
Hence the length of $A B$ is 4 cm .
(ii) Given $\mathrm{AB}=\mathrm{AD}, \angle \mathrm{A}=90^{\circ}=\angle \mathrm{C}, \mathrm{BC}=8 \mathrm{~cm}$ and $\mathrm{CD}=6 \mathrm{~cm}$
$\triangle \mathrm{BCD}$ is a right triangle.
$\therefore \mathrm{BD}^{2}=\mathrm{BC}^{2}+\mathrm{DC}^{2}$
[Pythagoras theorem]
$\therefore \mathrm{BD}^{2}=8^{2}+6^{2}$
$\therefore \mathrm{BD}^{2}=64+36$
$\therefore \mathrm{BD}^{2}=100$
Taking square root on both sides,
$\mathrm{BD}=10 \mathrm{~cm}$
$\triangle \mathrm{ABD}$ is a right triangle.
$\therefore \mathrm{BD}^{2}=\mathrm{AB}^{2}+\mathrm{AD}^{2} \quad$ [Pythagoras theorem]
$10^{2}=2 \mathrm{AB}^{2} \quad[\because \mathrm{AB}=\mathrm{AD}]$
$100=2 \mathrm{AB}^{2}$
$\therefore \mathrm{AB}^{2}=100 / 2$
$\therefore \mathrm{AB}^{2}=50$
Taking square root on both sides,
$\mathrm{AB}=\sqrt{ } 50$
$A B=\sqrt{ }(2 \times 25)$
$\mathrm{AB}=5 \sqrt{ } 2 \mathrm{~cm}$
Hence the length of $A B$ is $5 \sqrt{2} \mathrm{~cm}$.
15. (a) In figure (i) given below, $\mathrm{AB}=12 \mathrm{~cm}, \mathrm{AC}=13 \mathrm{~cm}, \mathrm{CE}=10 \mathrm{~cm}$ and $\mathrm{DE}=6 \mathrm{~cm}$. Calculate the length of BD.
(b) In figure (ii) given below, $\angle P S R=90^{\circ}, P Q=10 \mathrm{~cm}, Q S=6 \mathrm{~cm}$ and $R Q=9 \mathrm{~cm}$. Calculate the length of PR.
(c) In figure (iii) given below, $\angle \mathrm{D}=90^{\circ}, \mathrm{AB}=16 \mathrm{~cm}, \mathrm{BC}=12 \mathrm{~cm}$ and $\mathrm{CA}=\mathbf{6} \mathrm{cm}$. Find CD.

Solution:

(a)Given $\mathrm{AB}=12 \mathrm{~cm}, \mathrm{AC}=13 \mathrm{~cm}, \mathrm{CE}=10 \mathrm{~cm}$ and $\mathrm{DE}=6 \mathrm{~cm}$ $\triangle \mathrm{ABC}$ is a right triangle.
$\therefore \mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2} \quad$ [Pythagoras theorem]
$\therefore 13^{2}=12^{2}+B C^{2}$
$\therefore \mathrm{BC}^{2}=13^{2}-12^{2}$
$\therefore \mathrm{BC}^{2}=169-144$
$\therefore \mathrm{BC}^{2}=25$
Taking square root on both sides,
$\mathrm{BC}=5 \mathrm{~cm}$
$\triangle \mathrm{CDE}$ is a right triangle.
$\therefore \mathrm{CE}^{2}=\mathrm{CD}^{2}+\mathrm{DE}^{2} \quad$ [Pythagoras theorem]
$\therefore 10^{2}=\mathrm{CD}^{2}+6^{2}$
$\therefore 100=\mathrm{CD}^{2}+36$
$\therefore \mathrm{CD}^{2}=100-36$
$\therefore \mathrm{CD}^{2}=64$
Taking square root on both sides,
$\mathrm{CD}=8 \mathrm{~cm}$
$\therefore \mathrm{BD}=\mathrm{BC}+\mathrm{CD}$
$\therefore \mathrm{BD}=5+8$
$\therefore \mathrm{BD}=13 \mathrm{~cm}$
Hence the length of BD is 13 cm .
(b) Given $\angle \mathrm{PSR}=90^{\circ}, \mathrm{PQ}=10 \mathrm{~cm}, \mathrm{QS}=6 \mathrm{~cm}$ and $\mathrm{RQ}=9 \mathrm{~cm}$
$\triangle P S Q$ is a right triangle.
$\therefore \mathrm{PQ}^{2}=\mathrm{PS}^{2}+\mathrm{QS}^{2} \quad$ [Pythagoras theorem]
$10^{2}=\mathrm{PS}^{2}+6^{2}$
$100=\mathrm{PS}^{2}+36$
$\therefore \mathrm{PS}^{2}=100-36$
$\therefore \mathrm{PS}^{2}=64$
Taking square root on both sides,
PS $=8 \mathrm{~cm}$
$\triangle P S R$ is a right triangle.
RS $=$ RQ + QS
RS $=9+6$
$\mathrm{RS}=15 \mathrm{~cm}$
$\therefore \mathrm{PR}^{2}=\mathrm{PS}^{2}+\mathrm{RS}^{2} \quad$ [Pythagoras theorem]
$\mathrm{PR}^{2}=8^{2}+15^{2}$
$\mathrm{PR}^{2}=64+225$
$\mathrm{PR}^{2}=289$
Taking square root on both sides, $\mathrm{PR}=17 \mathrm{~cm}$
Hence the length of PR is 17 cm .
(c) $\angle \mathrm{D}=90^{\circ}, \mathrm{AB}=16 \mathrm{~cm}, \mathrm{BC}=12 \mathrm{~cm}$ and $\mathrm{CA}=6 \mathrm{~cm}$
$\triangle \mathrm{ADC}$ is a right triangle.
$\therefore \mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{CD}^{2} \quad[$ Pythagoras theorem]
$6^{2}=\mathrm{AD}^{2}+\mathrm{CD}^{2}$
$\triangle \mathrm{ABD}$ is a right triangle.
$\therefore \mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2} \quad$ [Pythagoras theorem]
$16^{2}=\mathrm{AD}^{2}+(\mathrm{BC}+\mathrm{CD})^{2}$
$16^{2}=\mathrm{AD}^{2}+(12+\mathrm{CD})^{2}$
$256=\mathrm{AD}^{2}+144+24 \mathrm{CD}+\mathrm{CD}^{2}$
$256-144=\mathrm{AD}^{2}+\mathrm{CD}^{2}+24 \mathrm{CD}$
$\mathrm{AD}^{2}+\mathrm{CD}^{2}=112-24 \mathrm{CD}$
$6^{2}=112-24 C D \quad[$ from (i)]
$36=112-24 \mathrm{CD}$
$24 \mathrm{CD}=112-36$
$24 C D=76$
$\therefore C D=76 / 24=19 / 6$
$\therefore C D=3 \frac{1}{6}$
Hence the length of CD is $3 \frac{1}{6} \mathrm{~cm}$
16. (a) In figure (i) given below, $B C=5 \mathrm{~cm}$,
$\angle B=90^{\circ}, \mathrm{AB}=5 \mathrm{AE}, \mathrm{CD}=2 \mathrm{AE}$ and $\mathrm{AC}=\mathrm{ED}$. Calculate the lengths of $\mathrm{EA}, \mathrm{CD}, \mathrm{AB}$ and AC .
(b) In the figure (ii) given below, $A B C$ is a right triangle right angled at C. If D is mid-point of $B C$, prove that $A B^{2}=4 A D^{2}-3 A C^{2}$.

Solution:

(a) Given $\mathrm{BC}=5 \mathrm{~cm}$,
$\angle \mathrm{B}=90^{\circ}, \mathrm{AB}=5 \mathrm{AE}$,
$\mathrm{CD}=2 \mathrm{AE}$ and $\mathrm{AC}=\mathrm{ED}$
$\triangle \mathrm{ABC}$ is a right triangle.
$\therefore \mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
$\triangle \mathrm{BED}$ is a right triangle.
$\therefore \mathrm{ED}^{2}=\mathrm{BE}^{2}+\mathrm{BD}^{2}$
$\therefore \mathrm{AC}^{2}=\mathrm{BE}^{2}+\mathrm{BD}^{2}$

> [Pythagoras theorem]

Comparing (i) and (ii)
$\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{BE}^{2}+\mathrm{BD}^{2}$
$(5 \mathrm{AE})^{2}+5^{2}=(4 \mathrm{AE})^{2}+(\mathrm{BC}+\mathrm{CD})^{2}$
$[\because \mathrm{BE}=\mathrm{AB}-\mathrm{AE}=5 \mathrm{AE}-\mathrm{AE}=4 \mathrm{AE}]$
$(5 \mathrm{AE})^{2}+25=(4 \mathrm{AE})^{2}+(5+2 \mathrm{AE})^{2}$.

$$
\begin{equation*}
[\because \mathrm{BC}=5, \mathrm{CD}=2 \mathrm{AE}] \tag{iii}
\end{equation*}
$$

Let $\mathrm{AE}=\mathrm{x}$. So (iii) becomes,
$(5 \mathrm{x})^{2}+25=(4 \mathrm{x})^{2}+(5+2 \mathrm{x})^{2}$
$25 \mathrm{x}^{2}+25=16 \mathrm{x}^{2}+25+20 \mathrm{x}+4 \mathrm{x}^{2}$
$25 \mathrm{x}^{2}=20 \mathrm{x}^{2}+20 \mathrm{x}$
$5 \mathrm{x}^{2}=20 \mathrm{x}$
$\therefore \mathrm{x}=20 / 5=4$
$\therefore \mathrm{AE}=4 \mathrm{~cm}$
$\therefore \mathrm{CD}=2 \mathrm{AE}=2 \times 4=8 \mathrm{~cm}$
$\therefore \mathrm{AB}=5 \mathrm{AE}$
$\therefore \mathrm{AB}=5 \times 4=20 \mathrm{~cm}$
$\triangle \mathrm{ABC}$ is a right triangle.
$\therefore \mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2} \quad$ [Pythagoras theorem]
$\therefore \mathrm{AC}^{2}=20^{2}+5^{2}$
$\therefore \mathrm{AC}^{2}=400+25$
$\therefore \mathrm{AC}^{2}=425$
Taking square root on both sides,
$A C=\sqrt{ } 425=\sqrt{ }(25 \times 17)$
$\mathrm{AC}=5 \sqrt{ } 17 \mathrm{~cm}$
Hence $\mathrm{EA}=4 \mathrm{~cm}, \mathrm{CD}=8 \mathrm{~cm}, \mathrm{AB}=20 \mathrm{~cm}$ and $\mathrm{AC}=5 \sqrt{ } 17 \mathrm{~cm}$.
(b) Given D is the midpoint of BC .
$\therefore \mathrm{DC}=1 / 2 \mathrm{BC}$
$\triangle \mathrm{ABC}$ is a right triangle.
$\therefore \mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{BC}^{2}$
...(i) [Pythagoras theorem]
$\triangle \mathrm{ADC}$ is a right triangle.
$\therefore \mathrm{AD}^{2}=\mathrm{AC}^{2}+\mathrm{DC}^{2}$
$\mathrm{AC}^{2}=\mathrm{AD}^{2}-\mathrm{DC}^{2}$
$A C^{2}=A D^{2}-(1 / 2 B C)^{2}$
.(ii) [Pythagoras theorem]
$\mathrm{AC}^{2}=\mathrm{AD}^{2}-1 / 4 \mathrm{BC}^{2}$
$4 \mathrm{AC}^{2}=4 \mathrm{AD}^{2}-\mathrm{BC}^{2}$
$\mathrm{AC}^{2}+3 \mathrm{AC}^{2}=4 \mathrm{AD}^{2}-\mathrm{BC}^{2}$
$\mathrm{AC}^{2}+\mathrm{BC}^{2}=4 \mathrm{AD}^{2}-3 \mathrm{AC}^{2}$
$\therefore \mathrm{AB}^{2}=4 \mathrm{AD}^{2}-3 \mathrm{AC}^{2} \quad[$ from (i)]
Hence proved.
17. In $\triangle \mathrm{ABC}, \mathrm{AB}=\mathrm{AC}=\mathrm{x}, \mathrm{BC}=10 \mathrm{~cm}$ and the area of $\triangle \mathrm{ABC}$ is $\mathbf{6 0} \mathrm{cm}^{2}$. Find x .

Solution:

Given $\mathrm{AB}=\mathrm{AC}=\mathrm{x}$
So $A B C$ is an isosceles triangle.
$\mathrm{AD} \perp \mathrm{BC}$
The altitude to the base of an isosceles triangle bisects the base.
$\therefore \mathrm{BD}=\mathrm{DC}=10 / 2=5 \mathrm{~cm}$
Given area $=60 \mathrm{~cm}^{2}$
$\therefore 1 / 2 \times$ base \times height $=1 / 2 \times 10 \times$ AD $=60$
$\therefore \mathrm{AD}=60 \times 2 / 10$
$\therefore \mathrm{AD}=60 / 5$
$\therefore \mathrm{AD}=12 \mathrm{~cm}$
$\triangle \mathrm{ADC}$ is a right triangle.
$\therefore \mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{DC}^{2}$
$\therefore \mathrm{x}^{2}=12^{2}+5^{2}$
$\therefore \mathrm{x}^{2}=144+25$
$\therefore \mathrm{x}^{2}=169$
Taking square root on both sides
$\mathrm{x}=13 \mathrm{~cm}$
Hence the value of x is 13 cm .
18. In a rhombus, If diagonals are 30 cm and 40 cm , find its perimeter.

Solution:

Let ABCD be the rhombus.
Given $\mathrm{AC}=30 \mathrm{~cm}$
$\mathrm{BD}=40 \mathrm{~cm}$
Diagonals of a rhombus are perpendicular bisectors of each other.
$\therefore \mathrm{OB}=1 / 2 \mathrm{BD}=1 / 2 \times 40=20 \mathrm{~cm}$
$\mathrm{OC}=1 / 2 \mathrm{AC}=1 / 2 \times 30=15 \mathrm{~cm}$
$\triangle O C B$ is a right triangle.
$\therefore \mathrm{BC}^{2}=\mathrm{OC}^{2}+\mathrm{OB}^{2} \quad$ [Pythagoras theorem]
$\therefore \mathrm{BC}^{2}=15^{2}+20^{2}$
$\therefore \mathrm{BC}^{2}=225+400$
$\therefore \mathrm{BC}^{2}=625$
Taking square root on both sides
$\mathrm{BC}=25 \mathrm{~cm}$
So side of a rhombus, $\mathrm{a}=25 \mathrm{~cm}$.
Perimeter $=4 \mathrm{a}=4 \times 25=100 \mathrm{~cm}$
Hence the perimeter of the rhombus is 100 cm .
19. (a) In figure (i) given below, $\mathrm{AB} \| \mathrm{DC}, \mathrm{BC}=\mathrm{AD}=13 \mathrm{~cm} . \mathrm{AB}=22 \mathrm{~cm}$ and $\mathrm{DC}=12 \mathrm{~cm}$. Calculate the height of the trapezium ABCD.
(b) In figure (ii) given below, $\mathrm{AB} \| \mathrm{DC}, \angle \mathrm{A}=90^{\circ}, \mathrm{DC}=\mathbf{7 \mathrm { cm }}, \mathrm{AB}=\mathbf{1 7} \mathrm{cm}$ and $\mathrm{AC}=\mathbf{2 5} \mathrm{cm}$. Calculate BC .
(c) In figure (iii) given below, $A B C D$ is a square of side 7 cm . if
$\mathrm{AE}=\mathrm{FC}=\mathrm{CG}=\mathrm{HA}=\mathbf{3 \mathrm { cm }}$,
(i) prove that EFGH is a rectangle.
(ii) find the area and perimeter of EFGH.

Solution:

(i) Given $\mathrm{AB} \| \mathrm{DC}, \mathrm{BC}=\mathrm{AD}=13 \mathrm{~cm}$.
$\mathrm{AB}=22 \mathrm{~cm}$ and $\mathrm{DC}=12 \mathrm{~cm}$
Here DC $=12$
$\therefore \mathrm{MN}=12 \mathrm{~cm}$
$\mathrm{AM}=\mathrm{BN}$
$\mathrm{AB}=\mathrm{AM}+\mathrm{MN}+\mathrm{BN}$
$22=A M+12+A M \quad[\because A M=B N]$
$2 \mathrm{AM}=22-12=10$
$\therefore \mathrm{AM}=10 / 2$
$\therefore \mathrm{AM}=5 \mathrm{~cm}$
$\triangle \mathrm{AMD}$ is a right triangle.
$\mathrm{AD}^{2}=\mathrm{AM}^{2}+\mathrm{DM}^{2} \quad$ [Pythagoras theorem]
$13^{2}=5^{2}+\mathrm{DM}^{2}$
$\therefore \mathrm{DM}^{2}=13^{2}-5^{2}$
$\therefore \mathrm{DM}^{2}=169-25$
$\therefore \mathrm{DM}^{2}=144$
Taking square root on both sides,
DM = 12 cm
Hence the height of the trapezium is 12 cm .
(b) Given $\mathrm{AB} \| \mathrm{DC}, \angle \mathrm{A}=90^{\circ}, \mathrm{DC}=7 \mathrm{~cm}$,
$\mathrm{AB}=17 \mathrm{~cm}$ and $\mathrm{AC}=25 \mathrm{~cm}$
$\triangle \mathrm{ADC}$ is a right triangle.
$\therefore \mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{DC}^{2} \quad$ [Pythagoras theorem]
$25^{2}=\mathrm{AD}^{2}+7^{2}$
$\therefore \mathrm{AD}^{2}=25^{2}-7^{2}$
$\therefore \mathrm{AD}^{2}=625-49$
$\therefore \mathrm{AD}^{2}=576$
Taking square root on both sides
$\mathrm{AD}=24 \mathrm{~cm}$
$\therefore \mathrm{CM}=24 \mathrm{~cm} \quad[\because \mathrm{AB}$ II CD$]$
$\mathrm{DC}=7 \mathrm{~cm}$
$\therefore \mathrm{AM}=7 \mathrm{~cm}$
$\mathrm{BM}=\mathrm{AB}-\mathrm{AM}$
$\therefore \mathrm{BM}=17-7=10 \mathrm{~cm}$
$\triangle B M C$ is a right triangle.
$\therefore \mathrm{BC}^{2}=\mathrm{BM}^{2}+\mathrm{CM}^{2}$
$\mathrm{BC}^{2}=10^{2}+24^{2}$
$\mathrm{BC}^{2}=100+576$
$B C^{2}=676$
Taking square root on both sides $\mathrm{BC}=26 \mathrm{~cm}$
Hence length of BC is 26 cm .
(c) (i)Proof:

Given ABCD is a square of side 7 cm .
So $\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{AD}=7 \mathrm{~cm}$
Also given $\mathrm{AE}=\mathrm{FC}=\mathrm{CG}=\mathrm{HA}=3 \mathrm{~cm}$
$\mathrm{BE}=\mathrm{AB}-\mathrm{AE}=7-3=4 \mathrm{~cm}$
$\mathrm{BF}=\mathrm{BC}-\mathrm{FC}=7-3=4 \mathrm{~cm}$
$\mathrm{GD}=\mathrm{CD}-\mathrm{CG}=7-3=4 \mathrm{~cm}$
$\mathrm{DH}=\mathrm{AD}-\mathrm{HA}=7-3=4 \mathrm{~cm}$
$\angle \mathrm{A}=90^{\circ}$
[Each angle of a square equals 90°]
$\triangle \mathrm{AHE}$ is a right triangle.
$\therefore \mathrm{HE}^{2}=\mathrm{AE}^{2}+\mathrm{AH}^{2}$
[Pythagoras theorem]
$\therefore \mathrm{HE}^{2}=3^{2}+3^{2}$
$\therefore \mathrm{HE}^{2}=9+9=18$
$\mathrm{HE}=\sqrt{ }(9 \times 2)=3 \sqrt{ } 2 \mathrm{~cm}$
Similarly GF $=3 \sqrt{ } 2 \mathrm{~cm}$
$\triangle E B F$ is a right triangle.
$\therefore \mathrm{EF}^{2}=\mathrm{BE}^{2}+\mathrm{BF}^{2} \quad$ [Pythagoras theorem]
$\therefore \mathrm{EF}^{2}=4^{2}+4^{2}$
$\therefore \mathrm{EF}^{2}=16+16=32$
Taking square root on both sides
$\mathrm{EF}=\sqrt{ }(16 \times 2)=4 \sqrt{ } 2 \mathrm{~cm}$
Similarly HG $=4 \sqrt{ } 2 \mathrm{~cm}$
Now join EG
In \triangle EFG
$\mathrm{EG}^{2}=\mathrm{EF}^{2}+\mathrm{GF}^{2}$
$\mathrm{EG}^{2}=(4 \sqrt{ } 2)^{2}+(3 \sqrt{ } 2)^{2}$
$\mathrm{EG}^{2}=32+18=50$
$\therefore \mathrm{EG}=\sqrt{ } 50=5 \sqrt{ } 2 \mathrm{~cm}$
Join HF.
Also $\mathrm{HF}^{2}=\mathrm{EH}^{2}+\mathrm{HG}^{2}$
$=(3 \sqrt{ } 2)^{2}+(4 \sqrt{ } 2)^{2}$
$=18+32=50$
$\mathrm{HF}=\sqrt{ } 50=5 \sqrt{ } 2 \mathrm{~cm}$
From (i) and (ii)
$E G=H F$
Diagonals of the quadrilateral are congruent. So EFGH is a rectangle.
Hence proved.
(ii) Area of rectangle EFGH $=$ length \times breadth
$=\mathrm{HE} \times \mathrm{EF}$
$=3 \sqrt{ } 2 \times 4 \sqrt{ } 2$
$=24 \mathrm{~cm}^{2}$
Perimeter of rectangle EFGH $=2$ (length + breadth)
$=2 \times(4 \sqrt{ } 2+3 \sqrt{ } 2)$
$=2 \times 7 \sqrt{ } 2$
$=14 \sqrt{ } 2 \mathrm{~cm}$
Hence area of the rectangle is $24 \mathrm{~cm}^{2}$ and perimeter is $14 \sqrt{ } 2 \mathrm{~cm}$.
20. $A D$ is perpendicular to the side $B C$ of an equilateral $\triangle A B C$. Prove that $4 A D^{2}=3 A B^{2}$.

Solution:

Given $\mathrm{AD} \perp \mathrm{BC}$
$\angle \mathrm{D}=90^{\circ}$
Proof:
Since ABC is an equilateral triangle,
$\mathrm{AB}=\mathrm{AC}=\mathrm{BC}$
$\triangle A B D$ is a right triangle.
According to Pythagoras theorem,
$\mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2}$
$B D=1 / 2 B C$
$\therefore \mathrm{AB}^{2}=\mathrm{AD}^{2}+(1 / 2 \mathrm{BC})^{2}$
$A B^{2}=A D^{2}+(1 / 2 A B)^{2} \quad[\because B C=A B]$
$\mathrm{AB}^{2}=\mathrm{AD}^{2}+1 / 4 \mathrm{AB}{ }^{2}$
$\mathrm{AB}^{2}=\left(4 \mathrm{AD}^{2}+\mathrm{AB}^{2}\right) / 4$
$\therefore 4 \mathrm{AB}^{2}=4 \mathrm{AD}^{2}+\mathrm{AB}^{2}$
$\therefore 4 \mathrm{AD}^{2}=4 \mathrm{AB}^{2}-\mathrm{AB}^{2}$
$\therefore 4 \mathrm{AD}^{2}=3 \mathrm{AB}^{2}$
Hence proved.
21. In figure (i) given below, D and E are mid-points of the sides $B C$ and $C A$ respectively of a $\triangle A B C$, right angled at C.
Prove that :
(i) $4 \mathrm{AD}^{2}=4 \mathrm{AC}^{2}+\mathrm{BC}^{2}$
(ii) $4 \mathrm{BE}^{2}=4 \mathrm{BC}^{2}+\mathrm{AC}^{2}$
(iii) $4\left(\mathrm{AD}^{2}+\mathrm{BE}^{2}\right)=5 \mathrm{AB}^{2}$

Solution:

Proof:
(i) $\angle \mathrm{C}=90^{\circ}$

So $\triangle \mathrm{ACD}$ is a right triangle.
$\mathrm{AD}^{2}=\mathrm{AC}^{2}+\mathrm{CD}^{2}$
[Pythagoras theorem]
Multiply both sides by 4 , we get
$4 \mathrm{AD}^{2}=4 \mathrm{AC}^{2}+4 \mathrm{CD}^{2}$
$4 \mathrm{AD}^{2}=4 \mathrm{AC}^{2}+4 \mathrm{BD}^{2}$
$[\because D$ is the midpoint of $B C, C D=B D=1 / 2 B C]$
$4 \mathrm{AD}^{2}=4 \mathrm{AC}^{2}+(2 \mathrm{BD})^{2}$
$4 \mathrm{AD}^{2}=4 \mathrm{AC}^{2}+\mathrm{BC}^{2} \ldots$. (i)
$[\because B C=2 B D]$
Hence proved.
(ii) $\triangle \mathrm{BCE}$ is a right triangle.
$\therefore \mathrm{BE}^{2}=\mathrm{BC}^{2}+\mathrm{CE}^{2} \quad$ [Pythagoras theorem]
Multply both sides by 4 , we get
$4 \mathrm{BE}^{2}=4 \mathrm{BC}^{2}+4 \mathrm{CE}^{2}$
$4 \mathrm{BE}^{2}=4 \mathrm{BC}^{2}+(2 \mathrm{CE})^{2}$
$4 \mathrm{BE}^{2}=4 \mathrm{BC}^{2}+\mathrm{AC}^{2}$
\ldots. (ii) $[\because \mathrm{E}$ is the midpoint of $\mathrm{AC}, \mathrm{AE}=\mathrm{CE}=1 / 2 \mathrm{AC}]$
Hence proved.
(iii)Adding (i) and (ii)
$4 \mathrm{AD}^{2}+4 \mathrm{BE}^{2}=4 \mathrm{AC}^{2}+\mathrm{BC}^{2}+4 \mathrm{BC}^{2}+\mathrm{AC}^{2}$
$4 \mathrm{AD}^{2}+4 \mathrm{BE}^{2}=5 \mathrm{AC}^{2}+5 \mathrm{BC}^{2}$
$4\left(\mathrm{AD}^{2}+\mathrm{BE}^{2}\right)=5\left(\mathrm{AC}^{2}+\mathrm{BC}^{2}\right)$
$4\left(\mathrm{AD}^{2}+\mathrm{BE}^{2}\right)=5\left(\mathrm{AB}^{2}\right) \quad\left[\because \mathrm{ABC}\right.$ is a right triangle, $\left.\mathrm{AB}^{2}=A C^{2}+\mathrm{BC}^{2}\right]$
Hence proved.
22. If $A D, B E$ and $C F$ are medians of $\triangle A B C$, prove that $3\left(A B^{2}+B C^{2}+C A^{2}\right)=4\left(A D^{2}+B E^{2}+C F^{2}\right)$.

Solution:

Construction:
Draw AP \perp BC
Proof:
$\triangle \mathrm{APB}$ is a right triangle.
$\therefore \mathrm{AB}^{2}=\mathrm{AP}^{2}+\mathrm{BP}^{2} \quad$ [Pythagoras theorem]
$\therefore \mathrm{AB}^{2}=\mathrm{AP}^{2}+(\mathrm{BD}-\mathrm{PD})^{2}$
$\therefore \mathrm{AB}^{2}=\mathrm{AP}^{2}+\mathrm{BD}^{2}+\mathrm{PD}^{2}-2 \mathrm{BD} \times \mathrm{PD}$
$\therefore \mathrm{AB}^{2}=\left(\mathrm{AP}^{2}+\mathrm{PD}^{2}\right)+\mathrm{BD}^{2}-2 \mathrm{BD} \times \mathrm{PD}$
$\therefore \mathrm{AB}^{2}=\mathrm{AD}^{2}+(1 / 2 \mathrm{BC})^{2}-2 \times(1 / 2 \mathrm{BC}) \times \mathrm{PD} \quad\left[\because \mathrm{AP}^{2}+\mathrm{PD}^{2}=\mathrm{AD}^{2}\right.$ and $\left.\mathrm{BD}=1 / 2 \mathrm{BC}\right]$
$\therefore \mathrm{AB}^{2}=\mathrm{AD}^{2}+1 / 4 \mathrm{BC}^{2}-\mathrm{BC} \times \mathrm{PD}$
$\triangle \mathrm{APC}$ is a right triangle.
$\mathrm{AC}^{2}=\mathrm{AP}^{2}+\mathrm{PC}^{2} \quad$ [Pythagoras theorem]
$\mathrm{AC}^{2}=\mathrm{AP}^{2}+\left(\mathrm{PD}^{2}+\mathrm{DC}^{2}\right)$
$\mathrm{AC}^{2}=\mathrm{AP}^{2}+\mathrm{PD}^{2}+\mathrm{DC}^{2}+2 \times \mathrm{PD} \times \mathrm{DC}$
$\mathrm{AC}^{2}=\left(\mathrm{AP}^{2}+\mathrm{PD}^{2}\right)+(1 / 2 \mathrm{BC})^{2}+2 \times \mathrm{PD} \times(1 / 2 \mathrm{BC})$
$\mathrm{AC}^{2}=(\mathrm{AD})^{2}+1 / 4 \mathrm{BC}^{2}+\mathrm{PD} \times \mathrm{BC}$

$$
\begin{align*}
& {[\mathrm{DC}=1 / 2 \mathrm{BC}]} \\
& {\left[\mathrm{In} \triangle \mathrm{APD}, \mathrm{AP}^{2}+\mathrm{PD}^{2}=\mathrm{AD}^{2}\right]} \tag{ii}
\end{align*}
$$

Adding (i) and (ii), we get
$A B^{2}+A C^{2}=2 A D^{2}+1 / 2 B C^{2}$
Draw perpendicular from B and C to AC and AB respectively.
Similarly we get,

$$
\begin{align*}
& \mathrm{BC}^{2}+\mathrm{CA}^{2}=2 \mathrm{CF}^{2}+1 / 2 \mathrm{AB}^{2} \tag{iv}\\
& \mathrm{AB}^{2}+\mathrm{BC}^{2}=2 \mathrm{BE}^{2}+1 / 2 \mathrm{AC}^{2} \tag{v}
\end{align*}
$$

$$
\begin{aligned}
& \text { Adding (iii), (iv) and (v), we get } \\
& 2\left(\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CA}^{2}\right)=2\left(\mathrm{AD}^{2}+\mathrm{BE}^{2}+\mathrm{CF}^{2}\right)+1 / 2\left(\mathrm{BC}^{2}+\mathrm{AB}^{2}+\mathrm{AC}^{2}\right) \\
& 2\left(\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CA}^{2}\right)=2\left(\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CA}^{2}\right)-1 / 2\left(\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CA}^{2}\right) \\
& 2\left(\mathrm{AD}^{2}+\mathrm{BE}^{2}+\mathrm{CF}^{2}\right)=(3 / 2) \times\left(\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CA}^{2}\right) \\
& \therefore 4\left(\mathrm{AD}^{2}+\mathrm{BE}^{2}+\mathrm{CF}^{2}\right)=3\left(\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CA}^{2}\right) \\
& \text { Hence proved. }
\end{aligned}
$$

23.(a) In fig. (i) given below, the diagonals $A C$ and $B D$ of a quadrilateral $A B C D$ intersect at O, at right angles. Prove that $\mathrm{AB}^{2}+\mathrm{CD}^{2}=\mathrm{AD}^{2}+\mathrm{BC}^{2}$.

Solution:

Given diagonals of quadrilateral $\mathrm{ABCD}, \mathrm{AC}$ and BD intersect at O at right angles.
Proof:
$\triangle \mathrm{AOB}$ is a right triangle.
$\therefore \mathrm{AB}^{2}=\mathrm{OB}^{2}+\mathrm{OA}^{2} \quad \ldots$ (i) \quad [Pythagoras theorem]
$\triangle C O D$ is a right triangle.
$\therefore \mathrm{CD}^{2}=\mathrm{OC}^{2}+\mathrm{OD}^{2}$
..(ii) [Pythagoras theorem]

Adding (i) and (ii), we get
$\mathrm{AB}^{2}+\mathrm{CD}^{2}=\mathrm{OB}^{2}+\mathrm{OA}^{2}+\mathrm{OC}^{2}+\mathrm{OD}^{2}$
$\mathrm{AB}^{2}+\mathrm{CD}^{2}=\left(\mathrm{OA}^{2}+\mathrm{OD}^{2}\right)+\left(\mathrm{OC}^{2}+\mathrm{OB}^{2}\right)$
$\triangle \mathrm{AOD}$ is a right triangle.
$\therefore \mathrm{AD}^{2}=\mathrm{OA}^{2}+\mathrm{OD}^{2} \quad \ldots$ (iv) [Pythagoras theorem]
$\triangle B O C$ is a right triangle.
$\therefore \mathrm{BC}^{2}=\mathrm{OC}^{2}+\mathrm{OB}^{2} \quad \ldots$ (v) \quad [Pythagoras theorem]
Substitute (iv) and (v) in (iii), we get
$\mathrm{AB}^{2}+\mathrm{CD}^{2}=\mathrm{AD}^{2}+\mathrm{BC}^{2}$
Hence proved.
24. In a quadrilateral $\mathrm{ABCD}, \angle \mathrm{B}=\mathbf{9 0}=\angle \mathrm{D}$. Prove that $2 \mathrm{AC}^{2}-\mathrm{BC}^{2}=\mathrm{AB}^{2}+\mathrm{AD}^{2}+\mathrm{DC}^{2}$.

Solution:

Given $\angle \mathrm{B}=\angle \mathrm{D}=90^{\circ}$

So $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ADC}$ are right triangles.
In $\triangle \mathrm{ABC}$,
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2} \quad \ldots$ (i) \quad [Pythagoras theorem]
In $\triangle \mathrm{ADC}$,
$\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{DC}^{2}$
...(ii) [Pythagoras theorem]
Adding (i) and (ii)
$2 \mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{AD}^{2}+\mathrm{DC}^{2}$
$\therefore 2 \mathrm{AC}^{2}-\mathrm{BC}^{2}=\mathrm{AB}^{2}+\mathrm{AD}^{2}+\mathrm{DC}^{2}$
Hence proved.
25. In a $\triangle \mathrm{ABC}, \angle \mathrm{A}=\mathbf{9 0}^{\circ}, \mathrm{CA}=\mathrm{AB}$ and D is a point on AB produced. Prove that : $\mathrm{DC}^{2}-\mathrm{BD}^{2}=2 \mathrm{AB} \times \mathrm{AD}$.

Solution:

Given $\angle \mathrm{A}=90^{\circ}$
$\mathrm{CA}=\mathrm{AB}$
Proof:
In $\triangle \mathrm{ACD}$,
$\mathrm{DC}^{2}=\mathrm{CA}^{2}+\mathrm{AD}^{2}$
[Pythagoras theorem]
$\mathrm{DC}^{2}=\mathrm{CA}^{2}+(\mathrm{AB}+\mathrm{BD})^{2}$
$\mathrm{DC}^{2}=\mathrm{CA}^{2}+\mathrm{AB}^{2}+\mathrm{BD}^{2}+2 \mathrm{AB} \times \mathrm{BD}$
$\mathrm{DC}^{2}-\mathrm{BD}^{2}=\mathrm{CA}^{2}+\mathrm{AB}^{2}+2 \mathrm{AB} \times \mathrm{BD}$
$\mathrm{DC}^{2}-\mathrm{BD}^{2}=\mathrm{AB}^{2}+\mathrm{AB}^{2}+2 \mathrm{AB} \times \mathrm{BD}$
$[\because C A=A B]$
$\mathrm{DC}^{2}-\mathrm{BD}^{2}=2 \mathrm{AB}^{2}+2 \mathrm{AB} \times \mathrm{BD}$
$\mathrm{DC}^{2}-\mathrm{BD}^{2}=2 \mathrm{AB}(\mathrm{AB}+\mathrm{BD})$
$\mathrm{DC}^{2}-\mathrm{BD}^{2}=2 \mathrm{AB} \times \mathrm{AD}$
[A-B-D]
Hence proved.
26. In an isosceles triangle $A B C, A B=A C$ and D is a point on $B C$ produced. Prove that $\mathrm{AD}^{2}=\mathrm{AC}^{2}+\mathrm{BD} . \mathrm{CD}$.

Solution:

Given $\triangle \mathrm{ABC}$ is an isosceles triangle.
$\mathrm{AB}=\mathrm{AC}$
Construction: Draw AP $\perp \mathrm{BC}$
Proof:
$\triangle \mathrm{APD}$ is a right triangle.
$\therefore \mathrm{AD}^{2}=\mathrm{AP}^{2}+\mathrm{PD}^{2} \quad$ [Pythagoras theorem]
$\therefore \mathrm{AD}^{2}=\mathrm{AP}^{2}+(\mathrm{PC}+\mathrm{CD})^{2} \quad[\mathrm{PD}=\mathrm{PC}+\mathrm{CD}]$
$\therefore \mathrm{AD}^{2}=\mathrm{AP}^{2}+\mathrm{PC}^{2}+\mathrm{CD}^{2}+2 \mathrm{PC} \times \mathrm{CD}$
$\triangle \mathrm{APC}$ is a right triangle.
$\therefore \mathrm{AC}^{2}=\mathrm{AP}^{2}+\mathrm{PC}^{2}$
...(ii) [Pythagoras theorem]
Substitute (ii) in (i)
$\therefore \mathrm{AD}^{2}=\mathrm{AC}^{2}+\mathrm{CD}^{2}+2 \mathrm{PC} \times \mathrm{CD}$
Since $\triangle \mathrm{ABC}$ is an isosceles triangle,
$\mathrm{PC}=1 / 2 \mathrm{BC} \quad$ [The altitude to the base of an isosceles triangle bisects the base]
$\therefore \mathrm{AD}^{2}=\mathrm{AC}^{2}+\mathrm{CD}^{2}+2 \times 1 / 2 \mathrm{BC} \times \mathrm{CD}$
$\therefore \mathrm{AD}^{2}=\mathrm{AC}^{2}+\mathrm{CD}^{2}+\mathrm{BC} \times \mathrm{CD}$
$\therefore \mathrm{AD}^{2}=\mathrm{AC}^{2}+\mathrm{CD}(\mathrm{CD}+\mathrm{BC})$
$\therefore \mathrm{AD}^{2}=A C^{2}+\mathrm{CD} \times \mathrm{BD} \quad[\mathrm{CD}+\mathrm{BC}=\mathrm{BD}]$
$\therefore \mathrm{AD}^{2}=A C^{2}+\mathrm{BD} \times \mathrm{CD}$
Hence proved.

Chapter test

1. a) In fig. (i) given below, $\mathrm{AD} \perp \mathrm{BC}, \mathrm{AB}=\mathbf{2 5} \mathrm{cm}, \mathrm{AC}=\mathbf{1 7} \mathrm{cm}$ and $\mathrm{AD}=\mathbf{1 5} \mathrm{cm}$. Find the length of BC .
(b) In figure (ii) given below, $\angle \mathrm{BAC}=90^{\circ}, \angle \mathrm{ADC}=90^{\circ}, \mathrm{AD}=\mathbf{6} \mathrm{cm}, \mathrm{CD}=\mathbf{8} \mathrm{cm}$ and $\mathrm{BC}=\mathbf{2 6} \mathrm{cm}$.

Find :(i) AC
(ii) AB
(iii) area of the shaded region.
 E are mid-points of the sides $A B$ and $A C$ respectively, calculate
(i) the length of BC
(ii) the area of $\triangle \mathrm{ADE}$.

Solution:

(a) Given $\mathrm{AD} \perp \mathrm{BC}, \mathrm{AB}=25 \mathrm{~cm}, \mathrm{AC}=17 \mathrm{~cm}$ and $\mathrm{AD}=15 \mathrm{~cm}$ $\triangle \mathrm{ADC}$ is a right triangle.
$\therefore \mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{DC}^{2} \quad$ [Pythagoras theorem]
$\therefore 17^{2}=15^{2}+\mathrm{DC}^{2}$
$289=225+\mathrm{DC}^{2}$
$\therefore \mathrm{DC}^{2}=289-225$
$\therefore \mathrm{DC}^{2}=64$
Taking square root on both sides,
DC $=8 \mathrm{~cm}$
$\triangle \mathrm{ADB}$ is a right triangle.
$\therefore \mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2} \quad$ [Pythagoras theorem]
$25^{2}=15^{2}+\mathrm{BD}^{2}$
$625=225+\mathrm{BD}^{2}$
$\therefore \mathrm{BD}^{2}=625-225=400$
Taking square root on both sides,
$\mathrm{BD}=20 \mathrm{~cm}$
$\therefore \mathrm{BC}=\mathrm{BD}+\mathrm{DC}$
$=20+8$
$=28 \mathrm{~cm}$
Hence the length of BC is 28 cm .
(b) Given $\angle \mathrm{BAC}=90^{\circ}, \angle \mathrm{ADC}=90^{\circ}$
$\mathrm{AD}=6 \mathrm{~cm}, \mathrm{CD}=8 \mathrm{~cm}$ and $\mathrm{BC}=26 \mathrm{~cm}$.
(i) $\triangle \mathrm{ADC}$ is a right triangle.
$\therefore \mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{DC}^{2} \quad$ [Pythagoras theorem]
$\therefore \mathrm{AC}^{2}=6^{2}+8^{2}$
$\therefore \mathrm{AC}^{2}=36+64$
$\therefore \mathrm{AC}^{2}=100$
Taking square root on both sides, $\mathrm{AC}=10 \mathrm{~cm}$
Hence length of AC is 10 cm .
(ii) $\triangle \mathrm{ABC}$ is a right triangle.
$\therefore \mathrm{BC}^{2}=\mathrm{AC}^{2}+\mathrm{AB}^{2} \quad$ [Pythagoras theorem]
$\therefore 26^{2}=10^{2}+A B^{2}$
$\therefore \mathrm{AB}^{2}=26^{2}-10^{2}$
$\therefore \mathrm{AB}^{2}=676-100$
$\therefore \mathrm{AB}^{2}=576$
Taking square root on both sides, $\mathrm{AB}=24 \mathrm{~cm}$
Hence length of $A B$ is 24 cm .
(iii) Area of $\triangle \mathrm{ABC}=1 / 2 \times \mathrm{AB} \times \mathrm{AC}$
$=1 / 2 \times 24 \times 10$
$=120 \mathrm{~cm}^{2}$
Area of $\triangle \mathrm{ADC}=1 / 2 \times \mathrm{AD} \times \mathrm{DC}$
$=1 / 2 \times 6 \times 8$
$=24 \mathrm{~cm}^{2}$
Area of shaded region $=$ area of $\triangle \mathrm{ABC}$ - area of $\triangle \mathrm{ADC}$
$=120-24$
$=96 \mathrm{~cm}^{2}$
Hence the area of shaded region is $96 \mathrm{~cm}^{2}$.
(c) Given $\angle \mathrm{B}=90^{\circ}$.
$\mathrm{AB}=9 \mathrm{~cm}, \mathrm{AC}=15 \mathrm{~cm}$.
D, E are mid-points of the sides AB and AC respectively.
(i) $\triangle \mathrm{ABC}$ is a right triangle.
$\therefore \mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2} \quad$ [Pythagoras theorem]
$\therefore 15^{2}=9^{2}+B^{2}$
$\therefore 225=81+\mathrm{BC}^{2}$
$\therefore \mathrm{BC}^{2}=225-81$
$\mathrm{BC}^{2}=144$
Taking square root on both sides,
$\mathrm{BC}=12 \mathrm{~cm}$
Hence the length of BC is 12 cm .
(ii) $\mathrm{AD}=1 / 2 \mathrm{AB}$
[D is the midpoint of AB]
$\therefore \mathrm{AD}=1 / 2 \times 9=9 / 2$
$\mathrm{AE}=1 / 2 \mathrm{AC}$
[E is the midpoint of AC$]$
$\therefore \mathrm{AE}=1 / 2 \times 15=15 / 2$
$\triangle \mathrm{ADE}$ is a right triangle.
$\therefore \mathrm{AE}^{2}=\mathrm{AD}^{2}+\mathrm{DE}^{2} \quad$ [Pythagoras theorem]
$\therefore(15 / 2)^{2}=(9 / 2)^{2}+\mathrm{DE}^{2}$
$\mathrm{DE}^{2}=(15 / 2)^{2}-(9 / 2)^{2}$
$\mathrm{DE}^{2}=225 / 4-81 / 4$
$\mathrm{DE}^{2}=144 / 4$
Taking square root on both sides,
$\mathrm{DE}=12 / 2=6 \mathrm{~cm}$.
\therefore Area of $\triangle \mathrm{ADE}=1 / 2 \times \mathrm{DE} \times \mathrm{AD}$
$=1 / 2 \times 6 \times 9 / 2$
$=13.5 \mathrm{~cm}^{2}$
Hence the area of the $\triangle \mathrm{ADE}$ is $13.5 \mathrm{~cm}^{2}$.
2. If in $\triangle \mathrm{ABC}, \mathrm{AB}>\mathrm{AC}$ and $\mathrm{AD} \perp \mathrm{BC}$, prove that $\mathrm{AB}^{2}-\mathrm{AC}^{2}=\mathrm{BD}^{2}-\mathrm{CD}^{2}$

Solution:

Given $\mathrm{AD} \perp \mathrm{BC}, \mathrm{AB}>\mathrm{AC}$
So $\triangle \mathrm{ADB}$ and $\triangle \mathrm{ADC}$ are right triangles.
Proof:
In $\triangle \mathrm{ADB}$,
$\mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2}$
$\therefore \mathrm{AD}^{2}=\mathrm{AB}^{2}-\mathrm{BD}^{2}$
[Pythagoras theorem]
In $\triangle \mathrm{ADC}$,
$\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{CD}^{2} \quad$ [Pythagoras theorem]
$\therefore \mathrm{AD}^{2}=\mathrm{AC}^{2}-\mathrm{CD}^{2}$
Equating (i) and (ii)
$\mathrm{AB}^{2}-\mathrm{BD}^{2}=\mathrm{AC}^{2}-\mathrm{CD}^{2}$
$\therefore \mathrm{AB}^{2}-\mathrm{AC}^{2}=\mathrm{BD}^{2}-\mathrm{CD}^{2}$
Hence proved.
3. In a right angled triangle $A B C$, right angled at C, P and Q are the points on the sides $C A$ and $C B$ respectively which divide these sides in the ratio 2:1.
Prove that
(i) $9 \mathrm{AQ}^{2}=9 \mathrm{AC}^{2}+4 \mathrm{BC}^{2}$
(ii) $9 \mathrm{BP}^{2}=9 \mathrm{BC}^{2}+4 \mathrm{AC}^{2}$
(iii) $9\left(\mathrm{AQ}^{2}+\mathrm{BP}^{2}\right)=13 \mathrm{AB} \mathbf{B}^{2}$.

Solution:

Construction:
Join AQ and BP.
Given $\angle \mathrm{C}=90^{\circ}$
Proof:
(i) In $\triangle \mathrm{ACQ}$,
$\mathrm{AQ}^{2}=\mathrm{AC}^{2}+\mathrm{CQ}^{2} \quad$ [Pythagoras theorem]
Multiplying both sides by 9 , we get
$9 \mathrm{AQ}^{2}=9 \mathrm{AC}^{2}+9 \mathrm{CQ}^{2}$
$9 \mathrm{AQ}^{2}=9 \mathrm{AC}^{2}+(3 \mathrm{CQ})^{2}$
Given BQ: CQ = 1:2
$\therefore \mathrm{CQ} / \mathrm{BC}=\mathrm{CQ} /(\mathrm{BQ}+\mathrm{CQ})$
$\therefore \mathrm{CQ} / \mathrm{BC}=2 / 3$
$\Rightarrow 3 \mathrm{CQ}=2 \mathrm{BC}$
Substitute (ii) in (i)
$9 \mathrm{AQ}^{2}=9 \mathrm{AC}^{2}+(2 \mathrm{BC})^{2}$
$\Rightarrow 9 \mathrm{AQ}^{2}=9 \mathrm{AC}^{2}+4 \mathrm{BC}^{2}$
Hence proved.
(ii)) In $\triangle \mathrm{BPC}$,
$\mathrm{BP}^{2}=\mathrm{BC}^{2}+\mathrm{CP}^{2} \quad$ [Pythagoras theorem]
Multiplying both sides by 9 , we get
$9 \mathrm{BP}^{2}=9 \mathrm{BC}^{2}+9 \mathrm{CP}^{2}$
$9 \mathrm{BP}^{2}=9 \mathrm{BC}^{2}+(3 C P)^{2}$

Given AP: $\mathrm{PC}=1: 2$
$\therefore \mathrm{CP} / \mathrm{AC}=\mathrm{CP} / \mathrm{AP}+\mathrm{PC}$
$\therefore \mathrm{CP} / \mathrm{AC}=2 / 3$
$\Rightarrow 3 \mathrm{CP}=2 \mathrm{AC}$
Substitute (v) in (iv)
$9 \mathrm{BP}^{2}=9 \mathrm{BC}^{2}+(2 \mathrm{AC})^{2}$
$9 \mathrm{BP}^{2}=9 \mathrm{BC}^{2}+4 A C^{2}$
Hence proved.
(iii)Adding (iii) and (vi), we get
$9 \mathrm{AQ}^{2}+9 \mathrm{BP}^{2}=9 \mathrm{AC}^{2}+4 \mathrm{BC}^{2}+9 \mathrm{BC}^{2}+4 \mathrm{AC}^{2}$
$\Rightarrow 9\left(A Q^{2}+B P\right)^{2}=13 A C^{2}+13 B C^{2}$
$\Rightarrow 9\left(\mathrm{AQ}^{2}+\mathrm{BP}\right)^{2}=13\left(\mathrm{AC}^{2}+\mathrm{BC}^{2}\right) \ldots($ vii $)$
In $\triangle \mathrm{ABC}$,
$\mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{BC}^{2}$
Substitute (viii) in (viii), we get
$9\left(A Q^{2}+B P\right)^{2}=13 A B^{2}$
Hence proved.
4. In the given figure, $\triangle P Q R$ is right angled at Q and points S and T trisect side $Q R$. Prove that $8 P T^{2}=$ $\mathbf{3 P R}{ }^{2}+\mathbf{5 P S}{ }^{2}$.

Solution:

Given $\angle \mathrm{Q}=90^{\circ}$
S and T are points on $R Q$ such that these points trisect it.
So RT = TS = SQ
To prove $: 8 \mathrm{PT}^{2}=3 \mathrm{PR}^{2}+5 \mathrm{PS}^{2}$.
Proof:
Let $\mathrm{RT}=\mathrm{TS}=\mathrm{SQ}=\mathrm{x}$
In $\triangle P R Q$,
$\mathrm{PR}^{2}=\mathrm{RQ}^{2}+\mathrm{PQ}^{2} \quad$ [Pythagoras theorem]
$P R^{2}=(3 x)^{2}+P Q^{2}$
$P R^{2}=9 x^{2}+P Q^{2}$
Multiply above equation by 3
$3 \mathrm{PR}^{2}=27 \mathrm{x}^{2}+3 \mathrm{PQ}^{2}$
Similarly in $\triangle \mathrm{PTS}$,
$\mathrm{PT}^{2}=\mathrm{TQ}^{2}+\mathrm{PQ}^{2}$
[Pythagoras theorem]
$\mathrm{PT}^{2}=(2 \mathrm{x})^{2}+\mathrm{PQ}^{2}$
$\mathrm{PT}^{2}=4 \mathrm{x}^{2}+\mathrm{PQ}^{2}$
Multiply above equation by 8
$8 \mathrm{PT}^{2}=32 \mathrm{x}^{2}+8 \mathrm{PQ}^{2}$
Similarly in $\triangle \mathrm{PSQ}$,
$\mathrm{PS}^{2}=\mathrm{SQ}^{2}+\mathrm{PQ}^{2}$
[Pythagoras theorem]
$\mathrm{PS}^{2}=\mathrm{x}^{2}+\mathrm{PQ}^{2}$
Multiply above equation by 5
$5 \mathrm{PS}^{2}=5 \mathrm{x}^{2}+5 \mathrm{PQ}^{2}$
Add (i) and (iii), we get
$3 \mathrm{PR}^{2}+5 \mathrm{PS}^{2}=27 \mathrm{x}^{2}+3 \mathrm{PQ}^{2}+5 \mathrm{x}^{2}+5 \mathrm{PQ}^{2}$
$\therefore 3 \mathrm{PR}^{2}+5 \mathrm{PS}^{2}=32 \mathrm{x}^{2}+8 \mathrm{PQ}^{2}$
$\therefore 3 \mathrm{PR}^{2}+5 \mathrm{PS}^{2}=8 \mathrm{PT}^{2} \quad[$ From (ii) $]$
$\therefore 8 \mathrm{PT}^{2}=3 \mathrm{PR}^{2}+5 \mathrm{PS}^{2}$
Hence proved.
5. In a quadrilateral $\mathrm{ABCD}, \angle \mathrm{B}=90^{\circ}$. If $\mathrm{AD}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}$, prove that $\angle \mathrm{ACD}=90^{\circ}$. Solution:

Given : $\angle \mathrm{B}=90^{\circ}$ in quadrilateral ABCD
$\mathrm{AD}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}$
To prove: $\angle \mathrm{ACD}=90^{\circ}$
Proof:
In $\triangle \mathrm{ABC}$,
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2} \quad \ldots$. (i) \quad [Pythagoras theorem]
Given $\mathrm{AD}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}$
$\therefore \mathrm{AD}^{2}=\mathrm{AC}^{2}+\mathrm{CD}^{2} \quad$ [from (i)]
\therefore In $\triangle \mathrm{ACD}, \angle \mathrm{ACD}=90^{\circ} \quad$ [Converse of Pythagoras theorem]
Hence proved.
6. In the given figure, find the length of $A D$ in terms of b and c.

Solution:

Given: $\angle \mathrm{A}=90^{\circ}$
$\mathrm{AB}=\mathrm{c}$
$\mathrm{AC}=\mathrm{b}$
$\angle \mathrm{ADB}=90^{\circ}$
In $\triangle \mathrm{ABC}$,
$\mathrm{BC}^{2}=\mathrm{AC}^{2}+\mathrm{AB}^{2} \quad$ [Pythagoras theorem]
$\mathrm{BC}^{2}=\mathrm{b}^{2}+\mathrm{c}^{2}$
$B C=\sqrt{ }\left(b^{2}+c^{2}\right) \ldots(i)$
Area of $\triangle A B C=1 / 2 \times A B \times A C$
$=1 / 2 \times b c$
Also, Area of $\triangle \mathrm{ABC}=1 / 2 \times \mathrm{BC} \times \mathrm{AD}$
$=1 / 2 \times \sqrt{ }\left(b^{2}+c^{2}\right) \times A D$
Equating (ii) and (iii)
$1 / 2 \times b c=1 / 2 \times \sqrt{ }\left(b^{2}+c^{2}\right) \times A D$
$\therefore \mathrm{AD}=\mathrm{bc} /\left(\sqrt{ }\left(\mathrm{b}^{2}+\mathrm{c}^{2}\right)\right.$
Hence $A D$ is bc $/\left(\sqrt{ }\left(b^{2}+c^{2}\right)\right.$.
7. $A B C D$ is a square, F is mid-point of $A B$ and $B E$ is one-third of $B C$. If area of $\triangle F B E$ is $108 \mathbf{c m}^{2}$, find the length of AC.

Solution:

Let x be each side of the square $A B C D$.

$$
\begin{equation*}
\mathrm{FB}=1 / 2 \mathrm{AB} \quad[\because \mathrm{~F} \text { is the midpoint of } \mathrm{AB}] \tag{i}
\end{equation*}
$$

$\therefore \mathrm{FB}=1 / 2 \mathrm{x}$
$B E=(1 / 3) B C$
$\therefore \mathrm{BE}=(1 / 3) \mathrm{x}$
$A C=\sqrt{ } 2 \times$ side
[Diagonal of a square]
$A C=\sqrt{ } 2 x$
Area of $\triangle \mathrm{FBE}=1 / 2 \mathrm{FB} \times \mathrm{BE}$
$\therefore 108=1 / 2 \times 1 / 2 \mathrm{x} \times(1 / 3) \mathrm{x}$
$\therefore 108=(1 / 12) \mathrm{x}^{2}$
$\therefore \mathrm{x}^{2}=108 \times 12$
$\therefore x^{2}=1296$
Taking square root on both sides.
$\mathrm{x}=36$
$\therefore A C=\sqrt{ } 2 \times 36=36 \sqrt{ } 2$
Hence length of AC is $36 \sqrt{ } 2 \mathrm{~cm}$.
8. In a triangle $A B C, A B=A C$ and D is a point on side $A C$ such that $B C^{2}=A C \times C D$, Prove that $B D=B C$.

Solution:

Given: In $\triangle \mathrm{ABC}, \mathrm{AB}=\mathrm{AC}$
D is a point on side $A C$ such that $B C^{2}=A C \times C D$
To prove : BD = BC
Construction: Draw BE $\perp \mathrm{AC}$

Proof:
In $\triangle \mathrm{BCE}$,
$\mathrm{BC}^{2}=\mathrm{BE}^{2}+\mathrm{EC}^{2} \quad$ [Pythagoras theorem]
$\mathrm{BC}^{2}=\mathrm{BE}^{2}+(\mathrm{AC}-\mathrm{AE})^{2}$
$\mathrm{BC}^{2}=\mathrm{BE}^{2}+\mathrm{AC}^{2}+\mathrm{AE}^{2}-2 \mathrm{AC} \times \mathrm{AE}$
$\mathrm{BC}^{2}=\mathrm{BE}^{2}+\mathrm{AE}^{2}+\mathrm{AC}^{2}-2 \mathrm{AC} \times \mathrm{AE}$
In $\triangle \mathrm{ABC}$,
$\mathrm{AB}^{2}=\mathrm{BE}^{2}+\mathrm{AE}^{2}$

Substitute (ii) in (i)

$$
\begin{aligned}
& \therefore \mathrm{BC}^{2}=\mathrm{AB}^{2}+\mathrm{AC}^{2}-2 \mathrm{AC} \times \mathrm{AE} \\
& \therefore \mathrm{BC}^{2}=\mathrm{AC}^{2}+\mathrm{AC}^{2}-2 \mathrm{AC} \times \mathrm{AE} \quad[\because \mathrm{AB}=\mathrm{AC}] \\
& \therefore \mathrm{BC}^{2}=2 \mathrm{AC}^{2}-2 \mathrm{AC} \times \mathrm{AE} \\
& \therefore \mathrm{BC}^{2}=2 \mathrm{AC}(\mathrm{AC}-\mathrm{AE}) \\
& \therefore \mathrm{BC}^{2}=2 \mathrm{AC} \times \mathrm{EC}
\end{aligned}
$$

Given $\mathrm{BC}^{2}=\mathrm{AC} \times \mathrm{CD}$

$$
\therefore 2 \mathrm{AC} \times \mathrm{EC}=\mathrm{AC} \times \mathrm{CD}
$$

$$
\begin{equation*}
\Rightarrow 2 \mathrm{EC}=\mathrm{CD} \tag{ii}
\end{equation*}
$$

$\therefore \mathrm{E}$ is the midpoint of CD .

$$
\mathrm{EC}=\mathrm{DE}
$$

In $\triangle B E D$ and $\triangle B E C$,

$$
\mathrm{EC}=\mathrm{DE}
$$

[From (iii)]
$\mathrm{BE}=\mathrm{BE} \quad$ [common side]
$\angle \mathrm{BED}=\angle \mathrm{BEC}$
$\therefore \triangle \mathrm{BED} \cong \triangle \mathrm{BEC} \quad$ [By SAS congruency rule]
$\therefore \mathrm{BD}=\mathrm{BD}$
Hence proved.

