MLC/TLC NAND support: (new ?)
challenges for the MTD/NAND
subsystem

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 1/47

a Boris Brezillon
o ")

» Embedded Linux engineer and trainer at Free Electrons

» Embedded Linux and Android development: kernel and driver
development, system integration, boot time and power
consumption optimization, consulting, etc.

» Embedded Linux, Linux driver development, Android system
and Yocto/OpenEmbedded training courses, with materials
freely available under a Creative Commons license.

» http://free-electrons.com

» Contributions
» Kernel support for the AT91 SoCs ARM SoCs from Atmel
» Kernel support for the sunXi SoCs ARM SoCs from
Allwinner

» Living in Toulouse, south west of France

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com

2/47

http://free-electrons.com

0@ Agenda

Context description
What is this talk about ?
NAND Flash technology
Flash memory handling in Linux

MLC Constraints
Paired pages
Unpredictable voltage level
Data retention problems
Power-cut related problems

Proposed Solutions
Paired pages
Unpredictable voltage level
Data retention problems

Conclusion

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com

3/47

a@ Context: What is this talk about ?

» Explaining the constraints induced by MLC chips and
comparing them to SLC chips

» Detailing the current Linux Flash handling stack and pointing
missing stuff to properly handle MLC chips

» Going through main MLC constraints and describing existing
solutions or proposing new solutions to address them

» Be careful: most of this talk is describing hypothetical changes

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 4/47

a@ Context: Short description of the NAND technology

» Encode bits with Voltage levels

» Start with all bits set to 1

» Programming implies changing some bits from 1 to 0
» Restoring bits to 1 is done via the ERASE operation

» Programming and erasing is not done on a per bit or per byte
basis
» Organization

» Page: minimum unit for PROGRAM operation
» Block: minimum unit for ERASE operation

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 5/47

Context: NAND Flash organization

Serial Input
(x8 or x16)

30ns (max clk} —— Register

Program:
~300us

P { NAND Block

Da taIAlea Spare Area
2048 bytes (ECC, etc.)
64 bytes

Serial Cutput
(%8 or x16)
30ns {max clk}

Read (page load):
~25u%

I~ 2048 Blocks
{2Gb device)

Block Erase
-2ms

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com

6/47

a@ Context: What are MLC NAND chips ?

v

Standard NAND chips are SLC (Single-Level Cells) chips
MLC stands for Multi-Level Cells

» Multi is kind of misleading here, we're talking about 4 level
cells: b00, b01, b10, b1l
» One cell contains 2 bits

v

v

Bigger than SLC chips, but also less reliable

v

Requires more precautions when accessing the chip (true for
both read and write accesses)

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 7/47

Context: MLC vs SLC Cell

bit bit bit

Voltage 0 0 1

A

SLC Cell MLC Cell

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 8/47

Context: Flash related layers in the Linux kernel

File System
Layer

Wear Leveling UBI
Layer

Flash Memory
Abstraction
Layer

Flash Type
Abstraction
Layer

Drivers
Flash

Drivers Drivers

NAND
Drivers

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com

9/47

Context: MTD
Q@ ontex

» Provide an abstraction layer to expose all kind of memory
devices (RAM, ROM, NOR, NAND, DATAFLASH, ...)

» Does not care about how memory device is accessed: that's
MTD driver responsibility

» Expose methods to access the memory device
(read/write/erase)
» Expose memory layout information
» erasesize: minimum erase size unit
writesize: minimum write size unit
oobsize: extra size to store metadata or ECC data
size: device size
flags: information about device type and capabilities

vV vy VvVyy

» MTD drivers should fill layout information and access
methods in mtd_info and then register the device

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 10/47

Q@ Context: NAND and NAND driver

v

Provide an abstraction layer for raw NAND devices
Take care of registering NAND chips to the MTD layer

v

v

Expose an interface for NAND controllers to register their
NAND chips: struct nand_chip

v

Implement the glue between NAND and MTD logics
Provide a lot of interfaces for other NAND related stuff:

» ECC controller: struct nand_ecc_ctrl
» Bad Block handling: struct nand_bbt_descr
> etc

v

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 11/47

Context: UBI
Q@ ontex

» Stands for Unsorted Block Interface

» Deal with wear leveling
» Distribute erase block wear over the whole flash
» Take care of moving data from unreliable blocks to reliable
ones
» Take care of marking bad blocks (after torturing them)
» Provides a volume abstraction layer
» Volume are not composed of physically contiguous blocks
» Volume are not attached specific erase blocks
» Can be dynamically created, removed, resized or renamed

» Makes use of the MTD abstraction to access memory devices

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 12/47

Context: UBI

Volume 1 Volume 2

UBI
ogica | LeB || LeB || LEB || LEB | | LEB || LEB || LEB |

erase blocks

::'y:gl | PEB || PEB | PEB
erase blocks Free block Free block

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 13/47

context: ubi metadata

PEB (Physical Erase Block) -
Ll

<
<

A N
 LEB (Logical Erase Block) ~

I EC (Erase Counter) header

[VID (Volume ID) header

[] Payload

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 14/47

Context: UBIF
Q@ ontext: UBIFS

v

Stands for UBI File System
Rely on the UBI layer for the wear leveling part

v

v

Journalized file system created to address JFFS2 scalability
problems
| won't detail UBIFS architecture here:

> It would take too long
» I'm not qualified enough to describe it

v

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 15/47

MLC Constraint
Q@ onstraints

v

Paired pages impose care when programming a page

v

Voltage thresholds delimiting each level might change with
wear

» More prone to bit-flips

» Sensitive to systematic data pattern

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 16/47

a@ MLC Constraints: paired pages

» MLC embed 2 bits in each cell

» Why are NAND vendors so mean to us poor software
developers 7

>

One bit assigned to one page and the other one to another
page

TLC cells embed 3 bits: same problem except pages are paired
by 3

Changing the cell level is a risky operation, which, if
interrupted, can lead to undefined voltage level in this cell
Since the same cell is shared by several pages, programming
one page might corrupt the page(s) it is paired with

Each NAND vendor has its own scheme for page pairing, this
forces us to provide a vendor specific (if not chip specific)
function to get which pages are paired

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com

17/47

MLC Constraints: paired pages

— Y/
| Page X | ' | Page X + N
|
|
|
|
Group 1 I Group 2

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 18/47

a@ MLC Constraints: adapting voltage thresholds

» Voltage level stored when programming a cell might change
with wear

> Becomes problematic when the level cross the voltage
threshold used by the internal logic to determine values stored
in cells

» Can be fixed by ECCs if the number of impacted cells stays
low

» Requires a solution when the number of impacted cells is too
important

» Solution: move voltage thresholds to deal with this situation

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 19/47

0@ MLC Constraints: adapting voltage threshold

Voltage

Voltage
b00

b00 rangei
rangey | e _ bolA—|— - -0 %>
b01 range
range - - - - - = =

S, --——— - == bio—-[—-|————— — — —
b10 range
range - = - = = =

i S b11—[—|— —— — — — — —
b1l range
range

Wear Wear

Modify
Threshold

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 20/47

ao MLC Constraints: data retention

» NAND cells are not indefinitely maintaining their state

» External environment (like temperature) can reduce data
retention

» First source of data retention problems are read/write
disturbance

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 21/47

a@ MLC Constraints: read and program disturbance

» This problem is seen on all NAND chips (including SLC) but
happen more frequently on MLC/TLC NANDs
» Read disturbance:
> Is caused by a read command
» Might impact the page currently being read or other pages in
the same block
» Program disturbance:
» Is caused by a program command
» Might impact other pages in the same block
» The most problematic disturbance are those appearing on
other pages than the one being accessed

» Requires scanning all pages (or at least those rarely read) in
background to detect those where the number of bit-flips
exceed the bit-flips threshold

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com

22/47

MLC Constraints: read and program disturbance

Erase Block
A
© N

H—_ Read Data Here

$— Disturb Data Here

Write Data Here Ml

Disturb Data Herg ———>

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 23/47

ao MLC Constraints: avoiding systematic data patterns

» Some MLC chips are sensitive to systematic data patterns
» Scramble data to avoid writing such pattern

» Require a descrambling phase when reading data from the
NAND

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 24/47

a@ MLC Constraints: unstable bits

» Not an MLC problem per se (also happens on SLC chips)

> Interrupted PROGRAM/ERASE operations might lead to
unstable bits

» Cells can store the correct value for some time
» Suddenly return erroneous values

> Fully described here: http://www.linux-
mtd.infradead.org/doc/ubifs.html#L_unstable_bits

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com

25/47

http://www.linux-mtd.infradead.org/doc/ubifs.html#L_unstable_bits
http://www.linux-mtd.infradead.org/doc/ubifs.html#L_unstable_bits

ao Paired pages handling: First proposal

» Only write on one of the paired pages
> Pros:
» Simple to implement
» Can be handle at the NAND layer only
» Some chips provide an SLC mode (even simpler to implement)
» Cons:
» You loose half the NAND capacity (even more in case of TLC
chips)
» Implementation details:

» Declare the chip as having half (or one-third in case of TLC)
the effective size

» Use the SLC mode if it exists

» Or only write on the pages that are assigned the first bit of
each cell

> In any case hide the logic to the upper layers

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 26/47

a@ Paired pages handling: Second proposal

» Differentiate 'safe’ and 'unsafe’ LEBs
» Safe LEBs: only use one bit of each cell

UBI deals with paired pages and expose a linear view to users
Users have to take safe LEB size into account

Put safe LEB in a pool first time it is unmapped

Use pages from the 2nd group when mapped again

Erase it the second time it is unmapped

v

vV vy VvVYyy

» Unsafe LEBs expose all LEB capacity

» Users have to deal with paired pages themselves
» Or accept to loose some data
» Or atomically program/update LEBs

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 27/47

a@ Paired pages handling: Second proposal

> Pros:
» Reduce wear (safe LEBs are reused twice before being erased)
» Provides fine grained control over which operations are sensible
and which one are not
» Cons:
» Still can’t use the whole flash capacity
» More complicated to implement than 1st proposal
» Impact all layers up to UBIFS
> Usage:
» Safe LEB: file system journal where each entry should be
consistent
» Unsafe LEBs: atomic LEB update where a CRC is used to
ensure whole LEB consistency

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com

28/47

ao Paired pages handling: Second proposal

» Implementation details:
» NAND and MTD layers are exposing paired pages information
» UBI should never use pages paired with the EC and VID
headers
» UBI provides a way to declare safe and unsafe LEBs
> Safe LEBs: only using half (or one-third) of the block capacity
so that all writes are safe
» Safe LEB marker in ubi_vid_hdr
» UBIFS makes use of the unsafe/safe LEB capabilities
depending on each operation and the associated required
reliability (log update, garbage collection, etc)

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 29/47

a@ Paired pages handling: Third proposal

> Yet to be proposed ;-)
Give more control to UBIFS ?
» Solution proposed here: http://www.linux-
mtd.infradead.org/doc/ubifs.html#L_ubifs_mlc
» Let UBIFS decide when a LEB should be safe (pages paired to
the already programmed ones should not be touched)
» Should be done when committing changes (FS sync) ?
» My knowledge of the UBIFS infrastructure is quite limited
» Should be discussed with the UBIFS Maintainer: Artem

v

Bityutskiy
» UBI should hide pages paired with VID and EC headers
» Pros:
» Better use of the overall NAND capacity ?
» Cons:

» Far more complicated to implement: UBIFS has to directly
deal with paired pages

» Only UBIFS will benefit from the paired pages handling (but
are there other RW UBI users anyway 7)

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 30/47

http://www.linux-mtd.infradead.org/doc/ubifs.html#L_ubifs_mlc
http://www.linux-mtd.infradead.org/doc/ubifs.html#L_ubifs_mlc

Paired pages handling: Third proposal

< PEB (Physical Erase Block) >

I EC header
A [VID header

[><] Page paired with EC header

\ \| | [><] Page paired with VID header

[] Payload

A N
LEB (Logical Erase Bldck)

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 31/47

Paired pages handling: Third proposal

LEB
Stepl: map LEB
Step2: write data UBIFS unreliable data
UBIFS reliable data
Paired pages skipped for
reliability concern
[Empty pages
Step2: securize data * Write pointer
)
Step2: write new data

0

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 32/47

a@ Handling unpredictable voltage threshold

» NAND vendors provide a way to tweak the cell level threshold,
but ...

» There is no standard way to do that
» Each vendor implement it differently
» This might differ even with NAND chips from the same
manufacturer
» While mandatory, this feature is not (or poorly) documented
» Detecting the appropriate threshold is not that simple and this
value is only valid for a given block

> It depends on block wear, but there is no paper describing
how we should choose it (depends on the number of
erase/program cycles, but how ?)

> lterating over modes implies a performance penalty, since the
page has to be read several times

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 33/47

a@ Handling unpredictable voltage threshold

» Micron implementation is already supported in mainline
» But, existing core code ...

» stops searching for the best read-retry mode as soon as a page
is successfully read (even if the number of bit-flips exceed the
bitflips_threshold value)

» does not save the last valid read-retry mode: performance
penalty at each read

» What's missing 7
» A way for vendor specific code to be registered (assign the
setup_read_retry callback)
» Some fixes to the existing implementation to find the best
read-retry mode
» Optional: store best read-retry mode in memory
» Optional: guess best read-retry mode from erase counter

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com

34/47

a@ Preventing uncorrectable bit-flips: First Proposal

v

Regularly read all pages to detect pages/blocks where the
bit-flips threshold is raised

v

Problem: a page read might generate read disturbance and
corrupt other pages in the same block

Better read a full block
Solution proposed (and developed) by Richard Weinberger
» At UBI level
» Creation of a new user-space interface (sysfs) to trigger a full
volume scan
» Scan done in background (in the UBI thread, or an
independent one)

v

v

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 35/47

ao Preventing uncorrectable bit-flips: First Proposal

» Pros:

» Rather simple implementation
> Pretty easy to use
> Let user-space decide when the scan is necessary

» Cons:

» Force user-space to store information on the last scan and
logic about when to scan next time

» Launching a full scan might be ineffective in some cases (some
blocks are read quite often and do not need to be scanned)

» Performance penalty when reading/programming while a scan
is in progress (the operation might have to wait for the page
read to finish)

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 36/47

a@ Preventing uncorrectable bit-flips: Second Proposal

v

UBI layer can store useful information/statistics about

» read and write accesses
» number of corrected bit-flips

UBI can make use of these statistics to decide when to read
each page/block
» Pros:

v

> All the complexity is hidden to user-space
» More efficient in term of useful page/block reads
» Cons:
» Far more complicated to implement
» Increase memory footprint
» Still require one full scan at boot (to restore the database)
» Performance penalty when reading/programming while a
bit-flip detection is in progress

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 37/47

a@ Avoiding systematic data pattern: data scramblers

> Should be handled in the NAND layer

> Better use a hardware scrambler, but software implementation
is possible

» Same approach as for ECC handling

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 38/47

Avoiding systematic data pattern: data

ECC bits scrambler

Write page workflow

| peta Data
| ECC bits scrambler

Read page workflow

scramblers

Scrambled
Data

+
ECC bits

Scrambled
Data

+
ECC bits

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com

39/47

a@ Data scrambler: implementation details

» Data scrambling can be hidden in NAND controller driver's
implementation, but

» You'll have to use your own read/write implementations

> If we ever decide to add a mode to disable the scrambler when
accessing the NAND, you'll have to implement more functions

» Factorizing common operations in default helper functions is
always a good thing

» Trying to match a common model always makes you think
twice before coding dirty hacks ;-)

» The proposed interface is trying to be as much generic as
possible, but was designed with 2 implementations in mind
» The sunxi NAND controller one
» A software based implementation using the LFSR algorithm
> Please let me know if your scrambler does not fit in the model
proposed here

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com

40/47

Data scrambler: implementation details

enum nand_scrambler_action {
NAND_SCRAMBLER_DISABLE,
NAND_SCRAMBLER_READ,
NAND_SCRAMBLER_WRITE,

g
struct nand_scrambler_ops {
(xconfig) (struct mtd_info *mtd, page, column,
enum nand_scrambler_action action);
(*xwrite_buf) (struct mtd_info *mtd, const *buf, len);
(*read_buf) (struct mtd_info *mtd, *buf , len);
};
struct nand_scrambler_layout {
nranges;
struct nand_rndfree ranges([0];

35

struct nand_scrambler_ctrl {
struct nand_scrambler_layout *layout;
struct nand_scrambler_ops *ops;

};
o s ol
struct nand_chip {
[CEPS|
struct nand_scrambler_ctrl *scrambler;
[CEPS|
s

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 41/47

@o Data scrambler: implementation details

» Scrambler layout (struct nand_scrambler_layout)
> Describes area that should not be scrambled
» Particularly useful for Bad Block Markers
» Not mandatory but highly recommended if feasible

» Scrambler operations (struct nand_scrambler_ops)
» config

> configure the scrambler block for a READ or WRITE operation,
or disable it
> page and column arguments are necessary to setup the
appropriate key or seed value in the scrambler block
» read_buf and write_buf

> wrapper functions responsible for enabling the scrambler block

before calling NAND controller read_buf or write_buf and
disabling it after the operation is done

Not mandatory if you do not rely on default helpers

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 42/47

a@ Data scrambler: implementation details

» Proposed an implementation a year ago:
https://1kml.org/1kml/2014/4/30/721

» Proof of concept available here:
https://github.com/bbrezillon/linux-
sunxi/tree/sunxi-nand-next

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 43/47

https://lkml.org/lkml/2014/4/30/721
https://github.com/bbrezillon/linux-sunxi/tree/sunxi-nand-next
https://github.com/bbrezillon/linux-sunxi/tree/sunxi-nand-next

ao Unstable bits handling

» Part of a solution described here: http://www.linux-
mtd.infradead.org/doc/ubifs.html#L_unstable_bits

» That's a topic | haven't thought about yet

» Any proposal is welcome

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com

44/47

http://www.linux-mtd.infradead.org/doc/ubifs.html#L_unstable_bits
http://www.linux-mtd.infradead.org/doc/ubifs.html#L_unstable_bits

a@ We need NAND chip vendors help

» Most solution proposed in this talk are based on experiments
and not facts or statistics

» NAND chip vendors could help us by
» Documenting undocumented or (poorly documented) parts

» How to change voltage threshold

> Impacts of systematic data pattern

> Impacts of power-cut failures on data reliability (unstable bits
issue)

» Providing statistics on

> Cells wear evolution

» Impacts of wear on voltage level

> Impacts of read/write disturbance (to determine how often a
block should be scanned)

» Proposing new approaches to deal with MLC constraints

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com

45/47

What's next ?
9

» Most of the solution proposed here are either untested ones or
just proof of concepts

» Need to discuss them with MTD, UBI and UBIFS maintainers
» Provide MLC chips constraints emulation in order to test
UBI/UBIFS MLC related stuff with checkfs
» Provide implementations and iterate till they are accepted
» Doing that on my spare time: don't expect to see things
coming quickly
» Any kind of help is welcome: new ideas, implementations,
tests, reviews, ...

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 46/47

Questions?

Boris Brezillon

boris.brezillon@free-electrons.com

Slides under CC-BY-SA 3.0

http://free-electrons.com/pub/conferences/2014/elce/brezillon-drm-kms/

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 47/47

http://free-electrons.com/pub/conferences/2014/elce/brezillon-drm-kms/

	Context description
	MLC Constraints
	Proposed Solutions
	Conclusion

