MMDS Secs. 3.2-3.4.

Slides adapted from: J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

FINDING SIMILAR ITEMS

Slides also adapted from Prof. Srinivasan Parthasarathy @OSU

Task: Finding Similar Documents

Goal: Given a large number (N in the millions or billions) of documents, find "near duplicate" pairs

Applications:

 \square Mirror websites, or approximate mirrors \rightarrow remove duplicates

 \square Similar news articles at many news sites \rightarrow cluster

Task: Finding Similar Documents

Goal: Given a large number (N in the millions or billions) of documents, find "near duplicate" pairs

Applications:

 \square Mirror websites, or approximate mirrors \rightarrow remove duplicates

 \square Similar news articles at many news sites \rightarrow cluster

What are the challenges?

Task: Finding Similar Documents

- Goal: Given a large number (N in the millions or billions) of documents, find "near duplicate" pairs
- □ Applications:

 \square Mirror websites, or approximate mirrors \rightarrow remove duplicates

 \blacksquare Similar news articles at many news sites \rightarrow cluster

Problems:

- Many small pieces of one document can appear out of order in another
- Too many documents to compare all pairs
- Documents are so large or so many (scale issues)

Two Essential Steps for Similar Docs

- 1. Shingling: Convert documents to sets
- 2. Min-Hashing: Convert large sets to short signatures, while preserving similarity

Host of follow up applications e.g. Similarity Search Data Placement Clustering etc.

The Big Picture

- of length **k** that appear
- in the document

SHINGLING

Step 1: Shingling: Convert documents to sets

Documents as High-Dim Data

Step 1: Shingling: Convert documents to sets

Simple approaches:

Document = set of words appearing in document

Document = set of "important" words

Don't work well for this application. Why?

Need to account for ordering of words!

A different way: Shingles!

Define: Shingles

A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the doc

- Tokens can be characters, words or something else, depending on the application
- Assume tokens = characters for examples

Define: Shingles

- A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the doc
 - Tokens can be characters, words or something else, depending on the application
 - Assume tokens = characters for examples
- □ Example: k=2; document D_1 = abcab Set of 2-shingles: $S(D_1) = \{ab, bc, ca\}$

Define: Shingles

- A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the doc
 - Tokens can be characters, words or something else, depending on the application
 - Assume tokens = characters for examples
- □ Example: k=2; document D_1 = abcab Set of 2-shingles: $S(D_1) = \{ab, bc, ca\}$

Another option: Shingles as a bag (multiset), count ab twice: S'(D₁) = {ab, bc, ca, ab}

Shingles: How to treat white-space chars?

Example 3.4: If we use k = 9, but eliminate whitespace altogether, then we would see some lexical similarity in the sentences "The plane was ready for touch down". and "The quarterback scored a touchdown". However, if we retain the blanks, then the first has shingles touch dow and ouch down, while the second has touchdown. If we eliminated the blanks, then both would have touchdown. \Box

It makes sense to replace any sequence of one or more white-space characters (blank, tab, newline, etc.) by a single blank.

This way distinguishes shingles that cover two or more words from those that do not.

How to choose K?

Documents that have lots of shingles in common have similar text, even if the text appears in different order

- Caveat: You must pick k large enough, or most documents will have most shingles
 - **\mathbf{k} = 5** is OK for short documents
 - **\mathbf{k}** = 10 is better for long documents

Compressing Shingles

□ To compress long shingles, we can hash them to (say) 4 bytes

- Like a Code Book
- \square If #shingles manageable \rightarrow Simple dictionary suffices

```
e.g., 9-shingle => bucket number [0, 2^32 - 1]
(using 4 bytes instead of 9)
```

Compressing Shingles

□ To **compress long shingles**, we can **hash** them to (say) 4 bytes

- Like a Code Book
- \square If #shingles manageable \rightarrow Simple dictionary suffices

\Box Doc represented by the set of hash/dict. values of its k-shingles

Idea: Two documents could appear to have shingles in common, when the hash-values were shared

Compressing Shingles

□ To **compress long shingles**, we can **hash** them to (say) 4 bytes

- Like a Code Book
- \square If #shingles manageable \rightarrow Simple dictionary suffices

\Box Doc represented by the set of hash/dict. values of its k-shingles

Similarity Metric for Shingles

Document D_1 is a set of its k-shingles $C_1 = S(D_1)$

- \Box Equivalently, each document is a 0/1 vector in the space of k-shingles
 - Each unique shingle is a dimension
 - Vectors are very sparse
- □ A natural similarity measure is the Jaccard similarity:

 $sim(D_1, D_2) = |C_1 \cap C_2| / |C_1 \cup C_2|$

Motivation for Minhash/LSH

Suppose we need to find similar documents among N = 1 million documents

Naïvely, we would have to compute pairwise Jaccard similarities for every pair of docs

 $\square N(N-1)/2 \approx 5*10^{11} \text{ comparisons}$

At 10⁵ secs/day and 10⁶ comparisons/sec, it would take 5 days

 \square For N = 10 million, it takes more than a year...

MINHASHING

Step 2: Minhashing: Convert large variable length sets to short fixed-length signatures, while preserving similarity

Encoding Sets as Bit Vectors

Many similarity problems can be formalized as finding subsets that have significant intersection

Encoding Sets as Bit Vectors

Many similarity problems can be formalized as finding subsets that have significant intersection

□ Encode sets using 0/1 (bit, boolean) vectors

- One dimension per element in the universal set
- Interpret set intersection as bitwise AND, and set union as bitwise OR

Encoding Sets as Bit Vectors

Many similarity problems can be formalized as finding subsets that have significant intersection

Encode sets using 0/1 (bit, boolean) vectors

- One dimension per element in the universal set
- Interpret set intersection as bitwise AND, and set union as bitwise OR
- **Example:** $C_1 = 10111$; $C_2 = 10011$
 - **\square** Size of intersection = 3; size of union = 4,
 - Jaccard similarity (not distance) = 3/4
 - Distance: $d(C_1, C_2) = 1 (Jaccard similarity) = 1/4$

From Sets to Boolean Matrices

Rows = elements (shingles)

Note: Transposed Document Matrix

Columns = sets (documents)

1 in row e and column s if and only if e is a valid shingle of document represented by s

- Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
- **Typical matrix is sparse!**

So far:

- \square A documents \rightarrow a set of shingles
- Represent a set as a boolean vector in a matrix

	Documents				
Shingles	1	1	1	0	
	1	1	0	1	
	0	1	0	1	
	0	0	0	1	
	1	0	0	1	
	1	1	1	0	
	1	0	1	0	

So far:

- \square A documents \rightarrow a set of shingles
- Represent a set as a boolean vector in a matrix
- Next goal: Find similar columns while computing small signatures

Similarity of columns == similarity of signatures

Next Goal: Find similar columns, Small signatures

- □ Naïve approach:
 - 1) Signatures of columns: small summaries of columns

Next Goal: Find similar columns, Small signatures

□ Naïve approach:

- 1) Signatures of columns: small summaries of columns
- **2) Examine pairs of signatures** to find similar columns
 - **Essential:** Similarities of signatures and columns are related
- **3) Optional:** Check that columns with similar signatures are really similar

Next Goal: Find similar columns, Small signatures

□ Naïve approach:

1) Signatures of columns: small summaries of columns

2) Examine pairs of signatures to find similar columns

Essential: Similarities of signatures and columns are related

3) Optional: Check that columns with similar signatures are really similar

□ Warnings:

Comparing all pairs may take too much time: Job for LSH

These methods can produce false negatives, and even false positives (if the optional check is not made)
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Hashing Columns (Signatures) : LSH principle

□ Key idea: "hash" each column C to a small signature h(C), such that:

- **(1)** h(C) is small enough that the signature fits in RAM
- **(2)** $sim(C_1, C_2)$ is the same as the "similarity" of signatures $h(C_1)$ and $h(C_2)$

Hashing Columns (Signatures) : LSH principle

Key idea: "hash" each column C to a small signature h(C), such that:

- **(1)** h(C) is small enough that the signature fits in RAM
- **(2)** $sim(C_1, C_2)$ is the same as the "similarity" of signatures $h(C_1)$ and $h(C_2)$

Goal: Find a hash function $h(\cdot)$ such that:

If $sim(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$

□ If $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$

Hashing Columns (Signatures) : LSH principle

Key idea: "hash" each column C to a small signature h(C), such that:

- **(1)** h(C) is small enough that the signature fits in RAM
- **(2)** $sim(C_1, C_2)$ is the same as the "similarity" of signatures $h(C_1)$ and $h(C_2)$

Goal: Find a hash function $h(\cdot)$ such that:

- If $sim(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$
- □ If $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$

Hash docs into buckets. Expect that "most" pairs of near duplicate docs hash into the same bucket!

Goal: Find a hash function $h(\cdot)$ such that:

■ if $sim(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$ ■ if $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$

Clearly, the hash function depends on the similarity metric:

Not all similarity metrics have a suitable hash function

Goal: Find a hash function $h(\cdot)$ such that:

■ if $sim(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$ ■ if $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$

Clearly, the hash function depends on the similarity metric:

Not all similarity metrics have a suitable hash function

There is a suitable hash function for the Jaccard similarity: It is called Min-Hashing

Imagine the rows of the boolean matrix permuted under random permutation π

Imagine the rows of the boolean matrix permuted under random permutation π

□ Define a "hash" function $h_{\pi}(C)$ = the index of the first (in the permuted order π) row in which column C has value 1: $h_{\pi}(C) = min_{\pi} \pi(C)$

Imagine the rows of the boolean matrix permuted under random permutation π

- Define a "hash" function $h_{\pi}(C)$ = the index of the first (in the permuted order π) row in which column C has value 1: $h_{\pi}(C) = min_{\pi} \pi(C)$
- Use several (e.g., 100) independent hash functions (that is, permutations) to create a signature of a column
Min-Hashing

Imagine the rows of the boolean matrix permuted under random permutation π

- Define a "hash" function $h_{\pi}(C)$ = the index of the first (in the permuted order π) row in which column C has value 1: $h_{\pi}(C) = min_{\pi} \pi(C)$
- Use several (e.g., 100) independent hash functions (that is, permutations) to create a signature of a column

Zoo example (shingle size k=1)

- Universe \longrightarrow { dog, cat, lion, tiger, mouse}
 - $\pi_1 \longrightarrow [\text{cat, mouse, lion, dog, tiger}]$
 - $\pi_2 \longrightarrow [lion, cat, mouse, dog, tiger]$
 - A = { mouse, lion }

Zoo example (shingle size k=1)

Universe \longrightarrow { dog, cat, lion, tiger, mouse}

- $\pi_1 \longrightarrow [\text{cat, mouse, lion, dog, tiger}]$
- $\pi_2 \longrightarrow [lion, cat, mouse, dog, tiger]$

 $A = \{ \text{ mouse, lion } \}$ $mh_1(A) = min (\pi_1\{\text{mouse, lion }\}) = mouse$ $mh_2(A) = min (\pi_2\{ \text{ mouse, lion }\}) = lion$

Input matrix (Shingles x Documents)

Signature matrix M

61

Permutation π

Input matrix (Shingles x Documents)

Signature matrix M

Permutation π

Input matrix (Shingles x Documents)

Signature matrix M

Note: Another (equivalent) way is to store row indexes or raw shingles (e.g. mouse, lion):

1	5	1	5
2	3	1	3
6	4	6	4

Mining of Massive Datasets, http://www.mmds.org

Min-Hash Signatures

Pick K=100 random permutations of the rows

- □ Think of *sig(C)* as a column vector
- sig(C)[i] = according to the *i*-th permutation, the index of the first row that has a 1 in column C

 $sig(C)[i] = min(\pi_i(C))$

 \square Note: The sketch (signature) of document C is small ~ 100 bytes!

We achieved our goal! We "compressed" long bit vectors into short signatures

For two sets A, B, and a min-hash function mh_i():

$$Pr[mh_i(A) = mh_i(B)] = Sim(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

Unbiased estimator for Sim using *K* hashes (notation policy – this is a different K from size of shingle)

$$\hat{Sim}(A,B) = \frac{1}{k} \sum_{i=1:k} I[mh_i(A) = mh_i(B)]$$

Permutation π

n π Input matrix (Shingles x Documents)

Signature matrix M

Similarities:

Choose a random permutation π

- $\Box \quad \underline{\text{Claim:}} \ \Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
- □ Why?

One of the two cols had to have 1 at position **y**

Choose a random permutation π

 $\Box \quad \underline{\text{Claim:}} \ \Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$

□ Why?

Let X be a doc (set of shingles), $y \in X$ is a shingle

One of the two cols had to have 1 at position **y**

Choose a random permutation π

 $\Box \quad \underline{\text{Claim:}} \ \Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$

□ Why?

- **Let X** be a doc (set of shingles), $y \in X$ is a shingle
- **Then:** $\Pr[\pi(y) = \min(\pi(X))] = 1/|X|$
 - It is equally likely that any $y \in X$ is mapped to the *min* element

0	0	
0	0	
1	1	
0	0	
0	1	
1	0	

One of the two cols had to have 1 at position **y**

Choose a random permutation π

 $\Box \quad \underline{\text{Claim:}} \ \Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$

□ Why?

- **Let X** be a doc (set of shingles), $y \in X$ is a shingle
- **Then:** $\Pr[\pi(y) = \min(\pi(X))] = 1/|X|$
 - It is equally likely that any $y \in X$ is mapped to the *min* element
- Let y be s.t. $\pi(y) = \min(\pi(C_1 \cup C_2))$
- Then either: $\pi(y) = \min(\pi(C_1))$ if $y \in C_1$, or $\pi(y) = \min(\pi(C_2))$ if $y \in C_2$

One of the two cols had to have 1 at position **y**

0	0	
0	0	
1	1	
0	0	
0	1	
1	0	

Choose a random permutation π

 $\Box \quad \underline{\text{Claim:}} \ \Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$

□ Why?

- **Let X** be a doc (set of shingles), $y \in X$ is a shingle
- **Then:** $\Pr[\pi(y) = \min(\pi(X))] = 1/|X|$
 - It is equally likely that any $y \in X$ is mapped to the *min* element
- Let y be s.t. $\pi(y) = \min(\pi(C_1 \cup C_2))$
- Then either: $\pi(y) = \min(\pi(C_1))$ if $y \in C_1$, or $\pi(y) = \min(\pi(C_2))$ if $y \in C_2$

One of the two cols had to have 1 at position **y**

- \blacksquare So the prob. that **both** are true is the prob. $\textbf{y} \in \textbf{C}_1 \cap \textbf{C}_2$
- **Pr**[min($\pi(C_1)$)=min($\pi(C_2)$)]=|C₁ \cap C₂|/|C₁ \cup C₂|=sim(C₁, C₂)

73

The Min-Hash Property (Take 2: simpler proof)

\Box Choose a random permutation π

 $\Box \underline{\text{Claim:}} \Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$

□ Why?

□ Given a set X, the probability that any one element is the minhash under π is 1/|X| \leftarrow (0)

It is equally likely that any $y \in X$ is mapped to the *min* element

- □ Given a set X, the probability that one of any **k** elements is the min-hash under π is $\mathbf{k}/|X|$ ← (1)
- For $C_1 \cup C_2$, the probability that any element is the min-hash under π is $1/|C_1 \cup C_2|$ (from 0) \leftarrow (2)
- For any C_1 and C_2 , the probability of choosing the same min-hash under π is $|C_1 \cap C_2| / |C_1 \cup C_2|$ ← from (1) and (2)

Similarity for Signatures

- $\square \text{ We know: } \Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
- Now generalize to multiple hash functions
- The similarity of two signatures is the fraction of the hash functions in which they agree
- Note: Because of the Min-Hash property, the similarity of columns is the same as the expected similarity of their signatures

Permutation π

n π Input matrix (Shingles x Documents)

Signature matrix M

Similarities:

Min-Hash Signatures

Pick K=100 random permutations of the rows

- □ Think of *sig(C)* as a column vector
- sig(C)[i] = according to the *i*-th permutation, the index of the first row that has a 1 in column C

 $sig(C)[i] = min(\pi_i(C))$

 \square Note: The sketch (signature) of document C is small ~ 100 bytes!

We achieved our goal! We "compressed" long bit vectors into short signatures

Implementation Trick

- Permuting rows even once is prohibitive
- Approximate Linear Permutation Hashing
- Pick K independent hash functions (use a, b below)
 - Apply the idea on **each column (document)** for each hash function and get minhash signature

How to pick a random hash function h(x)?

Universal hashing:

 $h_{a,b}(x)=((a\cdot x+b) \mod p) \mod N$ where: a,b... random integers p... prime number (p > N)

Summary: 3 Steps

Shingling: Convert documents to sets

We used hashing to assign each shingle an ID

Min-Hashing: Convert large sets to short signatures, while preserving similarity

■ We used similarity preserving hashing to generate signatures with property Pr[h_π(C₁) = h_π(C₂)] = sim(C₁, C₂)

We used hashing to get around generating random permutations

Outline: Finding Similar Columns

□ So far:

- \blacksquare Documents \rightarrow Sets of shingles
- Represent sets as boolean vectors in a matrix

Next goal: Find similar columns while computing small signatures

Similarity of columns == similarity of signatures

Outline: Finding Similar Columns

Next Goal: Find similar columns, Small signatures

□ Naïve approach:

1) Signatures of columns: small summaries of columns

2) Examine pairs of signatures to find similar columns

Essential: Similarities of signatures and columns are related

3) Optional: Check that columns with similar signatures are really similar

□ Warnings:

Comparing all pairs may take too much time: Job for LSH

These methods can produce false negatives, and even false positives (if the optional check is not made)
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Hashing Columns (Signatures) : LSH principle

□ Key idea: "hash" each column C to a small signature h(C), such that:

- **(1)** h(C) is small enough that the signature fits in RAM
- **(2)** $sim(C_1, C_2)$ is the same as the "similarity" of signatures $h(C_1)$ and $h(C_2)$

Hashing Columns (Signatures) : LSH principle

Key idea: "hash" each column C to a small signature h(C), such that:

- **(1)** h(C) is small enough that the signature fits in RAM
- **(2)** $sim(C_1, C_2)$ is the same as the "similarity" of signatures $h(C_1)$ and $h(C_2)$

Goal: Find a hash function $h(\cdot)$ such that:

- If $sim(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$
- □ If $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$

Hash docs into buckets. Expect that "most" pairs of near duplicate docs hash into the same bucket!

Min-Hashing

Goal: Find a hash function $h(\cdot)$ such that:

■ if $sim(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$ ■ if $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$

Clearly, the hash function depends on the similarity metric:

Not all similarity metrics have a suitable hash function

There is a suitable hash function for the Jaccard similarity: It is called Min-Hashing

Min-Hashing

Imagine the rows of the boolean matrix permuted under random permutation π

- Define a "hash" function $h_{\pi}(C)$ = the index of the first (in the permuted order π) row in which column C has value 1: $h_{\pi}(C) = min_{\pi} \pi(C)$
- Use several (e.g., 100) independent hash functions (that is, permutations) to create a signature of a column

Zoo example (shingle size k=1)

Universe \longrightarrow { dog, cat, lion, tiger, mouse}

- $\pi_1 \longrightarrow [\text{cat, mouse, lion, dog, tiger}]$
- $\pi_2 \longrightarrow [lion, cat, mouse, dog, tiger]$

 $A = \{ \text{ mouse, lion } \}$ $mh_1(A) = min (\pi_1\{\text{mouse, lion }\}) = mouse$ $mh_2(A) = min (\pi_2\{ \text{ mouse, lion }\}) = lion$

For two sets A, B, and a min-hash function mh_i():

$$Pr[mh_i(A) = mh_i(B)] = Sim(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

Unbiased estimator for Sim using *K* hashes (notation policy – this is a different K from size of shingle)

$$\hat{Sim}(A,B) = \frac{1}{k} \sum_{i=1:k} I[mh_i(A) = mh_i(B)]$$

Note: Another (equivalent) way is to store row indexes or raw shingles (e.g. mouse, lion):

1	5	1	5
2	3	1	3
6	4	6	4

Mining of Massive Datasets, http://www.mmds.org

Choose a random permutation π

 $\Box \quad \underline{\text{Claim:}} \ \Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$

□ Why?

- Let X be a doc (set of shingles), $y \in X$ is a shingle
- **Then:** $\Pr[\pi(y) = \min(\pi(X))] = 1/|X|$
 - It is equally likely that any $y \in X$ is mapped to the *min* element
- Let **y** be s.t. $\pi(y) = \min(\pi(C_1 \cup C_2))$
- **Then either:** $\pi(y) = \min(\pi(C_1))$ if $y \in C_1$, or
 - $\pi(y) = \min(\pi(C_2)) \text{ if } y \in C_2$
- \blacksquare So the prob. that both are true is the prob. $\textbf{y} \in \textbf{C}_1 \cap \textbf{C}_2$
- **Pr**[min($\pi(C_1)$)=min($\pi(C_2)$)]=|C₁ \cap C₂|/|C₁ \cup C₂|=sim(C₁, C₂)

One of the two cols had to have 1 at position **y**

()()0 0 0 \mathbf{O} 0 \mathbf{O}

The Min-Hash Property (Take 2: simpler proof)

\Box Choose a random permutation π

 $\Box \underline{\text{Claim:}} \Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$

□ Why?

□ Given a set X, the probability that any one element is the minhash under π is 1/|X| \leftarrow (0)

It is equally likely that any $y \in X$ is mapped to the *min* element

- □ Given a set X, the probability that one of any **k** elements is the min-hash under π is $\mathbf{k}/|X|$ ← (1)
- For $C_1 \cup C_2$, the probability that any element is the min-hash under π is $1/|C_1 \cup C_2|$ (from 0) \leftarrow (2)
- For any C_1 and C_2 , the probability of choosing the same min-hash under π is $|C_1 \cap C_2| / |C_1 \cup C_2|$ ← from (1) and (2)

Similarity for Signatures

- $\square \text{ We know: } \Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
- Now generalize to multiple hash functions
- The similarity of two signatures is the fraction of the hash functions in which they agree
- Note: Because of the Min-Hash property, the similarity of columns is the same as the expected similarity of their signatures
Min-Hashing Example

Permutation π

n π Input matrix (Shingles x Documents)

Signature matrix M

Similarities:

	1-3	2-4	1-2	3-4
Col/Col	0.75	0.75	0	0
Sig/Sig	0.67	1.00	0	0

Min-Hash Signatures

Pick K=100 random permutations of the rows

- □ Think of *sig(C)* as a column vector
- sig(C)[i] = according to the *i*-th permutation, the index of the first row that has a 1 in column C

 $sig(C)[i] = min(\pi_i(C))$

 \square Note: The sketch (signature) of document C is small ~ 100 bytes!

We achieved our goal! We "compressed" long bit vectors into short signatures

Implementation Trick

- Permuting rows even once is prohibitive
- Approximate Linear Permutation Hashing
- Pick K independent hash functions (use a, b below)
 - Apply the idea on **each column (document)** for each hash function and get minhash signature

How to pick a random hash function h(x)?

Universal hashing:

 $h_{a,b}(x)=((a\cdot x+b) \mod p) \mod N$ where: a,b... random integers p... prime number (p > N)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Summary: 3 Steps

Shingling: Convert documents to sets

We used hashing to assign each shingle an ID

Min-Hashing: Convert large sets to short signatures, while preserving similarity

■ We used similarity preserving hashing to generate signatures with property $\Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$

We used hashing to get around generating random permutations

