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Task: Finding Similar Documents

 Goal: Given a large number (𝑵 in the millions or billions) of 

documents, find “near duplicate” pairs

 Applications:

 Mirror websites, or approximate mirrors → remove duplicates

 Similar news articles at many news sites  → cluster
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Task: Finding Similar Documents

 Goal: Given a large number (𝑵 in the millions or billions) of 

documents, find “near duplicate” pairs

 Applications:

 Mirror websites, or approximate mirrors → remove duplicates

 Similar news articles at many news sites  → cluster

What are the challenges?
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Task: Finding Similar Documents

 Goal: Given a large number (𝑵 in the millions or billions) of documents, 

find “near duplicate” pairs

 Applications:

 Mirror websites, or approximate mirrors → remove duplicates

 Similar news articles at many news sites  → cluster

 Problems:

 Many small pieces of one document can appear out of order in another

 Too many documents to compare all pairs

 Documents are so large or so many  (scale issues)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Two Essential Steps for Similar Docs

1. Shingling: Convert documents to sets

2. Min-Hashing: Convert large sets to short signatures, while 

preserving similarity

Host of follow up applications

e.g. Similarity Search

Data Placement

Clustering etc.

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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The Big Picture

Document

The set

of strings

of length k

that appear

in the doc-

ument

Signatures:

short integer

vectors that

represent the

sets, and

reflect their

similarity

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Similarity Search

Data Placement

Clustering etc.



SHINGLING

Step 1: Shingling: Convert documents to sets

Document

The set

of strings

of length k

that appear

in the document



28

Documents as High-Dim Data

 Step 1: Shingling: Convert documents to sets

 Simple approaches:

 Document = set of words appearing in document

 Document = set of “important” words

 Don’t work well for this application. Why?

 Need to account for ordering of words!

 A different way: Shingles!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Define: Shingles

 A k-shingle (or k-gram) for a document is a sequence of k tokens 

that appears in the doc

 Tokens can be characters, words or something else, depending on the 

application

 Assume tokens = characters for examples

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Define: Shingles

 A k-shingle (or k-gram) for a document is a sequence of k tokens 

that appears in the doc

 Tokens can be characters, words or something else, depending on the 

application

 Assume tokens = characters for examples

 Example: k=2; document D1 = abcab

Set of 2-shingles: S(D1) = {ab, bc, ca}

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Define: Shingles

 A k-shingle (or k-gram) for a document is a sequence of k tokens 

that appears in the doc

 Tokens can be characters, words or something else, depending on the 

application

 Assume tokens = characters for examples

 Example: k=2; document D1 = abcab

Set of 2-shingles: S(D1) = {ab, bc, ca}

 Another option: Shingles as a bag (multiset), count ab twice: S’(D1) = 

{ab, bc, ca, ab}

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Shingles: How to treat white-space chars?

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

It makes sense to replace any sequence of one or more white-space characters (blank, tab, 

newline, etc.) by a single blank. 

This way distinguishes shingles that cover two or more words from those that do not. 
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How to choose K?

 Documents that have lots of shingles in common have similar text, 

even if the text appears in different order

 Caveat: You must pick k large enough, or most documents will have 

most shingles

 k = 5 is OK for short documents

 k = 10 is better for long documents

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Compressing Shingles

 To compress long shingles, we can hash them to (say) 4 bytes

 Like a Code Book

 If #shingles manageable → Simple dictionary suffices

e.g., 9-shingle => bucket number [0, 2^32 - 1]

(using 4 bytes instead of 9)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Compressing Shingles

 To compress long shingles, we can hash them to (say) 4 bytes

 Like a Code Book

 If #shingles manageable → Simple dictionary suffices

 Doc represented by the set of hash/dict. values of its k-shingles

 Idea: Two documents could appear to have shingles in common, when the 

hash-values were shared

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Compressing Shingles

 To compress long shingles, we can hash them to (say) 4 bytes

 Like a Code Book

 If #shingles manageable → Simple dictionary suffices

 Doc represented by the set of hash/dict. values of its k-shingles

 Example: k=2; document D1= abcab

Set of 2-shingles: S(D1) = {ab, bc, ca}

Hash the singles: h(D1) = {1, 5, 7}

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Similarity Metric for Shingles

 Document D1 is a set of its k-shingles C1=S(D1)

 Equivalently, each document is a 0/1 vector in the space of k-shingles

 Each unique shingle is a dimension

 Vectors are very sparse

 A natural similarity measure is the Jaccard similarity:

sim(D1, D2) = |C1C2|/|C1C2|

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Motivation for Minhash/LSH

 Suppose we need to find similar documents among 𝑵 = 𝟏 million 

documents

 Naïvely, we would have to compute pairwise Jaccard similarities for 

every pair of docs

 𝑵(𝑵− 𝟏)/𝟐 ≈ 5*1011 comparisons

 At 105 secs/day and 106 comparisons/sec, 

it would take 5 days

 For 𝑵 = 𝟏𝟎 million, it takes more than a year…

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



MINHASHING

Step 2: Minhashing: Convert large variable length sets to 

short fixed-length signatures, while preserving similarity

Docu-

ment

The set

of strings

of length k

that appear

in the document

Signatures:

short integer

vectors that 

represent the

sets, and reflect 

their similarity
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Encoding Sets as Bit Vectors

 Many similarity problems can be formalized as finding subsets that 

have significant intersection

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Encoding Sets as Bit Vectors

 Many similarity problems can be formalized as finding subsets that 

have significant intersection

 Encode sets using 0/1 (bit, boolean) vectors 

 One dimension per element in the universal set

 Interpret set intersection as bitwise AND, and 

set union as bitwise OR

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Encoding Sets as Bit Vectors

 Many similarity problems can be formalized as finding subsets that 

have significant intersection

 Encode sets using 0/1 (bit, boolean) vectors 

 One dimension per element in the universal set

 Interpret set intersection as bitwise AND, and 

set union as bitwise OR

 Example: C1 = 10111; C2 = 10011

 Size of intersection = 3; size of union = 4, 

 Jaccard similarity (not distance) = 3/4

 Distance: d(C1,C2) = 1 – (Jaccard similarity) = 1/4

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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From Sets to Boolean Matrices

 Rows = elements (shingles)

 Columns = sets (documents)

 1 in row e and column s if and only if e is a valid shingle of 

document represented by s

 Column similarity is the Jaccard similarity of the corresponding 

sets (rows with value 1)

 Typical matrix is sparse!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

0101

0111

1001

1000

1010

1011

0111 

Documents
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h

in
g

le
s

Note: Transposed Document Matrix
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Outline: Finding Similar Columns

 So far:

 A documents → a set of shingles

 Represent a set as a boolean vector in a matrix

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Outline: Finding Similar Columns

 So far:

 A documents → a set of shingles

 Represent a set as a boolean vector in a matrix

 Next goal: Find similar columns while computing 

small signatures

 Similarity of columns == similarity of signatures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Outline: Finding Similar Columns

 Next Goal: Find similar columns, Small signatures

 Naïve approach:

 1) Signatures of columns: small summaries of columns

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Outline: Finding Similar Columns

 Next Goal: Find similar columns, Small signatures

 Naïve approach:

 1) Signatures of columns: small summaries of columns

 2) Examine pairs of signatures to find similar columns

◼ Essential: Similarities of signatures and columns are related

 3) Optional: Check that columns with similar signatures are really similar

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Outline: Finding Similar Columns

 Next Goal: Find similar columns, Small signatures

 Naïve approach:

 1) Signatures of columns: small summaries of columns

 2) Examine pairs of signatures to find similar columns

◼ Essential: Similarities of signatures and columns are related

 3) Optional: Check that columns with similar signatures are really similar

 Warnings:

 Comparing all pairs may take too much time: Job for LSH

◼ These methods can produce false negatives, and even false positives (if the optional check is 

not made) J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Hashing Columns (Signatures) : LSH principle

 Key idea: “hash” each column C to a small signature h(C), such that:

 (1) h(C) is small enough that the signature fits in RAM

 (2) sim(C1, C2) is the same as the “similarity” of signatures h(C1) and h(C2)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Hashing Columns (Signatures) : LSH principle

 Key idea: “hash” each column C to a small signature h(C), such that:

 (1) h(C) is small enough that the signature fits in RAM

 (2) sim(C1, C2) is the same as the “similarity” of signatures h(C1) and h(C2)

 Goal: Find a hash function h(·) such that:

 If sim(C1,C2) is high, then with high prob. h(C1) = h(C2)

 If sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Hashing Columns (Signatures) : LSH principle

 Key idea: “hash” each column C to a small signature h(C), such that:

 (1) h(C) is small enough that the signature fits in RAM

 (2) sim(C1, C2) is the same as the “similarity” of signatures h(C1) and h(C2)

 Goal: Find a hash function h(·) such that:

 If sim(C1,C2) is high, then with high prob. h(C1) = h(C2)

 If sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

 Hash docs into buckets. Expect that “most” pairs of near duplicate docs 

hash into the same bucket!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing

 Goal: Find a hash function h(·) such that:

 if sim(C1,C2) is high, then with high prob. h(C1) = h(C2)

 if sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

 Clearly, the hash function depends on the similarity metric:

 Not all similarity metrics have a suitable hash function

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing

 Goal: Find a hash function h(·) such that:

 if sim(C1,C2) is high, then with high prob. h(C1) = h(C2)

 if sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

 Clearly, the hash function depends on the similarity metric:

 Not all similarity metrics have a suitable hash function

 There is a suitable hash function for the Jaccard similarity: It is called 

Min-Hashing

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing

 Imagine the rows of the boolean matrix permuted under random 

permutation 

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing

 Imagine the rows of the boolean matrix permuted under random 

permutation 

 Define a “hash” function h(C) = the index of the first (in the 

permuted order ) row in which column C has value 1:

h (C) = min (C)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing

 Imagine the rows of the boolean matrix permuted under random 

permutation 

 Define a “hash” function h(C) = the index of the first (in the 

permuted order ) row in which column C has value 1:

h (C) = min (C)

 Use several (e.g., 100) independent hash functions (that is, 

permutations) to create a signature of a column

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing

 Imagine the rows of the boolean matrix permuted under random 

permutation 

 Define a “hash” function h(C) = the index of the first (in the 

permuted order ) row in which column C has value 1:

h (C) = min (C)

 Use several (e.g., 100) independent hash functions (that is, 

permutations) to create a signature of a column

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Zoo example (shingle size k=1)

{ dog, cat, lion, tiger, mouse}

[ cat, mouse, lion, dog, tiger]

[ lion, cat, mouse, dog, tiger]

Universe

A = { mouse, lion }

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Zoo example (shingle size k=1)

{ dog, cat, lion, tiger, mouse}

[ cat, mouse, lion, dog, tiger]

[ lion, cat, mouse, dog, tiger]

Universe

A = { mouse, lion }

mh1(A) = min (            {mouse, lion } ) = mouse

mh2(A) = min (           { mouse, lion } ) = lion

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing Example

Signature matrix M

1212

4

5

1

6

7

3

2

0101

0101

1010

1010

1010

1001

0101 

Input matrix (Shingles x Documents) Permutation 

J. Leskovec, A. Rajaraman, J. Ullman: 

Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing Example

Signature matrix M

1212

4

5

1

6

7

3

2

2nd element of the permutation 

is the first to map to a 1

0101

0101

1010

1010

1010

1001

0101 

Input matrix (Shingles x Documents) Permutation 

J. Leskovec, A. Rajaraman, J. Ullman: 

Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing Example

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

0101

0101

1010

1010

1010

1001

0101 

Input matrix (Shingles x Documents) Permutation 

J. Leskovec, A. Rajaraman, J. Ullman: 

Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing Example

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2nd element of the permutation 

is the first to map to a 1

4th element of the permutation 

is the first to map to a 1

0101

0101

1010

1010

1010

1001

0101 

Input matrix (Shingles x Documents) Permutation 

J. Leskovec, A. Rajaraman, J. Ullman: 

Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing Example

3

4

7

2

6

1

5

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

0101

0101

1010

1010

1010

1001

0101 

Input matrix (Shingles x Documents) Permutation 

J. Leskovec, A. Rajaraman, J. Ullman: 

Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing Example

3

4

7

2

6

1

5

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

2nd element of the permutation 

is the first to map to a 1

4th element of the permutation 

is the first to map to a 1

0101

0101

1010

1010

1010

1001

0101 

Input matrix (Shingles x Documents) Permutation 

Note: Another (equivalent) way is to 

store row indexes
or raw shingles
(e.g. mouse, lion):

1 5 1 5

2 3 1 3

6 4 6 4

J. Leskovec, A. Rajaraman, J. Ullman: 

Mining of Massive Datasets, http://www.mmds.org
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Min-Hash Signatures

 Pick K=100 random permutations of the rows

 Think of sig(C) as a column vector

 sig(C)[i] = according to the i-th permutation, the index of the first 

row that has a 1 in column C

sig(C)[i] = min (i(C))

 Note: The sketch (signature) of document C is small  ~𝟏𝟎𝟎 bytes!

 We achieved our goal! We “compressed” long bit vectors into 

short signatures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Key Fact 

For two sets A, B, and a min-hash function mhi():

Unbiased estimator for Sim using K hashes (notation policy – this 

is a different K from size of shingle)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing Example

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Similarities:

1-3      2-4    1-2     3-4

Col/Col 0.75    0.75    0        0

Sig/Sig 0.67    1.00     0        0

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

0101

0101

1010

1010

1010

1001

0101 

Input matrix (Shingles x Documents) 

3

4

7

2

6

1

5

Permutation 
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The Min-Hash Property

 Choose a random permutation 

 Claim: Pr[h(C1) = h(C2)] = sim(C1, C2) 

 Why?

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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00

00 

One of the two cols had to have 1 at 

position y
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The Min-Hash Property

 Choose a random permutation 

 Claim: Pr[h(C1) = h(C2)] = sim(C1, C2) 

 Why?

 Let X be a doc (set of shingles), y X is a shingle

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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The Min-Hash Property

 Choose a random permutation 

 Claim: Pr[h(C1) = h(C2)] = sim(C1, C2) 

 Why?

 Let X be a doc (set of shingles), y X is a shingle

 Then: Pr[(y) = min((X))] = 1/|X|

◼ It is equally likely that any y X is mapped to the min element

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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00 

One of the two cols had to have 1 at 

position y
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The Min-Hash Property

 Choose a random permutation 

 Claim: Pr[h(C1) = h(C2)] = sim(C1, C2) 

 Why?

 Let X be a doc (set of shingles), y X is a shingle

 Then: Pr[(y) = min((X))] = 1/|X|

◼ It is equally likely that any y X is mapped to the min element

 Let y be s.t. (y) = min((C1C2))

 Then either: (y) = min((C1))  if y  C1 , or

(y) = min((C2))  if y  C2

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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73

The Min-Hash Property

 Choose a random permutation 

 Claim: Pr[h(C1) = h(C2)] = sim(C1, C2) 

 Why?

 Let X be a doc (set of shingles), y X is a shingle

 Then: Pr[(y) = min((X))] = 1/|X|

◼ It is equally likely that any y X is mapped to the min element

 Let y be s.t. (y) = min((C1C2))

 Then either: (y) = min((C1))  if y  C1 , or

(y) = min((C2))  if y  C2

 So the prob. that both are true is the prob. y  C1  C2

 Pr[min((C1))=min((C2))]=|C1C2|/|C1C2|= sim(C1, C2) 

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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The Min-Hash Property (Take 2: simpler proof)

 Choose a random permutation 

 Claim: Pr[h(C1) = h(C2)] = sim(C1, C2) 

 Why?

 Given a set X, the probability that any one element is the min-

hash under  is 1/|X|  (0)

◼ It is equally likely that any y X is mapped to the min element 

 Given a set X, the probability that one of any k elements is the 

min-hash under  is k/|X|     (1)

 For C1  C2, the probability that any element is the min-hash 

under  is 1/|C1  C2| (from 0)  (2)

 For any C1 and C2, the probability of choosing the same min-hash 

under  is |C1C2|/|C1  C2|  from (1) and (2)
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Similarity for Signatures

 We know: Pr[h(C1) = h(C2)] = sim(C1, C2)

 Now generalize to multiple hash functions

 The similarity of  two signatures is the fraction of the hash functions in 

which they agree

 Note: Because of the Min-Hash property, the similarity of columns is 

the same as the expected similarity of their signatures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing Example

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Similarities:

1-3      2-4    1-2     3-4

Col/Col 0.75    0.75    0        0

Sig/Sig 0.67    1.00     0        0

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

0101

0101

1010

1010

1010

1001

0101 

Input matrix (Shingles x Documents) 

3

4

7

2

6

1

5

Permutation 
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Min-Hash Signatures

 Pick K=100 random permutations of the rows

 Think of sig(C) as a column vector

 sig(C)[i] = according to the i-th permutation, the index of the first 

row that has a 1 in column C

sig(C)[i] = min (i(C))

 Note: The sketch (signature) of document C is small  ~𝟏𝟎𝟎 bytes!

 We achieved our goal! We “compressed” long bit vectors into 

short signatures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Implementation Trick

 Permuting rows even once is prohibitive

 Approximate Linear Permutation Hashing

 Pick K independent hash functions (use a, b below)

 Apply the idea on each column (document) for each hash function and get minhash signature

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

How to pick a random

hash function h(x)?

Universal hashing:

ha,b(x)=((a·x+b) mod p) mod N

where:

a,b … random integers

p … prime number (p > N)
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Summary: 3 Steps

 Shingling: Convert documents to sets

 We used hashing to assign each shingle an ID

 Min-Hashing: Convert large sets to short signatures, while 

preserving similarity

 We used similarity preserving hashing to generate signatures with 

property Pr[h(C1) = h(C2)] = sim(C1, C2)

 We used hashing to get around generating random permutations

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Outline: Finding Similar Columns

 So far:

 Documents → Sets of shingles

 Represent sets as boolean vectors in a matrix

 Next goal: Find similar columns while computing 

small signatures

 Similarity of columns == similarity of signatures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Outline: Finding Similar Columns

 Next Goal: Find similar columns, Small signatures

 Naïve approach:

 1) Signatures of columns: small summaries of columns

 2) Examine pairs of signatures to find similar columns

◼ Essential: Similarities of signatures and columns are related

 3) Optional: Check that columns with similar signatures are really similar

 Warnings:

 Comparing all pairs may take too much time: Job for LSH

◼ These methods can produce false negatives, and even false positives (if the optional check is 

not made) J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Hashing Columns (Signatures) : LSH principle

 Key idea: “hash” each column C to a small signature h(C), such that:

 (1) h(C) is small enough that the signature fits in RAM

 (2) sim(C1, C2) is the same as the “similarity” of signatures h(C1) and h(C2)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Hashing Columns (Signatures) : LSH principle

 Key idea: “hash” each column C to a small signature h(C), such that:

 (1) h(C) is small enough that the signature fits in RAM

 (2) sim(C1, C2) is the same as the “similarity” of signatures h(C1) and h(C2)

 Goal: Find a hash function h(·) such that:

 If sim(C1,C2) is high, then with high prob. h(C1) = h(C2)

 If sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

 Hash docs into buckets. Expect that “most” pairs of near duplicate 

docs hash into the same bucket!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing

 Goal: Find a hash function h(·) such that:

 if sim(C1,C2) is high, then with high prob. h(C1) = h(C2)

 if sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

 Clearly, the hash function depends on the similarity metric:

 Not all similarity metrics have a suitable hash function

 There is a suitable hash function for the Jaccard similarity: It is called 

Min-Hashing

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing

 Imagine the rows of the boolean matrix permuted under random 

permutation 

 Define a “hash” function h(C) = the index of the first (in the 

permuted order ) row in which column C has value 1:

h (C) = min (C)

 Use several (e.g., 100) independent hash functions (that is, 

permutations) to create a signature of a column

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Zoo example (shingle size k=1)

{ dog, cat, lion, tiger, mouse}

[ cat, mouse, lion, dog, tiger]

[ lion, cat, mouse, dog, tiger]

Universe

A = { mouse, lion }

mh1(A) = min (            {mouse, lion } ) = mouse

mh2(A) = min (           { mouse, lion } ) = lion

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Key Fact 

For two sets A, B, and a min-hash function mhi():

Unbiased estimator for Sim using K hashes (notation policy – this 

is a different K from size of shingle)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing Example

3

4

7

2

6

1

5

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

2nd element of the permutation 

is the first to map to a 1

4th element of the permutation 

is the first to map to a 1

0101

0101

1010

1010

1010

1001

0101 

Input matrix (Shingles x Documents) Permutation 

Note: Another (equivalent) way is to 

store row indexes
or raw shingles
(e.g. mouse, lion):

1 5 1 5

2 3 1 3

6 4 6 4

J. Leskovec, A. Rajaraman, J. Ullman: 

Mining of Massive Datasets, http://www.mmds.org
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The Min-Hash Property

 Choose a random permutation 

 Claim: Pr[h(C1) = h(C2)] = sim(C1, C2) 

 Why?

 Let X be a doc (set of shingles), y X is a shingle

 Then: Pr[(y) = min((X))] = 1/|X|

◼ It is equally likely that any y X is mapped to the min element

 Let y be s.t. (y) = min((C1C2))

 Then either: (y) = min((C1))  if y  C1 , or

(y) = min((C2))  if y  C2

 So the prob. that both are true is the prob. y  C1  C2

 Pr[min((C1))=min((C2))]=|C1C2|/|C1C2|= sim(C1, C2) 

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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The Min-Hash Property (Take 2: simpler proof)

 Choose a random permutation 

 Claim: Pr[h(C1) = h(C2)] = sim(C1, C2) 

 Why?

 Given a set X, the probability that any one element is the min-

hash under  is 1/|X|  (0)

◼ It is equally likely that any y X is mapped to the min element 

 Given a set X, the probability that one of any k elements is the 

min-hash under  is k/|X|     (1)

 For C1  C2, the probability that any element is the min-hash 

under  is 1/|C1  C2| (from 0)  (2)

 For any C1 and C2, the probability of choosing the same min-hash 

under  is |C1C2|/|C1  C2|  from (1) and (2)
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Similarity for Signatures

 We know: Pr[h(C1) = h(C2)] = sim(C1, C2)

 Now generalize to multiple hash functions

 The similarity of  two signatures is the fraction of the hash functions in 

which they agree

 Note: Because of the Min-Hash property, the similarity of columns is 

the same as the expected similarity of their signatures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing Example

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Similarities:

1-3      2-4    1-2     3-4

Col/Col 0.75    0.75    0        0

Sig/Sig 0.67    1.00     0        0

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

0101

0101

1010

1010

1010

1001

0101 

Input matrix (Shingles x Documents) 

3

4

7

2

6

1

5

Permutation 
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Min-Hash Signatures

 Pick K=100 random permutations of the rows

 Think of sig(C) as a column vector

 sig(C)[i] = according to the i-th permutation, the index of the first 

row that has a 1 in column C

sig(C)[i] = min (i(C))

 Note: The sketch (signature) of document C is small  ~𝟏𝟎𝟎 bytes!

 We achieved our goal! We “compressed” long bit vectors into 

short signatures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Implementation Trick

 Permuting rows even once is prohibitive

 Approximate Linear Permutation Hashing

 Pick K independent hash functions (use a, b below)

 Apply the idea on each column (document) for each hash function and get minhash signature

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

How to pick a random

hash function h(x)?

Universal hashing:

ha,b(x)=((a·x+b) mod p) mod N

where:

a,b … random integers

p … prime number (p > N)
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Summary: 3 Steps

 Shingling: Convert documents to sets

 We used hashing to assign each shingle an ID

 Min-Hashing: Convert large sets to short signatures, while 

preserving similarity

 We used similarity preserving hashing to generate signatures with 

property Pr[h(C1) = h(C2)] = sim(C1, C2)

 We used hashing to get around generating random permutations

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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