Ml UNIVERSITYoTARTU

INSTITUTE OF COMPUTER SCIENCE

Mobile Application Development -
Android

MTAT.03.262

Satish Srirama

satish.srirama@ut.ee
@ N tiigri

Programm IKT toetuseks kérghariduses

. i il il .
Mobile & Cloud Lab Tesdmiirie

iiiii

Goal

e Give you an idea of how to start developing
Android applications

* Introduce major Android application concepts

e Walk you through some sample applications in
the development environment

References & Books

 Android developers
http://developer.android.com/

e Books

— “Professional Android 4 Application
Development”, By Reto Meier

Dealing with problems & Help

 Have created a mailing list
— mclab DOT mad AT lists DOT ut DOT ee

e Post your question to mailing list

* Practicals assistants:
— Mohan Liyanage (liyanage AT ut DOT ee)
— Jakob Mass (jaks AT ut DOT ee)

e Also created a Google group

https://groups.google.com/forum/#!forum/mob-app-
dev--mtat03262-ut

— Post your questions there
— Keep answering your friends

9/2/2016 Satish Srirama 4/37

What is Android?

Android is not a device or a product

— It’s not even limited to phones - you could build a
handheld GPS, an MP3 player, TV, Watch etc.

A free, open source mobile platform
Open Handset Alliance

— 100+ technology companies

— Commitment to openness, shared vision, and
concrete plans

A Linux-based, multiprocess, multithreaded OS

— The Android operating system is a multi-user Linux
system in which each application is a different user

Android applications are written in
Java

package com.google.android.helloactivity;

import android.app.Activity;
import android.os.Bundle;

public class HelloActivity extends Activity {
public HelloActivity() {
}
@Override
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.hello_activity);

}
}

Android applications are compiled to
Dalvik bytecode

Write app in Java \

/

Transformed to Dalvik bytecode

Compiled in Java

_ Up to Android 4.4
Android 5.X
Loaded into Dalvik VM

dex2oat

Loaded into Android
Runtime (ART)

Satish Srirama 7/37

Android's ART vs Dalvik

ART and Dalvik are compatible runtimes running Dex bytecode

Dalvik is based on JIT (just in time) compilation

— Each time an app is run, the part of the code required for its execution
is going to be translated (compiled) to machine code

— It has a smaller memory footprint and uses less physical space on the
device

ART compiles the intermediate language, Dalvik bytecode, into a
system-dependent binary

— Whole code of the app will be pre-compiled during install (once)
e Ahead-of-Time compiler (AOT)
* Installation process takes a bit longer

— Code executes much faster

— Less CPU usage as no more compilation required and this also results
in less battery drain

ART optimized the garbage collector (GC)

Why Android/Dalvik Runtime?

The Android/Dalvik runtime is optimized for
mobile applications

Runs multiple VMs efficiently
Each application has its own VM
Minimal memory footprint

Relies on Linux kernel for threading and low-
level memory management

Android software stack

APPLICATIONS

Contacts Phone Browser

APPLICATION FRAMEWORK

Windaow Content

Activity Manager Manager Providers

Telephony Resource Location Motificaton

o o e Manager Manager Manager Manager

LIBRARIES ANDROID RUNTIME

Surface Manager Media SQLite Core Libraries

Framework
DRV

OpenGL | ES FreeType WebKit Machine

SGL libe

LinNuXx KERNEL

Display

Flash Memory Binder {IPC)
Driver

Camera Driver /
i = Ciriver Diriver

A ' Audio Power
Keypad Driver WYIRFLITIvES Drivers Management

9/2/2016 Satish Srirama 10/37

Can assume that most devices have
android 4.xto 6.0

Lollipop

Froyo 0.1%
233- Gingerbread 10 1.7% Marshmallow
23
403- lceCream 15 1.6% \E,?,;‘;,b,m
404 Sondos b ice Cream Sandwich
4.1x Jelly Bean 16 6.0%

Jelly Bean
42 x 17 8.3% KitKat
4.3 18 2.4%
44 KitKat 19 29.2%
50 Lollipop 21 141%
5.1 22 21.4%
6.0 Marshmallow 23 15.2%
http://developer.android.com/about/dashboards/index.html http://en.wikipedia.org/wiki/Android version history

9/2/2016

Satish Srirama 11/37

Android has a working emulator

M 5554:my_avd

T T N

Alarm Clock Browser Calculator Camera

> M B #

Car Home Contacts Content
Picker Tes...

0B N B

Dev Tools Email Hello,
Android

- 4

Messaging Music Settings

9/2/2016 12/37

Getting started

* | hope all of you have Android Studio installed

* Downloaded the latest SDK tools and
platforms (version 23) using the SDK Manager

http://developer.android.com/training/basics/fir
stapp/index.html

Redraw

Exercise: Hello World

Let us create an AVD (Android virtual device)
Create a New Android Project

Construct the Ul

Run the Application

Upgrade the Ul to an XML Layout

et us debug

Debugging in Android

Traditional Syst em out . pri ntl n is not available in the
Android system

We can debug through the app user interface

— Errors crash and close app

Instead use Logging mechanisms

— Log.v(String tag, String nessage),;

— tag -> app name

— Message -> debug message.

Requires importing andr oi d. uti | . Log

Log messages appear in the LogCat component of the
Android Studio interface

9/2/2016

What’s in an Application?

| Libraries
Default Activity Other Services
Activities
u Content
Android Manifest
Drawable Layouts Values Assets

Satish Srirama

17/37

File structure of applications

r

=

dul

= ‘;§ HelloAndroid

=53 src

COde / = I8 com.ssn.and

1) Helloandroid.java
&8 gen [Generated Java Files] Auto generated

= com.ssn.an/ .
& [3) R.java resource list

files

+ B, Android 2.2
7 assets

Images

== drawable-hdpi
] icon.png Ul layouts

* =% drawable-ldpi

=% drawable-mdpi

== layout

X| main.xml

i constants
= layout-land
Android Manifest i /

== values
X strings.xml

<1 AndroidManifest, xml
\=| default.properties

| proguard.cfg
9/2/2016 ' Satish Srirama 18/37

Application Manifest

Each Android project has a manifest file

Defines the structure and metadata of the
application

Includes nodes for each of the application
components (Activities, Services, Intents etc.)

Also includes security permissions

Application Manifest - continued

<?xml werzion="1.0" encoding="utf-8">

<manifest xmlns:android="http: //schemas.android.com/apk/res/android"
package="com. gsn.and.ch5" android:versionCode="1" android:versionlame="1.0">
<uges-sdk android:iminsdkVersion="3" />

<application android:icon="@drawable/icon" android:label="gstring/app name'
<activity android:name=".,ContactPickerActivity"
android:label="dstring/app name'"-

<l--
<intent-filter> <action androidiname="android.intent.action.MAIN" />
<category android:name="android.intent.category.LRUNCHER" />
</intent-filter>

——

<intent-filter>
<action android:name="android.intent.action,PICK" /=
<category android:name="android.intent.category.DEFAULT" />
<data android:path="confacts™ android:scheme="content™ />
</intent-filter>
<factivity>
<activity android:name=".ContentPickerTesterActivity" android:label="Content Picker Test™
<intent-filter>
<action androld:name="android.intent.,action,MAIN" /=
<category android:name="android.intent.category. LAUNCHER" />
</intent-filter>
<factivity>
</application>
<uses-permission androidiname="android,permission, READ CONTACTS™/ >
</manifest>|

9/2/2016 Satish Srirama 20/37

Security in Android

Follows standard Linux guidelines
Each application runs in its own process

Process permissions are enforced at user and
group IDs assighed to processes

Finer grained permissions are then granted
(revoked) per operations

Apps declare permissions in manifest

— <uses- perm ssion
| d="andr oi d. per m ssi on. RECEI VE_SM5" />

Android Design Philosophy

e Applications should be:
— Fast
e Resource constraints: <200MB RAM, slow processor
— Responsive
e Apps must respond to user actions within 5 seconds
— Secure
e Apps declare permissions in manifest

— Seamless
e Usability is key, persist data, suspend services
e Android kills processes in background as needed

Application priority and process states

 Android applications have limited control over
their life cycles

e Each application runs in its own process

— Each process is running a separate instance of
Dalvik/ART

e Memory and process management is handled
by runtime

— Runtime may kill some services in the background
— Application priority is critical

Application priority

Reto Meier, Professional Android 2 Application Development, p 59

9/2/2016 Satish Srirama 24/37

Android application lifecycle

 Apps move through states during lifecycle

 Understanding app lifecycle is necessary, so that
apps:

— Does not crash if the user receives a phone call or
switches to another app while using your app

— Does not consume valuable system resources when
the user is not actively using it

— Does not lose the user's progress if they leave your
app and return to it at a later time

— Does not crash or lose the user's progress when the
screen rotates between landscape and portrait
orientation

Android application lifecycle -
continued

. r'/f Resumed - ——_ _ .
Transient states '\“_ visible | TTo———__ Static states

. ~—_ onResumal) onPausa() _

\ S~ onResume() 7 /
\\ \\\\ /// //
\ f Stared Pausad
\ SE—. y /
\ [. (visible)) _ (partially visible) | /
\
\ on3tar() ons; np[h /
\ onStart(} l
\

‘.
T Created > l—unHealdrl]—C _)7
nnCraata() onle q'rrm,r(]
I

—‘-\I ___\.
Ia Won SavelnstanceState()—» Destroyed

Pl |
G) cln[:r»laate[]
' e
(3 q" (Resumed)
Creatad \3/1 onRestorelnstanceState)—e (visible)
9/2/2016 Satish Srj 26/37

ttp://developer.android.com/training Egélcs/act|V|ty lifecycle/starting.html

The History of GUIs

e Hardcoded to the screen
e Hardcoded to the window

e Hardcoded within a view hierarchy
e Dynamic layout within a view hierarchy

Generating GUIs in Android

e Two ways to create GUIs: in XML or in code

public class LayoutExamplesActivity extends Activity { <?wml version="1.8" encoding="utf-8"7>
/** Called when the activity is first created. */ <Linearlayout xmlns:android="http://schemas.android.com/apk/res/android’
@verride android:oerientation="vertical”
public void eonCreate(Bundle savedInstanceState) { android:layout width="Fill parent"
super.onCreate(savedInstanceState); android:layout _height="fill parent”
-
Button buttonOne = new Button(this); £Button
Button buttonTwoe = new Button(this); android:layout width="fill parent”
buttonOne.setText("Press Me!"); android:layout_height="wrap_content”
buttonTwo.setText("Press Me Two!"); android:text="Press He!l"
&
LinearLayout linearLayocut = new Linearlayout(this); </Button:
linearLayout.setOrientation(LinearLayout. VERTICAL); <Button
linearLayout.addView(buttonOne); android:layout width="fill parent”
linearLayout.addView(buttonTwao); android:layout_height="wrap_content”
android:text="Press Me Two!"
setContentView(linearLayout); »
3 </Button>
i </LinearlLayout>

9/2/2016 Satish Srirama 29/37

Advantages of Declarative route via
XML

e Separation of appearance (presentation) from
actual meaningful state-changing code

e Can change interface without having to
completely recompile Java code

— Can just recompile XML

— View Resource is inflated at runtime

Generating GUIs in Android -
continued

e Alot of your GUI-related work will take place

INn:
— res/ | ayout
— res/val ues

. @i d/ name_for_conponent gives you handle for

referencing XML declarations in code
Button button = (Button) findViewByld(R id.buttonl);

LButton

android:lavout width="fill parent"

¥ |] |
android:layout height="wrap content"

-'Il — L) —
android: layout weight="1"
android:text="Record Time"
android:id="g+1d/'buttonl”

e

=4 fButton:

Working with resources

e Application resources are stored under r es/

 There are different types of resources

e String resources

— Saved in res/val ues/ and accessed from the r string

XML file saved at resfraluesfstrings.xml

<?uml wversion="1.0" encoding="utf-877x>
<resourcess
<ztring name="hello">»>Hello!</string>

</resourcesz

This layout XML applies a string to a View

<TextView
android: layout width="fill parent”
android: layout height="wrap content”

android: text="Estring/hello" />

This application code retrieves a string

String string = getString(R.string.hello);

Cresourcesi

<string-array name="plansts array'>
<itewzMercury</item>
<item>Venus</item>
<item>Earth</items>
<itemzMars</item>
</string-arcay>

<fresources>

This application code retrieves a string array:

FEesources res = getResources();

String[] planets = res.getStringArray (R.array.plansts array);

http://developer.android.com/guide/topics/resources/available-resources.html

Working with resources - continued

e Color resources
— Saved in res/color/ and accessed from the r col or class

AML file saved at resfraluesfcoloxrs.xml

<resourcess
<color name="opague red">#f00</colors
<color name="translucent_red"}#ﬂfoDDDD{chlDr>

</resourcesx>

Besources res = getResources();

int color = res.getColox [R.color.opacque red);

e Style resources

android: textColor="@color/translucent red"

— Saved in res/val ues/ and accessed from the r styl e class

 Layout resources

http://developer.android.com/guide/topics/resources/available-resources.html

Advantages of structured resources

* One can maintain resources independently
and can group based on types

e Android selects which alternative resource to
use at runtime

— Depending on the current device configuration

 Help in providing alternative resources based
on device types

e Localizing the applications

Supporting different screens

 Four generalized sizes
— small, normal, large, xlarge

 Four generalized densities

— low (ldpi), medium (mdpi), high (hdpi), extra high
(xhdpi)

— res/ | ayout

— res/layout-1I| arge

— res/l ayout -l and- | ar ge

— res/ drawabl e- | dpi

— res/ drawabl e- hdpi

http://developer.android.com/training/basics/supporting-devices/screens.html

Localizing the applications

e Supporting different languages
— res/val ues
— res/val ues-en
— res/val ues-fr

 Help in localizing the applications
— res/ drawabl e- de-r DE/
— res/drawabl e-fr-r CA/

http://developer.android.com/training/basics/supporting-devices/languages.html

Homework

Play with life cycle methods

— Have a layout with 2 EditTexts and 2 TextViews and
try to manage the input under different conditions like
application paused, resumed, stopped, destroyed.

Have the same application dealing with language,
localization and landscape movement issues

Upload the project to course tasks

Deadline: A day before the next lecture. So 8t
September 2016.

