
Mobile Application Development -

Android

MTAT.03.262

Satish Srirama
satish.srirama@ut.ee



Goal

• Give you an idea of how to start developing 

Android applications

• Introduce major Android application concepts

• Walk you through some sample applications in 

the development environment

9/2/2016 Satish Srirama 2/37



References & Books

• Android developers

http://developer.android.com/

• Books

– “Professional Android 4 Application 

Development”, By Reto Meier

9/2/2016 Satish Srirama 3/37



Dealing with problems & Help

• Have created a mailing list 
– mclab DOT mad AT lists DOT ut DOT ee

• Post your question to mailing list

• Practicals assistants:
– Mohan Liyanage (liyanage AT ut DOT ee)

– Jakob Mass (jaks AT ut DOT ee)

• Also created a Google group 
https://groups.google.com/forum/#!forum/mob-app-
dev--mtat03262-ut
– Post your questions there

– Keep answering your friends

9/2/2016 Satish Srirama 4/37



What is Android?

• Android is not a device or a product
– It’s not even limited to phones - you could build a 

handheld GPS, an MP3 player, TV, Watch etc.

• A free, open source mobile platform

• Open Handset Alliance
– 100+ technology companies

– Commitment to openness, shared vision, and 
concrete plans

• A Linux-based, multiprocess, multithreaded OS
– The Android operating system is a multi-user Linux 

system in which each application is a different user

9/2/2016 Satish Srirama 5/37



Android applications are written in 

Java
package com.google.android.helloactivity;

import android.app.Activity;
import android.os.Bundle;

public class HelloActivity extends Activity {
public HelloActivity() {
}

@Override
public void onCreate(Bundle icicle) {

super.onCreate(icicle);
setContentView(R.layout.hello_activity);

}
}

9/2/2016 Satish Srirama 6/37



Android applications are compiled to 

Dalvik bytecode

Write app in Java

Compiled in Java

Transformed to Dalvik bytecode

Linux OS

Loaded into Dalvik VM

Android Platform

Satish Srirama

Up to Android 4.4

Linux OSLinux OS

Loaded into Android 

Runtime (ART)

dex2oat

Android 5.X

7/37



Android's ART vs Dalvik

• ART and Dalvik are compatible runtimes running Dex bytecode

• Dalvik is based on JIT (just in time) compilation
– Each time an app is run, the part of the code required for its execution 

is going to be translated (compiled) to machine code

– It has a smaller memory footprint and uses less physical space on the 
device

• ART compiles the intermediate language, Dalvik bytecode, into a 
system-dependent binary
– Whole code of the app will be pre-compiled during install (once)

• Ahead-of-Time compiler (AOT)

• Installation process takes a bit longer

– Code executes much faster

– Less CPU usage as no more compilation required and this also results 
in less battery drain

• ART optimized the garbage collector (GC)

9/2/2016 Satish Srirama 8/37



Why Android/Dalvik Runtime?

• The Android/Dalvik runtime is optimized for 

mobile applications

• Runs multiple VMs efficiently

• Each application has its own VM

• Minimal memory footprint

• Relies on Linux kernel for threading and low-

level memory management

9/2/2016 Satish Srirama 9/37



Android software stack 

9/2/2016 Satish Srirama 10/37



Can assume that most devices have 

android 4.x to 6.0

http://developer.android.com/about/dashboards/index.html

9/2/2016 Satish Srirama

http://en.wikipedia.org/wiki/Android_version_history

11/37



Android has a working emulator

9/2/2016 Satish Srirama 12/37



Getting started

• I hope all of you have Android Studio installed

• Downloaded the latest SDK tools and 

platforms (version 23) using the SDK Manager

http://developer.android.com/training/basics/fir

stapp/index.html

9/2/2016 Satish Srirama 13/37



Redraw

9/2/2016 Satish Srirama 14/37



Exercise: Hello World

• Let us create an AVD (Android virtual device)

• Create a New Android Project

• Construct the UI

• Run the Application

• Upgrade the UI to an XML Layout

• Let us debug

9/2/2016 Satish Srirama 15/37



Debugging in Android

• Traditional System.out.println is not available in the 
Android system 

• We can debug through the app user interface
– Errors crash and close app 

• Instead use Logging mechanisms 
– Log.v(String tag, String message); 
– tag -> app name 

– Message -> debug message. 

• Requires importing android.util.Log

• Log messages appear in the LogCat component of the 
Android Studio interface

9/2/2016 Satish Srirama 16/37



What’s in an Application?

9/2/2016

Drawable Layouts Values Assets

Android Manifest

Default Activity Other 

Activities

Libraries

Services

Content

Satish Srirama 17/37



File structure of applications

code

images

files

UI layouts

constants

Auto generated 

resource list

Android Manifest

9/2/2016 Satish Srirama 18/37



Application Manifest

• Each Android project has a manifest file

• Defines the structure and metadata of the 

application

• Includes nodes for each of the application 

components (Activities, Services, Intents etc.)

• Also includes security permissions

9/2/2016 Satish Srirama 19/37



Application Manifest - continued

9/2/2016 Satish Srirama 20/37



Security in Android

• Follows standard Linux guidelines

• Each application runs in its own process

• Process permissions are enforced at user and 
group IDs assigned to processes

• Finer grained permissions are then granted 
(revoked) per operations

• Apps declare permissions in manifest
– <uses-permission 
id="android.permission.RECEIVE_SMS" />

9/2/2016 Satish Srirama 21/37



Android Design Philosophy

• Applications should be:

– Fast

• Resource constraints: <200MB RAM, slow processor

– Responsive

• Apps must respond to user actions within 5 seconds

– Secure

• Apps declare permissions in manifest

– Seamless

• Usability is key, persist data, suspend services

• Android kills processes in background as needed

9/2/2016 Satish Srirama 22/37



Application priority and process states

• Android applications have limited control over 
their life cycles

• Each application runs in its own process

– Each process is running a separate instance of 
Dalvik/ART

• Memory and process management is handled 
by runtime

– Runtime may kill some services in the background

– Application priority is critical

9/2/2016 Satish Srirama 23/37



Application priority

9/2/2016

Reto Meier, Professional Android 2 Application Development, p 59

Satish Srirama 24/37



Android application lifecycle
• Apps move through states during lifecycle

• Understanding app lifecycle is necessary, so that 
apps:
– Does not crash if the user receives a phone call or 

switches to another app while using your app

– Does not consume valuable system resources when 
the user is not actively using it

– Does not lose the user's progress if they leave your 
app and return to it at a later time

– Does not crash or lose the user's progress when the 
screen rotates between landscape and portrait 
orientation

9/2/2016 Satish Srirama 25/37



Android application lifecycle -

continued

9/2/2016 Satish Srirama
http://developer.android.com/training/basics/activity-lifecycle/starting.html

Static statesTransient states

26/37



9/2/2016 Satish Srirama 27



The History of GUIs

• Hardcoded to the screen

• Hardcoded to the window

• Hardcoded within a view hierarchy

• Dynamic layout within a view hierarchy

9/2/2016 Satish Srirama 28/37



Generating GUIs in Android

• Two ways to create GUIs: in XML or in code

9/2/2016 Satish Srirama 29/37



Advantages of Declarative route via 

XML

• Separation of appearance (presentation) from 

actual meaningful state-changing code 

• Can change interface without having to 

completely recompile Java code

– Can just recompile XML

– View Resource is inflated at runtime 

9/2/2016 Satish Srirama 30/37



Generating GUIs in Android -

continued

• A lot of your GUI-related work will take place 

in:
– res/layout

– res/values

• @+id/name_for_component gives you handle for 

referencing XML declarations in code
Button button = (Button) findViewById(R.id.button1);

9/2/2016 Satish Srirama 31/37



Working with resources

• Application resources are stored under res/

• There are different types of resources

• String resources

– Saved in res/values/ and accessed from the R.string

9/2/2016

http://developer.android.com/guide/topics/resources/available-resources.html
Satish Srirama 32/37



Working with resources - continued

• Color resources

– Saved in res/color/ and accessed from the R.color class

• Style resources

– Saved in res/values/ and accessed from the R.style class

• Layout resources

9/2/2016

http://developer.android.com/guide/topics/resources/available-resources.html

Satish Srirama 33/37



Advantages of structured resources

• One can maintain resources independently 

and can group based on types

• Android selects which alternative resource to 

use at runtime

– Depending on the current device configuration

• Help in providing alternative resources based 

on device types

• Localizing the applications

9/2/2016 Satish Srirama 34/37



Supporting different screens

• Four generalized sizes

– small, normal, large, xlarge

• Four generalized densities

– low (ldpi), medium (mdpi), high (hdpi), extra high 
(xhdpi)

– res/layout

– res/layout-large

– res/layout-land-large

– res/drawable-ldpi

– res/drawable-hdpi

9/2/2016 Satish Srirama

http://developer.android.com/training/basics/supporting-devices/screens.html

35/37



Localizing the applications

• Supporting different languages
– res/values

– res/values-en

– res/values-fr

• Help in localizing the applications
– res/drawable-de-rDE/

– res/drawable-fr-rCA/ 

9/2/2016

http://developer.android.com/training/basics/supporting-devices/languages.html

Satish Srirama 36/37



Homework

• Play with life cycle methods

– Have a layout with 2 EditTexts and 2 TextViews and 

try to manage the input under different conditions like 

application paused, resumed, stopped, destroyed.

• Have the same application dealing with language, 

localization and landscape movement issues

• Upload the project to course tasks

• Deadline: A day before the next lecture. So 8th

September 2016.

9/2/2016 Satish Srirama 37/37


