
CS	4720

Mobile	Device	Architecture

CS	4720	– Mobile	Application	Development

CS	4720

The	Way	Back	Time
• When	a	phone	was	a	phone…
• Plus	a	story!

2

CS	4720

Oh	yes…	this	was	a	phone…

3

The	Motorola	DynaTAC 8000X
• 1983
• 13	x	1.75	x	3.5
• 2.5	pounds
• $3,995
• +	Monthly	Fee
• +	Pay	per	minute

Then	there	was	the	bag	phone…

CS	4720

Nokia	Invents	Mobile	Phone	Gaming!
• Obviously	I’m	talking	about	the	N-Gage!
• …
• Okay,	remember	Snake	on	the	old	Nokia	
phones?

• Other	early	apps	include:	basic	contact	apps,	
Pong,	and	Tetris

4

CS	4720

Third-Party	Apps	Begin
• Mobile	phones	stopped	being	a	novelty
• Batteries	got	better,	form	factors	improved,	
coverage	improved,	plans	were…	better…

• The	handset	manufacturers	didn’t	want	to	
write	all	the	applications	for	these	new	phones

• However…	they	didn’t	want	to	open	up	their	
platform…

• The	first	mobile	web	platform	was	born

5

CS	4720

WAP
• Wireless	Application	Protocol
• Basically	it’s	a	stripped-down	HTTP	
that	was	meant	to	be	better	at	
transmitting	over	the	unreliable	
mobile	network

• WAP	used	WML	instead	of	HTML	–
used	a	“card”	mentality

• Two	popular	WAP	sites?		CNN	and	
ESPN

6

CS	4720

In-App	Purchases	Before	Apps
• SMS…

7

CS	4720

When	did	it	all	change?
• With	the	Internet	full	of	images	and	media…
• And	other	handheld	devices	selling	like	
gangbusters	(Game	Boy)…

• What	changed	with	phones?
• Phones	started	running	known	operating	
systems	(Windows	CE	and	Linux)

• Now	bigger	players	were	involved,	and	handset	
manufactures	decided	to	open	up

8

CS	4720

And	what’s	happened	since?
• The	mobile	market	is	seriously	fractured
• Who	do	you	develop	for?
• How	do	you	test	for	EVERY	phone?
• Which	market	works	best?
• How	do	you	port	your	app	between	platforms?
• Which	tools	do	you	use?		Can	you	use?

9

CS	4720

And	Now	Google
• The	Open	Handset	Alliance	is	an	attempt	to	
effectively	“get	everyone	on	the	same	page”

• Open	Source
• Familiar	Environments	and	Tools
• Secure	OS	(Linux	w/	app	signing)
• No	Royalties	or	Developer	Fees

10

CS	4720

The	Three-Tiered	Architecture

11

CS	4720

The	Three-Tiered	Architecture
• For	a	web	application…

– The	browser	+	dynamically	generated	HTML	is	the	
presentation	layer

– Middleware	files	(function-specific	PHP,	Java	
servlets	on	Tomcat)	contain	the	business	logic

– The	database	server	is	the	data	layer

12

CS	4720

It's	not	news	to	you
• The	concepts	of	the	three-tiered	architecture	
apply	to	many	design	scenarios
– Keep	the	presentation	separate	so	it's	lightweight,	
easier	to	maintain,	and	can	be	tested	separately	

– Keep	the	logic	separate	so	you	can	change	the	logic	
as	needed	without	having	to	change	the	
presentation	too	much

– Keep	the	data	separate	because	you	should	NEVER	
build	a	system	based	on	the	current	data	values

13

CS	4720

Model-View-Controller
• This	is	the	definition	of	what	MVC	is
• The	MVC	pattern	maps:

– Identifies	what	the	user	is	asking	for
– Loads	a	particular	resource
– Displays	the	pertinent	info	about	that	resource	
back	to	the	user

• To	Model,	Controller,	View	(in	that	order)

14

CS	4720

MVC

15

CS	4720

MVC

16

CS	4720

Controller
• The	role	of	the	controller	is	basically	traffic	cop
• It	takes	the	request	from	the	user	and	(with	
the	assistance	of	the	server	and	routing	rules)	
turns	it	into	a	method	call	of	sorts

• It	finds	the	appropriate	model	to	load
• It	finds	the	appropriate	view	to	load
• It	returns	the	whole	thing	back	to	the	user

17

CS	4720

Model
• The	model	is	the	representation	of	the	data
• This	may	or	may	not	be	directly	linked	to	a	
database	(but	often	is	in	larger	apps)

• A	model	is	often	translated	directly	into	a	DB	
table,	with	the	columns	as	its	attributes

• Think	“class	definition	w/	DB	backend”
• Often	contains	relationship	rules	(a	Student	
has	many	Classes,	for	instance)

18

CS	4720

View
• The	closest	thing	to	what	you’ve	been	dealing	
with	so	far	is	the	view

• It’s	effectively	an	HTML	template	that	will	be	
populated	with	the	appropriate	data	from	the	
loaded	model

• It	often	has	PHP	(or	whatever)	embedded	in	it
• All	UI	components	go	here

19

CS	4720

Putting	it	all	Together
• So,	if	you	were	building	a	blog,	what	might	
some	of	the	models	be?

• What	are	the	resources	that	should	have	
addresses	to	them?

• How	do	they	relate	to	each	other?

20

CS	4720

Non-shocker	of	the	day
• We	need	to	consider	the	same	things	for	a	
mobile	architecture

• Why?		What	added	concerns	do	we	have	when	
we	consider	mobile	applications?
– Presentation	Layer	concerns
– Logic	Layer	concerns
– Data	Layer	concerns

21

CS	4720

Mobile	Architectures

22

• Rich	Mobile	Architecture
– Business	and	some	data	services	on	the	phone	itself
– Good	for	apps	that	have	to	run	“off	the	grid”

• Thin	Mobile	Architecture
– Most	business	and	all	data	services	on	the	server
– Good	for	apps	that	require	phone	services,	but	does	require	
Internet	connectivity

• Rich	Internet	Application
– Eschews	the	use	of	any	phone	resources	other	than	a	
browser

– Good	for	apps	that	can	run	on	anything	with	a	browser

CS	4720

Which	are	we	doing?

23

• Rich	Internet	Application
– Well,	it's	certainly	not	this	one…		why	not?

• Rich	app	or	Thin	app?
• Do	both	follow	the	three-tiered	architecture	
structure?		Why	or	why	not?

CS	4720

Rich	Mobile	Architecture

24

CS	4720

The	Presentation	Layer
• Remember:	it's	a	phone!

– Simple	=	good
– People	have	different	sized	fingers
– User	actions	call	functions	which	execute	features;	
user	actions	!=	features

– Phones	can	have	varying	amounts	of	
power/resources

– Phones	can	be	on	or	off	the	cellular	grid	at	any	
point

25

CS	4720

Presentation	Approach
• Remember	your	client	type
• Determine	how	you	will	present	data	in	a	coherent,	
unified	method

• Determine	how	you	will	guard	against	untrusted	input
• Ensure	you	have	factored	out	your	business	logic
• Determine	how	you	will	pass	data	between	layers	(i.e.	
how	you	will	call	the	service,	how	you	will	get	more	
info	about	a	building,	etc)

26

CS	4720

The	Business	Layer
• For	the	most	part,	these	are	your	web	services	
and	related	functionalities
– Each	of	your	three	web	services	you	are	using

27

CS	4720

Business	Approach
• Identify	FEATURES	that	will	exist	at	this	level
• Build	components	that	support	a	feature's	
execution

• Hide	implementation	details	from	the	
presentation	layer

• Determine	if	(how)	you	will	cache	information	
on	the	device

• Map	out	use	cases

28

CS	4720

The	Data	Layer
• This	will	be	your	module	that	talks	to	the	
database

• Will	be	intertwined	with	the	business	layer	to	
some	degree

29

CS	4720

Data	Approach
• For	each	feature,	determine	what	data	is	
required

• Build	SQL	queries	around	the	features
• Ensure	that	you	are	using	prepared	statements	
to	guard	against	incorrect	data	entry	(or	
injection)

• Determine	how	you	will	manage	connections
• Determine	if	you	will	batch	up	commands	into	
one	big	command

30

CS	4720

Your	Mobile	Architecture

31

• Your	Approach:
• Android/iOS UI	which
calls…

• …	your “business
logic”	cope

• …	that	connects	to	
some	data	store	(local
or	remote)

CS	4720

The	Android	Architecture

32

CS	4720

Your	Main	Components
• Activities	– represent	a	single	screen	with	a	UI
• Services	– represents	a	process	running	in	the	
background

• Content	Provider	– a	link	back	to	the	data
• Broadcast	Receiver	– listens	for	system-wide	
messages	to	respond	to

• Application	– a	set	of	Activities	that	make	up	a	
cohesive	unit

• Intent	– a	message	to	be	passed
33

CS	4720

The	Activity

34

CS	4720

The	Intent

35

