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Abstract. State-of-the-art mobile smartphone and tablet processors are
beginning to employ fully speculative, out-of-order architectures with
deep instruction pipelines. These processors often have pipeline lengths of
24 or more stages. Furthermore, to improve high-performance ILP, these
processors provide multiple parallel pipeline paths for various instruction
types. These architectures provide multiple execution clusters defined by
instruction type, each with its own issue queue. Instructions are dis-
patched to one of the appropriate issue queues, and all issue queues
are then scanned in parallel to identify instructions ready for execution.
The goal of such a resource-intensive architectural design is to sustain
peak processor performance. Unfortunately, applications oftentimes only
leverage a small subset of these robust computation resources, and the
excess hardware resources still consume power while idle. This paper
proposes a novel methodology that leverages the unique characteris-
tics of the mobile ecosystem to drive hardware adaptation for a power-
efficient execution pipeline microarchitecture. The proposed architecture
will monitor the run-time execution behavior in order to enable only
those pipeline resources that are currently needed, allowing the system
to rapidly respond to changing resource demands to ensure performance
is maintained while reducing power consumption. The simulation results
show that processor performance is maintained while achieving a signif-
icant reduction in execution pipeline power consumption.

Keywords: Mobile + Low-power + Dynamic - Adaptive hardware -
Pipeline

1 Introduction

High-performance mobile processors are beginning to employ heterogeneous pro-
cessor topologies in order to provide a continuum of computational resources that
can handle the wide range of variability that occurs in the mobile domain. These
heterogeneous processor topologies typically utilize a cluster of “Little” processor
cores optimized for low-power, as well as a cluster of “Big” processor cores tar-
geting higher performance at the cost of higher power dissipation. An example of
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such a topology is the ARM big.LITTLE architecture, which incorporates high-
performance Cortex-A15 “big” processors with low-power Cortex-A7 “LITTLE”
processors [6].

In general, the “Little” processor leverages an in-order architecture with a
simple pipeline. For example, the ARM Cortex-A7 has a pipeline length of 8-10
stages. On the other hand, the “Big” processor usually employs a fully spec-
ulative, out-of-order architecture with a deeper pipeline. For comparison, the
ARM Cortex-A15 supports register renaming and has a pipeline length of 15-24
stages. Furthermore, to improve high-performance ILP the Cortex-A15 provides
multiple, parallel pipeline paths for various instruction types. These microarchi-
tectural differences are one of the main reasons for the large increase in energy
consumption compared to the “Little” processor.

In this paper, we propose reducing the power consumption of these more
power-hungry “Big” processor cores by dynamically adapting the instruction
pipeline. Leveraging the unique characteristics of high-performance mobile pro-
cessor architectures, a fine-grained adaptive hardware control mechanism is devel-
oped. The microarchitecture will automatically shut down individual pipeline
paths during periods of reduced utilization. Upon subsequent demand, these
pipeline paths can be re-enabled in a manner that avoids any performance penal-
ties. Furthermore, the aggressiveness of shutting down pipeline paths will be
guided by an application-specific code analysis. The result will be a significant
reduction of wasted power from idle pipeline paths without any negative impacts
to performance.

2 Related Work

A good amount of prior research has been done related to reducing execution
pipeline power in general purpose processors while incurring a minor perfor-
mance degradation. A common approach relies on resizing the issue queue in
order to control the rate of execution of the processor pipeline.

The authors in [11] proposed an architecture allowing the sizes of the issue
queue, reorder buffer, and the load/store queue to be dynamically adjusted. They
employed periodic sampling of occupancy levels to determine when to increase
or decrease capacity. Similarly, the authors in [5] present an issue queue design
that allows for dynamic configurability of size and speed using transmission
gate insertion. The circuit also gathers activity statistics during execution to
allow on-the-fly adjustments to improve energy and performance. Both of these
approaches rely on costly run-time profiling techniques that consume power to
keep track of such statistical information.

The authors in [10] propose a mechanism to disable one or more processor
pipelines based on dynamically monitoring the processor’s performance. They
focus on an Alpha 21264 processor with two integer pipeline clusters and a single
floating-point pipeline. In a similar vein, Pipeline Balancing was proposed in [2],
which dynamically monitors performance and adjusts the issue rate accordingly.
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The implementation proposed by the authors necessitates that at least one clus-
ter of functional units for each ISA type remain active, limiting the amount of
power savings since the minimum issue rate will be 4 per cycle.

A proposal to power-gate execution units to abate leakage power was pro-
posed in [8]. The authors provide analytical equations for determining break-even
points, and then apply this information to put specific execution units to sleep
based on elapsed time or branch misprediction events.

A software-assisted approach to dynamically resizing the issue queue was
presented in [9]. Compile-time analysis provides information on the required
number of issue queue entries. Unfortunately, the proposed static analysis does
not handle inter-procedural dependence analysis, limiting the applicability of the
algorithm in the presence of function calls.

3 Motivation

The larger, high-performance cores in the heterogeneous processor topology typ-
ically consist of an out-of-order architecture with a relatively deep pipeline. The
incentive of having an out-of-order processor is to allow execution around data
hazards in order to improve performance. The effectiveness of such an architec-
ture is often limited by how far it can “look ahead” by placing decoded instruc-
tions into an issue queue used to identify those instructions whose dependencies
are completely resolved. For high-end targets, having a window size of 40 or
more instructions is often required to meet performance targets. Unfortunately,
it is also common knowledge in the mobile industry that the issue queue size
is frequency limited to about 8 entries, which severely limits the effectiveness
of the architecture. The physical design of issue queues larger than 8 entries
incurs longer critical path timing to concurrently scan all entries and route nec-
essary data.

In order to overcome this limitation, it is common practice in mobile microar-
chitectures to employ multiple, smaller issue queues. The execution is broken
down into multiple clusters defined by instruction type, each with its own issue
queue. Instructions will be dispatched to the appropriate issue queue, and all

Queue Issue Execute Writeback

Integer ——

N :E:E Integer 1
Fetch and Dispatch Floating-Point/NEON

Bal —

- T HEHS

Load
> —|

Store
L, —]

Fig. 1. Typical Mobile Out-of-Order Processor Pipeline

III|__—II'L|'L|




86 G. Bournoutian and A. Orailoglu

issue queues are then scanned in parallel to identify instructions ready for exe-
cution. A typical mobile out-of-order processor pipeline is shown in Figure 1,
which is similar to that used in the ARM Cortex-A15 and Cortex-A57, Apple
A6 Swift and A7 Cyclone, and Qualcomm Krait 400 and Krait 450 processors.

As one can see, after instructions are decoded, they will be dispatched into an
issue queue for the appropriate instruction type. Once the instruction’s depen-
dencies are resolved, it will be issued and executed. Each pipeline has its own
separate issue queue and can issue independently from the other pipelines. Cer-
tain instruction types can have more than one pipeline in order to increase
parallelism by ameliorating structural hazards. For example, in the architecture
shown in Figure 1, the Integer and Floating-Point instruction types are provided
two parallel pipelines.

Under ideal circumstances, the instruction mix of an application will be well-
balanced and essentially match the physically available pipeline functional units.
In this case, the pipeline will deliver a substantial amount of ILP and hardware
resources will be well utilized. Unfortunately, it is rare for an application to
follow this ideal. For example, one may have an application that completely
avoids using any floating-point instructions. Yet, the physical hardware for two
entire floating-point pipelines is present. During the course of executing this
application, a large portion of the hardware will be idle and wasting precious
battery life. Even while nothing is executing within these pipelines a substantial
amount of power is consumed by the issue queue logic checking for valid entries
to issue, and the functional units themselves consuming power as they idle.

To demonstrate the possible skewed distribution of instruction types, the
instruction mix of all SPEC CPU2000 [13] integer and floating-point bench-
marks is shown in Figure 2 and Figure 3, respectively. As one would expect,
the integer benchmarks very rarely make use of any floating-point operations.
Thus, having some mechanism to disable the floating-point pipelines will clearly
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Fig. 3. SPEC Floating-Point Benchmark Instruction Mix

help to conserve power. Furthermore, for those instruction types with multiple
parallel pipelines, a given application may be unable to actually exploit any ILP
benefit of this additional hardware unless a sufficiently large amount of those
instructions is present within the execution window.

Given these observations, it becomes clear that an adaptive approach is neces-
sary to help tune the microarchitecture in order to conserve power. Each individ-
ual instruction pipeline should be monitored to determine if there is a sufficient
demand for keeping it enabled. If these structures remain idle, an automated
mechanism should exist to shut down the issue queue and execution logic in
order to avoid both dynamic and static power dissipation.

As one would expect, there are trade-offs to such a dynamically reconfig-
urable microarchitecture. For instance, monitoring the pipeline activity patterns
during run time to detect idleness requires additional hardware and power. Sim-
ilarly, the process of disabling and re-enabling a pipeline path can incur both
power and performance penalties. In particular, if the logic to re-enable a path
is not accurately predicted, the pipeline will stall and waste even more power.
Our goal is to intelligently exploit the unique characteristics of mobile processor
architectures to minimize or completely eliminate these overheads.

4 Implementation

In order to conserve power, one would like to dynamically adapt the hardware
pipeline to best match the computational needs of a specific application. This
application-specific tailoring of the hardware microarchitecture needs to be fine-
grained and able to efficiently respond to changes in the application’s execution
patterns. Furthermore, it is essential that any proposed additional hardware logic
itself be frugal so as not to countermand the reductions in power we are trying
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to achieve. The following subsections will describe the hardware architecture to
enable a fine-grained, adaptive instruction pipeline as well as a software-driven
approach to determining the aggressiveness of the hardware’s adaptation.

4.1 Hardware Architecture

The proposed hardware architecture to enable a fine-grained, adaptive instruc-
tion pipeline is shown in Figure 4. This figure illustrates the various hardware
mechanisms that will be added to each individual instruction pipeline. As shown
in Figure 1, there are typically 8 separate instruction pipelines, each of which
will follow this same approach.
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Fig. 4. Proposed Adaptive Pipeline Architecture

The first new hardware structure is a Pipeline Usage Register. The purpose
of this register is to indicate the temporal utilization of a given pipeline path.
This register will initially be populated with a non-zero value, and over time
that value will decrease towards zero if the pipeline is idle. Once this register
becomes zero, a Disable Signal will be asserted high, which will disable the issue
queue, issue stage, execution stage, and writeback stage of the pipeline. These
disabled hardware structures will have their supply voltage gated as described
n [12], obviating both dynamic switching power and any static leakage power.

The Pipeline Usage Register is implemented as a shift register. Upon receiv-
ing the R-Shift Trigger signal, the Pipeline Usage Register is right shifted and
fed a most-significant-bit (MSB) value of 0. The R-Shift Trigger signal will be
generated by a Frequency Divider that will take the pipeline clock and divide
it by 8. In this fashion, the R-Shift Trigger signal will occur every 8 pipeline
cycles. This mechanism will be what determines that a given pipeline has been
idle for a period of time and causes the Pipeline Usage Register to become zero,
in turn shutting down the pipeline hardware structures.

The reciprocal logic that marks that a pipeline is actively in use is controlled
by the Reset Trigger signal. This reset signal will be asserted during the decode
stage four cycles before the instruction is dispatched into an issue queue. Upon
the Reset Trigger signal going high, the Pipeline Usage Register will be reset to
the value specified in the Reset Value Register. This logic not only handles the
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case of ensuring that an active pipeline is not turned off by keeping the Pipeline
Usage Register non-zero, but it also handles re-enabling a disabled pipeline with-
out causing any performance penalty. The decode stage typically takes multiple
cycles (7 in our example architecture), since the instruction is not only decoded,
but other logic like register renaming is done as well. Given this, the instruction
type (i.e. integer, floating-point, branch, etc.) is determined rather early in the
decode stage (based on the instruction opcode), and this information can be
conveyed to the Pipeline Usage Register while things like register renaming are
being done. Based on this observation, the Reset Trigger signal can be generated
four cycles prior to the instruction being dispatched into an issue queue. This
allows a possibly disabled issue queue to be fully re-enabled before a dispatched
instruction is sent to it.

The Reset Value Register will possess the property of having a continuous
run of 1’s of some length L starting from the LSB. The longer the length L
is, the longer the pipeline must remain idle before it will cause an automatic
shutdown. This structuring of the Reset Value Register will minimize bit-flipping
transitions within the Pipeline Usage Register (avoiding needless dynamic power
consumption). Since the Pipeline Usage Register is right-shifted over and over,
each right-shift will only incur a single bit-flip.

A further power reducing optimization is the circuitry to determine when the
Pipeline Usage Register is zero. Instead of using a relatively expensive compara-
tor circuit, all the bits within the Pipeline Usage Register can simply be fed into
a NOR gate, which will become 1 only when all the input bits are 0.

Lastly, we can further optimize the instruction types with multiple pipelines
(e.g. Integer and Floating-Point). In these cases, there may not be sufficient
instructions to merit having two parallel pipeline paths. In order to gracefully
account for this situation, the dispatch logic will be slightly updated. Instead
of randomly selecting one of the issue queues to dispatch the instruction to,
the multiple issue queues will be prioritized. Only when the first issue queue
is full will the instruction be dispatched into the next queue. In this fashion,
if one issue queue is able to support the instruction stream without becoming
inundated, it will cause the second issue queue to remain idle, causing it to
turn off. If the instruction demand increases and spills over the first issue queue,
then the second issue queue can service the instructions as before. Performance
will remain unaffected by this change. Rather, this prioritization of issue queues
helps essentially defragment and compress the instructions into one queue before
needing to expand into another, helping the second pipeline remain idle and thus
be possibly turned off to conserve power.

To ensure any active executions have sufficient time to complete and exit
before we shut down the pipeline, the Reset Value Register will be required
to have at least two 1’s in the LSBs. This will ensure at least two right-shift
intervals occur before the pipeline is shut down, where each interval occurs after
8 pipeline cycles based on the Pipeline Usage Register’s clock divider. Given that
the longest pipeline stage in our design is the Floating-Point pipeline, taking up
to 12 cycles once leaving the issue queue, having two intervals of 8 pipeline
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cycles ensures that the last instruction in the pipeline has completed before
the pipeline is disabled. This helps greatly simplify the shutdown logic, since
no querying within the execution stages needs to occur before we turn off the
pipeline. For pipeline stalls, the same stalling mechanism will cause the clock
divider to also not move forward ensuring consistency in the timing.

4.2 Software-Driven Reset Thresholds

The prior section described the microarchitectural design to enable the adaptive
instruction pipeline. However, instead of arbitrarily selecting the value for the
Reset Value Register and hard-coding it across all the pipelines and even across
different applications, one would like to make a more intelligent selection. Look-
ing back at the instruction mixes shown for the benchmarks in Figure 2 and
Figure 3, a logical extension would be to leverage this information to help guide
the selection of the reset threshold value.

The general observation is that if the quantity of a particular instruction type
is quite low, there is a higher probability that the pipeline for that instruction
type will be idle. Furthermore, when the rare instruction type does occur, it
most likely will be sporadic and shutting down the pipeline sooner rather than
later can help maximize power savings. Thus, it is proposed to set the Reset
Value Register to the following values based on the relative percentage of the
instruction type (IT'), where N is the size of the Reset Value Register in bits:

o If IT < 5%, Reset Value Register = {{(N —2){0}},1,1}
e Else if IT < 20%, Reset Value Register = {{% {0}} , {(NT_Q) {1}} o1, 1}
e Else, Reset Value Register = {{(N —2){1}},1,1}

We examine two different software-based approaches to estimating instruc-
tion type density. The first approach is a pure compile-time code analysis to get
static instruction type counts. In order to determine the instruction type dis-
tribution of a mobile smartphone application including all foundation libraries,
an on-device code analysis framework is employed [3]. A simple post-processing
script can then analyze and identify the opcodes for each instruction type. The
second approach instead relies on profiling an actual execution of the application
in order to garner dynamic instruction type counts. This latter approach will help
identify hotspot patterns wherein loops may greatly increase the overall predom-
inance of a small number of static instructions. In both of these approaches, the
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pipeline-specific Reset Value Register number computed based on instruction
type will be passed to the underlying hardware microarchitecture via metadata
embedded within the software executable. Upon the application being loaded,
the metadata will populate the values for the various hardware Reset Value Reg-
isters associated with each instruction type. An overview of this architecture is
shown in Figure 5.

5 Experimental Results

In order to assess the benefit from this proposed architectural design, we utilized
the SimpleScalar framework [1]. The stock code initially utilized a basic register
update unit (RUU) structure, combining the reorder buffer (ROB) and reserva-
tion stations and provided no register renaming. In order to match the target
architecture and fully exploit possible parallelism and instruction throughput,
the default sim-outorder simulator was modified to implement a full speculative
Tomasulo architecture [7], including register renaming and decentralized issue
queues stations. Furthermore, the simulator is augmented with the adaptive
instruction pipeline logic proposed in this paper and also incorporates a heavily
customized version of the Wattch power analysis framework [4]. The size N of
the Pipeline Usage Register and Reset Value Register was chosen to be 8 bits.

Table 1 summarizes the system configuration parameters, reflecting a typical
high-performance mobile processor.

Table 1. Hardware Configuration Parameters

Fetch Stages 5
Decode Stages 7
Issue Stages 1
Execution Stages, INT 1
Execution Stages, MULT 4
Execution Stages, FP ADD/SUB 2
Execution Stages, FP MUL 6
Execution Stages, FP DIV 10
Execution Stages, BRANCH 1
Execution Stages, LD/ST 4
Writeback Stages 1
Issue Queue Entries 8

Instruction L1 cache||64 KB, 4-way set-associative

Data L1 cache||64 KB, 4-way set-associative

Unified L2 cache|| 2MB, 8-way set-associative

Number of Pipelines 2 INT, 1 MULT, 2 FP
1 BRANCH, 1 LD, 1 ST

The complete SPEC CPU2000 benchmark suite [13] is used, providing 12
integer and 14 floating-point real-world applications. The benchmarks are cross-
compiled for the PISA instruction set using the highest level of optimization
available for the language-specific compiler. The reference inputs are used for
each benchmark, with each benchmark executed in its entirety from start to
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finish. For the approach of using profiled application information, the training
inputs for each benchmark are used.

In order to assess the proposed architecture, the complete pipeline power
utilization is analyzed, including both dynamic and static power. The additional
power overhead incurred for enabling the adaptive pipeline, such as from regis-
ters, control logic, and transitioning pipelines off and on, are also incorporated
into the results.

Figure 6 shows the power reduction across the pipeline logic observed for the
integer benchmarks. The average power savings for integer benchmarks using
pure static analysis is 27.11%, while execution profiling yields a slightly better
average of 27.41%. In a majority of the integer benchmarks, the Reset Value
Register threshold selected in both pure static analysis and execution profiling
turns out to be the same. Additionally, while the execution profiling approach
does better on average, in the crafty benchmark the improvement was actually
worse than pure static analysis. In this case, it is likely that the training inputs
used during profiling had a significantly different dynamic instruction distribu-
tion compared to the reference inputs used during actual benchmarking.
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Fig. 6. Integer Benchmarks Pipeline Power Reduction

Similarly, the power savings for floating-point benchmarks are shown in
Figure 7. The average power savings using pure static analysis is approximately
18.80%, while using execution profiling garners a 19.12% average reduction.
Again, a majority of the benchmarks ended up having the same Reset Value
Register threshold based on static analysis and execution profiling. The lucas
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benchmark was another exception to the execution profiling approach outper-
forming the pure static analysis approach. Additionally, as one would expect, the
benefit for floating-point benchmarks is slightly less than the integer case, since
the floating-point pipeline will need to be enabled much more often. However,
the adaptive logic is still able to identify excess hardware resources that may
occur throughout the execution lifetime and intelligently turn them off to save
power.
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Fig. 7. Floating-Point Benchmarks Pipeline Power Reduction

As one can see, the proposed architecture is able to eliminate a substantial
amount of power consumption by adaptively disabling portions of the pipeline
when they are not actively needed. In particular, most of the integer benchmarks
rarely, if ever, use the floating-point pipeline, which can account for approxi-
mately 20% of the energy in the pipeline logic. Furthermore, these power sav-
ings come at no cost to processor performance. Instruction throughput is not
degraded using this proposal, since any time disabled pipeline resources are
needed they will be immediately re-enabled four cycles ahead of time.

6 Conclusions

High-performance mobile processors typically employ more power-hungry out-
of-order processors with deep pipelines in order to meet peak demands. However,
not all applications possess the exact same instruction mix, leading to uneven
physical resource allocations within the process pipeline. Given that power is a
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critical concern for mobile devices, conserving power without negatively impact-
ing performance is a top priority.

A novel adaptive instruction pipeline architecture for mobile processors has
been presented. This adaptive architecture leverages the unique characteristics of
high-performance mobile processor microarchitecture design to propose a frugal
dynamically adaptive mechanism to enable fine-grained pipeline gating. Based
on run time utilization, idle pipelines and associated issue queues are turned off
to reduce dynamic and leakage power. The proposed microarchitecture automat-
ically shuts down individual pipeline paths during periods of reduced utilization.
Upon subsequent demand, these pipeline paths are preemptively re-enabled to
completely avoid any performance penalties. Application-specific code analysis
is also leveraged to guide the aggressiveness of the pipeline gating. The results
demonstrate a substantial amount of power savings can be achieved without any
impact to performance.
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