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Abstract 

The pervasive use of mobile devices have changed our lives. These devices are part of 

our daily activities in the office, school and home. Moreover, they contain information that 

describe our behavior and activities.  This characteristic is of particular interest for forensic 

investigators, who can retrieve information of probative value from these devices. The 

following study analyses Android OS architecture to determine the caveats of different mobile 

forensics techniques. Findings reveal that mobile forensics techniques for Android devices are 

invasive procedures that depend on the specific hardware and software of each device. These 

techniques are effective only if the investigator understand the Android OS characteristics. 

 

Introduction 

Mobile devices and the pervasive access to internet are technologies that have changed 

our lives. Computer tablets, wearables gadgets and specially smartphones, support our daily 

activities in the office, home, college, or any place where personal information is generated, 

processed, stored and transmitted. In fact, studies reveal that almost two-thirds of North 

Americans are now smartphone users and at least 7% of them rely heavily on smartphones for 

online access (Pew Research Center 2015). This extensive use inevitably relates these devices to 

all sort of activities, including criminal or illegal ones. Voice and video records, pictures, geo-

localization tags, SMS, and MMS are some examples of probative data contained in smartphones 

that, unlike personal computers, can describe in detail user’s behavior and activities. 
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The market of smartphones is diverse and competitive, that is why vendors customize 

their products offering different form-factor, hardware specifications, connectivity technologies 

and applications. However, Operating System (OS) is a common factor that roughly classifies 

smartphones. Furthermore, studies reveal the Google’s Android OS dominates the worldwide 

market with a 82.8% share in 2015 second quarter, while iOS and Windows Phone control 13.9% 

and 2.6% respectively. Although adoption of Android is wide and its compatibility standards 

establish a framework for manufacturers, fragmentation in both hardware and software is a 

phenomenon that is disturbing the Android environment. Consequently, researchers and 

investigators face challenging issues to develop a general forensic technique that preserves 

evidence’s integrity and recovers artifacts from a large and heterogeneous collection of devices 

and applications.  

The technology for storing information (NAND flash) or the inability to protect integrity 

of evidence—write-blockers—have determined that forensic procedures used with smartphones 

are essentially invasive. For instance, relevant research in this field revealed that rooting Android 

device (Al Barghouthy, Marrington, and Baggili 2013) or flashing bootable images (Vidas, Zhang, 

and Christin 2011) is required to retrieve comprehensive data, otherwise it is not possible to 

access specific artifacts. These procedures violates the main principle of a forensic 

investigation—preserve evidence’s integrity—and can affect the security of the device. However, 

an adequate forensic methodology that documents every step of the investigation and considers 

particularities of each device ensure that acquired information from smartphones can be used in 

a trial as evidence. 
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Android environment and security design 

The origin of Android involves not only the development of an OS, in fact “Android” in the 

modern mobile ecosystem “refers to a company, an operating system, an open source project, 

and a development community” (Drake et al. 2014).  The Android’s journey to become the most 

popular mobile OS began when Andy Rubin, Chris White, and Nick Sears founded Android Inc. in 

October 2003. However, the actual Android ecosystem was stablished when Google acquired this 

company and led the Open Handset Alliance (OHA) with the intent of conquering the mobile 

market. This alliance is a group of eighty-four technological and mobile companies, who claim a 

commitment to openness to accelerate innovation in technology and services of the mobile 

market (OHA 2011).  

The openness of   the Android platform—free and mostly open source—have attracted 

different Original Equipment manufacturers (OEM), who have used the Android OS not only to 

power smartphones or tablets, but wearables, automotive control panels, video game consoles, 

smart TVs, embedded control systems and domotic applications. This wide adoption makes the 

Android hardware basis extremely diverse (Drake et al. 2014). Moreover, it represents a huge 

challenge for researchers and forensics investigators because manufacturers and carriers build 

their own devices based off the platform, jeopardizing the hardware fragmentation of the 

Android ecosystem (Vidas, Zhang, and Christin 2011). For example, the same device purchased 

from different carriers include different software—proprietary software—that struggles with a 

general methodology for Android forensics analysis.   

The updating model of Android is another issue that affects fragmentation. Google’s OEM 

mobile devices (Nexus phones and tablets) are the first that have received new major versions 
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and patches of the Android OS directly from Google. However, other devices depend on the 

device manufacturer and the carrier to receive patches and updates, which in many cases are 

never deployed, leaving the device exposed to security vulnerabilities and trapped in older or 

buggy versions. Google regularly gathers information from the new Play Store application and 

publishes a relative number of devices running a given version of the Android OS. Figure 1 depicts 

data collected during a 7-day period ending on November 2; where the adoption of the latest 

version Marshmallow is little (0.3%) and only comparable with Froyo (0.2%) the oldest version 

still tracked. 

 

Figure 1 Google platform version. Data from Google's dashboards 2015 

The Android system architecture and the security enforcement model 

Android OS is a Linux distribution designed for the specific characteristics of mobile 

devices such as reduced power consumption, mobility, limited resources, and enhanced user 

experience. Figure 2 depicts the five layers of the Android software stack, which include 

applications (OEM/preinstalled and user installed), Android framework, Android runtime 
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(Dalvik/ART VM) and native libraries, hardware abstraction layer (HAL) and the Linux kernel. This 

architecture is hardware agnostic and gives developers the opportunity to extend devices’ 

functionality maintaining the security schemes offered by APIs and libraries that run under the 

Java Dalvik Virtual machine.   

 
Figure 2 Android Software Stack. Google 2015 

 

Although Android uses the Linux process isolation and principle of least privilege to 

implement application sandboxing, it does not have the “passwd” and “group” files to source the 

credentials used in the Linux’s User ID / group ID paradigm (Drake et al. 2014). The specific 

Android’s security model include a map of names to unique identifiers called Android identifiers 

(AID), which are statically assigned to critical-system users and dynamically provisioned as a 

unique Linux UID for each application at installation time. This model ensures that each 

application runs on its own sandbox (UID/GID) isolated from other process, while supplementary 

groups—a common functionality of other Linux distributions—grant access to shared resources 

such as SD cards.  
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Starting with Android 4.3 (Jelly Bean), Security-Enhanced Linux (SELinux) is used to  

further define the boundaries of the Android application sandbox (The Android Open Source 

Project 2015). SElinux implement a mandatory access control (MAC) over all processes, including 

process running with root/super-user privileges, which reduces the effects of malware and 

automates security policy creation. The MAC can operate in one of two modes: permissive mode 

and enforcing mode. In the first mode, permission denials are logged by the kernel; while in the 

second mode, permission denials are logged and enforced. The default-operating mode of 

SELinux is enforcing, therefore a per-domain permissive mode, a label-based scheme, authorizes 

process (domains) operating in permissive mode while   the rest of the system remains in 

enforcing mode. 

Unique user UIDs for each application, restricted file system permission, MAC and a Linux-

like process isolation offer a secure sandboxing scheme for Android. However, the pervasive use 

of mobile devices requires a higher-level isolation that keeps personal and business information 

coexisting in the same device. Some vendors, which claim to solve this issue, aggregate a new 

level of isolation extending the Android sandboxing scheme or developing a corporative solution 

that include virtualized environments. For example, Samsung’s Knox® extends   isolation scheme 

using Trusted Boot and ARM TrustZone-based Integrity Measurement Architecture (TIMA) 

(Samsung 2015), while  Vmware® Horizon mobile® offers a “dual persona solution” that creates 

a virtualized operating system on android smartphones. This virtualized environment is a 

corporate workspace separated from personal application and data on the device (VMware 

2013).  
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The sandboxing scheme of Android is of particular interest for a forensic investigation 

because the isolation and data processes of each application stablish a heterogeneous and 

protected environment that preclude investigators’ activities. In an Android device, each 

application can generate a diverse set of artifacts (session ID, geo-localization, metadata, 

usernames, password, SQL databases, SMS, call log, etc.) that are specific and different among 

applications. In fact, some researchers have evidenced that current mobile forensic tools are not 

able to produce comprehensive analysis of artifacts (Kasiaras et al. 2014) or even it is not possible 

to recover private web browsing traces (particular artifacts of Orweb) unless the forensic tool is 

running with root/super-user privilege (Al Barghouthy, Marrington, and Baggili 2013).   

The Android partition layout 

Android’s partition layout, similarly to other Linux distributions or Operating Systems, 

defines the order, offsets and sizes of logical storage divisions of the device’s nonvolatile memory 

(NAND Flash). Usually, these partitions are mapped to Memory Technology Devices (MTD), which 

are an abstraction layer that allows software to access different types of raw flash devices (Vidas, 

Zhang, and Christin 2011). The partition layout is another factor that affects hardware 

fragmentation. Moreover, vendors implement different partitions layouts among their devices 

to adapt specific hardware configurations and platforms. However, some of these partitions are 

common among all Androids devices, and share specific functionalities that are essential for the 

Android system.  Table 1 describe the most common partitions defined in Android devices 

including the main functionality of each one.  
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Table 1 Android partition layout  (Vidas, Zhang, and Christin 2011) (Drake et al. 2014) 

Partition 

Name 

File system Mount point Description 

System yaffs2 /system Stores the system image, which contains the 

Android framework, libraries, system binaries, 

and pre-installed applications. This partition 

normally contain the Google apps (Gmail, 

Calendar, Maps and Play store) 

Data yaffs2 /data This is the partition where user data is stored 

such as downloaded applications, pictures and 

video. This is considered an internal no 

removable storage, which differs from SD card.  

Cache yaffs2 /cache It contains temporary files, logs, Dalvik VM 

cache and update packages.  

Boot booting NA A bootable partition includes the Linux Kernel 

and the root file system ram disk (initrd). 

Recovery booting NA A minimal bootable partition that includes 

vendor’s specific tools to maintenance 

operations like wiping the cache or user data, 

installing patches, taking backups and 

transferring files.   

Boot loader booting NA This partition includes the more basic 

initialization routines that loads the Linux kernel 

or enables alternative boot modes such as 

recovery or download. 

   

The partition layout represents one of the key factors analyzed in a forensic investigation. 

The characteristics that an investigator must know about each partition include type of stored 

information, access level (user and super-user/root), file system and functionality (boot, storage, 

recovery). For instance, some  mobile forensic techniques take advantage of alternative boot 

modes (Vidas, Zhang, and Christin 2011), (Fan et al. 2015)  to flash and use modified images that 

include forensics tools to recover data from Android devices. From a forensic perspective, 
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flashing a device is a no reversible and destructive process that will alter the integrity of the 

evidence. However, user data is not stored on those partitions, which allows recovering artifacts 

from other unaltered partitions.    

Flashing an Android device is a normal process used by manufacturers and carriers to 

install customized Android versions or exclusive applications. This process uses specific software 

contained in the bootloader partition, which is capable of booting, flashing, and interacting with 

a PC program (fastboot/odin) over a USB. Manufacturers lock the bootloader before releasing 

their devices, but it can be unlocked under specific manufacturer’s conditions and limitations—

the process varies between manufacturers and devices. For example, Sony consents unlocking 

the bootloader after following a validation process (IMEI based) and accepting terms and 

conditions. Sony does not offer the unlocking process for all of its handsets models or even 

releases. Figure 3 depicts a verification screen for a Sony Xperia Z3 compact, where the unlocking 

process is allowed. 

 

Figure 3 Bootloader unlock Xperia Z3 compact 
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Rooting an Android Device 

The super-user, in a UNIX-like system, is an especial account that has permissions and 

rights over all the files and programs (Ward 2015). The name of this account is “root”, that is why 

the process of getting super-user privileges in an Android device is called rooting. Ideally, an 

Android device uses its sandboxing scheme to run each application with the specific privileges 

needed to perform its function. In some cases, this may include root privileges, but only 

preinstalled applications or system processes can run in this mode. Therefore, the main goals of 

rooting an Android device are granting elevated privileges to user-installed applications, 

accessing/modifying the file system and change standard behavior. 

Although rooting frees device’s characteristics/powers—an effect particularly 

appreciated by developers and hackers—it severely compromises the security (Son et al. 2013) 

and stability (Wen and Yubin 2015) of Android devices. Moreover, an application running with 

elevated privileges potentially can break the Android’s sandbox scheme, expose personal data or 

even destroy the system. For example, security engineers working on Android Pay (Google’s 

mobile paying system) consider rooted devices insecure for a paying platform. They claim that 

only devices that pass the compatibility test suite—a rooting unfriendly test—ensure a well-

understood security model for all involved parts in a paying platform (XDA developers 2015).   

Rooting an Android device consists in having a “su” binary that include the access right 

“setuid” in the file system.  The setuid right allow users to run binaries as though the file owner 

(Ward 2015). This is a common procedure of the Linux kernel to elevate privileges and perform 

administrative tasks; therefore, the access to setuid binaries is sensible. The rooting process 

normally include the installation of a super-user application, which administers requests for 
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elevating privileges. The most popular super-user applications are Superuser by ClockworkMod 

and SuperSU by Chainfire, these applications do not root the device by itself, but offer a 

convenient way to manage requests, create policies, log events and revoke privileges.  

The techniques to get the “su” binary in the Android file system fall into three main 

categories:  

 Bootloader-based technique flashes a custom system image that include the “su” 

binary in the file system. Since boot loader is locked by default, this procedure is 

highly dependent on the availability of an unlocked boot loader. 

  Android recovery mode uses a custom update package with the “su” binary, and 

an especial bootable recovery image. This procedure boots the Android device 

using the especial recovery image, and install the update package. The main 

drawback of this procedure is the signature verification implemented in some 

devices, which prevents installation of unsigned packages or updates.  

 Software-based techniques principally exploits unpatched vulnerabilities of the 

Android system to access a shell and install the “su” binary. 

 

From all of the described techniques, software-based procedures are of particular interest 

for researchers and forensic analysts. This type of techniques are regularly used by commercial 

mobile forensic software to acquire data, and are becoming more difficult to develop while the 

Android OS get mature. In fact, finding a universal rooting vulnerability in the Android OS is an 

event that attracts the attention of researchers and media. For example, a universal root 

technique developed by Wen Xu and Yubin Fu and presented in the Blackhat 2015 conference in 
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Las Vegas, demonstrates the exploitation of the CVE-2015-3636 in the Linux. According with the 

researchers, this was the first documented universal root exploit for 64 bits Android devices. 

Forensic techniques for data acquisition from Android devices 

The techniques for data acquisition from Android devices traditionally recover 

information from the devices’ persistent memory (NAND Flash). However, new research has 

demonstrated feasible methods to recover volatile data from physical memory (Sylve et al. 2012), 

(Fan et al. 2015).  According to some studies,  forensics techniques for mobile devices can be 

divided into logical acquisition and physical acquisition  (Son et al. 2013), but this rough 

classification does not include the volatile data acquisition. Therefore, a more general 

classification of mobile forensic techniques include persistent data acquisition and volatile data 

acquisition. 

Persistent data acquisition techniques 

This category includes logical and physical acquisition. The techniques of logical 

acquisition are file exploring, Android Debug Bridge (ADB), partition imaging, recovery mode, live 

SD, and Firmware update protocol.  On the other hand, techniques of physical acquisition are 

Join Test Action Group (JTAG) extraction, Chip-off and Micro-read (Ayers, Brothers, and Jansen 

2014). The Following section will briefly describe these techniques highlighting evidence integrity 

concerns. 

 File exploring uses the Media Transfer Protocol (MTP) and Mass Storage Class device 

implemented in the USB (Universal Serial Bus) standard. These protocols allows transferring files 

between portable devices (Android device) and PCs over a USB connection. This type of 
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acquisition does not require installing especial applications or rooting the device, but only have 

access to multimedia user data (videos, pictures, and audio files). 

The ADB is a versatile tool that communicates an Android device with a developer 

computer. This tool requires USB debugging right, which is enabled under the developer options 

of an Android device. ADB in an unrooted device has pretty much the same characteristics of 

MTP or Mass Storage Class device. However, ADB working with a rooted device can install 

forensic tools on the device, which running as super-user can image device’s partitions. 

Commercial tools like Cellebrite usually implement this technique including third-part exploits to 

gain root access. 

Recovery mode uses the bootloader to flash a forensic image in the recovery partition. 

This image boots the device, mounts the partitions in read-only mode and takes forensically 

sound images of each one. After finishing the acquisition, the forensic tool transmits images to a 

PC using ADB bootloader (Vidas, Zhang, and Christin 2011).  Since recover-partition does not 

contain personal data, this technique preserve user data integrity but modifies a complete 

partition of the device (Al Barghouthy and Marrington 2014).  

The Live SD method is similar to Recovery mode. However, this uses the concept of live 

DVD/CD/SD to boot the device using a forensic image flashed in the SD card. This method 

preserves the integrity of all device’s partitions, but this is only compatible with Android devices 

that support SD memory expansion (Lohrum 2014). In addition, this method does not require the 

ADB communication, instead uses the SD card to store the acquired images. 

Firmware update protocol uses reverse engineering to detect “dump” commands in the 

USB communication protocol. These commands are part of the proprietary protocol and are used 
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by manufacturers to update device’s firmware (odin/fastboot) (Yang et al. 2015). Dump 

commands can retrieve a raw copy of the flash memory or individual partitions, but are not 

implemented in all devices or the functionality has been retired.    

JTAG is a standard used by manufacturers for debugging and testing electronic 

equipment. This procedure requires physical access to device’s printed circuit board and access 

to a JTAG port (Ayers, Brothers, and Jansen 2014). The time required to recover an image with 

this technique is greater than using other methods such as Live SD or Recovery mode.  However, 

this procedure has been used to compare evidence integrity because of its direct access to flash 

memory chips (Oliver Buckley 2014).    

  Chip-off and Micro-read are the most invasive methods. These requires remove 

physically flash memory chips form the device. In the case of Chip-off technique, investigators 

uses manufacturing processes and especial tools (hot-air soldering stations) to remove the chips. 

Sometimes, electronic chips suffer thermal damage or electrostatic discharges that destroy 

evidence. On the other hand, micro read is a destructive process that analyzes the silicon 

substrate of each chip to find the logical status of each gate. This process is very expensive and 

is not commercially available.  

Volatile data acquisition techniques 

Accessing the physical memory (RAM) of a mobile device is not a well-studied field. One 

of the reasons is the novel technologies used to accommodate common technologies (desktop-

based) in embedded devices. For example, Android OS implements the Dalvik/ART virtual 

machine to offer a java-like environment for developers. However, Dalvik/ART uses different 

paradigms—compile in advance—to improve performance and reduce power consumption. 
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These specific implementations require a complete new set of techniques that take care of 

mobile particularities. For example, researchers recovered artifacts from RAM dumps of Android 

devices modifying and developing new profiles for the Volatility framework. These developments 

take care of the ARM architecture—prevalent in mobile devices—and the Dalvik/ART VM (Sylve 

et al. 2012).  

The first published technique to recover physical memory requires a rooted device and a 

crafted kernel module. Therefore, it involves elevating privileges on the Android device in order 

to load a forensic module (Lime) in the Linux Kernel. The kernel module copies the physical 

memory to a SD card or establish a TCP connection with the investigator’s computer to recover 

the data. This technique modifies the device. However, researchers tried to maintain evidence 

integrity under a forensic perspective and less invasive procedures (Sylve et al. 2012). 

The second known method takes advantage of the RAM chip technology used in mobile 

devices. This technology (DDRAM) is not very different from the technology implemented in 

desktop computers. For instance, the main differences between a mobile and a desktop memory 

RAM are power consumption and access speed. This similarity exposes the vulnerabilities for an 

effective cold boot attack (Halderman et al. 2008) and a post-mortem analysis. However, the 

particularities of the Android devices requires flashing the recovery partition to mount a forensic 

image that recover physical memory (Sylve et al. 2012). 

Conclusions 

Android is the dominant operating system in the current mobile market. The openness of 

this operating system and the support of Google—one of the biggest companies in the world—

are the main reasons of this broad adoption. The massive use of Android devices can include legit 
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and illegal activities. Therefore, the study and research of Android devices is of particular interest 

for forensics investigators and the scientific community. 

Fragmentation of both software and hardware is the main consequence of the openness 

of Android. This characteristic has driven the development of a heterogeneous environment, 

where a general method to acquire information in a forensically sounded way does not exist. 

Furthermore, the Android’s sandboxing scheme—a Linux-like process isolation—protects user 

data, but preclude the execution of a forensic application that retrieve artifacts from different 

applications. 

The scientific community has developed techniques that retrieve information from 

Android in a forensically sounded way. For example, techniques that use the recovery partition, 

live SD, and firmware update protocol maintain the integrity of the evidence or prat of it. 

However, these techniques are highly dependent on the device characteristics such as unlocked 

bootloader, SD memory expansion support, “dump” commands in the update protocol, and root 

access.  

The analysis of a particular device is the key factor to perform a forensic acquisition. 

Although the heterogeneous Android environment is challenging, a well-trained investigator has 

to choose the correct technique to retrieve information and preserve evidence’s integrity.  

Moreover, investigators have to understand each technique, even the underlying techniques of 

commercial software. This knowledge and correct documentation of the process guarantee that 

evidence retrieved from a mobile device can be used in trial.  
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