
University of Helsinki

Department of Mathematics and Statistics

Master's Thesis

Modal Logics and Bisimulation
Invariance

Author

Max Sandström

Supervisor

Juha Kontinen

August 5, 2019



Matemaattis-luonnontieteellinen Matematiikan ja tilastotieteen laitos

Max Sandström

Modal Logics and Bisimulation Invariance

Matematiikka

Pro gradu -tutkielma Elokuu 2019 39 s.

Modaalilogiikka, riippuvuuslogiikka, modaalinen riippuvuuslogiikka, van Benthemin lause

Kumpulan tiedekirjasto

Logiikan alalla eräs kiinnostava kysymys on minkälaisia malleja saadaan määriteltyä eri logiikoiden

kaavoilla. Tätä kutsutaan logiikan ilmaisuvoimaksi. Modaalilogiikoille ilmaisuvoiman rajoja osoitta-

via lauseita kutsutaan van Benthemin lauseiksi. Modaalilogiikoiden ilmaisuvoimalle keskeinen piirre

on bisimulaatioinvarianssi.

Tässä tutkielmassa osoitetaan van Benthemin lause kahdelle logiikalle: modaalilogiikalle ja laajenne-

tulle modaaliselle riippuvuuslogiikalle. Työssä esitellään myös modaalilogiikan ja riippuvuuslogiikan

perusteita lyhyesti ennen kunkin logiikan van Benthem lauseen todistusta.

Tässä tutkielmassa modaalilogiikan van Benthemin lause todistetaan peliteorian keinoin, mikä mah-

dollistaa todistuksen pelkästään äärellisiä malleja käyttäen, toisin kuin alkuperäinen malliteoreet-

tinen todistus. Lause sanoo, että modaalilogiikka on ilmaisuvoimaltaan sama kuin ensimmäisen

kertaluvun logiikan bisimulaatioinvariantti fragmentti.

Kaikille logiikoille van Benthemin lauseen suora todistaminen ei onnistu yhtä vaivattomasti. Tällöin

käytetään hyväksi välituloksia. Esimerkkinä tästä toimii laajennettu modaalinen riippuvuuslogiikka,

jolle lause osoitetaan todistamalla se eri logiikalle, joka puolestaan todistetaan loogisesti ekvivalen-

tiksi laajennetun modaalisen riippuvuuslogiikan kanssa. Tässä työssä van Benthem lause osoitetaan

aluksi modaalilogiikalle, jota on laajennettu intuitionistisella disjunktiolla. Tämä logiikka todis-

tetaan loogisesti ekvivalentiksi laajennetun modaalisen riipuvuuslogiikan kanssa. Näille logiikoille

van Benthemin lause rajaa logiikan kykenevän määrittelemään alaspäin suljettuja, tyhjän tiimin

ominaisuuden omaavia malleja jotka ovat bisimulaation suhteen invariantteja.
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Chapter 1

Introduction

This thesis work deals with questions regarding the expressive power of modal logics. The
reader is assumed to be familiar with mathematical logic to the extent of having a handle
on proposition logic and �rst order logic. The basic concepts of modal logics, particularly
the semantics, are brie�y explained in the work, and thus prior knowledge of modal logic is
not necessary to understand the arguments presented, but probably bene�cial. Similarly,
dependence logic and team semantics are given a cursory introduction. However some
previous experience of the use of games in mathematical logic is recommended, as some
of the concepts are glanced over quickly.

In our natural languages we can, and often do, talk of necessities and possibilities.
The idea of the logics of such sentences is therefore an old notion, however the formal
study of such logics is much more recent. The roots of modern modal logic lie in the early
critique of Bertrand Russell's and Alfred Whitehead's Principia Mathematica. Written
in 1910, Principia Mathematica was the authors' attempt at �nding a common and basic
foundation for all mathematics. Given this goal, Clarence Irving Lewis objected to the
formalisation of the implication used in the work, claiming it did not correspond to the
way conditional statements are used in natural languages. The so called material im-
plication used in Principia Mathematica is the formalisation still commonly used today
in mathematical logic, while Lewis suggested also taking the contingent nature of truth
values into consideration. He wished for implications to be necessarily binding: that no
possible change in circumstances could make the antecedent of the conditional true, but
the consequent false. He called this the strict implication, and its de�nition requires a
modal framework for the language.[3] Lewis continued developing this modal theory into
the axiomatic systems he called S1 through S5, which birthed an abundance of research
in the syntax of modal logics.

The semantic basis of modal logic however, which is at the core of this work, was
not formalised until much later. The lack of a rigorous meaning of statements being

2



true caused some philosophers, Robert Quine chief among them, to doubt the validity of
modal arguments especially within metaphysics. To mend this rift, Saul Kripke proposed
in 1959 the semantics of modal logic conceptualised as possible worlds and simultaneously
proving a completeness theorem for the logic.[3] Modal semantics are hence often called
Kripke semantics, and the logical structures created by the semantics are called Kripke
structures. These results eventually led to some interesting results regarding the expressive
power of modal logics. Johan van Benthem proved in 1976 the van Benthem theorem,
which states that modal logic is in fact exactly the bisimulation invariant fragment of �rst
order logic.[1] In this work we will show van Benthem's result using a game theoretical
approach, di�ering from van Benthem's original model theoretical proof. This method of
proving the theorem is more straight forward in the technical details, and it broadens the
scope of the proof by not requiring the use of in�nite structures when showing the claim
for �nite ones.

The third chapter of this thesis work proves the analogous theorem for an expansion
of modal logic. The logic considered in this chapter is extends modal logic by the so
called dependence atom and team semantics; two terms adopted from dependence logic.
Dependence logic was discovered by Jouko Väänänen in 2007 with the aim to capture
the essence of di�erent notions of dependence central to scienti�c language in a formal
framework. Dependence logic requires team semantics to interpret it. Väänänen de�ned
two extensions of modal logic: modal dependence logic and extended modal dependence
logic.[6]

Modal logic has found applications within theoretical computer science in the �eld
of software modelling. In software modelling, programs are often considered to be state
processes, which are analogous to the possible worlds of Kripke structures thus ensuring a
snug match. Applications of dependence logic range from linguistics via database theory
to quantum physics.

3



Chapter 2

Modal Logic

Modal logic is the logic of possible worlds; the logic of possibilities and necessities. Despite
the seemingly dense air of those concepts, it turns out the logic formalising them is limited
in its power. Modal logic can be shown to be as expressive as the so-called bisimulation
invariant part of �rst-order logic. This is the essence captured by the van Benthem
Theorem, which will be proven in this chapter using a game theoretical approach. But
�rst, a brief run-through of the basic concepts in modal logic. This �rst chapter follows
the outline of Martin Otto in [7], while expanding on the arguments presented.

2.1 The Fundamentals of Modal Logic

The usual way to de�ne modal logic in mathematical logic is as an extension of proposi-
tional logic, with the de�nition of structures in the following vein.

De�nition 2.1 (Kripke structures). Let W be a non-empty set, E be a binary relation
symbol, and Φ be a collection of proposition symbols. Suppose V : Φ → P(W ) de�nes a
value function. ThenM = (W,EM, V ) is a Kripke structure.

The value function gives for each proposition in Φ the worlds in which the proposition
is true. The rest of the semantics is de�ned as in classical logic with the addition of
the modal operators necessity, �, and possibility, ♦. Using this de�nition one would
denote the modal logic over the vocabulary Φ by ML(Φ). However for the purposes of
this approach to the van Benthem theorem we will use a de�nition based on predicates
like in �rst order logic.

De�nition 2.2 (Predicative Kripke structures). LetW be a non-empty set, E be a binary
relation symbol, and P be �nitely many unary predicate symbols (the vocabulary of our
structure). ThenM = (W,EM,PM) is a predicative Kripke structure.
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Under this de�nition the setW is the set of possible worlds, E is the attainability relation
and the predicates P represent the propositions in the structure. We write the set of
worlds attainable from a world m ∈ W as EM[m]. We denote modal logic over the
vocabulary (E;P) by ML(P).

In this particular notation we refer to modal logics with conventions from �rst order
logic. Notice, however, that constant and function symbols are disregarded, as they do
not correspond to any aspect of modal logic as it is usually de�ned.

De�nition 2.3 (Formulae). An atomic formula of ML is Px, where x is a variable and
P ∈ P. Formulae of ML are de�ned recursively as being atomic formulae or compounded
from other formulae using negation, ¬; conjunction, ∧; disjunction, ∨; implication, →; or
the modal quanti�ers for necessity, �, and possibility, ♦.

Let P ∈ P be a predicate, x a variable, ϕ and ψ be modal logic formulae. The
semantics are de�ned at particular worlds as follows

1. M,m |= Px if and only if m ∈ PM,

2. M,m |= ¬ϕ if and only ifM,m 2 ϕ,

3. M,m |= ϕ ∧ ψ if and only ifM,m |= ϕ andM,m |= ψ,

4. M,m |= ϕ ∨ ψ if and only ifM,m |= ϕ orM,m |= ψ,

5. M,m |= ϕ→ ψ if and only ifM,m 2 ϕ orM,m |= ψ,

6. M,m |= �ϕ if and only ifM,m′ |= ϕ for all m′ ∈ EM[m], and

7. M,m |= ♦ϕ if and only ifM,m′ |= ϕ for some m′ ∈ EM[m],

whereM is a Kripke model, m and m′ are worlds ofM.

For a given modal logic formula ϕ we denote the class of pointed Kripke structures
that ϕ de�nes by Mod(ϕ).

De�nition 2.4 (Modal depth). Let ϕ be a ML-formula. The modal depth of ϕ, md(ϕ),
is de�ned as follows:

1. if ϕ = Px, or ϕ = ¬Px, for some variable x, md(ϕ) = 0;

2. if ϕ = ψ ∧ θ, ϕ = ψ ∨ θ, or ϕ = ψ → θ for some ML-formulae ψ and θ, md(ϕ) =
max(md(ϕ),md(θ));

3. if ϕ = ♦ψ, or ϕ = �ψ, for some ML-formula ψ, md(ϕ) = md(ψ) + 1.
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The modal logic restricted to formulas of modal depth ` ∈ N is denoted by ML`.

De�nition 2.5 (Standard translation to FO). The standard translation of a ML-formula
ϕ to �rst order logic, denoted [ϕ]∗, is as follows:

[P (x)]∗ = P (x),
[¬ψ]∗ = ¬[ψ]∗,

[ψ ∧ θ]∗ = [ψ]∗ ∧ [θ]∗,
[ψ ∨ θ]∗ = [ψ]∗ ∨ [θ]∗,

[ψ → θ]∗ = [ψ]∗ → [θ]∗,
[�ψ]∗(x) = ∀y(Exy → [ψ]∗(y/x)), and

[♦ψ]∗(x) = ∃y(Exy ∧ ¬[ψ]∗(y/x)).

Since this translation uses only two variables, which can be cycled repeatedly in nested
modal quanti�ers, this de�nition essentially embeds modal logic into FO2. The remainder
of this chapter is used to �nd the precise fragment of FO that corresponds to modal logic.

De�nition 2.6 (`-neighbourhood). SupposeM is a Kripke structure with a distinguished
element m. Given a natural number `, the `-neighbourhood of m is the set U `(m) of all
nodes reachable from m on E-paths of length at most `.

De�nition 2.7 (Tree structures). AKripke structure with a distinguished element,M,m,
is called a tree structure if EM is acyclic and every other world can be reached from m
by a unique path. A branch of the tree is a path, which cannot be expanded further and
the worlds at the end of branches are called leaves. The depth of a tree structure is the
E-length of its longest branch. A Kripke structure M,m is said to be `-locally a tree
structure if the restrictionM � U `(m),m is a tree structure.

De�nition 2.8 (Property of Kripke structures). A property of pointed Kripke structures
is a class of Kripke structures closed under isomorphisms.

The following concept expresses the idea that whether a structure has a property can
be deduced from a restriction of the structure.

De�nition 2.9 (`-locality). A property K of Kripke structures is said to be `-local, for
` ∈ N, if for every Kripke structureM,m

(M,m) ∈ K ⇔ (M � U `(m),m) ∈ K.

If the property K is de�ned by a formula ϕ, `-locality can be expressed as the equivalence

M,m |= ϕ ⇐⇒ M � U `(m),m |= ϕ.
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2.2 Equivalences and Bisimulation

In order to better grasp the upcoming concepts, we will go through some more famil-
iar relations from �rst order logic. The upcoming bisimulation relations are similar to
equivalence, but more limited in range, giving them some unique features.

In the following de�nitions and lemmas we assume that M = (W,EM,PM) and
M′ = (W ′, EM

′
,PM

′
) are Kripke structures.

De�nition 2.10 (Quanti�er depth). The quanti�er depth of a FO-formula ϕ, denoted
qd(ϕ), is de�ned recursively as follows:

1. if ϕ = Px, or ϕ = ¬Px, for some variable x, qd(ϕ) = 0;

2. if ϕ = ψ ∧ θ, ϕ = ψ ∨ θ, or ϕ = ψ → θ for some FO-formulae ψ and θ, qd(ϕ) =
max(qd(ϕ), qd(θ));

3. if ϕ = ∃ψ, or ϕ = ∀ψ, for some FO-formula ψ, qd(ϕ) = qd(ψ) + 1.

De�nition 2.11 (FO-equivalence). Two structuresM,m andM′,m′ are FO-equivalent,
denotedM,m ≡FO M′,m′, ifM |=[m/x] ϕ if and only ifM′ |=[m′/x] ϕ, for all FO-formulae
ϕ(x). The two structures are FO-equivalent to depth n, for some n ∈ N ifM |=[m/x] ϕ if
and only ifM′ |=[m′/x] ϕ, for all FO-formulas ϕ such that qd(ϕ) ≤ n. This is denoted by
M,m ≡FO

n M′,m′.

De�nition 2.12 (Partial isomorphism). A partial function f : M → M′ is a partial
isomorphism if the function g : M � Dom(f) → M′ � Rng(f) de�ned by g(a) = f(a) is
an isomorphism.

De�nition 2.13 (Partially isomorphic structures). Let k be a natural number. Two
Kripke structuresM,m andM′,m′ are k partially isomorphic, writtenM,m ∼=k M′,m′,
if there exists a sequence (In)n≤k of non-empty sets of partial isomorphisms f , for which
(m,m′) ⊆ f , betweenM andM′, such that it has the following properties:

1. For every partial isomorphism f ∈ In+1 and w ∈ W there is a partial isomorphism
g ∈ In, such that f ⊆ g and w ∈ Dom(g),

2. For every partial isomorphism f ∈ In+1 and w′ ∈ W ′ there exists a partial isomor-
phism g ∈ In, such that f ⊆ g and w′ ∈ Rng(g).

A classic result in model theory states that for two structuresM andM′,M,m ≡n

M′,m′ if and only ifM,m ∼=nM′,m′ and, furthermore, both claims are equivalent with
the duplicator having a winning strategy in the n-round Ehrenfeucht-Fraïsse game. For
more details on this topic see for example [5].
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Now we shall de�ne similar concepts for modal logic and show an equivalence result of
a similar nature. This requires us to de�ne �rstly equivalence in modal logic, secondly the
bisimulation relation, and thirdly a game that encapsulates the essence of this relation.

De�nition 2.14 (ML-equivalence). Two Kripke structures M,m and M′,m′ are ML-
equivalent, denoted M,m ≡ML M′,m′, if M,m |= ϕ if and only if M′,m′ |= ϕ, for all
ML-formulas ϕ. The two Kripke structures are ML-equivalent to depth n, for some n ∈ N
ifM,m |= ϕ if and only ifM′,m′ |= ϕ, for all ML-formulas ϕ such that md(ϕ) ≤ n. This
is denoted byM,m ≡ML

n M′,m′.

De�nition 2.15 (Atomic correspondence). Two worlds w ∈ W and w′ ∈ W ′ are said to
be in atomic correspondence if they satisfy the same atomic formulae, i.e.

M,w |= Px⇔M ′, w′ |= Px

for all P ∈ P.

De�nition 2.16 (Bisimulation). A bisimulation betweenM andM′ is a binary relation
∼⊂ W ×W ′ such that, for w ∈ W and w′ ∈ W ′, if w ∼ w′, then the following hold:

1. w and w′ are in atomic correspondence,

2. if (w, v) ∈ EM for some world v ∈ W , then there exists a world v′ ∈ W ′ such that
v ∼ v′ and (w′, v′) ∈ EM′

,

3. if (w′, v′) ∈ EM′
for some world v′ ∈ W ′, then there exists a world v ∈ W such that

v′ ∼ v and (w, v) ∈ EM.

When a bisimulation exists betweenM, w andM′, w′ they are said to be bisimilar.

We de�ne the bounded variant of the bisimulation by recursion. The resulting relation
is similar, despite the di�erences in their de�nition.

De�nition 2.17 (k-bisimulation). Let w ∈ W and w′ ∈ W ′ be worlds and k ∈ N.
k-bisimulations betweenM andM′ are de�ned recursively as follows:

M, w ∼0 M′, w′ if and only if w and w′ are in atomic correspondence,
M, w ∼k+1 M′, w′ if and only if the following hold:

M, w ∼0 M′, w′,
for every v ∈ EM[{w}] there exists v′ ∈ EM′

[{w′}] such that v ∼k v
′, and

for every v′ ∈ EM[{w′}] there exists v ∈ EM[{w}] such that v ∼k v
′.

IfM,m ∼k M′,m′ they are said to be k-bisimilar.
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2.3 Bisimulation as a Game

Bisimulation can alternatively be de�ned by a zero-sum game of perfect information played
by two players, denoted I and II in this text. During each round of the game each
player moves a pebble in one of the two Kripke structures starting from either of the
distinguished elements. Player I moves the pebble of his choice forward along an E-edge,
thereby challenging player II, who responds by moving the other pebble forward along
an E-edge in the other model. The victory condition for player II is that she maintains
atomic equivalence; she loses if the played worlds of a given turn do not agree on monadic
predicates or she runs out of worlds connected by E.

De�nition 2.18 (Bisimulation game). Assume M and M′ are two Kripke structures,
with the same vocabulary P and distinguished elements m and m′ respectively. The
bisimulation game BG(M,m,M′,m) over M and M′ is a game, where the winning
condition consists of plays x0, y0, x1, y1, ... such that player II has adhered to the following
rules:

1. If x0 = m, then y0 = m′, and if x0 = m′, then y0 = m. In either case, m and m′

have atomic correspondence.

2. If xn = mn, wheremn ∈ W and (mn−1,mn) ∈ EM formn−1 from the previous round,
then yn = m′n, where m

′
n ∈ W ′ and (m′n−1,m

′
n) ∈ EM

′
. Otherwise, if xn = m′n,

where m′n ∈ W ′ and (m′n−1,m
′
n) ∈ EM

′
for m′n−1 from the previous round, then

yn = mn, where mn ∈ W and (mn−1,mn) ∈ EM. Additionally m′n and mn have
atomic correspondence.

Both players continue playing worlds as long as there are E-edges from previously played
worlds.

In a similar vein, k-bisimulations can be de�ned through a k-round bisimulation game.

De�nition 2.19 (Winning strategy). A strategy for player II of a bisimulation game
BG(M,m,M′,m′) is an in�nite sequence

σ = (σ0, σ1, ...)

of functions σi : (W ∪W ′)i → W ∪W ′ such that σn(v0, ..., vn−1, w) ∈ W ′ for all w ∈ W
and σ(v0, ..., vn−1, w

′) ∈ W for all w′ ∈ W ′, where v0, ..., vn−1 ∈ W ∪W ′ and n ∈ N. A
strategy is said to be a winning strategy if all possible plays x0, σ0(x0), x1, σ1(x0, x1), ...
are contained in the winning condition of the game. In other words, a winning strategy
is a way for player II to decide what to play that maintains atomic correspondence and
an unbroken path to the distinguished worlds.
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Before showing how these concepts are related to each other we shall de�ne Hintikka
formulae, which are modal logic formulae that crystallise the information about a world
in a Kripke structure.

De�nition 2.20 (Hintikka formula). Assume P = {Pi | i ∈ I} for some �nite index
set I and let J ⊆ I be index sets such that M,m |= Pix if and only if i ∈ J . The
Hintikka formula forM,m of depth n, χn

[M,m], for some n ∈ N, is de�ned recursively in
the following manner:

χ0
[M,m] =

∧
i∈J

Pix ∧
∧

i∈I\J

¬Pix;

χn+1
[M,m] = χ0

[M,m]∧
∧

u∈EM[m]

♦χn
[M,u] ∧�

∨
u∈EM[m]

χn
[M,u].

An immediate result from this de�nition is that, for every Kripke structure M,m,
M,m |= χn

[M,m], for all n ∈ N.

Lemma 2.21. There are a �nite number of Hintikka formulae of depth k up to equiva-
lence, for every k ∈ N.

Proof. We will prove the claim by induction on the depth of the Hintikka formula. By
simple combinatorics there are 2|P| possible combinations of the predicates in P, which is
�nite since P is �nite. Hence the number of Hintikka formulae of depth 0 is �nite.

Suppose there are a �nite number of Hintikka formulae of depth k up to equivalence.
Now consider a Hintikka formula of depth k + 1. As we already showed, there are a
�nite number of Hintikka formulae of depth 0. For the conjunction and disjunction we
have a selection of Hintikka formulae of depth k, of which there is a �nite number by the
induction hypothesis. Multiplying these numbers together gives the amount of Hintikka
formulae of depth k + 1 which is �nite.

By the induction principle, a Hintikka formula of any depth is equivalent to a �nite
formula and there are a �nite number of Hintikka formulae of that depth.

Now we are ready to connect these concepts together: that the game actually is an
alternative de�nition for the bisimulation relation and that they are equivalent with claims
regarding modal logic equivalence and Hintikka formulae.

Lemma 2.22. Suppose M,m and M′,m′ are Kripke structures, and let ` ∈ N. The
following are equivalent:

1. M,m ∼`M′,m′;
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2. Player II has a winning strategy in the `-round bisimulation game over M,m and
M′,m′;

3. M,m ≡ML
` M′,m′;

4. M′,m′ |= χ`
[M,m].

Proof. 1. ⇒ 2.: Assume M,m ∼` M′,m′. Consider the `-round bisimulation game
over M,m and M′,m′. We will show by induction on the rounds of the game that the
bisimulation relation de�nes a winning strategy for player II. Basis case: in the �rst round
player I plays either m or m′, and player II plays the other one. Since the models at those
worlds are bisimilar, the worlds have atomic correspondence. Hence player II has upheld
the winning conditions.

Induction case: assume player II has adhered to the winning conditions for the previous
n < ` rounds. Now we can assume that on round n + 1 player I can play either a world
from W or one from W ′, since otherwise the game is over and player II is victorious.
Suppose player I plays a world mn+1 ∈ W , such that (mn,mn+1) ∈ EM, for a world
mn played in the previous round. Since player II has been playing according to the
bisimulation relation the other world played during the previous round m′n ∈ W ′ is such
that M,mn ∼`−(n−1) M′,m′n. Now, as n + 1 ≤ `, the bisimulation relation states there
exists a world m′n+1 ∈ W ′ such that (m′n,m

′
n+1) ∈ EM′

and the worlds mn+1 and m′n+1

have atomic correspondence. Hence player II can play m′n+1 and uphold the winning
condition. An analogous argument holds for when player I plays a world from W ′, due to
the third condition of the `-bisimulation. Therefore by the induction principle ifM,m ∼`

M′,m′, then player II has a winning strategy in the `-round BG(M,m,M′,m′).
2. ⇒ 3.: Assume player II has a winning strategy in the `-round bisimulation game

over M,m and M′,m′. Let ϕ be a ML`-formula. We will show by induction on the
structure of ϕ that if player II has a winning strategy in the `-round bisimulation game
overM, w andM′, w′, thenM, w |= ϕ if and only ifM′, w′ |= ϕ, for all worlds w ∈ W
and w′ ∈ W ′. Assume then w and w′ are such that player II has her winning strategy.
Base step: Suppose ϕ = Px or ϕ = ¬Px, for some P ∈ P. NowM, w |= ϕ if and only
ifM′, w′ |= ϕ, as the winning condition of player II ensures that the initial worlds have
atomic correspondence.

Induction step: This step breaks down into several cases.

1. ϕ = ¬ψ for some ML`-formula ψ. Assume as the induction hypothesis thatM, w |=
ψ ⇔M′, w′ |= ψ if player II has a winning strategy. Now the induction hypothesis
is equivalent withM, w 2 ψ ⇔M′, w′ 2 ψ if player II has a winning strategy, and
henceM, w |= ¬ψ if and only ifM′, w′ |= ¬ψ.
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2. ϕ = ψ ∧ θ for some ML`-formulae ψ and θ. For the induction hypothesis suppose
that M, w |= ψ ⇔ M′, w′ |= ψ and M, w |= θ ⇔ M′, w′ |= θ, if player II has a
winning strategy. Seeing as this is the case, by the de�nition of a ML-formula it
follows thatM, w |= ψ ∧ θ if and only ifM′, w′ |= ψ ∧ θ.

3. ϕ = ψ ∨ θ for some ML`-formulae ψ and θ. Assume for the induction hypothesis
thatM, w |= ψ ⇔M′, w′ |= ψ andM, w |= θ ⇔M′, w′ |= θ, when player II has a
winning strategy in the bisimulation game. Since we assumed so, by the de�nition
of the disjunction it also holds thatM, w |= ψ ∨ θ if and only ifM′, w′ |= ψ ∨ θ.

4. ϕ = ψ → θ for some ML`-formulae ψ and θ. The induction hypothesis is that
M, w |= ψ ⇔ M′, w′ |= ψ and M, w |= θ ⇔ M′, w′ |= θ, if player II has a
winning strategy. Once again, since we assumed the winning strategy to exist, by
the de�nition of the semantics of ML-formulae it holds thatM, w |= ψ → θ if and
only ifM′, w′ |= ψ → θ.

5. ϕ = ♦ψ for some ML`−1-formula ψ. As the induction hypothesis assume that if
player II has a winning strategy in the ` − 1-round bisimulation game over M, v
and M′, v′, then M, v |= ψ ⇔ M′, v′ |= ψ, for all v ∈ W and v′ ∈ W ′. Now
assume M, w |= ♦ψ. By the de�nition of the possibility quanti�er, there exists a
world v ∈ EM[w], such that M, v |= ψ. Since player II has a winning strategy in
the `-round bisimulation game over M, w and M′, w′, we let v′ ∈ EM′

[w′] be the
world given by the winning strategy. Now player II has a winning strategy in the
` − 1-round bisimulation game overM, v andM′, v′, and therefore it follows from
the induction hypothesis thatM′, v′ |= ψ. HenceM′, w′ |= ♦ψ, by de�nition. The
other direction is analogous.

6. ϕ = �ψ for some ML`−1-formula ψ. Suppose player II has a winning strategy in the
`−1-round bisimulation game overM, v andM′, v′, thenM, v |= ψ ⇔M′, v′ |= ψ.
Suppose M, w |= �ψ. If EM[w] is empty we are �nished, since then EM

′
[w′] is

also empty, or otherwise player II would lose on the second round of the game.
Therefore we assume EM[w] is not empty. Suppose v ∈ EM[w] is an arbitrary
element. NowM, v |= ψ, and due to player II's winning strategy there also exists
a world v′ ∈ EM

′
[w′]. Since v and v′ can be played on the second round of the

BG(M, w,M′, w′), player II has a winning strategy in the `−1-round bisimulation
game over M, v and M′, v′. By the induction hypothesis then M′, v′ |= ψ. This
argument holds for all v ∈ EM[w] and hence M′, w′ |= �ψ. Analogously for the
other direction.

By the induction principle M, w |= ϕ ⇔ M′, w′ |= ϕ for all w ∈ W , w′ ∈ W ′, and
ϕ ∈ ML`(P), if player II has a winning strategy in the `-round bisimulation game over

12



M, w andM′, w′. In particularM,m |= ϕ if and only ifM′,m′ |= ϕ.
3.⇒ 4.: AssumeM,m ≡`M′,m′. Since md(χ`

[M,m]) = ` andM,m |= χ`
[M,m], by the

de�nition of modal equivalence it follows thatM′,m′ |= χ`
[M,m].

4. ⇒ 1.: Assume M′,m′ |= χ`
[M,m]. We will show that if a world w′ ∈ W ′ is such

that M′, w′ |= χk
[M,m], then M,m ∼k M′, w′, for all k ≤ `. Basis case: suppose

M′, w′ |= χ0
[M,m]. Now from the construction of the Hintikka formula it follows im-

mediately thatM′, w′ satis�es exactly the same predicates asM,m, and hence they have
atomic correspondence. In other wordsM,m ∼0 M′, w′.

Induction case: k = i + 1 for some 0 ≤ i < `. For the induction hypothesis suppose
that if M′, v′ |= χi

[M,v], then M, v ∼i M′, v′, for all v ∈ W and v′ ∈ W ′. Assume that

M′, w′ |= χi+1
[M,m]. Now M′, w′ |= χ0

[M,m], since χ
0
[M,m] is one of the conjuncts of χi+1

[M,m].

As explained previously this meansM′, w′ andM,m have atomic correspondence. The
second conjunct of χi+1

[M,m] is ∧
u∈EM[m]

♦χi
[M,u],

a conjunction in its own right. NowM′, w′ satis�es this conjunction and thereby it also
satis�es each of the conjuncts, i.e. M′, w′ |= ♦χi

[M,u] for all u ∈ EM[m]. This means by

the de�nition of the semantics of modal logic that there exists a world u′ ∈ EM′
[w′] such

thatM′, u′ |= χi
[M,u], for every u ∈ EM[m]. It follows now from the induction hypothesis

that for every u ∈ EM[m] there exists a world u′ ∈ EM′
[w′] such thatM, u ∼i M′, u′ .

The third and �nal conjunct of χi+1
[M,m] is a disjunction quanti�ed by a necessity quanti�er

�
∨

u∈EM[m]

χi
[M,u].

That modelM,m satis�es this formula is equivalent toM′, u′ |=
∨

u∈EM[m] χ
i
[M,u] for every

u′ ∈ EM
′
[w′], by the de�nition of the modal semantics. Since the disjunction runs the

gamut of worlds attainable fromM,m, the previous claim can be expressed as for every
u′ ∈ EM′

[w′] there exists a world u ∈ EM[m] such thatM′, u′ |= χi
[M,u]. By the induction

hypothesis this implies that for every u′ ∈ EM
′
[w′] there exists a world u ∈ EM[m]

such that M, u ∼i M′, u′. Now we have shown all three conditions for the bounded
bisimulationM,m ∼i+1 M′, w′, hence by the induction principleM,m ∼k M′, w′ holds
for all integers 0 ≤ k ≤ `, ifM′, w′ |= χk

[M,m]. Since we assumed thatM′,m′ |= χ`
[M,m], it

now follows thatM,m ∼`M′,m′.

One of the consequences of this result is that the two de�nitions for the bounded
bisimulation are equivalent. The game theoretical de�nition will be used for the remainder
of this chapter.
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This result has the following corollary when one considers the bounded bisimulation as
an equivalence relation. That is an apt interpretation, since the identity function de�nes
a winning strategy for player II in the game BG(M,m,M,m), the game is symmet-
ric by de�nition BG(M,m,M′,m′) = BG(M′,m′,M,m), and if M,m ∼` M′,m′ and
M′,m′ ∼`M′′,m′′ then the compound function of the strategies for player II is a winning
strategy in the game BG(M,m,M′′,m′′).

Corollary 2.23. Let ` ∈ N and P be �nite. Suppose the relation ∼` is a bounded bisim-
ulation between Kripke structures of a similar propositional type. The index of ∼` is
�nite.

Proof. By Lemma 2.22. all Kripke models within a equivalence class satisfy the same
Hintikka formula. By Lemma 2.21. there are only a �nite number of Hintikka formulae
of depth `. Hence the index of the equivalence relation ∼` is �nite.

2.4 Some Features of Bisimulation

De�nition 2.24 (Disjoint sum). The disjoint sum M +M′ is a Kripke-structure with
the universe W t W ′, where EM+M′

= {((w,L), (v, L)) | if (w, v) ∈ EL, where L =
M or L =M′}, and PM+M′

= {(w,L) | if w ∈ PL, where L =M or L =M′}.

Lemma 2.25. IfM,M′ andM′′ are Kripke structures, thenM,m ∼M′,m′ if and only
ifM+M′′, (m,M) ∼M′,m′.

Proof. SupposeM,M′ andM′′ are Kripke-structures, and let m ∈ W and m′ ∈ W ′. For
one direction of the equivalence, assume that M,m ∼ M′,m′ and let σ be the winning
strategy of player II. Now consider the bisimulation game forM +M′′,m andM′′,m′.
Player II has a winning strategy in the game, since the union of the two structures is
disjoint, i.e. the same strategy σ is victorious as in the game over M,m and M′,m′.
For example, if player I plays (w,M) on round n, with a history v̄ ∈ W n−1, the winning
strategy gives σn−1(v̄, w) = w′, such that w and w′ have atomic correspondence and w′ is
attainable from a world played in the previous turn. When this is the case, w′ also has
atomic correspondence with (w,M).

For the other direction of the equivalence, suppose thatM +M′′, (m,M) ∼ M′,m′

and let σ′ be the winning strategy of player II. Now it is simple to construct a set of
functions F consisting of functions fi : (W ∪W ′)i → ((W tW ′′) ∪W ′)i, and a function
g : (W tW ′′) ∪W ′ → W ∪W ′, such that fi(v̄) = v̄′, where

v′j =

{
(vj,M), if vj ∈ W , or

vj, otherwise,
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and

g(v) =

{
u, if v ∈ W tW ′′ and v = (u, L), where L =M or L =M′′, or

v, otherwise.

Now the set of composite functions {g ◦ σi ◦ fi | i ∈ N} is a winning strategy for player II
in the bisimulation game overM,m andM′,m′. HenceM,m ∼M′,m′.

Lemma 2.26. The following holds for all Kripke-structures M and M′, with �xed ele-
ments m and m′ respectively.

1. M,m ∼`M′,m′ if and only ifM� U `(m),m ∼`M′� U `(m′),m′.

2. If both M,m and M′,m′ are tree structures of depth `, then M,m ∼` M′,m′ if
and only ifM,m ∼M′,m′.

Proof. Let M and M′ be Kripke structures with distinguished elements m and m′ re-
spectively, and let ` ∈ N.

For claim 1. suppose M,m ∼` M′,m′ and let the winning strategy of player II be
σ. Now the restriction of the same strategy can be used victoriously in the bisimulation
game overM� U `(m),m andM′� U `(m′),m′, since the restriction does not a�ect which
worlds can be played in an `-round game. The game progresses linearly over the edges of
the models, and hence the worlds at a distance greater than ` from m (or m′) cannot be
played even in the unrestricted game. For the other direction supposeM� U `(m),m ∼`

M′� U `(m′),m′ and let τ be the winning strategy, containing functions τi : (W � U `(m)∪
W ′ � U `(m′))i → W � U `(m) ∪W ′ � U `(m′), for i ≤ ` − 1. Now a winning strategy for
the bisimulation game over M,m and M′,m′, denoted by σ, can be constructed, since
the values the strategy assigns for the worlds at a modal distance greater than ` do not
matter. The strategy can be de�ned as follows

σ(v̄, w) =


τ(v̄, w), if w ∈ W � U `(m) ∪W ′ � U `(m′),

m, if w ∈ W and w /∈ W � U `(m) ∪W ′ � U `(m′),

m′, if w ∈ W ′ and w /∈ W � U `(m) ∪W ′ � U `(m′).

This is a winning strategy since it assigns a world in atomic correspondence for every
move player I makes until turn `.

Now consider claim 2. AssumeM,m andM′,m′ are tree structures of depth `. Now
each play of the unbounded bisimulation game over the structures consists of a branch
in each of the trees, because they are tree structures and therefore have no loops in their
collections of edges. These branches are at most of length `, since the structures are of
depth `. Therefore each play of the unbounded bisimulation game takes at most `-rounds.
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In other words the game is bound by `. Hence any strategy for the `-round game is a
strategy for the unbounded game and vice versa. This is true especially for a winning
strategy, which proves the claim.

De�nition 2.27 (Tree unravelling). The tree unravellingM∗
m ofM from m is a Kripke

structure constructed in the following fashion. The universe of the unravelling W ∗
m is

populated with all the paths from m in EM and the world m. In turn E is interpreted so
that for each path of length k+1, e.g. ((w0, w1), ..., (wk, wk+1)), is connected to its subpath
of length k, i.e. (((w0, w1), ..., (wk−1, wk)), ((w0, w1), ..., (wk, wk+1))), where k ∈ N. The
predicates in P are interpreted according to the last world in each path. Due to this the
natural projection π : W ∗

m → W , which maps a path to its �nal world, conserves the value
of the predicates.

Lemma 2.28. AssumeM is a Kripke structure with a distinguished world m.

1. The tree unravellingM∗
m is bisimilar toM via the natural projection π.

2. For every ` ∈ N the restriction of the tree unravelling M∗
m to depth ` is a tree

structure `-bisimilar toM,m.

3. Let Kripke structure M be �nite with distinguished world m and let ` ∈ N. Now
there exists a partial unravelling (to depth `) that yields a �nite bisimilar companion
that is `-locally a tree structure.

Proof. LetM be a Kripke structure with the distinguished world m and letM∗
m be the

tree unravelling ofM from m.
For the �rst claim, consider the bisimulation game overM,m andM∗

m,m. Initially
player I plays the world m from either model and player II answers with m from the
other structure. Due to the construction of the tree unravelling the worlds are in atomic
correspondence. For every consequent turn player I plays either a path from M∗

m or a
world from M. If he plays a path, player II answers with its image under the natural
projection, which is by de�nition in atomic correspondence with the path. The world
must also be attainable from the world played in the previous turn, as there exists a path
in the tree unravelling corresponding to it. If player I plays a world, player II responds
with the path to the world. The path is de�ned to be in atomic correspondence with the
world and since the world was attainable from the world played on the preceding turn,
there must exist a path to it with a subpath leading to the previous world. Hence player
II has a winning strategy andM∗

m,m andM,m are bisimilar.
Consider the second claim. As proven in the previous point, M,m is bisimilar to

M∗
m,m. Since a winning strategy for a longer game is also a winning strategy for a shorter

game of the bisimulation game over some given structures, M,m and M∗
m,m are also
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`-bisimilar. According to part 1 of Lemma 2.26M∗
m � U `(m),m andM � U `(m),m are

`-bisimilar. Seeing as the game is bound by `, restricting the playable worlds to the modal
distance ` is redundant in this case. Worlds at a modal distance greater than ` from m
could not be played in an `-round game anyway. Hence the same winning strategy can be
used in the bisimulation game overM∗

m � U `(m),m andM,m. Therefore the structures
are `-bisimilar for all ` ∈ N.

To prove claim 3., consider the restriction of the tree unravellingM∗
m � U `(m). This

restriction is `-locally a tree structure and it is `-bisimilar to M,m, as shown in the
previous part. In order to expand the restriction in a way that maintains bisimilarity,
consider the worlds of the restriction at a modal distance of ` from m. Let b∗ be one
such leaf. Now for each of these leaves we attach a copy of the original modelM to the
restricted tree, identifying the leaf with its image under the natural projection b = π(b∗).
This means we add fresh worlds for each of the worlds inM, call them w∗ for each w ∈ W ,
at each of the leaves at a modal distance of ` from m, add corresponding worlds to the
interpretation of E, and add the worlds to the interpretation of the predicates as inM.

Now consider the bisimulation game overM and the previously described structure.
A winning strategy can be devised for player II by �rst making her play for `-rounds
according to the winning strategy in the `-round bisimulation game overM,m andM∗

m �
U `(m),m. If the game continues after this point the players have reached the copies of
the original model attached at the ends of the branches, and hence player II can play w∗
if player I plays w and vice versa. This ensures the victory, seeing as at this point the
edges and the predicates in the new construction are identical to the original structure.
Therefore the structures are bisimilar. As previously noted, the new structure is `-locally
a tree structure and �nite.

2.5 The van Benthem Theorem

De�nition 2.29 (Bisimulation invariance). A formula ϕ(x) ∈ FO[E;P] is bisimulation
invariant if wheneverM,m ∼M′,m′, thenM,m |= ϕ if and only ifM′,m′ |= ϕ.

Theorem 2.30. The following are equivalent for any ϕ(x) ∈ FO of quanti�er rank q.

i) ϕ(x) is invariant under bisimulation.

ii) ϕ(x) is equivalent to a formula of ML`, where ` = 2q − 1.

Proof. The proof has three stages: showing that every bisimulation invariant formula is
`-local; proving that any bisimulation invariant formula that is `-local is also invariant
under `-bisimulation; all properties invariant under `-bisimulation are de�nable in ML`.
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Step 1: Suppose ϕ(x) is bisimulation invariant, let q = qr(ϕ), and let ` = 2q − 1.
Assume M is a Kripke structure with distinguished element m. By the de�nition of `-
locality, we need to show that M,m |= ϕ if and only if M � U `(m),m |= ϕ. Since ϕ is
bisimulation invariant we may replace the restriction M � U `(m) in the claim with any
bisimilar structure. To that end, consider the tree unravelling ofM. By Lemma 2.28 the
tree unravellingM∗

m,m is bisimilar toM,m, and hence by Lemma 2.26 the restriction of
the tree unravellingM∗

m � U `(m),m is bisimilar to the restrictionM � U `(m),m. Now it
su�ces to show thatM,m |= ϕ if and only if theM∗

m � U `(m),m |= ϕ, where the latter
structure is a tree structure of depth `.

In order to show this equivalence we endeavour to �nd two structures M′ and M′′,
such that M′,m′ ∼ M,m, M′′,m′′ ∼ M∗

m � U `(m),m and M′,m′ ≡FO
q M′′,m′′, where

m′ and m′′ are distinguished worlds of their respective structures. This is enough since
then the following equivalence chain holds:

M,m |= ϕ if and only if
M′,m′ |= ϕ if and only if
M′′,m′′ |= ϕ if and only if
M∗

m � U `(m),m |= ϕ,

where the �rst and third equivalences are due to ϕ being bisimulation invariant and the
second equivalence holds because of the partial equivalence of the structures. As the
models M′ and M′′ we choose the disjoint sum of q copies of both M,m and M∗

m �
U `(m),m with an additional copy of M,m for M′ and M∗

m � U `(m),m for M′′. The
distinguished element m′ is one of the elements corresponding to m in one of the copies of
M. Similarly, the distinguished worldm′′ is one of the copies ofm in one of the duplicated
restrictions.

According to Lemma 2.25, the structureM,m is bisimilar toM′,m′ and the restriction
M∗

m � U `(m),m is bisimilar toM′′,m′′, seeing as the structuresM′ andM′′ are disjoint
sums with the original structures as terms. The q-equivalence is shown by �nding a
winning strategy for player II in the q-round Ehrenfeucht-Fraïsse game overM′ andM′′.
The idea behind the strategy is that she only begrudgingly plays in a copy with marked
worlds in it; she plays her turn in a fresh copy whenever she can get away with it. To
that end we will require the concepts of critical distance and local context.

The critical distance refers to the distance within which player I is still capable of
checking the connection between two worlds during the remainder of the game. For each
round r of the game, de�ne the critical distance by

dr = 2q−r.

Initially the critical distance has a value of d1 = 2q−1, which happens to be `/2 rounded up.
This then drops by a factor of 1/2 round by round. We say that player II plays according
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to local context when she plays a world from an already occupied term in the disjoint
sum. When playing in accordance with the winning strategy, she only plays according
to local context when player I plays a world within the critical distance of a previously
played world. If his move is further than the critical distance from all previously marked
elements, player II answers with the corresponding element from a fresh copy of the
structureM or the restrictionM∗

m � U `(m) respective to player I's play.
The aim of this strategy is to group the played pebbles into clusters, which player

I can check the internal coherence of during the remainder of the game. However the
clusters are so far apart from each other, on any given round r the distance between two
clusters is larger than dr, in order to check whether they are in the same copy or not
would take longer than the remaining game time. When playing by the winning strategy,
player II upholds the condition that after each round r any two corresponding clusters are
linked by an isomorphism that extends to all worlds within a distance dr of the members
of the clusters. See Figure 1.1, for a concrete example of how the game may progress.
That this outlines a winning strategy is proven by induction over the rounds r of the EF
game. In the base case r = 0, the correspondence of m′ and m′′ is checked before the
�rst round. In this case m′ belongs to the same predicates as m, sinceM,m andM′,m′

are assumed to be bisimilar, and similarly m′′ belongs to the same predicates as m, as
M′′,m′′ is bisimilar toM∗

m � U `(m),m. Hence m′ and m′′ belong to the same predicates.
The worlds also have a matching number of E-edges, due to the way the tree unravelling
is constructed. These observations also apply to all the worlds at a distance of d1 = `/2,
since the restriction is of a depth `. Therefore the one element clusters can be connected
by an isomorphism that maps the worlds ofM′′ to worlds inM′ as given by the natural
projection.

For the induction case suppose that at round k ∈ N k ≤ q the strategy has yielded a
state where the clusters are connected by isomorphisms as per the claim. Now consider the
subsequent round r = k+ 1. At this point player I has the liberty to play any world from
either of the two structures. Assume he plays a world within the critical distance dk+1 from
a world in a marked cluster. That world is now considered a part of the same cluster. Now
player II plays according to local context and due to the induction hypothesis the same
isomorphism ensures the claim holds, since dk+1 < dk. On the other hand, suppose player
I plays a world at a distance greater than dk+1 from any world in any marked cluster.
Now player II responds by playing the corresponding world in a fresh copy of eitherM
or the restriction, depending on player I's play, in the opposing structure. These worlds
now form their own, new clusters. According to the induction hypothesis there exists a
partial isomorphism from the previous round, which can now be expanded by the played
worlds and their surroundings up to dk+1. This expansion is still a partial isomorphism,
since the worlds are picked from copies of the same structure. A contradictory assignment
of values does not occur, since there are no marked worlds within the critical distance
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Figure 2.1: The Kripke structuresM′ andM′′ after three rounds of the EF-game. The
red, blue and green refer to the �rst, second and third rounds, respectively. The dots
represent played worlds and the outline represents the critical distance d3.
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from the played worlds. By the induction principle the winning condition is upheld for all
q-rounds of the game. Hence the modelsM′ andM′′ are equivalent up to q, and therefore
ϕ is `-local.

Step 2: Let ϕ(x) be `-local and bisimulation invariant. SupposeM andM′ are Kripke
structures with the distinguished elements m and m′ respectively, such that M,m ∼`

M′,m′ and M,m |= ϕ. As previously we may assume without loss of generality M,m
and M′,m′ are `-locally tree structures. Since ϕ is `-local, it holds that M,m |= ϕ if
and only if M � U `(m),m |= ϕ. Now by Lemma 2.26, M,m ∼` M′,m′ if and only
if M � U `(m),m ∼` M′ � U `(m′),m′ and since both structures are tree structures of
depth ` the restrictions M � U `(m),m and M′ � U `(m′),m′ are also bisimilar. Hence
M � U `(m),m |= ϕ if and only if M′ � U `(m′),m′ |= ϕ, and due to the `-locality of
ϕ the structure M,m satis�es ϕ if and only if M′,m′ satis�es ϕ. Therefore ϕ is also
`-bisimulation invariant.

Step 3: Suppose ϕ is `-bisimulation invariant. Now according to Lemma 2.22, there ex-
ists ML` formulae that de�ne each of the equivalence classes of the bounded bisimulation
relation ∼`, namely the Hintikka formulae. Let χ`

[M,m] be the Hintikka formula character-
ising the equivalence class ofM,m under ∼`. Then we can formulate a disjunction over
the equivalence classes validating ϕ: ∨

M,m|=ϕ

χ`
[M,m],

which characterises all the equivalence classes that satisfy ϕ. This disjunction is poten-
tially in�nite, but since the index of ∼` is �nite the disjunction is equivalent to a �nite
disjunction, where only one witness per equivalence class is picked. This �nite disjunction
is logically equivalent to ϕ, since each structure that satis�es ϕ is in one of the equiv-
alence classes represented in the disjunction and hence the structure satis�es one of the
disjuncts.

Unlike other proofs of the van Benthem theorem, this proof holds for both �nite and
in�nite models, whereas the original proof of the theorem relies on expanding �nite models
into in�nite ones, as can be seen in [2]. The theorem above is equivalent with the following
classical formulation of the van Benthem theorem.

Theorem 2.31. Let K be a property of Kripke structures. The following claims are
equivalent:

i) K = Mod(ϕ), for some ϕ ∈ ML,

ii) K is k-bisimulation invariant for some k ∈ N,

iii) K = Mod(ϕ), for some ϕ ∈ FO and ϕ is invariant under bisimulation.
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Proof. It follows from Theorem 2.30. that i) is equivalent with iii), and from Lemma
2.22. that i) is equivalent with ii).

This theorem states that the fragment of �rst-order logic which corresponds to modal
logic is precisely the fragment that is bisimulation invariant.
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Chapter 3

Modal Dependence Logic

In this chapter we will prove similar results to the van Benthem theorem discussed in the
previous chapter, only this time considering extensions of modal logic. The particular ex-
tension in focus is the so-called extended modal dependence logic. Additionally, two other
extensions will be de�ned as they will be useful in the upcoming analysis. These logics are
modal logic with Boolean disjunction and modal dependence logic. The approach used
follows the work of Lauri Hella, et al. found in [6].

3.1 The Fundamentals of Modal Dependence Logic and

Team Semantics

De�nition 3.1 (ML(>), MDL, and EMDL). Modal logic with intuitionistic disjunction,
modal dependence logic, and extended modal dependence logic, denoted ML(>), MDL and
EMDL and respectively, are all extensions of modal logic.

i) The logic ML(>) extends the syntax of modal logic by the grammar rule ϕ = ψ>θ,
where ψ and θ are ML(>)-formulae.

ii) The logic MDL extends the syntax of modal logic by the grammar rule ϕ ==
(P1x, ..., Pnx,Qx), where Q,Pi ∈ P for 1 ≤ i ≤ n.

iii) The logic EMDL extends the syntax of modal logic by the grammar rule ϕ ==
(ψ1, ..., ψn, θ), where ψi for 1 ≤ i ≤ n and θ are ML-formulae.

The semantics of these logics are de�ned using team semantics. In the following
de�nitions letM = (W,E,P) be a Kripke structure.
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De�nition 3.2 (Team). A team of M is any subset T ⊆ W . We denote the team
attainable from T as EM[T ] = {v ∈ W | there exists w ∈ T such that wEv} and the
team that T is attainable from as E−1[T ] = {w ∈ W | there exists v ∈ T such that wEv}.
For two teams T and S we write T [E]S, if S ⊆ EM[T ] and T ⊆ E−1[S].

Hence T [E]S holds if every world in S is attainable from some world in T and every
world in T is connected to some world in S. It is a way of denoting a reciprocal team
attainable from T that ful�ls some condition, which is useful when de�ning the semantics
of the extensions of ML.

When speaking in terms of team semantics it is standard to assume all formulae are in
negation normal form, which is a form where all negations occur before atomic formulae.
This form is adopted in order to avoid confusion, since the dependence atom does not
have a de�ned negation.

De�nition 3.3 (Team semantics of modal logic). Let T be a team ofM. The semantics
of ML(>), MDL and EMDL are de�ned as follows, given that P is a predicate in P.

M, T |= Px ⇔ T ⊆ PM

M, T |= ¬Px ⇔ T ∩ PM = ∅
M, T |= ϕ ∧ ψ ⇔ M, T |= ϕ andM, T |= ψ

M, T |= ϕ ∨ ψ ⇔ there exists S, S ′ ⊆ T such thatM, S |= ϕ,

M, S ′ |= ψ and S ∪ S ′ = T

M, T |= ♦ϕ ⇔ there exists S ⊆ W such thatM, S |= ϕ and T [E]S

M, T |= �ϕ ⇔ M, S |= ϕ, for S = EM[T ],

where x is a free variable, and ϕ and ψ are formulae of their respective extension. In
addition ML(>) has the clause

M, T |= ϕ> ψ ⇔ M, T |= ϕ orM, T |= ψ,

and both MDL and EMDL feature the dependence atom, as de�ned by the clause

M, T |== (ϕ1, ..., ϕn, θ) ⇔ ∀w, v ∈ T :
n∧

i=1

(M, w |= ϕi ⇔M, v |= ϕi)

implies (M, w |= θ ⇔M, v |= θ),

where ϕ, ψ, θ, and ϕi for 1 ≤ n are ML-formulae in EMDL and predicates in MDL.

The following lemma encapsulates the �atness property ML has in team semantics.
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Lemma 3.4. Let M be a Kripke structure, T a team of M, and ϕ an ML(P)-formula.
Then

M, T |= ϕ⇔M, w |= ϕ for every w ∈ T.

Proof. Proof by induction over the structure of ϕ for all teams of M. The base step
consists of the following two cases.

1. ϕ = Px. The de�nition of modal team semantics states that M, T |= Px if and
only if T ⊆ PM, which in turn holds if and only if M, w |= Px for every w ∈ T .
Hence the claim holds for ϕ = Px.

2. ϕ = ¬Px. Again by de�nition M, T |= ¬Px if and only if T ∩ PM = ∅, which
in turn is true if and only if M, w |= Px for no w ∈ T . This is equivalent with
M, w |= ¬Px for all w ∈ T , and thus the claim holds for ϕ = ¬Px.

The induction step breaks down into the following cases.

1. ϕ = ψ ∧ θ, for some ML-formulae ψ and θ. Suppose for the induction hypothesis
that the claim holds for ψ and θ. Now by de�nition M, T |= ψ ∧ θ if and only if
M, T |= ψ andM, T |= θ, which the induction hypothesis equates withM, w |= ψ
and M, v |= θ for all worlds v ∈ T . By the de�nition of conjunction in ML this
holds if and only ifM, w |= ψ∧θ for all w ∈ T . Hence the claim holds for ϕ = ψ∧θ.

2. ϕ = ψ∨ θ for some ML-formulae ψ and θ. Now the induction hypothesis states that
M, R |= ψ if and only if M, w |= ψ for all w ∈ R, and M, R |= θ if and only if
M, v |= θ for all v ∈ R for all R ⊆ W . De�nition 2.3. states thatM, T |= ψ ∨ θ if
and only if there exists two subteams S, S ′ ⊆ T such thatM, S |= ψ,M, S ′ |= θ and
S ∪ S ′ = T , which is equivalent with that there are S, S ′ ∈ T such thatM, w |= ψ
for all w ∈ S, M, v |= θ for all v ∈ S ′ and S ∪ S ′ = T . Now for single worlds we
use the de�nition in modal logic, for which a disjunction is true in a world if and
only if either disjunct is true. Now the previous statement is equivalent with that
M, w |= ψ ∨ θ for all w ∈ T , since S and S ′ cover T and hence every world in T
satis�es either ψ or θ. Therefore the claim holds true for ϕ = ψ ∨ θ.

3. ϕ = ♦ψ, for some ML-formula ψ. The induction hypothesis equates M, R |= ψ
withM, w |= ψ for all w ∈ R, where R is a team ofM. Now the de�nition states
thatM, T |= ♦ψ if and only if there exists S ⊆ W such thatM, S |= ψ and T [E]S.
This in turn is equivalent with the claim that there exists a team S ⊆ W such that
M, w |= ψ for all w ∈ S and T [E]S, which is true if and only if for every v ∈ T
there exists wv ∈ S such thatM, wv |= ψ. This coincides with the de�nition of the
semantics of the possibility operator, and thusM, v |= ♦ψ for all v ∈ T . Thus the
claim holds for ϕ = ♦ψ.
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4. ϕ = �ψ for some ML-formula ψ. Now the induction hypothesis states thatM, R |=
ψ is equivalent withM, w |= ψ for all w ∈ R for any team R ofM. By de�nition
M, T |= �ψ if and only if M, S |= ψ for S = EM[T ], which according to the
induction hypothesis is equivalent withM, w |= ψ for all w ∈ S, when S = EM[T ].
This is a rephrased version of the de�nition of the semantics of the necessity operator
and hence the previous claim equates toM, v |= �ψ for all v ∈ T . Hence the claim
holds for ϕ = �ψ.

Now by the induction principleM, T |= ϕ if and only ifM, w |= ϕ for all worlds w ∈ T
and ML-formulae ϕ.

We denote the class of Kripke models with predicates from P and teams by KT (P).

3.2 Expressive Power and Hierarchies of Expression

De�nition 3.5 (Expressive power). Suppose L is one of the logics ML,MDL,EMDL
or ML(>). Each formula ϕ ∈ L(P) de�nes a class of structures with teams, which
corresponds precisely to the structures and teams that satisfy ϕ. This is denoted

‖ϕ‖ = {(K,T ) ∈ KT (P) | K,T |= ϕ}.

A class K ⊆ KT (P) is de�nable in L, if there is a formula ϕ ∈ L(P) such that K = ‖ϕ‖.
The expressive power of L is the collection of classes de�nable in L, in essence ‖ϕ‖ for
all ϕ ∈ L. An order can be de�ned on the expressive powers of logics. For two of the
aforementioned logics L and L′, the order is de�ned as follows

• L′ is at least as expressive as L, denoted L ≤ L′, if for all ϕ ∈ L(P) there is a
formula ψ ∈ L′(P) such that ‖ϕ‖ = ‖ψ‖.

• L is less expressive than L′, written L < L′, if L ≤ L′ and L′ � L.

• Lastly, L and L′ are equally expressive, L ≡ L′, when L ≤ L′ and L′ ≤ L.

Lemma 3.6. ML < EMDL ≤ ML(>).

Proof. Since EMDL is an extension of ML each formula in ML is a formula in EMDL.
Hence ML ≤ EMDL. To show that EMDL � ML it su�ces to �nd a formula of EMDL
that breaks the �atness property, since then by Lemma 3.4. the formula cannot have an
equivalent one in ML. This is easily seen by considering the EMDL(P), P = {P}, formula
ϕ == (Px) and the Kripke structure M = ({w,w′}, ∅, {w}). Now M, {w,w′} 2 ϕ, but
M, w |= ϕ andM, w′ |= ϕ. However there is no ML(P) formula ψ such thatM, w |= ψ,
M, w′ |= ψ and yetM, {w,w′} 2 ψ, since this would break the �atness property of ML.
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To show that EMDL ≤ ML(>) we will construct a translation from EMDL to ML(>).
Suppose = (ϕ1, ..., ϕn, ψ) is a EMDL-formula, where ϕi, for 1 ≤ i ≤ n, and ψ are ML-
formulae. Now consider

σ =
∨

b∈{⊥,>}n
(ϕb1

1 ∧ ... ∧ ϕbn
n ∧ (ψ > ψ⊥)),

where b = (b1, ..., bn), bi ∈ {⊥,>} for 1 ≤ i ≤ n, ϕ> = ϕ and ϕ⊥ is the formula obtained
from ¬ϕ by putting it in negation normal form. Now M, T |= σ if and only if T can
be divided into 2n subteams Tb, b ∈ {⊥,>}n, such that Tb contains the worlds w that
satisfy the row of formulas given by b. Furthermore, sinceM, Tb |= ψ > ψ⊥, each row b
�xes the truth value of the formula ψ for the corresponding team Tb. This is equivalent
withM, T |== (ϕ1, ..., ϕn, ψ).

De�nition 3.7 (Downward closure). A logic L is downward closed if for every formula
ϕ ∈ L it holds that ifM, T |= ϕ, thenM, S |= ϕ, for all Kripke structuresM with teams
T and S, such that S ⊆ T .

A class K is downward closed if, given that (M, T ) ∈ K and S ⊆ T , it follows that
(M, S) ∈ K.

De�nition 3.8 (Empty team property). A logic L has the empty team property if for all
ϕ ∈ L it holds thatM, ∅ |= ϕ, for all Kripke structuresM.

A class K has the empty team property if (M, ∅) ∈ K, for all Kripke structuresM.

Next we will show that the logics ML, EMDL and ML(>) are downward closed and
have the empty team property. In order to do this is e�ciently in one go, we will prove
that a logic extending all of them, namely ML(= (...),>), has these properties. Then,
seeing as every formula of ML, EMDL or ML(>) is a formula of ML(= (...),>), the
properties of the parent are inherited by the children.

Lemma 3.9. The logic ML(= (...),>)

i) is downward closed,

ii) has the empty team property.

Proof. Let ϕ be a ML(= (...),>)-formula. Both claims are proven by induction over the
structure of the formula ϕ.

i) Let M be a Kripke structure and let T and S be teams of M, such that S ⊆ T .
The basis cases are as follow:
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1. Suppose ϕ = Px for some predicate P ∈ P. Assume M, T |= Px. Now ϕ is
a ML-formula and due to the �atness property of ML, M, w |= Px holds for all
worlds w ∈ T . Since S is a subset of T , by the same �atness property as before
M, S |= Px.

2. Suppose ϕ = ¬Px for some P ∈ P. AssumeM, T |= ¬Px, in other wordsM, T 2
Px. As above the formula is also a ML-formula and the �atness property holds.
TherebyM, w 2 Px for all w ∈ T , and since S ⊆ T the �atness property also yields
M, S |= ¬Px.

On to the induction cases.

1. Suppose ϕ = ψ1 ∧ ψ2 for some ML(= (...),>)-formulae ψ1, ψ2. As an induction
hypothesis assume that ifM, T ′ |= ψi thenM, S ′ |= ψi for all i ∈ {1, 2} and teams
T ′ and S ′, such that S ′ ⊆ T ′. Now supposeM, T |= ϕ. By the truth de�nition it
now follows thatM, T |= ψi for i ∈ {1, 2} and according to the induction hypothesis
it now follows thatM, S |= ψi for i ∈ {1, 2}. Once again using the truth de�nition
for the conjunction yields the resultM, S |= ϕ.

2. Suppose ϕ = ψ1 ∨ ψ2 for some ML(= (...),>)-formulae ψ1, ψ2. For the induction
hypothesis assume if M, T ′ |= ψi, then M, S ′ |= ψi for all teams T ′ and S ′ of M
such that S ′ ⊆ T ′ and for i ∈ {1, 2}. Now suppose M, T |= ϕ. Now there exist
subteams T1, T2 ∈ T , such that T1∪T2 = T andM, Ti |= ψi for all i ∈ {1, 2}. Hence
we have (S ∩ T1) ∪ (S ∩ T2) = S, and by the induction hypothesisM, S ∩ Ti |= ψi

for all i ∈ {1, 2}. TherebyM, S |= ϕ.

3. Suppose ϕ = ♦ψ for ML(= (...),>)-formula ψ. As induction hypotheses suppose if
M, T ′ |= ψ, then M, S ′ |= ψ for all teams T ′, S ′ such that S ′ ⊆ T ′. Now suppose
M, T |= ϕ. Hence by the de�nition of the semantics of the possibility operator there
exist a team T ′ ⊆ W such thatM, T ′ |= ψ and T [E]T ′. It is now essential to note
that there exists a subteam S ′ ⊆ T ′ such that S[E]S ′. By the induction hypotheses
M, S ′ |= ψ holds true, and henceM, S |= ϕ.

4. Suppose ϕ = �ψ for some ML(= (...),>)-formula ψ. Assume for the induction
hypothesis if M, T ′ |= ψ, then M, S ′ |= ψ for all teams T ′, S ′ such that S ′ ⊆ T ′.
Suppose thenM, T |= ϕ. Now by the truth de�nitionM, EM[T ] |= ψ. Note now
that EM[S] ⊆ EM[T ], and hence by the induction hypothesisM, EM[S] |= ψ. By
de�nition thenM, S |= ϕ.

5. Suppose ϕ == (ψ1, ..., ψn) for some ML(= (...),>)-formulae ψi, 1 ≤ i ≤ n. As the
induction hypothesis assume if M, T ′ |= θ, then M, S ′ |= θ for all teams T ′ and
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S ′, such that S ′ ⊆ T ′, and for θ ∈ {ψ1, ..., ψn}. Now suppose M, T |= ϕ. The
truth de�nition states that for every pair of worlds in T if they agree on all of the
ψi formulae, where 1 ≤ i ≤ n − 1, then they agree on the ψn formula. Since this
agreement is determined pairwise and without referring to the rest of the team, the
claim holds for all subteams of T . HenceM, S |= ϕ.

6. Suppose ϕ = ψ′>ψ′′ for some ML(= (...),>)-formulae ψ′ and ψ′′. As the induction
hypothesis assume if M, T ′ |= θ, then M, S ′ |= θ for all teams T ′ and S ′, such
that S ′ ⊆ T ′, and for θ ∈ {ψ′, ψ′′}. We notice now that the truth de�nition breaks
the claim M, T |= ϕ down into two for our purposes symmetrical cases; either
M, T |= ψ′ or M, T |= ψ′′. Suppose M, T |= ψ′. Now according to the induction
hypothesisM, S |= ψ′, and henceM, S |= ϕ. Due to symmetry the same argument
works whenM, T |= ψ′′.

By the induction principle ifM, T |= ϕ, thenM, S |= ϕ for all ML(= (...),>)-formulae
ϕ. Therefore the logic ML(= (...),>) is downward closed.

ii) LetM be a Kripke structure. The basis case follows from technicalities relating to
the empty set:

1. Suppose ϕ = Px. NowM, ∅ |= ϕ, since for all w ∈ ∅ it holds thatM, w |= ϕ.

2. Suppose ϕ = ¬Px. NowM, ∅ |= ϕ, sinceM, w 2 ϕ holds true for all w ∈ ∅.

For the induction case

1. Suppose ϕ = ψ ∧ θ for some ML(= (...),>)-formulae ψ and θ. As an induction
hypothesis assume that M, ∅ |= ψ and M, ∅ |= θ. Now by the truth de�nition
M, ∅ |= ϕ follows immediately from the induction hypothesis.

2. Suppose ϕ = ψ ∨ θ for some ML(= (...),>)-formulae ψ and θ. Assume for the
induction hypothesis thatM, ∅ |= ψ andM, ∅ |= θ. Now since ∅ ⊆ ∅ and ∅∪∅ = ∅,
it follows from the induction hypothesis thatM, ∅ |= ϕ.

3. Suppose ϕ = ♦ψ for some ML(= (...),>)-formula ψ. For the induction hypothesis
assume M, ∅ |= ψ. Now notice ∅[E]∅ = ∅ and hence it follows from the induction
hypothesis thatM, ∅ |= ϕ.

4. Suppose ϕ = �ψ for some ML(= (...),>)-formula ψ. The induction hypothesis is
M, ∅ |= ψ. In a similar sense to the above this follows from the induction hypothesis,
when one considers that EM[∅] = ∅.
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5. Suppose ϕ == (ψ1, ..., ψn) for some ML(= (...),>)-formulae ψi, where 1 ≤ i ≤ n.
The induction hypothesis is thatM, ∅ |= ψi for 1 ≤ i ≤ n. Now since every world
in the empty team satis�es ψ1, ..., ψn−1 and ψn, it follows thatM, ∅ |= ϕ.

6. Suppose ϕ = ψ > θ for some ML(= (...),>)-formulae ψ and θ. Assume as the
induction hypothesis thatM, ∅ |= ψ andM, ∅ |= θ. Then, by the truth de�nition,
M, ∅ |= ψ > θ.

Thus M, ∅ |= ϕ for all ML(= (...),>)-formulae ϕ, by the induction principle. Since the
structureM was arbitrarily chosen, it therefore follows that ML(= (...),>) has the empty
team property.

3.3 Team Bisimulation

De�nition 3.10 (Team k-bisimulation). Let (M, T ), (M′, T ′) ∈ KT (P) and k ∈ N. The
structures (M, T ) and (M′, T ′) are team k-bisimilar, denotedM, T [∼k]M′, T ′, if

1. for each world w ∈ T , there exists a world w′ ∈ T ′ such thatM, w ∼k M′, w′,

2. for each world w′ ∈ T ′, there exists a world w ∈ T such thatM, w ∼k M′, w′.

Lemma 3.11. Let k ∈ N, and assume that (M, T ), (M′, T ′) ∈ KT (P) are such that
M, T [∼k+1]M′, T ′. Then

i) for every team S such that T [E]S there exists a team S ′ such that T ′[E]S ′ and
M, S[∼k]M′, S ′,

ii) for every team S ′ such that T ′[E ′]S ′ there exists a team S such that T [E]S and
M, S[∼k]M′, S ′,

iii) M, S[∼k]M′, S ′ for S = EM[T ] and S ′ = E ′M
′
[T ′],

iv) for all T1, T2 ⊆ T such that T1 ∪ T2 = T there exists teams T ′1, T
′
2 ⊆ T ′ such that

T ′1 ∪ T ′2 = T ′ andM, Ti[∼k+1]M′, T ′i for i ∈ {1, 2}.

Proof. i) Suppose that T [E]S. We de�ne the team

S ′ = {w′ ∈ E ′M[T ′] | ∃w ∈ S such thatM, w ∼k M′, w′}.

Now we need to show that this S ′ is such that T ′[E]S ′ andM, S[∼k]M′, S ′. First of, by
the de�nition of S ′ it holds that S ′ ⊆ E ′M[T ′]. Let w′ ∈ T ′. Now sinceM, T [∼k+1]M′, T ′,
there exists a world w ∈ T such thatM, w ∼k+1 M′, w′. As T [E]S, there exists a v ∈ S
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such that wEv holds, and because M, w and M′, w′ are k + 1-bisimilar, there exists a
v′ ∈ T ′[E ′M] such that w′E ′v′ andM, v ∼k M′, v′. Therefore v′ ful�ls the condition of S ′

and hence T ′ ⊆ E−1[S ′].
In order to show that M, S[∼k]M′, S ′ we need �nd a k-bisimilar companion to any

arbitrary world in each team. By de�nition each world in S ′ is k-bisimilar to a world in
S, hence it su�ces to show that for each world in S there exists a world in S ′ bisimilar to
it. To that end suppose v ∈ S. Since T [E]S there exists a world w ∈ T such that wEv,
and becauseM, T is team k+ 1-bisimilar toM, T ′ there exists a world w′ ∈ T ′ such that
M, w ∼k+1 M′, w′. By the de�nition of k+ 1-bisimilarity it now follows that there exists
a world v′ ∈ W ′ such that w′E ′v′ andM, v ∼k M′, v′. Now v′ ∈ S ′ by the de�nition of
S ′, and thereforeM, S[∼k]M′, S ′.

ii) This proof is analogous to part i) above.
iii) Suppose v ∈ S. Since S = EM[T ] there exists a world w ∈ T such that wEv,

and due toM, T [∼k+1]M′, T ′ there exists a world w′ ∈ T ′ such thatM, w ∼k+1 M′, w′.
Now the de�nition of k+ 1-bisimilarity states that there exists a world v′ ∈ W ′ such that
w′E ′v′ andM, v ∼k M′, v′. By de�nition v′ ∈ S ′.

Now suppose v′ ∈ S ′. By our assumption there exists a world w′ ∈ T ′ such that w′E ′v′,
and since M, T [∼k+1]M′, T ′ there exists a world w ∈ T such that M, w ∼k+1 M′, w′.
Now by the de�nition of k+1-bisimilarity, there exists a world v ∈ W such that wEv and
M, v ∼k M′, v′. Due to the assumption that S = EM[T ], it follows that v ∈ S. Hence
M, S[∼k]M′, S ′.

iv) Let T1, T2 ⊆ T such that T1 ∪ T2 = T . Next we de�ne the teams T ′1 and T ′2 as
follows:

T ′i = {w′ ∈ T ′ | ∃w ∈ Ti such thatM, w ∼k+1 M′, w′},

where i ∈ {1, 2}. This de�nition guarantees that T ′1 ∪ T ′2 = T ′, since each world in T ′ is
k+ 1-bisimilar to some world in either T1 or T2. Furthermore the de�nition speci�es that
each world in either T ′1 or T ′2 has a k + 1-bisimilar counterpart in T1 or T2 respectively.
Hence it su�ces to show that for each world w in T1 or T2 there exists a world w

′ in T ′1 or T
′
2

such thatM, w ∼k+1 M′, w′. To that end let w ∈ Ti, where i = 1 or i = 2. Now w ∈ T ,
and hence it has a corresponding world w′ in T ′, such that M, w ∼k+1 M′, w′. Since
the world w′ has a k + 1-bisimilar world in Ti, it by de�nition belongs to T ′i . Therefore
M, Ti[∼k+1]M′, T ′i , for i ∈ {1, 2}.

3.4 A van Benthem theorem for ML(>)

Theorem 3.12. The class K ⊆ KT (P) is de�nable in ML(>) if and only if K is downward
closed, K has the empty team property, and there exists k ∈ N such that K is invariant
under team k-bisimulations.
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Proof. First we will show that for all classes de�nable in ML(>) there exists a k ∈ N
such that the class is invariant under k-bisimulations. This is su�cient since Lemma 3.9
shows ML(>) is downward closed and has the empty team property. Let ϕ ∈ ML(>)
and k = md(ϕ). We will prove by induction over the structure of ϕ that the class ‖ϕ‖
is closed under k-bisimulations. Only one direction of the equivalences in the arguments
of closure under k-bisimulation will be described, since the other direction is analogous.
The basis cases where k = 0 are proven as follows:

1. Suppose ϕ = Px for some P ∈ P and assumeM, T |= ϕ andM, T [∼0]M′, T ′. Now
M, w |= Px for all w ∈ T , and hence by the de�nition of team k-bisimulation it
follows thatM′, w′ |= Px for all w′ ∈ T ′. ThusM′, T ′ |= ϕ.

2. Let ϕ = ¬Px for some P ∈ P and assume thatM, T |= ϕ andM, T [∼0]M′, T ′. By
the de�nitionM, w 2 Px for all w ∈ T , and thereforeM′, w′ 2 Px for all w′ ∈ T ′.
HenceM′, T ′ |= ¬Px.

In the induction cases we suppose the claim holds for the subformulae and aim to show
that it holds for their superformula.

Suppose ϕ = ψ1 ∧ ψ2 for some ML(>)-formulae ψ1 and ψ2, where

k = md(ϕ) = max(md(ψ1),md(ψ2)).

As the induction hypothesis assume ifM, R[∼k]M′, R′ andM, R |= ψi thenM′, R′ |= ψi

for all teams R ⊆ W , R′ ⊆ W ′ and indices i ∈ {1, 2}. Now assume M, T |= ϕ and
M, T [∼k]M′, T ′. In other words M, T |= ψ1 and M, T |= ψ2. Hence by the induction
hypothesisM′, T ′ |= ψi for i ∈ {1, 2}, and thereforeM′, T ′ |= ϕ.

Suppose ϕ = ψ1 ∨ ψ2 for some ML(>)-formulae ψ1 and ψ2, where

k = md(ϕ) = max(md(ψ1),md(ψ2)).

In this case the induction hypothesis is ifM, R |= ψi andM, R[∼k]M′, R′, thenM′, R′ |=
ψi for all teams R ⊆ W , R′ ⊆ W ′ and indices i ∈ {1, 2}. Assume then M, T |= ϕ
and M, T [∼k]M′, T ′. The de�nition of team Kripke semantics states that there exists
subteams T1, T2 ⊆ T , such that T1 ∪ T2 = T and M, Ti |= ψi for i ∈ {1, 2}. Now by
Lemma 3.11. there exists subteams T ′1, T

′
2 ⊆ T ′, such that T ′1∪T ′2 = T ′,M, T1[∼m]M′, T ′1

and M, T2[∼n]M, T ′2, where m,n ∈ N and m,n ≤ k. Consequently it follows from the
induction hypothesis thatM′, T ′i |= ψi for i ∈ {1, 2}. ThereforeM′, T ′ |= ϕ.

Let ϕ = ψ1 > ψ2 for some ML(>)-formulae ψ1 and ψ2, where

k = md(ϕ) = max(md(ψ1),md(ψ2)).
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Suppose for the induction hypothesis that if M, R ∼k M′, R′ and M, R |= ψi then
M′, R′ |= ψi for all teams R ⊆ W , R′ ⊆ W ′ and indices i ∈ {1, 2}. Assume M, T |= ϕ
andM, T [∼k]M′, T ′. NowM, T |= ψi for either i ∈ {1, 2}. By the induction hypothesis
M′, T ′ |= ψi for either i = 1 or i = 2. HenceM′, T ′ |= ϕ.

Suppose ϕ = ♦ψ for some ML(>)-formula ψ, where k = md(ψ) + 1. In this case
the induction hypothesis is ifM, R[∼k−1]M′, R′ andM, R |= ψ thenM′, R′ |= ψ for all
teams R ⊆ W and R′ ⊆ W ′. AssumeM, T |= ϕ andM, T [∼k]M′, T ′. Now there exists
a team S ⊆ W such that T [E]S andM, S |= ψ, and by Lemma 3.11. there exists a team
S ′ ⊆ W ′ such that T ′[E ′]S ′ and M, S[∼k−1]M′, S ′. Now by the induction hypothesis
M′, S ′ |= ψ, and henceM′, T ′ |= ϕ.

Suppose ϕ = �ψ for some ML(>)-formula ψ, for which k = md(ψ) + 1. As in
the previous case, the induction hypothesis is ifM, R[∼k−1]M′, R′ andM, R |= ψ then
M′, R′ |= ψ, for all teams R ⊆ W and R′ ⊆ W ′. Assume M, T |= ϕ and M, T [∼k

]M′, T ′. Now we denote S = EM[T ] and S ′ = E ′M
′
[T ′], and notice that by Lemma

3.11. M, S[∼k−1]M′, S ′. Hence by the induction hypothesis M′, S ′ |= ψ, and therefore
M′, T ′ |= ϕ.

By the induction principle all classes de�ned by ML(>)-formulae are closed under
team k-bisimulation, where k is the modal depth of the de�ning formula.

Next we will show the other direction; if a class of Kripke structures is downward
closed, has the empty team property, and is closed under k-bisimulation for some k, then
the class is ML(>)-de�nable. To that end, assume K is a downward closed class of Kripke
structures closed under team k-bisimulations for some k ∈ N. Now let

ψ =
∨

(M,T )∈K
∨
w∈T

χk
M,w.

As discussed in the proof of Theorem 2.29. there are a �nite amount of Hintikka formulae
up to equivalence, and hence there is only a �nite number of pointed Kripke structures up
to bisimulation. Additionally, since K is closed up to team k-bisimulations, it consists of
combinations of equivalence classes of Kripke structures. Therefore the number of unique
elements in K is at most the size of the power set of the equivalence classes, and since there
is a �nite number of equivalence classes we see that ψ is equivalent to a �nite formula,
which is a restriction of ψ to a single representative per equivalence class. Let ϕ be that
restricted formula, for which it holds that ϕ ∈ ML(>).

In order to show that ϕ de�nes K we need to show that every pointed Kripke structure
in K satis�es ϕ and if a pointed Kripke structure satis�es ϕ, then it belongs to K. For
the �rst direction, assume that (M0, T0) ∈ K. Now M0, {v} |= χk

M0,v
for every v ∈ T0.

ThusM0, T0 |=
∨

w∈T0
χk
M0,w

, and thereforeM0, T0 |= ψ. NowM0, T0 |= ϕ, since ψ and
ϕ are equivalent.
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Now consider the other direction; supposeM0, T0 |= ϕ. Equivalently thenM0, T0 |=
ψ, and hence there exists a Kripke structure and team (M1, T1) ∈ K such thatM0, T0 |=∨

w∈T1
χk
M1,w

. Thereby there are subteams Tw of T0, such that
⋃

w∈T1
Tw = T0 and

M0, Tw |= χk
M1,w

. Now we shall construct a subteam of T1, containing precisely the
worlds corresponding to the worlds of T0. Let T ′ be the subteam of T1 such that
T ′ = {w ∈ T | Tw 6= ∅}. Seeing as K is downward closed, (M1, T1) ∈ K and T ′ ⊆ T1, it
follows that (M1, T

′) ∈ K. The subteam T ′ now contains exactly the worlds correspond-
ing to the worlds of T0, since for every world v ∈ T0 there exists a world w ∈ T ′ such
thatM0, v |= χk

M1,w
and for every world w ∈ T ′ there is at least one world v ∈ T0 such

that M0, v |= χk
M1,w

. Consequently by Lemma 2.21. for each world v ∈ T0 there is a
w ∈ T ′ such that M0, v ∼k M1, w, and for every world w ∈ T ′ there is a v ∈ T0 such
that M0, v ∼k M1, w. Therefore M0, T0[∼k]M1, T

′, and since K is closed under team
k-bisimulations we now have (M0, T0) ∈ K.

3.5 EMDL ≡ ML(>)

We have now proven a van Benthem-theorem for the logic ML(>), however that was not
our goal. Next we will go through some de�nitions and intermediary results leading us to
the realisation that EMDL and ML(>) have the same expressive power. In other words
we will show that EMDL and ML(>) de�ne the same classes of Kripke structures and
hence the previous result also holds for EMDL. With that in mind, we are on to the �rst
stepping stone.

De�nition 3.13 (Type). Let Φ be a �nite set of ML(P)-formulae, and letM be a Kripke
structure with the distinguished world w. The Φ-type of w inM is de�ned

tpΦ(M, w) = {ϕ ∈ Φ | M, w |= ϕ}.

For a team T ofM the Φ-type is de�ned by way of the types of its constituent worlds:

TpΦ(M, T ) = {tpΦ(M, w) | w ∈ T}.

Lemma 3.14. Suppose Φ is a �nite set of ML-formulae and Γ ⊆ Φ. Let

θΓ =
∧
ϕ∈Γ

ϕ ∧
∧

ϕ∈Φ\Γ

ϕ¬,

where ϕ¬ is the negation of ϕ with the negations pushed to the atomic level. Then
tpΦ(M, w) = Γ if and only ifM, w |= θΓ.
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Proof. Suppose tpΦ(M, w) = Γ. By de�nition this is true if and only ifM, w |= ϕ for all
ϕ ∈ Γ andM, w 2 ψ for all ψ ∈ Φ\Γ, and henceM, w |=

∧
ϕ∈Γ ϕ andM, w |=

∧
ϕ∈Φ\Γ ϕ

¬.

Therefore equivalentlyM, w |= θΓ.

Lemma 3.15. Assume (M, T ), (M′, T ′) ∈ KT (P), and let Φ be a �nite set of ML-
formulae.

1. For each ϕ ∈ Φ,M, T |= ϕ if and only if ϕ ∈
⋂

TpΦ(M, T ).

2. IfM, T |=
∨

Φ and TpΦ(M′, T ′) ⊆ TpΦ(M, T ), thenM′, T ′ |=
∨

Φ.

Proof. 1) SupposeM, T |= ϕ. Now by the �atness property of ML it holds thatM, w |= ϕ
for all w ∈ T , and hence ϕ ∈ tpΦ(M, w) for every w ∈ T . Thereby ϕ ∈

⋂
TpΦ(M, T ).

For the other direction suppose ϕ ∈
⋂

TpΦ(M, T ). Now ϕ ∈ tpΦ(M, w) for all w ∈ T ,
and consequently M, w |= ϕ for all w ∈ T . By the de�nition of team Kripke semantics
M, T |= ϕ.

2) Assume M, T |=
∨

Φ and TpΦ(M′, T ′) ⊆ TpΦ(M, T ). Now M, T |= ϕ for some
ϕ ∈ Φ, and by the previous part ϕ ∈

⋂
TpΦ(M, T ). Seeing as ϕ is in all of the constituent

types of TpΦ(M, T ), it is especially holds that ϕ ∈
⋂

TpΦ(M′, T ′), since TpΦ(M′, T ′) ⊆
TpΦ(M, T ). Again by the aboveM′, T ′ |= ϕ, and thusM′, T ′ |=

∨
Φ.

De�nition 3.16 (γ-formulae). Suppose Φ is a �nite set of ML-formulae. The γ-formula
of Φ is an EMDL-formula, de�ned by

γΦ =
∧
ϕ∈Φ

= (ϕ).

We de�ne k-γ-formulae recursively through γ0 = Px ∧ ¬Px and γk+1 = (γk ∨ γΦ).

Basically what the γΦ-formula says is that a team is undivided in its interpretation of
the formulae of Φ. It is easy to see thatM, T |= γΦ if and only if |TpΦ(M, T )| ≤ 1, since
T satis�es γΦ only if all the worlds of T satisfy the same formulae of Φ, hence being of
the same type, or if T is empty.

Lemma 3.17. For all k ∈ N,M, T |= γk if and only if |TpΦ(M, T )| ≤ k.

Proof. The claim is proved by induction over k. For the basis case suppose k = 0.
SupposeM, T |= γ0. Since γ0 is a contradiction, and no possible world can satisfy both
Px and ¬Px. Thus T = ∅. Now, since TpΦ(M, T ) is not populated with any types,
TpΦ(M, T ) = ∅. Therefore |TpΦ(M, T )| = 0.
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Suppose for the other direction that |TpΦ(M, T )| = 0. Since the set is empty, there
are no worlds in T providing it with types. An empty team satis�es all ML-formulae, and
henceM, T |= γ0.

For the induction case suppose M, T |= γk if and only if |TpΦ(M, T )| ≤ k. Assume
M, T |= γk+1, whence there exists subteams T1, T2 ⊆ T such that T1 ∪ T2 = T and
M, T1 |= γk and M, T2 |= γΦ. Now |TpΦ(M, T2)| ≤ 1 and by the induction hypothesis
|TpΦ(M, T1)| ≤ k. The type TpΦ(M, T ) is the union of the two aforementioned types,
and hence

|TpΦ(M, T )| ≤ |TpΦ(M, T1)|+ |TpΦ(M, T2)| ≤ k + 1.

For the other direction suppose |TpΦ(M, T )| ≤ k + 1. Now, since every Φ-type of
worlds corresponds to at least one world, there exists subteams T1, T2 ⊆ T such that
T1 ∪ T2 = T , |TpΦ(M, T1)| ≤ k and |TpΦ(M, T2) ≤ 1. By the induction hypothesis and
the de�nition of γ-formulaeM, T1 |= γk andM, T2 |= γ. Hence by the de�nition of team
Kripke semantics M, T |= γk+1. By the induction principle M, T |= γn if and only if
|TpΦ(M, T )| ≤ n, for all n ∈ N.

Next we will construct an EMDL-formula that captures the notion that a given team
contains worlds of a type not represented in another team. We will do this by using
the properties of the disjunction in team semantics to divide the compared team into
two pieces. These pieces either consist of worlds of some type foreign to the team un-
der scrutiny or are of a size smaller than the considered team. This distinction will be
formalised through the use of the previously introduced formulae θ and γk.

Lemma 3.18. Let Φ be a �nite set of ML-formulae. If (M, T ) ∈ KT , T 6= ∅, then there
is a formula ξM,T ∈ EMDL such that for every (M′, T ′) ∈ KT

M′, T ′ |= ξM,T ⇔ TpΦ(M, T ) * TpΦ(M′, T ′).

Proof. Suppose |TpΦ(M, T )| = k + 1. We want to de�ne a formula which separates a
team satisfying it into components that either contain types not in TpΦ(M, T ) or are of
a known size. To that end we de�ne

ξM,T = (
∨

Γ∈X

θΓ) ∨ γk,

where X = P(Φ) \ TpΦ(M, T ). Let (M′, T ′) ∈ KT be an arbitrary pair. Now by the
de�nition of team Kripke semantics and Lemma 3.17. M′, T ′ |= ξM,T if and only if there
are T1, T2 ⊆ T ′ such that T1∪T2 = T ′ and TpΦ(M′, T1) ⊆ X and |TpΦ(M′, T2)| ≤ k. The
latter claim is equivalent with |TpΦ(M, T )∩TpΦ(M′, T ′)| ≤ k, since T1 is in essence the
part of T ′ which is di�erent from T and T2 is the part common to both T and T ′. This
holds if and only if there exists some type in TpΦ(M, T ) that is not in TpΦ(M′, T ′), or
in other words TpΦ(M, T ) * TpΦ(M′, T ′).
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Theorem 3.19. ML(>) ≡ EMDL.

Proof. We showed in Lemma 3.6. that EMDL ≤ ML(>), and thus it now su�ces to show
that ML(>) ≤ EMDL. Let ϕ be a ML(>)-formula. By Theorem 3.12. ϕ can be written in

the form
∨

Φ, for a �nite set of ML-formulae Φ. We want to construct an EMDL-formula
η such that ‖ϕ‖ = ‖η‖. In order to reach this goal it su�ces to �nd a formula that de�nes
the Φ-types of the teams in ‖ϕ‖. To this end we de�ne

η =
∧

(M,T )∈‖ϕ‖

ξM,T ,

where ‖ϕ‖ = KT \ ‖ϕ‖ and ξM,T is de�ned as in the previous proof. Now there is a
�nite number of unique ξM,T -formulae, since they are distinguished by the subsets Γ from
P(Φ) \ TpΦ(M, T ), which is �nite seeing as Φ is �nite. Hence η is �nite and therefore
η ∈ EMDL.

To show that η is the formula we are looking for, i.e. ‖η‖ = ‖ϕ‖, let (M0, T0) ∈ KT .
Suppose (M0, T0) ∈ ‖ϕ‖ and consider an arbitrary pair (M, T ) ∈ ‖ϕ‖. NowM0, T0 |= ϕ,

M, T 2 ϕ and ϕ =
∨

Φ, hence if TpΦ(M, T ) ⊆ TpΦ(M0, T0) this would break Lemma
3.15. Therefore TpΦ(M, T ) * TpΦ(M0, T0), which by Lemma 3.18. implies M0, T0 |=
ξM,T . Thus (M0, T0) ∈ ‖η‖.

For the other direction assume that (M0, T0) /∈ ‖ϕ‖. Now it holds trivially that
TpΦ(M0, T0) = TpΦ(M0, T0) and thus, by Lemma 3.18, M0, T0 2 ξM0,T0 . Since by our

assumption (M0, T0) ∈ ‖ϕ‖, ξM0,T0 is one of the conjuncts in η and thereforeM0, T0 2 η.
Thus (M0, T0) /∈ ‖η‖.

Now to recapitulate the preceding argument: we proved a van Benthem theorem for
the logic ML(>) and then proceeded to show that ML(>) ≡ EMDL. In other words,
by proving the van Benthem result for ML(>), we also showed that it holds for EMDL.
Hence we are ready to state a van Benthem theorem for the logic EMDL in the following
corollary.

Corollary 3.20. A class K ⊆ KT is de�nable in EMDL if and only if K is downward
closed, K has the empty team property, and there is a k ∈ N such that K is closed under
k-bisimulation.
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