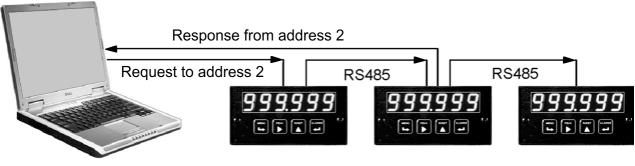
Modbus Protocol

Analog Input Series 2 Laureate Digital Panel Meters & Transmitters

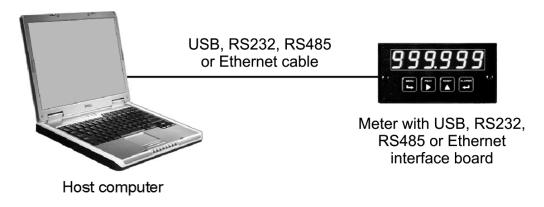
LAUREL Electronics Inc. 3183-G Airway Ave, Costa Mesa, CA, 92626, USA Tel: (714) 434-6131 Fax: (714) 434-3766 Website: www.laurels.com

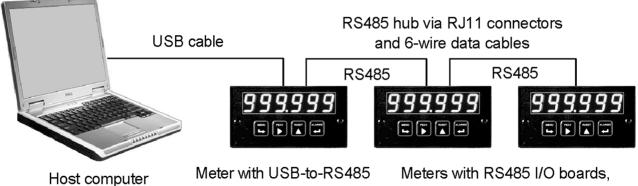

1. TABLE OF CONTENTS

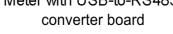
1.	TABLE OF CONTENTS	2
2.	MODBUS CONNECTION EXAMPLES	3
3.	MODBUS PROTOCOL IMPLEMENTATION	6
4.	FUNCTION CODE DETAILS	11
5.	MESSAGE FORMATTING OVERVIEW	22
6.	SETTING YOUR INSTRUMENT TO MODBUS	24
7.	DIAGNOSTIC TOOL QMODMASTER	27

2. MODBUS CONNECTION EXAMLES

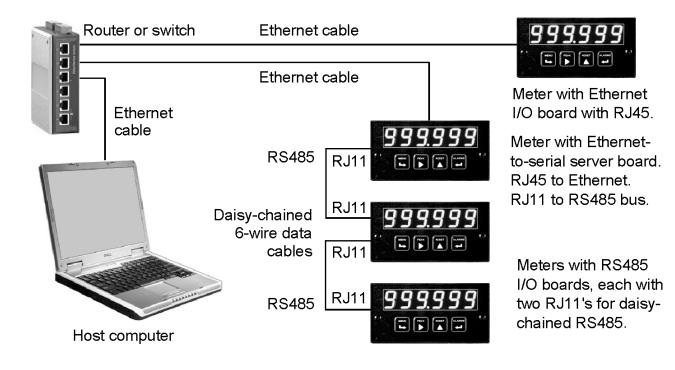
1. MASTER-SLAVE ARCHITECTURE

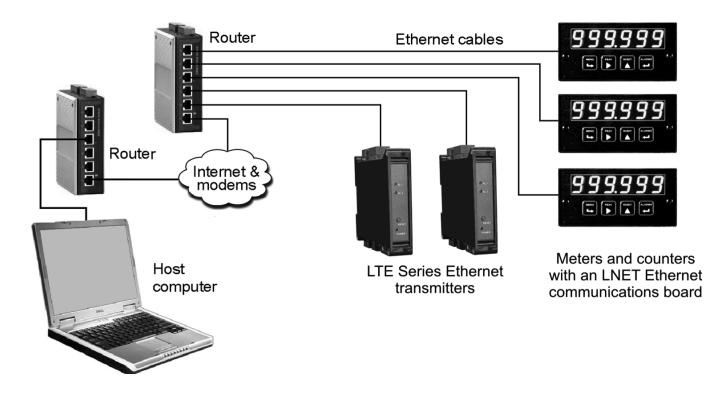

The Modbus protocol was first published by Modicon in 1979 and is now a well-established international standard. For technical details, please see Modbus over Serial Line Specification V1.0 (2002).




Master: PC, PLC or PAC

Modbus is a simple, yet flexible, request-response protocol with a master-slave architecture. The master is typically a PC, PLC or PAC, which sends out requests or commands over a serial bus or an Ethernet network and waits for a response from an addressed slave. A slave can be one of our digital panel meters, counters, timers or transmitters, or it can be an instrument from another manufacturer. Each slave needs to have an address from 1 to 247. If an addressed slave does not respond within a specified timeout, an error code is generated. There can only be up to 31 instruments on an RS485 bus for voltage loading reasons.


2. CONNECTION EXAMPLES



each with two RJ11 connectors

3. MODBUS PROTOCOL IMPLEMENTATION

1. OVERVIEW

This DPM Modbus manual covers our 1/8 DIN size panel-mount <u>analog input</u> Laureate digital panel meters and their transmitter counterparts, plus our scale meter, which is a digital panel meter with firmware additions for weighing applications. A separate Modbus manual covers our <u>pulse input</u> counter instruments.

The Modbus protocol is selectable with all of our communications options: Ethernet, WiFi, USB, RS485 and RS232. It is compliant with Modbus RTU or ASCII transmission modes (software selectable), as specified in Modbus over Serial Line Specification V1.0 (2002).

The Modbus protocol is embedded as a standard feature in the microcomputer firmware of Laureate meters and transmitters along with the Custom ASCII Protocol, which is a simpler text string based protocol. Laureate DIN-rail transmitters come standard with either RS232/RS485 communications (LT series) or Ethernet communications (LTE series). Laureate 1/8 DIN size panel meters and counters require a plug-in option board for communications.

2. METER COMMUNICATION BOARDS

As of the date of this manual, available plug-in communication boards were the following:

- RS232 board (P/N L232, ordering option 1).
- RS485 board for RS485 with dual RJ11 jacks (P/N L485, ordering option 2).
- RS485 board for RS485 with dual RJ45 jacks (P/N LMOD, ordering option 4).
- USB board (P/N LUSB, ordering option 5).
- USB-to-RS485 converter board (P/N LUSB485, ordering option 6).
- Ethernet board (P/N LNET, ordering option 7).
- Ethernet-to-RS485 converter board (P/N LNET485, ordering option 8).

Our two RS485 boards (ordering options 2 and 4) use the same circuit, and both support the Modbus protocol equally. Option 2 boards with dual RJ11 jacks can be daisy-chained using our CBL03, straight-through, 6-wire data cables (not 4-wire telephone cables or crossover cables). Option 4 boards with dual RJ45 jacks cannot be daisy-chained using CBL03. With either board, the two jacks are wired in parallel to allow daisy chaining with no need for a hub.

Our USB-to-RS485 converter board allows the host meter to function as a normal meter, to be connected to a PC USB port, and also to be connected to an RS485 network with up to 31 remote meters or counters. These need to be equipped with an RS485 board with dual RJ11 connectors for daisy chaining with 6-wire CBL03 data cables.

Our Ethernet-to-RS485 converter board allows the host meter to function as a normal meter, to be connected to PC Ethernet port or an Ethernet LAN, and also to be connected to an RS485 network with up to 31 remote meters or counters. These need to be equipped with an RS485 board with dual RJ11 connectors for daisy chaining with 6-wire CBL03 data cables.

3. SERIAL COMMUNICATIONS

For serial communications (RS232, RS485 USB) to work between a sending device and receiving device, the right pins have to be connected, jumpers may have to be set, the right PC Com port has to be chosen, and the following serial parameters have to be set: baud rate, start bits, stop bits, parity. Please refer to the appropriate instrument user manuals on how to make these settings. Our Instrument Setup Software is good tool to set up and verify serial communications. Also, the address of each Slave instrument has to be set for Modbus to work.

4. ETHERNET COMMUNICATIONS

The Modbus RTU Protocol is seamlessly converted to Modbus TCP by the Ethernet Nodes in our Ethernet meters and transmitters.

Ethernet Nodes can be an LNET Ethernet board inside a meter or counter, or be the Ethernet portion of an LTE transmitter. An Ethernet Node is normally associated with one device, namely the host meter or transmitter, but it can also be associated with up to 31 remote meters or transmitters on an RS485 bus.

Our Ethernet Nodes can be connected directly to a PC via an Ethernet cable, be connected to a local PC via a LAN to which the PC is also connected, or be connected to a remote PC via the Internet. For connection via the Internet, the PC can be plugged into a local LAN, and the remote instruments can be plugged into a remote LAN. Our Ethernet Nodes and any devices attached to them via an RS485 bus will automatically be discovered by our Instrument Setup Software or Node Manager Software when the IP address of the remote router is entered, or when the IP address of any node on the remote network is entered.

Instrument Setup Software or Node Manager Software running on the host PC will automatically discover our Nodes and the device (or devices) associated with each Node. Following discovery, Instrument Setup Software can be used to set up each device (or devices) associated with a Node, for example to scale a meter or transmitter, and set setpoints. Node Manager Software cannot be used to set up devices, but it offers advanced features like sending out emails or text messages periodically or in the event of an alarm.

Our Ethernet Nodes can also be discovered and configured by using the Web Server built into each Node. To do so, use a web browser like Internet Explorer and enter the public IP address of the router or the IP address of any Node in the network.

5. MODBUS TYPES

Three Modbus protocol versions are supported by our instruments:

• Modbus RTU

This is the modern and most popular Modbus version for RS232, RS485 or USB serial communications. Here message frames (or packets) are transmitted in binary format (1's and 0's) for highest speed. Message frames are separated by a silent interval of at least 3.5 character times. If a silent interval of more than 1.5 character times occurs between two characters of a frame, the frame is considered incomplete and is discarded. The accuracy of each frame is verified by a 16-bit cyclic redundancy check (CRC).

• Modbus ASCII

This is an older and now seldom used Modbus version for RS232, RS485 or USB serial communications. Here message frames are encoded into two ASCII characters 0-9, A-F, per byte to represent the hexadecimal notation of the byte. Each message begins with a colon (:) and ends with a Carriage Return / Line Feed (CRLF). The allowable time interval between characters can be set to as long as 1, 3, 5 or 10 seconds. The accuracy of each frame is verified by a 1-byte longitudinal redundancy check (LRC).

• Modbus TCP

Also called Modbus TCP/IP, this is the Ethernet version of Modbus RTU. It simply embeds a standard Modbus RTU frame into a TCP frame, and the CRC redundancy check is now provided by standard Ethernet TCP/IP checksum methods. Since the frame contents are the same for Modbus RTU and Modbus TCP, this Modbus manual applies equally to both.

6. COMMUNICATION PARAMETERS

Do not use data rates above 9600 baud, even though 19200 baud is selectable.

Modbus RTU

Baud Rate	
Data Format	1 start bit, 8 data bits, 1 parity bit, 1 stop bit (11 bits total)
	None, Odd, Even (if None, then 2 Stop bits for 11 total)
-	0 for broadcast, 1-247 for individual meters

Modbus ASCII

Baud Rate	
-	0 for broadcast, 1-247 for individual meters

7. PARAMETERS SELECTABLE VIA INSTRUMENT SETUP (IS) SOFTWARE

Serial Protocol	Custom ASCII, Modbus RTU, Modbus ASCII
Modbus ASCII Gap Timeout	
Baud Rate	
ParityNo parity, 2 stop	bits; odd parity,1 stop bit; even parity, 1 stop bit
Device Address	1 to 247

8. MESSAGE FRAME CONTENT OVERVIEW

The content of each request or response includes the following:

- Device Address
- Function Code (FC)
- Register Address
- Data
- Checksum (applicable to Modbus RTU and ASCII, not TCP)

Device Address is the slave ID number. This is a decimal number from 1 to 247. Note that only up to 31 devices can be multi-dropped on an RS485 line for voltage loading reasons.

Register is a memory location for a 16-bit value, which can be read or written. Each Register has a Register Address specified as a 16-bit hexadecimal number. Our Registers are either Holding Registers in non-volatile EEPROM for setup information like scale, offset, setpoints, etc., or Input Registers in volatile RAM for measurement values or alarm status.

Coil is a memory location with a 1-bit 0 or 1 value, which can be read or written. The Modbus specification defines coils for input (sense) or output (write/force). Our Modbus coils only allow output. Each Coil is characterized by a Coil Address.

Function Code (FC) is a two-digit hexadecimal number which tells the addressed slave the type of action to perform on a Modbus register. Five function codes are recognized by our devices:

- FC03: Read Holding Register. A Holding Register is a read/write register, which contains setup information like scale, offset, setpoints, etc. in the form of a 16-bit value. Data is returned in hexadecimal format. Reading a Holding Register causes a meter reset.
- FC04: Read Input Register. An Input Register is a read-only register, which contains a 16bit measurement value or alarm status. Data is returned in hexadecimal format. Reading an Input Register does not cause a meter reset.
- FC05: Write/Force Single Coil. A Single Coil is a register whose value can be a 1 or a 0. Writing a Single Coil can command a specific action, like taring a meter. For historical reasons, the word "coil" refers to a relay coil, which can be energized or de-energized on command. Writing a Single Coil does not cause a meter reset.
- FC08: Diagnostics. Checks communication between master and slave.
- FC10: Write/Preset Multiple Holding Registers. This action is used to enter setup information like scale, offset, setpoints, etc. into Holding Registers. This action causes a meter reset.

9. HI WORD & LO WORD

Register values specified by Modbus are 16-bit numbers. Our requests require the address of the Hi Word and the number of registers, which is 02, to get both the Hi Word followed by the Lo Word. Depending on the Function Code, register values can have the following formats:

2C32: Two's Complement

<u>Hi Word (Register)</u>	Lo Word (Register)		
2222 2222 2222 2222 2222			

M31: Sign + Binary Magnitude

Hi Word (Regis	ter)
SMMM MMMM	

Lo Word (Register) MMMM MMMM MMMM MMMM

B16

<u>Hi Byte</u>	Lo Byte		
0000 0000	BBBB BBBB		

The letters S, C, M and B are defined as follows:

- S = Sign Bit (0 = Positive, 1 = Negative)
- C = Bits of 2's Complement Binary Value
- M = Bits of Positive Binary Magnitude
- B = Bits of Configuration Data
- For Modbus RTU, each data character (2 hex characters) consists of 8 bits (or 1 byte).
- For Modbus ASCII, each data character (2 hex characters) consists of 1 byte for each hex character.

4. FUNCTION CODE DETAILS

FC04: Read Input Registers

Reads measurement value, alarm status, peak and valley. Returns values in M31 format without a decimal point for analog input meters, scale meters and transmitters. If required for verification purposes, the decimal point setting can be read from its Holding Register by using Function Code 03 at address 00 57.

Use only the Hi Word Starting Register Address, and set the number of Registers to be read to an even number to capture the Hi Word and Lo Word as a pair. Reading a single register will cause an error. The Register Addresses are used to program the Modbus master and are in Hex for Modbus numbering systems that start at 00 01 (Base 1). Subtract 1 from each Register Address for Modbus numbering systems that start at 0000 (Base 0). Reading an Input Register does not cause a meter reset.

Why Base 1? Some Master devices (e.g., Modicon) require that the desired Register Number (Base 1) and not the actual Register Address (Base 0) be entered. The Base 1 Register Number is 1 higher than the Base 0 Register Address. Most Modbus software on the market now uses Base 1, not Base 0. However, the bytes that are transmitted on the communication line are always for Base 0.

Digital panel meters with an analog input can only display and transmit one reading, which is called Item #1. Analog input transmitters can only transmit Item #1, not display it.

Register Address Base 1	Response (M31 format)		
00 02	Hi Word of Alarm status		
00 03	Lo Word of Alarm status		
00 04	Hi Word of Measurement value (net value for scale meter)		
00 05	Lo Word of Measurement value (net value for scale meter)		
00 06	Hi Word of Peak value		
00 07	Lo Word of Peak value		
00 08	Hi Word of Valley value (gross value for scale meter)		
00 09	Lo Word of Valley value (gross value for scale meter)		
00 0A	N/A		
00 OB	N/A		
00 OC	N/A		
00 0D	N/A		

FC05: Write Single Coil:

Single-bit action command to device. Does not return a value. The command output value is hex 00 FF to set, or 00 00 to reset or deactivate. The Register Addresses below are in Hex and are for Modbus numbering systems that start at 00 01 (Base 1). Subtract 1 from each Register Address for Modbus numbering systems that start at 00 00 (Base 0). Writing a Single Coil does not cause a meter reset.

Please refer to our separate Digital Panel Meter Manual for an explanation of Meter Reset, Function Reset, Tare, Meter Hold, Blank Display, and External Inputs A & B. Or call our Tech Support. These same terms (except Blank Display) also apply to our transmitters.

Register Address	Outpu	t Value	Action Command	
Base 1	To Set	To Reset		
00 02	FF 00	N/A	Meter Reset (No Response)	
00 03	FF 00	N/A	Function Reset (Peak, Valley, latched alarms, total)	
00 04	FF 00	N/A	Latched Alarm Reset (only)	
00 05	FF 00	N/A	Peak Reset	
00 06	FF 00	N/A	Valley Reset	
00 07	FF 00	N/A	Remote Display Reset (Counters in Remote Display Mode)	
00 08	FF 00	N/A	Display Item 1 (Meters, Counters, Timers)	
00 09	FF 00	N/A	Display Item 2 (Counters, Timers)	
00 0A	FF 00	N/A	Display Item 3 (Counters, Timers)	
00 OB	FF 00	N/A	Display Peak (Meters, Counters, Timers)	
00 OC	FF 00	N/A	Display Valley (Meters except Weight, Counters, Timers)	
00 0D	FF 00	00 00	Tare (Meters)	
00 0E	FF 00	00 00	Meter Hold (Meters)	
00 OF	FF 00	00 00	Blank Display	
00 10	FF 00	00 00	Activate External Input A	
00 11	FF 00	00 00	Activate External Input B	

FC08: Diagnostics

Checks communications between the Master and Slave, and returns the count in the Modbus Slave counters (which are reset when the meter is reset).

Hex Sub Function Code	Data Sent	Response Data	Description	
00 00	Any	Same	Returns Query Data (N x 2 bytes). Echo Request.	
00 01	FF 00 00 00	FF 00 00 00	Restarts Communications. If in the Listen-Only mode, no response occurs. Takes Slave out of the Listen- Only mode and one of the following: - Clears communications event counters. - Does not clear communications event counters.	
00 04	00 00	None	Forces Listen-Only. All addressed and broadcast Messages are monitored and counters are incre- mented, but no action is taken or response is sent. Only Sub-Function 00 01 causes removal of this Listen-Only state.	
00 0A	00 00	00 00	Clears all Modbus slave counters.	
00 OB	00 00	Total Message Count	Returns total number of messages detected on the bus, including those not addressed to this Slave. Excludes bad LRC/CRC, parity error or length < 3.	
00 0C	00 00	Checksum Error Count	Returns total number of messages with bad LRC/ CRC, parity or length < 3 errors detected on the bus including those not addressed to the Slave.	
00 0D	00 00	Exception Error Count	Returns total number of Exception responses returned by the Addressed Slave or that would have been returned if not a broadcast message or if the Slave was not in a Listen-Only mode.	
00 0E	00 00	Slave Message Count	Returns total number of messages, either broadcast or addressed to the Slave. Excludes bad LRC/CRC, parity or length < 3 errors.	
00 0F	00 00	No Response Count	Returns total number of messages, either broadcast or addressed to the Slave, for which Slave has returned No Response, neither a normal response nor an exception response. Excludes bad LRC/CRC, parity or length < 3 errors.	
00 11	00 00	Slave Busy	Returns total number of Exception Code 6 (Slave Busy) responses.	

SUPPORTED EXCEPTION RESPONSE CODES

Code	Name	Error Description	
01	Illegal Function	Illegal Function Code for this Slave. Only hex Function Codes 03, 04, 05, 08, 10 are allowed.	
02	Illegal Data Address	Illegal Register Address for this Slave or Register length.	
03	Illegal Data Value	Illegal data value or data length for the Modbus protocol.	
04	Slave Device Failure	Slave device failure (eg., device set for external gate).	

FC03 (READ) & FC10 (WRITE) HOLDING REGISTER ADDRESSES

Use Hi Word starting Holding Register Addresses and an even number of Registers. The Register Addresses below apply to <u>both</u> FC03 and FC10, and are for Modbus numbering systems that start at 00 01 (Base 1). Subtract 1 from each Register Address for Modbus numbering systems that start at 00 00 (Base 0).

Warning: Analog input meters and transmitters reset after any setup data in Holding Registers has been read or written.

Register Address		Holding Pogistor Namo		Scaling &
Dec	Hex	Holding Register Name	Туре	Dec Point
2	00 02	Setpoint 1 (Hi word)	2C32	Dec pt same as
3	00 03	Setpoint 1 (Lo word)	2632	displayed
4	00 04	Setpoint 2 (Hi word)	2C32	Dec pt same as
5	00 05	Setpoint 2 (Lo word)	2632	displayed
6	00 06	Setpoint 3 (Hi word) (not for Scale Meter)	2C32	Dec pt same as
7	00 07	Setpoint 3 (Lo word) (not for Scale Meter)	2032	displayed
8	00 08	Setpoint 4 (Hi word) (not for Scale Meter)	2C32	Dec pt same as
9	00 09	Setpoint 4 (Lo word) (not for Scale Meter)	2032	displayed
10	00 0A	Scale (Hi word)	2C32	* See footnote
11	00 OB	Scale (Lo word)	2032	
12	00 OC	Offset (Hi word)	2C32	Dec pt same as
17	00 11	Offset (Lo word)	2032	displayed
18	00 12	Lo In (Hi word)	2C32	Uses dec pt of
19	00 13	Lo In (Lo word)	2032	input range
20	00 14	Lo Rd (Hi word)	2C32	Dec pt same as
21	00 15	Lo Rd (Lo word)	2032	displayed
22	00 16	Hi In (Hi word)	2C32	Uses dec pt of
23	00 17	Hi In (Lo word)	2002	input range
24	00 18	Hi Rd (Hi word)	2C32	Dec pt same as
25	00 19	Hi Rd (Lo word)	2002	displayed
26	00 1A	Rd0 (Hi word) (tare for Scale Meter)	2C32	Dec pt same as
33	00 21	Rd0 (Lo word) (tare for Scale Meter)	2002	displayed
34	00 22	Deviation 1 (Hi word) (SP1DIFF for Sc M)	2C32	Dec pt same as
35	00 23	Deviation 1 (Lo word) (SP1DIFF for Sc M)	2002	displayed
36	00 24	Deviation 2 (Hi word) (SP2DIFF for Sc M)	2C32	Dec pt same as
37	00 25	Deviation 2 (Lo word) (SP2DIFF for Sc M)	2002	displayed
38	00 26	Deviation 3 (Hi word) (not for Scale Meter)	2C32	Dec pt same as
39	00 27	Deviation 3 (Lo word) (not for Scale Meter)	2002	displayed
40	00 28	Deviation 4 (Hi word) (not for Scale Meter)	2C32	Dec pt same as

41	00 29	Deviation 4 (Lo word) (not for Scale Meter)		displayed	
42	002A	Analog Lo (Hi word)	2C32	Dec pt same as	
43	002B	Analog Lo (Lo word)	2032	displayed	
44	002C	Analog Hi (Hi word)	2C32	Dec pt same as	
45	002D	Analog Hi (Lo word)	2032	displayed	

* Scale = .0001 x dec value of (Hi word + Lo word)

Data Type B16

For the following, use any starting Register Address and any number of Registers.

Please refer to our separate Digital Panel Meter Manual for an explanation of the functions referred to in the table below, or call our Tech Support. These same functions also apply to our transmitters.

Register	Address	Register Name	Pit Significance
Dec	Hex		Bit Significance
66	00 42	Alarm Config 1	Bit 0 0 = AL1 Hi Active 1 = Lo Active
			Bit 1 $0 = AL1$ Enabled, $1 = Disabled$
			Bit 2 0 = AL2 Hi Active 1 = Lo Active
			Bit 3 0 = AL2 Enabled 1 = Disabled
			Bit 4 0 = AL1 Non-Latched 1 = Latched
			Bit 5 0 = AL2 Non-Latched 1 = Latched
			Bit 6 0 = Relay1 Active On 1 = Off
			Bit 7 0 = Relay2 Active On 1 = Off
67	00 43	Alarm Config 2	Bits 2:0 # Readings before Alarms 1 & 2.
			000 = 1, 001 = 2, 010 = 4, 011 = 8, 100 = 16,
			101 = 32, 110 = 64, 111 = 128
			Bit 3 AL1 0 = Deviation 1 = Hysteresis
			Bit 4 AL2 0 = Deviation 1 = Hysteresis
			Bit 5 0 = Deviation in Menu 1 = Omitted
68	00 44	Alarm Config 3	Bit 0 0 = AL3 Hi Active 1 = Lo Active
		(not applicable	Bit 1 0 = AL3 Enabled 1 = Disabled
		to Scale Meter)	Bit 2 0 = AL4 Hi Active 1 = Lo Active
			Bit 3 0 = AL4 Enabled 1 = Disabled
			Bit 4 0 = AL3 Non-Latched 1 = Latched
			Bit 5 0 = AL4 Non-Latched 1 = Latched
			Bit 6 0 = Relay3 Active On 1 = Off
			Bit 7 0 = Relay4 Active On 1 = Off
69	00 45	Alarm Config 4	Bits 2:0 = # Readings before Alarm 3 & 4
		(not applicable	000 = 1, 001 = 2, 010 = 4, 011 = 8, 100 = 16,
		to Scale Meter)	101 = 32 110 = 64 111 = 128
			Bit 3 AL3 0 = Deviation 1 = Hysteresis
			Bit 4 AL4 0 = Deviation 1 = Hysteresis

			Bit 5 0	= Deviatior	n in Menu	1 = Omitted					
70	00 46	Input Type	Lo Byte Hex	(value							
_					nermocouple JF, C, KF, KC, NF, NC, EF, EC,						
				F, TC, SF, SC, RF, RC							
				RTD pre-2009: 4-wire DIN°F, 4-wire DIN°C,							
				•		C, 3-wire DIN°F, 3-wire					
						3-wire ANSI°C, 2-wire					
			DIN°F, 2-wire DIN°C, 2-wire ANSI°F, 2-wir								
			ANSI°C, Short								
				,		DIN°C, ANSI°F,					
				NSI°C, Ni°F	-						
				OC 0.2V, 2V,							
)C 2 mA, 20	-						
				Ratio 0.2V, 2	-	, -					
			80-84 F	RMS 0.2V, 2	V, 20V, 20	0V, 660V					
			90-93 F	RMS 2 mA, 2	20 mA, 200) mA, 5A					
			CO-C4 S	Strain 20, 50), 100, 250	, 500 mV					
			D0-D4 L	Load Cell 20, 50, 100, 250, 500 mV							
			E0-E4 C	hms 20, 200, 2000, 20K, 200K							
71	00 47	Setup	Bits 3:0	Ctrl In 1	Ctrl In 2	Both Reset					
		(applicable to	Hex 0	M Reset	M Hold	M Reset					
		DPM)	Hex 1	F Reset	Pk, Vy	M Reset					
			Hex 2	M Hold	Pk, Vy	F Reset					
		M = Meter	Hex 3	M Hold	Tare	M Reset					
		F = Function	Hex 4	Pk, Vy	Tare	FReset					
		D = Display	Hex 5	Tare	M Reset	M Reset					
			Hex 6	DP2	DP3	DP5 Neither = DP1					
			Hex 7	DP3	DP4	DP6 Neither = DP2					
			Hex 8	F Reset	D Blank	M Reset					
			Hex 9	M Hold	D Blank	M Reset					
			Hex A	Pk, Vy	D Blank	F Reset					
			Hex B	Tare	D Blank	M Reset					
			Hex C	Valley	Peak	F Reset					
			Hex D Bits 5:4	Tare	T Reset	M Reset					
			Hex 00	Scale usi	ng Scale, C	Iffeet					
			Hex 00		-						
			Hex 10	Scale using Coordinates of 2 Points Scale using Reading Coordinates							
			Bit 6	Spare							
			Bit 7	•	z, 1 = 50 Hz	7					
	I			0 - 00 112	-, 1 – 00 11	<u> </u>					

74	00.47	Catur				Dath Daast					
71	00 47	Setup	Bits 3:0	Ctrl In 1	Ctrl In 2	Both Reset					
		(applicable to	Hex 0	M Reset	M Hold	M Reset					
		Scale Meter)	Hex 1	F Reset	Peak D	M Reset					
			Hex 2	M Hold	Peak D	F Reset					
		M = Meter	Hex 3	M Hold	Tare	Tare					
		F = Function	Hex 4	Peak	Tare	F Reset					
		D = Display	Hex 5		Tare	M Reset					
		T = Tare	Hex 6	F Reset	Tare	M Reset					
			Hex 7	T Reset	Tare	M Reset					
			Hex 8	D Blank	Tare	M Reset					
			Hex 9		D Blank	M Reset					
			Hex A	F Reset	D Blank	M Reset -					
			Hex B	D Item	Tare	Tare					
			Hex C	D Item	D Blank	F Reset					
			Hex D		D Item	M Reset					
			Hex E	F Reset	D Item	M Reset					
			Hex F	M Hold	D Item	M Reset					
			Bit 4			1 = Coord of 2 Points					
			Bit 5		-	1 = Peak key is Tare					
			Bit 6	0 = 60 Hz		1 = 50 Hz					
			Bit 7		immy zero	1 = Dummy zero					
72	00 48	Filter	Bits 3:0 Filte	•							
						ch 16, 2-9 = Moving					
			-			= .3S, 5 = .6S, 6 = 1.2S,					
						S, A = Unfiltered					
						1 = High Adaptive					
						1 = Display Filtered					
				eak of Unfil		1 = Peak of Filtered					
				arm source	e Unfiltered	l, 1 = Filtered					
73	00 49	Options	Do Not Use.								
74	00 4A	Serial Config 1				s Serial Outputs					
				-		.57S, 3=1.1S, 4=2.3S,					
				-		S, 8=36.3S, 9=1M13S,					
				-	-	9M40S, D=19M20S,					
				88M41S, F=	=77M21S						
				id Rate							
			000 = 300, 001 = 600, 010 = 1200, 011 = 2400,								
						110 = 19200					
			Bit 7 0 =	Send Unfil	tered value	e, 1 = Send Filtered Val					

75	00.45			Matau Orwiel A.L.							
75	00 4B	Serial Config 2	Bits 4:0		s (0-31) [Non-Modbus]						
				Hex $0 = \text{Broadcast}(0)$							
				OF = 15, 10 = 16, 1F							
			Bit 5		e, 1 = Command Mode						
					th readings, 1 = Alarm data						
			Bit 7	0 = No LF following C	CR, 1 = LF following CR						
76	00 4C	Serial Config 3	Bits 2:0 f	or DPM. Data sent in	serial output						
				0 = Reading, 1 = Peak	x, 2 = Valley,						
				3 = Rdg + Peak, 4 = F	Rdg + Valley,						
			5 = Rdg + Peak + Valley								
			Bits 2:0 f	or Scale Meter							
				0 = Net + Gross							
				1 = Net only							
				2 = Gross only							
				3 = Peak only							
				4 = Net + Gross + Pea	ak						
			Bit 3 $0 = \text{Termination chars at end of all items}$								
				1 = " " at end o	f each item						
			Bit 4	0 = Non-latching RTS	, 1 = Latching RTS						
			Bit 5	•	is serial transmission						
				1 = Special Start & St	top characters						
			Bit 6	0 = Full Duplex	-						
77	00 4D	Serial Config 4	Bits 1:0	00 = No Parity	01 = Odd Parity						
				10 = Even Parity	-						
			Bits 3:2	00 = Custom ASCII	01 = Modbus RTU						
				10 = Modbus ASCII							
			Bits 5:4	Modbus ASCII Gap Ti	imeout						
				00 = 1S, 01 = 3S, 10							
78	00 4E	Config	Bit 0	0 = Linear Curve							
		(applicable to	Bit 1	0 = 2-wire RTD Read	1= 2-wire RTD Short						
		DPM)	Bits 2	0 = No Auto-tare	1 = Auto-tare						
		, ,	Bits 4:3	Peak button display re							
			_	00 = Peak	-						
				10 = Peak then Vall.	2						
			Bits 7:5	000 = Not Rate	$001 = \text{Rate } \times 0.1,$						
				010 = Rate x 1							
				$100 = Rate \times 100$							
				$110 = Rate \times 10000$							
78	00 4E	Config	Bit 1		1 = peak of gross value						
		(applicable to	Bit 2	0 = Dribble enabled							
		Scale Meter)	Bit 3	0 = Scale & offset set							
					tes of 2 points method						
			l	i – neauny coorulla							

79	00 4F	Lockout 1		0 = Enabled, 1 = Lock	ked out					
		(applicable to	Bit 0	Offset, Lo, Hi Rd	Bit 1 Scale, Lo In, Hi In					
		DPM)	Bit 2	Filter	Bit 3 Setup, Config, DP					
			Bit 4	Input Type	,,,					
79	00 4F	Lockout 1		0 = Enabled, 1 = Locked out						
		(applicable to	t 1 Setup, Config, DP							
		Scale Meter)	Bit 2	Input Type Bit	3 Change Display Item#					
		,	Bit 4		5 Offset, Lo Rd, Hi Rd					
			Bit 6	Scale, Lo, Hi In Bit	, ,					
80	00 50	Lockout 2	Bit 0	Serial Comm Config						
			Bit 1	Analog Out Scaling						
			Bit 2	Alarm Setpoint Progr	amming					
			Bit 3	Alarm Config	C C					
			Bit 4	Front Panel Meter Re	set					
			Bit 5	Front Panel Function	Reset					
			Bit 6	View Setpoints Bit	7 View Peak					
82	00 52	Setup 1	Bits 1:0	00 = 4-1/2 Digits, 0.1	degree					
		(not for Scale		01 = Slave Remote D	isplay					
		Meter)		10 = 4-1/2 Dig/10, 0.0	01 degree					
				11 = 3-1/2 Digits,1 de	egree					
82	00 52	Count (applies	Bits 3:0	0 = No auto-zero ban	d 1= 1-count zero band					
		to Scale Meter)		2 = 2-count zero band	d 3 = 3-count zero band					
				Etc.	9 = 9-count zero band					
			Bits 6:4	0 = Count by 1	1 = Count by 2					
				2 = Count by 5	3 = Count by 10					
				4 = Count by 20	5 = Count by 50					
				6 = Count by 100						
83	00 53	Analog Output	Bit 0	0 = Source Unfiltered	1 = Filtered					
		Setup (applies	Bit 1	0 = Current Output	1 = Voltage Output					
		to DPM)	Bits 2:1	00 = Current (0-20 m	A) 10 = Curr. (4-20 mA)					
				01 = Voltage (0-10V)	$11 = Voltage (\pm 10V)$					
83	00 53	Analog Output	Bit 0	0 = Net Value	1 = Gross Value					
		Setup (applies	Bit 1	0 = Filtered	1 = Unfiltered					
		to Scale Meter)	Bits 3:2	00 = Current (0-20 m	A) 10 = Curr. (4-20 mA)					
				01 = Voltage (0-10V)	11 = Voltage (±10V)					
88	00 58	System Decimal	Bits 2:0	001 = ddddd.	010 = dddd.d					
		Point		011 = ddd.dd	100 = dd.ddd					
				101 = d.dddd	110 = .ddddd					
94	00 5E	Start Character	Bits 7:0	ASCII Hex Character						
95	00 5F	Stop Character	Bits 7:0	ASCII Hex Character						
96	00 60	Modbus Addr.	Bits 7:0	Hex value of Decimal	Address from 1-255					

READ ONLY (FC03) – Data Type B16

101	00 65	Analog Output DAC Type		0 = none, 1 = 1 output, unipolar (12-bit, pre 2009) 2 = 1 output, unipolar (16-bit, pre 2009) 3 = 1 output, uni or bipolar (16-bit, post 2009) 4 = 2 outputs, unipolar (16-bit, post 2009, not for Scale Meter)					
102	00 66	Device Type	Bits 7:0 01 = DPM meter 02 = Scale meter 03 = Counter/timer met. 05 = DPM transmit 06 = Scale transmitter 07 = Counter/timer transmitter						
103	00 67	Revision	Bits 7:0	Hex value of Decimal Revision number					
104	00 68	Overload Value	Bits 7:0	Hex overload value					
105	00 69	Signal Condi- tioner Type	Bits 7:0	01 = DC, TC/RTD (pre 2009) 02 = RMS (pre 2009) 03 = Load Cell 22 = RMS (post 2009) 31 = TC (post 2009) 41 = RTD or Ohms (post 2009)					

WRITE ONLY (FC10) – Data Type 2C32

106	00 6A	Display Data (Hi Word)	Hi word of Remote Data to be displayed.
107	00 6B	Display Data (Lo Word)	Lo word of Remote Data to be displayed.

5. MESSAGE FORMATTING OVERVIEW

MA = Meter Address	DD = Data (Hex)	CL = CRC Lo Byte
FC = Function Code	WW = Data (On/Off)	CH = CRC Hi Byte
RA = Register Address	SF = Sub-Function	CR = Carriage Return
NR = Number of Registers	EC = Error Code	LF = Line Feed
NB = Number of bytes	LRC = ASCII Checksum	

For more information, see the Examples later in this manual.

Modbus RTU Format

FC	Action	> 3.5					Byte	e Num	ber				
го	ACTION	Char	1	2	3	4	5	6	7	8	9	10	11
03 03	Request Response	NoTx NoTx	MA MA	FC FC	RA NB	RA DD*	NR DD*	NR CL	CL CH	СН			
04 04	Request Response	NoTx NoTx	MA MA	FC FC	RA NB	RA DD*	NR DD*	NR CL	CL CH	СН			
05 05	Request Response	NoTx NoTx	MA MA	FC FC	RA RA	RA RA	WW WW	WW WW	CL CL	CH CH			
08 08	Request Response	NoTx NoTx	MA MA	FC FC	SF SF	SF SF	WW DD	WW DD	CL CL	CH CH			
10 10	Request Response	NoTx NoTx	MA MA	FC FC	RA RA	RA RA	NR NR	NR NR	NB CL	DD* CH	DD*	CL	СН
Exception Response		NoTx	MA	FC +80	EC	CL	СН						

DD* = (DD DD) times NR (Number of Registers)

Modbus ASCII Format

Except for the colon, CR and LF, each column is 2 hex character bytes. $DD^* = (DD DD)$ times NR (Number of Registers)

FC	Action		Column Number												
		1	2	3	4	5	6	7	8	9	10	11	12	13	
03 03	Request Response	:	MA MA	FC FC	RA NB	RA DD*	NR DD*	NR LRC	LRC CR	CR LF	LF				
04 04	Request Response	:	MA MA	FC FC	RA NB	RA DD*	NR DD*	NR LRC	LRC CR	CR LF	LF				

05 05	Request Response	:	MA MA	FC FC	RA RA	RA RA	WW WW	WW WW	LRC LRC	CR CR	LF LF			
08 08	Request Response	:	MA MA	FC FC	SF SF	SF SF	WW DD*	WW DD*	LRC LRC	CR CR	LF LF			
10 10	Request Response	:	MA MA	FC FC	RA RA	RA RA	NR NR	NR NR	NB LRC	DD* CR	DD* LF	LRC	CR	LF
Excep Resp		:	MA	FC +80	EC	LRC	CR	LF						

6. SETTING YOUR INSTRUMENT TO MODBUS

1. SETTING TO MODBUS FROM THE METER FRONT PANEL

Digital panel meters with an RS232, RS485 or USB interface are shipped from the factory set to the Custom ASCII protocol and 9600 baud, no parity, 8 data bits, one stop bit. They can be set to the Modbus protocol from the front panel. They can also be reset to the Custom ASCII protocol from the front panel after they have been set to Modbus.

Press the front panel menu key repeatedly until you reach SEr_1, SEr_4 and then Addr, and make the appropriate selections. Please our Digital Panel Meter manual for all available front panel programmable features. The baud rate is set in SEr_1. The selection of Modbus RTU or Modbus ASCII in SEr_4 overrides any LF or Command Mode selections that may have been made from the front panel, since they are determined by the Modbus protocol.

MENU Select Key	PEAK Select Key	RESET Press Value Select Key
SEr 1 Fixed Parameters:	000 Output filtering	Send unfiltered signalSend filtered signal
No parity 8 data bits 1 stop bit	000 Baud rate	 300 baud 600 baud 1200 baud 2400 baud 4800 baud 9600 baud 19200 baud (do not use)
SEr 4 Serial Setup 4.	000 Modbus ASCII gap timeout	 1 sec 3 sec 5 sec 10 sec
	000 Serial protocol	 Custom ASCII Modbus RTU Modbus ASCII
	000 Parity	 None, 2 or more stop bits Odd, 1 or more stop bits Even, 1 or more stop bits
Addr Modbus Address. Appears only if the Modbus protocol is selected.	000 000 000 Select digit to flash.	247 Select 0 through 9 for flashing digit. Address range is 1 to 247.

2. SETTING TO MODBUS WITH INSTRUMENT SETUP SOFTWARE

Our transmitters, which don't have front panel buttons, can only be set to Modbus with our free Windows-based Instrument Setup (IS) software. Digital panel meters with a communications board can also be set to Modbus with IS software, as explained below.

IS software allows uploading, editing, downloading and saving of setup data, execution of commands under computer control, listing, plotting and graphing of data, and computer prompted calibration. It is also a great too verify that communications are working.

As the first step to install IS software, set User Account Control (UAC) of your version of Windows to "Never notify" so that the installation can create directories. Use Google for instructions on how to change UAC. Power down and restart your computer for the UAC change to take effect. Following installation, you may return UAC to its previous setting.

Download the file *IS3_5_4.exe* from our website, double-click on that file name to extract three files, double-click *on setup.exe*, and follow the prompts.

To launch IS software from Windows, press *Start* => *Programs* => IS2 => IS2. Or click on the Windows shortcut that you may have created. Establish communications by selecting matching settings between the instrument and PC, and click on *Establish*.

Factory default communication settings are 9600 baud, Custom ASCII Protocol, no parity, 8 data bits, and 1 stop bit. You will be prompted to select a Com port. Try different selections until one works, or use *Windows Control Panel* => *Device Manager* => *Ports (COM & LPT)* => *Advanced* to assign an available Com port number to the detected meter. Once communications have been established, click on *Main Menu*.

The best way to learn IS software is to experiment with it. From the Main Menu, click on *Get Setup* to upload (or get) the existing setup data from your device. Click on *View* = > *Setup* to bring up screens which allow you to edit the setup file using pull-down menus and other selection tools. You can save your file to disk by clicking on *File* = > *Save Setup*. You can download (or put) your edited file into the device by clicking on *Put Setup*. Programmable items will only be displayed if the appropriate hardware has been detected, such as the dual relay option for meters. Pressing the *F1* key at any time will bring up detailed help information.

Once you are communication with your device using IS software, click on the *Communicatio*n tab. In the resulting screen, select Modbus RTU, no Parity, 8 data bits, and 2 stop bits, as well as your device's desired Modbus Address, such as 1. Note the instructions on the screen on how to set up communication parameters of the Modbus Master. When done, return to the Main Menu and execute a *Put Setup* to download your setup information from the PC into your device. From that moment on, your device is a Modbus Slave.

Input+Display	Scaling	Filter	Relay Alarms	Communication	Analog Out	Lockouts
Serial Co Baud Rate 9600	mmunicatio	ns			⊢ Full/Half (Duplex —
- Serial Protoc	ol Parity -		dbus Address		Full Duple	x
	ıs, set Host Co Even Parity.	omputer/Contr	oller to 2 Stop	Bits for No Par	ity or 1 Stop F	Bit

You can use IS software for instrument setup, such as scaling and setting alarm setpoints, after your instrument has been set to a specific protocol (Modbus RTU, Modbus ASCII or Custom ASCII).

2. RESETTING TO FACTORY DEFAULT COMMUNICATIONS

If you need to your instrument to factor default communications, which include the Custom ASCII Protocol, you can do so outside of IS software. If your instrument is a meter, you can do so from the front panel, as documented in the previous manual section. If your instrument is a transmitter, place jumper E1, apply power, remove power, remove the jumper, and reapply power, as documented in the section "Main Board Jumper Settings" of your transmitter user manual.

7. USING DIAGNOSTIC TOOL QMODMASTER

0. ABOUT QMODMASTER

qModMaster.exe is a freeware Windows program which allows a PC to serve as a Modbus Master. It is an easy-to-use tool to verify communications, send requests to Modbus Slaves, and view their responses. It works well with Base 0, not Base 1, so <u>use it only with Base 0</u> and subtract 1 from the Register addresses listed in this manual. Download qModMaster from SourceForge: <u>https://sourceforge.net/projects/qmodmaster/files/latest/download</u>

Click on the downloaded file and install it in a directory of your choice. Create a desktop icon from the installed executable. Before using qModMaster, ensure that your meter or transmitter has been set to Modbus RTU as explained in the preceding section of this manual.

1. EXAMPLE 1: READ A PANEL METER WITH QMODMASTER

Get the reading from a digital panel meter that displays 1.543 Volts. Use Modbus RTU, Base 0, Slave Address 1, and Com port 6 (as verified by Device Manager).

Step 1. Under *Options*, select *Modbus RTU*. This will open *Modbus RTU Settings*, where you can enter your Serial port. From *Options* go to *Settings*, and select *Base Addr. 0* (for Base 0).

Serial device	COM 👻
Serial port	6
Baud	9600 -
Data Bits	8 -
Stop Bits	2 •
Parity	None 🔻
RTS	Disable 🔹
OK	Cancel

Step 2. In the main window below, set *Function Code* to FC04 for Read Input Register. Set *Start Address* 00 03 (hex), which is the Hi Word of the measurement value with Base 0. Set *Number of Registers* (or *Number of Coils*) to 2, since the Hi Word and Lo Word need to be read as a pair. In this example, we have specified that we want the data format to be in Hex. The main window immediately shows the Hi Word value as 0 and the Lo Word value as 607. Hex 607 is the same as Decimal 1543. This is 1543 counts without a decimal point for the 1.543 Volts displayed by the meter.

File Options Commands View Help					
0 0 😒 🔤 🚏 🖾 🖉 🔍 🕲 🐨 🖉 🐨					
Modbus Mode RTU V Slave Addr 1 Scan Rate (ms) 1000 V					
Function Code Read Input Registers (0x04) Start Address 3 Dec					
Number of Coils 2 🚖 Data Format Hex 🔻					
x x x 0 607 x x x x x					
RTU : COM6 9600,8,2,None Base Addr : 0 Packets : 1 Errors : 0					

- Step 3. Click on *View* => *Bus Monitor*. This will open the Bus Monitor window.
- Step 4. In the main Window, click twice on *Commands* => *Connect*, and check the Bus Monitor to verify that your communication and Modbus settings are ... *OK*.
- Step 5. In the main Window, click on *Commands* => *Read/Write* to send your Modbus request and receive your meter's response.

Sys > 15:28:16:431 - Connecting to [RTU]>Tx > 15:28:20:208 - 01 04 00 [RTU]>Rx > 15:28:20:237 - 01 04 04	03 00 02 81 CB		
[RTU]>Rx > 15:28:20:237 - 01 04 04	4 00 00 06 07 B9 E6		
ADU	ADU		
Type : Tx Message Timestamp : 15:28:20:208 Slave Addr : 01	Type : Rx Message Timestamp : 15:28:20:237 Slave Addr : 01		

The Raw Data window of the Bus Monitor shows the ASCII characters that were sent (Tx) and received (Rx). For information on each group of characters, click on the Tx and Rx rows under Raw Data, and details will be shown in the ADU (Application Data Unit) window for either Tx or Rx. The returned Register Values for the reading are 00 00 06 07. Hex 607 is the same as Decimal 1543. This is the 1.543 Volts displayed by the meter in counts without the decimal point.

2. EXAMPLE 2: CHANGE A PANEL METER RELAY SETPOINT WITH QMODMASTER

Change the Alarm 1 setpoint to 1.500 Volts. Use Modbus RTU, Base 0, Slave Address 1, and Com port 6 (same as for Example 1).

Step 1. Under *Options*, select *Modbus RTU*. This will open *Modbus RTU Settings*, where you can enter your Serial port. From *Options* go to *Settings*, and select *Base Addr. 0* (for Base 0).

Serial device	COM 👻
Serial port	6
Baud	9600 🔻
Data Bits	8 🔻
Stop Bits	2 🔻
Parity	None 🔻
RTS	Disable 🔻
ОК	Cancel

Max No Of Bus Monitor Lines	60	* *
Response Timeout (sec)	2	•
Base Addr	0	•
ОК	Cance	

- Step 2. In the main window, set *Function Code* to FC10 for *Write Multiple Registers (0x10)*. Set *Start Address* 00 01 (decimal or hex), which is the Hi Word of the Alarm 1 setpoint. Set *Number of Registers* to 2, since the Hi Word and Lo Word need to be set as a pair. In this example we have specified that we want the data format to be in Decimal. Enter the Hi Word as 0000 and the Lo Word as 1500 counts without a decimal point.
- Step 3. Click on *View* => *Bus Monitor*. This will open the Bus Monitor window.
- Step 4. In the main Window, click twice on *Commands* => *Connect*, and check the Bus Monitor to verify that your communication and Modbus settings are ... *OK*.
- Step 5. In the main Window below, click on *Commands* => *Read/Write* to send your Modbus request and receive your meter's response.

File Options Commands View Help					
Modbus Mode RTU 🔻 Slave Addr 1 ≑ Scan Rate (ms) 1000 🌩					
Function Code Write Multiple Registers (0x10) 🔻 Start Address 1 😒 Dec 💌					
Number of Registers 2 🔄 Data Format Dec 🔻 Signed 🗐					
x 0 1500 x x x x x x x x					
RTU : COM6 9600,8,2,None Base Addr : 0 Packets : 1 Errors : 0					

	01 00 02 04 00 00 05 DC 30 AA		
[RTU]>Tx > 16:05:12:599 - 01 10 00 01 00 02 04 00 00 05 DC 30 AA			
[RTU] > Rx > 16:05:12:649 - 01 10 00 01 00 02 10 08 Sys > 16:05:12:649 - values written correctly.			
ADU			
ADU	ADU		

The Raw Data window of the Bus Monitor shows the ASCII characters that were sent (Tx) and received (Rx). For information on each group of characters, click on the Tx and Rx rows, and details will be shown in the ADU (Application Data Unit) window for either Tx or Rx. Note that the Output Values are 00 00 05 DC. Hex 5DC is the same as Decimal 1500. This is the desired Alarm 1 setpoint of 1.500 Volts in counts without the decimal point.

3. OTHER EXAMPLES FOR DEVICE ADDRESS 01, NO PARITY

Shown in the table below are the physical bytes on the communication line. These are always with Base 0.

Example	Action	Modbus RTU	Modbus ASCII
Lvampic	Action	Ser_4 = 010 Addr = 001	$Ser_4 = 020$ Addr = 001
Restart Com-	Request	010800010000 B1CB	:010800010000 F6 crlf
munications*	Response	010800010000 B1CB	:010800010000 F6 crlf
Meter Reset	Request	01050001FF00 DDFA	:01050001FF00 FA crlf
	Response	None	None
Digital Reading	Request	010400030002 81CB	:010400030002 F6 crlf
= +25.18	Response	010404000009D6 7C4A	:010404000009D6 18 crlf
Write Setpoint	Request	0110000100020400000E74 3624	:0110000100020400000E74 66 crlf
1 = +37.00	Response	011000010002 1008	:011000010002 EC crlf
Read Setpoint 1	Request	010300010002 95CB	:010300010002 F9 crlf
= +37.00	Response	01030400000E74 FE74	:01030400000E74 76 crlf

* Suggested as first message after power-up. If device is in Listen-Only mode, no response is returned.

Bolded characters:

With Modbus RTU, last 4 characters indicate the CRC, which is added automatically by the device with RS232, RS485 or USB communications.

With Modbus ASCII, last 2 characters indicate the LRC, which is added automatically by the device with RS232, RS485 or USB communications.

Copyright 2004-2020

Rev 2 October 2020