
Modbus Protocol

PDF format version of the MODBUS Protocol

The original was found at:

http://www.http://www.modicon.com/techpubs/toc7.html

(In case of any discrepancies, that version should be considered accurate.)

Hope you find this useful!
Spehro Pefhany, January 2000

3-1750 The Queensway Suite 1298 Toronto ON Canada M9C 4H5
(905) 271-4477 fax: (905) 271-9838 e-mail: info@trexon.com

Modbus Protocol
Chapter 1 Modbus Protocol

Chapter 2 Data and Control Functions

Chapter 3 Diagnostic Subfunctions

Chapter 4 Exception Responses

Chapter 5 Application Notes

Chapter 6 LRC / CRC Generation

http://www.modicon.com/techpubs/toc7.html [1/11/2000 10:32:59 PM]

Chapter 1
Modbus Protocol
V Introducing Modbus Protocol

V Two Serial Transmission Modes

V Modbus Message Framing

V Error Checking Methods

1.1 Introducing Modbus Protocol

Modicon programmable controllers can communicate with each other and with other devices
over a variety of networks. Supported networks include the Modicon Modbus and Modbus Plus
industrial networks, and standard networks such as MAP and Ethernet. Networks are accessed
by built-in ports in the controllers or by network adapters, option modules, and gateways that
are available from Modicon. For original equipment manufacturers, Modicon ModConnect
partner programs are available for closely integrating networks like Modbus Plus into
proprietary product designs.

The common language used by all Modicon controllers is the Modbus protocol. This protocol
defines a message structure that controllers will recognize and use, regardless of the type of
networks over which they communicate. It describes the process a controller uses to request
access to another device, how it will respond to requests from the other devices, and how errors
will be detected and reported. It establishes a common format for the layout and contents of
message fields.

The Modbus protocol provides the internal standard that the Modicon controllers use for
parsing messages. During communications on a Modbus network, the protocol determines how
each controller will know its device address, recognize a message addressed to it, determine the
kind of action to be taken, and extract any data or other information contained in the message. If
a reply is required, the controller will construct the reply message and send it using Modbus
protocol.

On other networks, messages containing Modbus protocol are imbedded into the frame or
packet structure that is used on the network. For example, Modicon network controllers for
Modbus Plus or MAP, with associated application software libraries and drivers, provide
conversion between the imbedded Modbus message protocol and the specific framing protocols
those networks use to communicate between their node devices.

This conversion also extends to resolving node addresses, routing paths, and error-checking
methods specific to each kind of network. For example, Modbus device addresses contained in
the Modbus protocol will be converted into node addresses prior to transmission of the
messages. Error-checking fields will also be applied to message packets, consistent with each

Modbus Protocol

http://www.modicon.com/techpubs/intr7.html (1 of 5) [1/11/2000 10:36:08 PM]

network's protocol. At the final point of delivery, however-for example, a controller-the
contents of the imbedded message, written using Modbus protocol, define the action to be
taken.

Figure 1 shows how devices might be interconnected in a hierarchy of networks that employ
widely differing communication techniques. In message transactions, the Modbus protocol
imbedded into each network's packet structure provides the common language by which the
devices can exchange data.

Figure 1 Overview of Modbus Protocol Application

1.1.1 Transactions on Modbus Networks

Standard Modbus ports on Modicon controllers use an RS-232C compatible serial interface that
defines connector pinouts, cabling, signal levels, transmission baud rates, and parity checking.
Controllers can be networked directly or via modems.

Controllers communicate using a master-slave technique, in which only one device (the master)
can initiate transactions (queries). The other devices (the slaves) respond by supplying the
requested data to the master, or by taking the action requested in the query. Typical master
devices include host processors and programming panels. Typical slaves include programmable

Modbus Protocol

http://www.modicon.com/techpubs/intr7.html (2 of 5) [1/11/2000 10:36:08 PM]

controllers.

The master can address individual slaves, or can initiate a broadcast message to all slaves.
Slaves return a message (response) to queries that are addressed to them individually.
Responses are not returned to broadcast queries from the master.

The Modbus protocol establishes the format for the master's query by placing into it the device
(or broadcast) address, a function code defining the requested action, any data to be sent, and an
error-checking field. The slave's response message is also constructed using Modbus protocol. It
contains fields confirming the action taken, any data to be returned, and an error-checking field.
If an error occurred in receipt of the message, or if the slave is unable to perform the requested
action, the slave will construct an error message and send it as its response.

1.1.2 Transactions on Other Kinds of Networks

In addition to their standard Modbus capabilities, some Modicon controller models can
communicate over Modbus Plus using built-in ports or network adapters, and over MAP, using
network adapters.

On these networks, the controllers communicate using a peer-to-peer technique, in which any
controller can initiate transactions with the other controllers. Thus a controller may operate
either as a slave or as a master in separate transactions. Multiple internal paths are frequently
provided to allow concurrent processing of master and slave transactions.

At the message level, the Modbus protocol still applies the master-slave principle even though
the network communication method is peer-to-peer. If a controller originates a message, it does
so as a master device, and expects a response from a slave device. Similarly, when a controller
receives a message it constructs a slave response and returns it to the originating controller.

1.1.3 The Query-Response Cycle

Figure 2 Master-Slave Query-Response Cycle

The Query

The function code in the query tells the addressed slave device what kind of action to perform.
The data bytes contain any additional information that the slave will need to perform the
function. For example, function code 03 will query the slave to read holding registers and
respond with their contents. The data field must contain the information telling the slave which

Modbus Protocol

http://www.modicon.com/techpubs/intr7.html (3 of 5) [1/11/2000 10:36:08 PM]

register to start at and how many registers to read. The error check field provides a method for
the slave to validate the integrity of the message contents.

The Response

If the slave makes a normal response, the function code in the response is an echo of the
function code in the query. The data bytes contain the data collected by the slave, such as
register values or status. If an error occurs, the function code is modified to indicate that the
response is an error response, and the data bytes contain a code that describes the error. The
error check field allows the master to confirm that the message contents are valid.

1.2 Two Serial Transmission Modes

Controllers can be setup to communicate on standard Modbus networks using either of two
transmission modes: ASCII or RTU. Users select the desired mode, along with the serial port
communication parameters (baud rate, parity mode, etc), during configuration of each
controller. The mode and serial parameters must be the same for all devices on a Modbus
network.

The selection of ASCII or RTU mode pertains only to standard Modbus networks. It defines the
bit contents of message fields transmitted serially on those networks. It determines how
information will be packed into the message fields and decoded.

On other networks like MAP and Modbus Plus, Modbus messages are placed into frames that
are not related to serial tranasmission. For example, a request to read holding registers can be
handled between two controllers on Modbus Plus without regard to the current setup of either
controller's serial Modbus port.

1.2.1 ASCII Mode

When controllers are setup to communicate on a Modbus network using ASCII (American
Standard Code for Information Interchange) mode, each eight-bit byte in a message is sent as
two ASCII characters. The main advantage of this mode is that it allows time intervals of up to
one second to occur between characters without causing an error.

Coding System

V Hexadecimal, ASCII characters 0 ... 9, A ... F

V One hexadecimal character contained in each ASCII character of the message

Bits per Byte

V 1 start bit

V 7 data bits, least significant bit sent first

V 1 bit for even / odd parity-no bit for no parity

V 1 stop bit if parity is used-2 bits if no parity

Error Check Field

Modbus Protocol

http://www.modicon.com/techpubs/intr7.html (4 of 5) [1/11/2000 10:36:08 PM]

V Longitudinal Redundancy Check (LRC)

1.2.2 RTU Mode

When controllers are setup to communicate on a Modbus network using RTU (Remote
Terminal Unit) mode, each eight-bit byte in a message contains two four-bit hexadecimal
characters. The main advantage of this mode is that its greater character density allows better
data throughput than ASCII for the same baud rate. Each message must be transmitted in a
continuous stream.

Coding System

V Eight-bit binary, hexadecimal 0 ... 9, A ... F

V Two hexadecimal characters contained in each eight-bit field of the message

Bits per Byte

V 1 start bit

V 8 data bits, least significant bit sent first

V 1 bit for even / odd parity-no bit for no parity

V 1 stop bit if parity is used-2 bits if no parity

Error Check Field

V Cyclical Redundancy Check (CRC)

1.3 Modbus Message Framing

In either of the two serial transmission modes (ASCII or RTU), a Modbus message is placed by
the transmitting device into a frame that has a known beginning and ending point. This allows
receiving devices to begin at the start of the message, read the address portion and determine
which device is addressed (or all devices, if the message is broadcast), and to know when the
message is completed. Partial messages can be detected and errors can be set as a result.

On networks like MAP or Modbus Plus, the network protocol handles the framing of messages
with beginning and end delimiters that are specific to the network. Those protocols also handle
delivery to the destination device, making the Modbus address field imbedded in the message
unnecessary for the actual transmission. (The Modbus address is converted to a network node
address and routing path by the originating controller or its network adapter.)

1.3.1 ASCII Framing

In ASCII mode, messages start with a colon (:) character (ASCII 3A hex), and end with a
carriage return-line feed (CRLF) pair (ASCII 0D and 0A hex).

The allowable characters transmitted for all other fields are hexadecimal 0 ... 9, A ... F.
Networked devices monitor the network bus continuously for the colon character. Wh

Modbus Protocol

http://www.modicon.com/techpubs/intr7.html (5 of 5) [1/11/2000 10:36:08 PM]

Chapter 2
Data and Control Functions

V Modbus Function Formats

V Function Codes

V Read Coil Status

V Read Input Status

V Read Holding Registers

V Read Input Registers

V Force Single Coil

V Preset Single Register

V Read Exception Status

V Fetch Comm Event Counter

V Fetch Comm Event Log

V Force Multiple Coils

V Preset Multiple Registers

V Report Slave ID

V Read General Reference

V Write General Reference

V Mask Write 4x Register

V Read / Write 4x Registers

http://www.modicon.com/techpubs/dcon7.html (1 of 36) [1/11/2000 10:41:03 PM]

V Read FIFO Queue

2.1 Modbus Function Formats

Note: Unless specified otherwise, numerical values (such as addresses, codes, or data) are
expressed as decimal values in the text of this section. They are expressed as hexadecimal
values in the message fields of the figures.

2.1.1 Data Addresses in Modbus Messages

All data addresses in Modbus messages are referenced to zero. The first occurrence of a data
item is addressed as item number zero. For example:

V Coil 1 in a programmable controller is addressed as coil 0000 in the data address field of a
Modbus message

V Coil 127 decimal is addressed as coil 007E hex (126 decimal)

V Holding register 40001 is addressed as register 0000 in the data address field of the message.
The function code field already specifies a holding register operation. Therefore the 4x
reference is implicit.

V Holding register 40108 is addressed as register 006B hex (107 decimal)

2.1.2 Field Contents in Modbus Messages

The following tables show examples of a Modbus query and normal response. Both examples
show the field contents in hexadecimal, and also show how a message could be framed in
ASCII or in RTU mode.

Query

Response

http://www.modicon.com/techpubs/dcon7.html (2 of 36) [1/11/2000 10:41:03 PM]

The master query is a Read Holding Registers request to slave device address 06. The message
requests data from three holding registers, 40108 ... 40110.

Note: The message specifies the starting register address as 0107 (006B hex).

The slave response echoes the function code, indicating this is a normal response. The Byte
Count field specifies how many eight-bit data items are being returned. It shows the count of
eight-bit bytes to follow in the data, for either ASCII or RTU. With ASCII, this value is half the
actual count of ASCII characters in the data. In ASCII, each four-bit hexadecimal value requires
one ASCII character, therefore two ASCII characters must follow in the message to contain
each eight-bit data item.

For example, the value 63 hex is sent as one eight-bit byte in RTU mode (01100011). The same
value sent in ASCII mode requires two bytes, for ASCII 6 (0110110) and 3 (0110011). The
Byte Count field counts this data as one eight-bit item, regardless of the character framing
method (ASCII or RTU).

How to Use the Byte Count Field

When you construct responses in buffers, use a Byte Count value that equals the count of
eight-bit bytes in your message data. The value is exclusive of all other field contents, including
the Byte Count field.

2.1.3 Field Contents on Modbus Plus

Modbus messages sent on Modbus Plus networks are imbedded into the Logical Link Control
(LLC) level frame. Modbus message fields consist of eight-bit bytes, similar to those used with
RTU framing.

http://www.modicon.com/techpubs/dcon7.html (3 of 36) [1/11/2000 10:41:04 PM]

The Slave Address field is converted to a Modbus Plus routing path by the sending device. The
CRC field is not sent in the Modbus message, because it would be redundant to the CRC check
performed at the High-level Data Link Control (HDLC) level.

The rest of the message remains as in the standard serial format. The application software (e.g.,
MSTR blocks in controllers, or Modcom III in hosts) handles the framing of the message into a
network packet.

Figure 7 shows how a Read Holding Registers query would be imbedded into a frame for
Modbus Plus transmission.

Figure 7 Field Contents on Modbus Plus

2.2 Function Codes

The listing below shows the function codes supported by Modicon controllers. Codes are listed
in decimal; Y indicates that the function is supported, and N indicates that it is not supported.

http://www.modicon.com/techpubs/dcon7.html (4 of 36) [1/11/2000 10:41:04 PM]

2.2.1 01 Read Coil Status

Reads the ON / OFF status of discrete outputs (0x references, coils) in the slave. Broadcast is
not supported. The maximum parameters supported by various controller models are listed on
page .

Query

The query message specifies the starting coil and quantity of coils to be read. Coils are
addressed starting at zero-coils 1 ... 16 are addressed as 0 ... 15.

Here is an example of a query to read coils 20 ... 56 from slave device 17:

http://www.modicon.com/techpubs/dcon7.html (5 of 36) [1/11/2000 10:41:04 PM]

Response

The coil status in the response message is packed as one coil per bit of the data field. Status is
indicated as: 1 = ON; 0 = OFF. The LSB of the first data byte contains the coil addressed in the
query. The other coils follow toward the high order end of this byte, and from low order to high
order in subsequent bytes.

If the returned coil quantity is not a multiple of eight, the remaining bits in the final data byte
will be padded with zeros (toward the high order end of the byte). The Byte Count field
specifies the quantity of complete bytes of data.

Here is an example of a response to the query:

The status of coils 27 ... 20 is shown as the byte value CD hex, or binary 1100 1101. Coil 27 is
the MSB of this byte, and coil 20 is the LSB. Left to right, the status of coils 27 ... 20 is
ON-ON-OFF-OFF-ON-ON-OFF-ON.

By convention, bits within a byte are shown with the MSB to the left, and the LSB to the right.
Thus the coils in the first byte are 27 ... 20, from left to right. The next byte has coils 35 ... 28,
left to right. As the bits are transmitted serially, they flow from LSB to MSB: 20 . . . 27, 28 . . .
35, and so on.

In the last data byte, the status of coils 56 ... 52 is shown as the byte value 1B hex, or binary
0001 1011. Coil 56 is in the fourth bit position from the left, and coil 52 is the LSB of this byte.

http://www.modicon.com/techpubs/dcon7.html (6 of 36) [1/11/2000 10:41:04 PM]

The status of coils 56 ... 52 is: ON-ON-OFF-ON-ON.

Note: The three remaining bits (toward the high-order end) are zero-filled.

2.2.2 02 Read Input Status

Reads the ON / OFF status of discrete inputs (1x references) in the slave. Broadcast is not
supported. The maximum parameters supported by various controller models are listed on page
.

Query

The query message specifies the starting input and quantity of inputs to be read. Inputs are
addressed starting at zero-inputs 1 ... 16 are addressed as 0 ... 15.

Here is an example of a request to read inputs 10197 ... 10218 from slave device 17:

Response

The input status in the response message is packed as one input per bit of the data field. Status
is indicated as: 1 = ON; 0 = OFF. The LSB of the first data byte contains the input addressed in
the query. The other inputs follow toward the high order end of this byte, and from low order to
high order in subsequent bytes.

If the returned input quantity is not a multiple of eight, the remaining bits in the final data byte
will be padded with zeros (toward the high order end of the byte). The Byte Count field
specifies the quantity of complete bytes of data.

Here is an example of a response to the query:

http://www.modicon.com/techpubs/dcon7.html (7 of 36) [1/11/2000 10:41:04 PM]

The status of inputs 10204 ... 10197 is shown as the byte value AC hex, or binary 1010 1100.
Input 10204 is the MSB of this byte, and input 10197 is the LSB. Left to right, the status of
inputs 10204 ... 10197 is ON-OFF-ON-OFF-ON-ON-OFF-OFF.

The status of inputs 10218 ... 10213 is shown as the byte value 35 hex, or binary 0011 0101.
Input 10218 is in the third bit position from the left, and input 10213 is the LSB. The status of
inputs 10218 ... 10213 is: ON-ON-OFF-ON-OFF-ON.

Note: The two remaining bits (toward the high order end) are zero-filled.

2.2.3 03 Read Holding Registers

Reads the binary contents of holding registers (4x references) in the slave. Broadcast is not
supported. The maximum parameters supported by various controller models are listed on page
.

Query

The query message specifies the starting register and quantity of registers to be read. Registers
are addressed starting at zero- registers 1 ... 16 are addressed as 0 ... 15.

Here is an example of a request to read registers 40108 ... 40110 from slave device 17:

Response

The register data in the response message are packed as two bytes per register, with the binary
contents right justified within each byte. For each register, the first byte contains the high order
bits and the second contains the low order bits.

Data is scanned in the slave at the rate of 125 registers per scan for 984-X8X controllers
(984-685, etc), and at the rate of 32 registers per scan for all other controllers. The response is
returned when the data is completely assembled.

http://www.modicon.com/techpubs/dcon7.html (8 of 36) [1/11/2000 10:41:04 PM]

Here is an example of a response to the query:

The contents of register 40108 are shown as the two byte values of 02 2B hex, or 555 decimal.
The contents of registers 40109 ... 40110 are 00 00 and 00 64 hex, or 0 and 100 decimal.

2.2.4 04 Read Input Registers

Reads the binary contents of input registers (3X references) in the slave. Broadcast is not
supported. The maximum parameters supported by various controller models are listed on page
.

Query

The query message specifies the starting register and quantity of registers to be read. Registers
are addressed starting at zero- registers 1 ... 16 are addressed as 0 ... 15.

Here is an example of a request to read register 30009 from slave device 17:

Response

The register data in the response message are packed as two bytes per register, with the binary
contents right justified within each byte. For each register, the first byte contains the high-order
bits and the second contains the low-order bits.

http://www.modicon.com/techpubs/dcon7.html (9 of 36) [1/11/2000 10:41:04 PM]

Data is scanned in the slave at the rate of 125 registers per scan for 984-X8X controllers
(984-685, etc), and at the rate of 32 registers per scan for all other controllers. The response is
returned when the data is completely assembled.

Here is an example of a response to the query on the opposite page:

The contents of register 30009 are shown as the two byte values of 00 0A hex, or 10 decimal.

2.2.5 05 Force Single Coil

Forces a single coil (0x reference) to either ON or OFF. When broadcast, the function forces the
same coil reference in all attached slaves. The maximum parameters supported by various
controller models are listed on page .

Note: The function will override the controller's memory protect state and the coil's disable
state. The forced state will remain valid until the controller's logic next solves the coil. The coil
will remain forced if it is not programmed in the controller's logic.

Query

The query message specifies the coil reference to be forced. Coils are addressed starting at
zero-coil 1 is addressed as 0.

The reguested ON / OFF state is specified by a constant in the query data field. A value of FF
00 hex requests the coil to be ON. A value of 00 00 requests it to be OFF. All other values are
illegal and will not affect the coil.

Here is an example of a request to force coil 173 ON in slave device 17:

http://www.modicon.com/techpubs/dcon7.html (10 of 36) [1/11/2000 10:41:04 PM]

Response

The normal response is an echo of the query, returned after the coil state has been forced.

Here is an example of a response to the query:

2.2.6 06 Preset Single Register

Presets a value into a single holding register (4x reference). When broadcast, the function
presets the same register reference in all attached slaves. The maximum parameters supported
by various controller models are listed on page .

Note: The function will override the controller's memory protect state. The preset value will
remain valid in the register until the controller's logic next solves the register contents. The
register's value will remain if it is not programmed in the controller's logic.

Query

The query message specifies the register reference to be preset. Registers are addressed starting
at zero-register 1 is addressed as 0.

The reguested preset value is specified in the query data field. M84 and 484 controllers use a
10-bit binary value, with the six high order bits set to zeros. All other controllers use 16-bit
values.

Here is an example of a request to preset register 40002 to 00 03 hex in slave device 17:

http://www.modicon.com/techpubs/dcon7.html (11 of 36) [1/11/2000 10:41:04 PM]

Response

The normal response is an echo of the query, returned after the register contents have been
preset.

Here is an example of a response to the query:

2.2.7 07 Read Exception Status

Reads the contents of eight Exception Status coils within the slave controller. Certain coils have
predefined assignments in the various controllers. Other coils can be programmed by the user to
hold information about the contoller's status-e.g., machine ON/OFF, heads retracted, safeties
satisfied, error conditions exist, or other user-defined flags. Broadcast is not supported.

The function provides a simple method for accessing this information, because the Exception
Coil references are known (no coil reference is needed in the function). The predefined
Exception Coil assignments are:

Query

Here is an example of a request to read the exception status in slave device 17:

http://www.modicon.com/techpubs/dcon7.html (12 of 36) [1/11/2000 10:41:04 PM]

Response

The normal response contains the status of the eight Exception Status coils. The coils are
packed into one data byte, with one bit per coil. The status of the lowest coil reference is
contained in the least significant bit of the byte.

Here is an example of a response to the query:

In this example, the coil data is 6D hex (0110 1101 binary). Left to right, the coils are
OFF-ON-ON-OFF-ON-ON-OFF-ON. The status is shown from the highest to the lowest
addressed coil.

If the controller is a 984, these bits are the status of coils 8 ... 1. If the controller is a 484, these
bits are the status of coils 264 ... 257. In this example, coil 257 is ON, indicating that the
controller's batteries are OK.

2.2.8 11 (0B Hex) Fetch Comm Event Counter

Returns a status word and an event count from the slave's communications event counter. By
fetching the current count before and after a series of messages, a master can determine whether
the messages were handled normally by the slave. Broadcast is not supported.

The controller's event counter is incremented once for each successful message completion. It is
not incremented for exception responses, poll commands, or fetch event counter commands.

The event counter can be reset by means of the Diagnostics function (code 08), with a
subfunction of Restart Communications Option (code 00 01) or Clear Counters and Diagnostic
Register (code 00 0A).

Query

Here is an example of a request to fetch the communications event counter in slave device 17:

http://www.modicon.com/techpubs/dcon7.html (13 of 36) [1/11/2000 10:41:04 PM]

Response

The normal response contains a two-byte status word, and a two-byte event count. The status
word will be all ones (FF FF hex) if a previously issued program command is still being
processed by the slave (a busy condition exists). Otherwise, the status word will be all zeros.

Here is an example of a response to the query:

In this example, the status word is FF FF hex, indicating that a program function is still in
progress in the slave. The event count shows that 264 (01 08 hex) events have been counted by
the controller.

2.2.9 12 (0C Hex) Fetch Comm Event Log

Returns a status word, event count, message count, and a field of event bytes from the slave.
Broadcast is not supported. The status word and event count are identical to that returned by the
Fetch Communications Event Counter function (11, 0B hex).

The message counter contains the quantity of messages processed by the slave since its last
restart, clear counters operation, or power-up. This count is identical to that returned by the
Diagnostic function (code 08), subfunction Return Bus Message Count (code 11, 0B hex).

The event bytes field contains 0 ... 64 bytes, with each byte corresponding to the status of one
Modbus send or receive operation for the slave. The events are entered by the slave into the
field in chronological order. Byte 0 is the most recent event. Each new byte flushes the oldest
byte from the field.

Query

Here is an example of a request to fetch the communications event log in slave device 17:

http://www.modicon.com/techpubs/dcon7.html (14 of 36) [1/11/2000 10:41:04 PM]

Response

The normal response contains a two-byte status word field, a two-byte event count field, a
two-byte message count field, and a field containing 0 ... 64 bytes of events. A byte-count field
defines the total length of the data in these four fields.

Here is an example of a response to the query:

In this example, the status word is 00 00 hex, indicating that the slave is not processing a
program function. The event count shows that 264 (01 08 hex) events have been counted by the
slave. The message count shows that 289 (01 21 hex) messages have been processed.

The most recent communications event is shown in the Event 0 byte. Its contents (20 hex) show
that the slave has most recently entered the Listen Only Mode.

The previous event is shown in the Event 1 byte. Its contents (00 hex) show that the slave
received a Communications Restart.

What the Event Bytes Contain

An event byte returned by the Fetch Communications Event Log function can be any one of
four types. The type is defined by bit 7 (the high-order bit) in each byte. It may be further
defined by bit 6.

Slave Modbus Receive Event

http://www.modicon.com/techpubs/dcon7.html (15 of 36) [1/11/2000 10:41:04 PM]

This type of event byte is stored by the slave when a query message is received. It is stored
before the slave processes the message. This event is defined by bit 7 set to a logic 1. The other
bits will be set to a logic 1 if the corresponding condition is TRUE. The bit layout is:

Slave Modbus Send Event

This type of event byte is stored by the slave when it finishes processing a query message. It is
stored if the slave returned a normal or exception response, or no response. This event is
defined by bit 7 set to a logic 0, with bit 6 set to a 1. The other bits will be set to a logic 1 if the
corresponding condition is TRUE. The bit layout is:

Slave Entered Listen Only Mode

This type of event byte is stored by the slave when it enters the Listen Only Mode. The event is
defined by a contents of 04 hex. The bit layout is:

http://www.modicon.com/techpubs/dcon7.html (16 of 36) [1/11/2000 10:41:04 PM]

Slave Initiated Communication Restart

This type of event byte is stored by the slave when its communications port is restarted. The
slave can be restarted by the Diagnostics function (code 08), with subfunction Restart
Communications Option (code 00 01).

That function also places the slave into a Continue on Error or Stop on Error mode. If the slave
is placed into Continue on Error mode, the event byte is added to the existing event log. If the
slave is placed into Stop on Error mode, the byte is added to the log and the rest of the log is
cleared to zeros. The event is defined by a contents of zero. The bit layout is:

2.2.10 15 (0F Hex) Force Multiple Coils

Forces each coil (0x reference) in a sequence of coils to either ON or OFF. When broadcast, the
function forces the same coil references in all attached slaves. The maximum parameters
supported by various controller models are listed on page .

Note: The function will override the controller's memory protect state and a coil's disable state.
The forced state will remain valid until the controller's logic next solves each coil. Coils will
remain forced if they are not programmed in the controller's logic.

Query

The query message specifies the coil references to be forced. Coils are addressed starting at
zero-coil 1 is addressed as 0.

The reguested ON / OFF states are specified by contents of the query data field. A logical 1 in a
bit position of the field requests the corresponding coil to be ON. A logical 0 requests it to be
OFF.

http://www.modicon.com/techpubs/dcon7.html (17 of 36) [1/11/2000 10:41:04 PM]

The following page shows an example of a request to force a series of ten coils starting at coil
20 (addressed as 19, or 13 hex) in slave device 17.

The query data contents are two bytes: CD 01 hex (1100 1101 0000 0001 binary). The binary
bits correspond to the coils in the following way:

Bit: 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 1

Coil: 27 26 25 24 23 22 21 20 - - - - - - 29 28

The first byte transmitted (CD hex) addresses coils 27 ... 20, with the least significant bit
addressing the lowest coil (20) in this set.

The next byte transmitted (01 hex) addresses coils 29 and 28, with the least significant bit
addressing the lowest coil (28) in this set. Unused bits in the last data byte should be zero-filled.

Response

The normal response returns the slave address, function code, starting address, and quantity of
coils forced. Here is an example of a response to the query shown above:

2.2.11 16 (10 Hex) Preset Multiple Registers

Presets values into a sequence of holding registers (4x references). When broadcast, the

http://www.modicon.com/techpubs/dcon7.html (18 of 36) [1/11/2000 10:41:04 PM]

function presets the same register references in all attached slaves. The maximum parameters
supported by various controller models are listed on page .

Note: The function will override the controller's memory protect state. The preset values will
remain valid in the registers until the controller's logic next solves the register contents. The
register values will remain if they are not programmed in the controller's logic.

Query

The query message specifies the register references to be preset. Registers are addressed starting
at zero-register 1 is addressed as 0.

The requested preset values are specified in the query data field. M84 and 484 controllers use a
10-bit binary value, with the six high order bits set to zeros. All other controllers use 16-bit
values. Data is packed as two bytes per register.

Here is an example of a request to preset two registers starting at 40002 to 00 0A and 01 02 hex,
in slave device 17:

Response

The normal response returns the slave address, function code, starting address, and quantity of
registers preset. Here is an example of a response to the query shown above.

http://www.modicon.com/techpubs/dcon7.html (19 of 36) [1/11/2000 10:41:04 PM]

2.2.12 17 (11 Hex) Report Slave ID

Returns a description of the type of controller present at the slave address, the current status of
the slave Run indicator, and other information specific to the slave device. Broadcast is not
supported.

Query

Here is an example of a request to report the ID and status of slave device 17:

Response

The format of a normal response is shown below. The data contents are specific to each
controller type.

Summary of Slave IDs

These are the Slave ID codes returned by Modicon controllers in the first byte of the data field:

http://www.modicon.com/techpubs/dcon7.html (20 of 36) [1/11/2000 10:41:04 PM]

184 / 384

The 184 or 384 controller returns a byte count of either 4 or 74 (4A hexadecimal). If the
controller's J347 Modbus Slave Interface is setup properly, and its internal PIB table is normal,
the byte count will be 74. Otherwise the byte count will be 4. The four bytes that are always
returned are:

Bytes 5 ... 10, returned for a correct J347 setup and normal PIB, are:

Bytes 11 ... 74 contain the PIB table. This data is valid only if the controller is running (as
shown in Byte 2). The table is as follows:

http://www.modicon.com/techpubs/dcon7.html (21 of 36) [1/11/2000 10:41:04 PM]

584

The 584 controller returns a byte count of 9, as follows:

http://www.modicon.com/techpubs/dcon7.html (22 of 36) [1/11/2000 10:41:04 PM]

http://www.modicon.com/techpubs/dcon7.html (23 of 36) [1/11/2000 10:41:04 PM]

984

The 984 controller returns a byte count of 9, as follows:

http://www.modicon.com/techpubs/dcon7.html (24 of 36) [1/11/2000 10:41:04 PM]

Note: Bit 0 of the Machine State word defines the use of the memory downsize values in words
99, 100, and 175 (63, 64, and AF hexadecimal) of the configuration table. If bit 0 = logic 1,
downsizing is calculated as follows:

Page 0 size (16-bit words) = (Word 99 * 4096) - (Word 175 lo byte * 16)

State table size (16-bit words) = (Word 100 * 1024) - (Word 175 hi byte * 16)

Micro 84

The Micro 84 controller returns a byte count of 8, as follows:

http://www.modicon.com/techpubs/dcon7.html (25 of 36) [1/11/2000 10:41:04 PM]

484

The 484 controller returns a byte count of 5, as follows:

884

The 884 controller returns a byte count of 8, as follows:

http://www.modicon.com/techpubs/dcon7.html (26 of 36) [1/11/2000 10:41:04 PM]

2.2.13 20 (14 Hex) Read General Reference

Returns the contents of registers in Extended Memory file (6x) references. Broadcast is not
supported. The function can read multiple groups of references. The groups can be separate
(noncontiguous), but the references within each group must be sequential.

Query

The query contains the standard Modbus slave address, function code, byte count, and error
check fields. The rest of the query specifies the group or groups of references to be read. Each
group is defined in a separate sub-request field which contains seven bytes:

V The reference type-one byte (must be specified as 6)

V The Extended Memory file number-two bytes (1 ... 10, 0001 ... 000A hex)

V The starting register address within the file-two bytes

V The quantity of registers to be read-two bytes

The quantity of registers to be read, combined with all other fields in the expected response,
must not exceed the allowable length of Modbus messages-256 bytes.

The available quantity of Extended Memory files depends upon the installed size of Extended
Memory in the slave controller. Each file except the last one contains 10,000 registers,
addressed as 0000 ... 270F hexadecimal (0000 - ... 9999 decimal).

For controllers other than the 984-785 with Extended Registers, the last (highest) register in the
last file is:

For the 984-785 with Extended Registers, the last (highest) register in the last file is shown in
the two tables below.

http://www.modicon.com/techpubs/dcon7.html (27 of 36) [1/11/2000 10:41:04 PM]

Examples of a query and response follow. An example of a request to read two groups of
references from slave device 17 is shown. Group 1 consists of two registers from file 4, starting
at register 2 (address 0001). Group 2 consists of two registers from file 3, starting at register 10
(address 0009).

Response

The normal response is a series of sub-responses, one for each sub-request. The byte count field
is the total combined count of bytes in all sub-responses. In addition, each sub-response
contains a field that shows its own byte count.

http://www.modicon.com/techpubs/dcon7.html (28 of 36) [1/11/2000 10:41:04 PM]

2.2.14 21 (15 Hex) Write General Reference

Writes the contents of registers in Extended Memory file (6x) references. Broadcast is not
supported.

The function can write multiple groups of references. The groups can be separate
(noncontiguous), but the references within each group must be sequential.

Query

The query contains the standard Modbus slave address, function code, byte count, and error
check fields. The rest of the query specifies the group or groups of references to be written, and
the data to be written into them. Each group is defined in a separate sub-request field which
contains seven bytes plus the data:

V The reference type-one byte (must be specified as 6)

V The Extended Memory file number-two bytes (1 ... 10, 0001 ... 000A hex)

V The starting register address within the file-two bytes

V The quantity of registers to be written-two bytes

V The data to be written-two bytes/register

The quantity of registers to be written, combined with all other fields in the query, must not
exceed the allowable length of Modbus messages-256 bytes.

The available quantity of Extended Memory files depends upon the installed size of Extended
Memory in the slave controller. Each file except the last one contains 10,000 registers,
addressed as 0000 ... 270F hexadecimal (0000 - ... 9999 decimal).

For controllers other than the 984-785 with Extended Registers, the last (highest) register in the
last file is:

http://www.modicon.com/techpubs/dcon7.html (29 of 36) [1/11/2000 10:41:04 PM]

For the 984-785 with Extended Registers, the last (highest) register in the last file is shown in
the two tables below.

Examples of a query and response follow. An example of a request to write one group of
references into slave device 17 is shown. The group consists of three registers in file 4, starting
at register 8 (address 0007).

Response

http://www.modicon.com/techpubs/dcon7.html (30 of 36) [1/11/2000 10:41:04 PM]

The normal response is an echo of the query.

2.2.15 22 (16 Hex) Mask Write 4x Register

Modifies the contents of a specified 4x register using a combination of an AND mask, an OR
mask, and the register's current contents. The function can be used to set or clear individual bits
in the register. Broadcast is not supported.

Note: This function is supported in the 984-785 controller only.

Query

The query specifies the 4x reference to be written, the data to be used as the AND mask, and the
data to be used as the OR mask.

The function's algorithm is:

Result = (Current Contents AND And_Mask) OR (Or_Mask AND And_Mask)

For example,

http://www.modicon.com/techpubs/dcon7.html (31 of 36) [1/11/2000 10:41:04 PM]

Note: If the Or_Mask value is zero, the result is simply the logical ANDing of the current
contents and And_Mask. If the And_Mask value is zero, the result is equal to the Or_Mask
value.

Note: The contents of the register can be read with the Read Holding Registers function
(function code 03). They could, however, be changed subsequently as the controller scans its
user logic program.

Here is an example of a Mask Write to register 5 in slave device 17, using the above mask
values:

Response

The normal response is an echo of the query. The response is returned after the register has been
written.

http://www.modicon.com/techpubs/dcon7.html (32 of 36) [1/11/2000 10:41:04 PM]

2.2.16 23 (17 Hex) Read / Write 4x Registers

Performs a combination of one read and one write operation in a single Modbus transaction.
The function can write new contents to a group of 4x registers, and then return the contents of
another group of 4x registers. Broadcast is not supported.

Note: This function is supported in the 984-785 controller only.

Query

The query specifies the starting address and quantity of registers of the group to be read. It also
specifies the starting address, quantity of registers, and data for the group to be written. The
byte count field specifies the quantity of bytes to follow in the write data field.

Here is an example of a query to read six registers starting at register 5, and to write three
registers starting at register 16, in slave device 17:

http://www.modicon.com/techpubs/dcon7.html (33 of 36) [1/11/2000 10:41:04 PM]

Response

The normal response contains the data from the group of registers that were read. The byte
count field specifies the quantity of bytes to follow in the read data field.

Here is an example of a response to the query:

2.2.17 24 (18 Hex) Read FIFO Queue

Reads the contents of a first-in first-out (FIFO) queue of 4x registers. The function returns a
count of the registers in the queue, followed by the queued data. Up to 32 registers can be
read-the count, plus up to 31 queued data registers. The queue count register is returned first,
followed by the queued data registers.

The function reads the queue contents, but does not clear them. Broadcast is not supported.

http://www.modicon.com/techpubs/dcon7.html (34 of 36) [1/11/2000 10:41:04 PM]

Note: This function is supported in the 984-785 controller only.

Query

The query specifies the starting 4x reference to be read from the FIFO queue. This is the address
of the pointer register used with the controller's FIN and FOUT function blocks. It contains the
count of registers currently contained in the queue. The FIFO data registers follow this address
sequentially.

An example of a Read FIFO Queue query to slave device 17 is shown below. The query is to
read the queue starting at the pointer register 41247 (04DE hex).

Response

In a normal response, the byte count shows the quantity of bytes to follow, including the queue
count bytes and data register bytes (but not including the error check field).

The queue count is the quantity of data registers in the queue (not including the count register).

If the queue count exceeds 31, an exception response is returned with an error code of 03
(Illegal Data Value).

Here is an example of a normal response to the previous query:

http://www.modicon.com/techpubs/dcon7.html (35 of 36) [1/11/2000 10:41:04 PM]

In this example, the FIFO pointer register (41247 in the query) is returned with a queue count of
3. The three data registers follow the queue count. These are:

V 41248 (contents 440 decimal, 01B8 hex)

V 41249 (contents 4740, 1284 hex)

V 41250 (contents 4898, 1322 hex)

http://www.modicon.com/techpubs/dcon7.html (36 of 36) [1/11/2000 10:41:04 PM]

Chapter 3
Diagnostic Subfunctions

V Modbus Function 08-Diagnostics

V Diagnostic Codes Supported by Controllers

V Return Query Data

V Restart Communications Option

V Return Diagnostic Register

V Change ASCII Input Delimiter

V Force Listen Only Mode

V Clear Counters and Diagnostic Register

V Return Bus Message Count

V Return Bus Communication Error Count

V Return Bus Exception Error Count

V Return Slave Message Count

V Return Slave No Response Count

V Return Slave NAK Count

V Return Slave Busy Count

V Return Bus Character Overrun Count

V Return IOP Overrun Count (884)

V Clear Overrun Counter and Flag (884)

http://www.modicon.com/techpubs/diag7.html (1 of 16) [1/11/2000 10:43:10 PM]

V Get / Clear Modbus Plus Statistics

V Modbus Plus Network Statistics

3.1 Function 08-Diagnostics

Modbus function 08 provides a series of tests for checking the communication system between
the master and slave, or for checking various internal error conditions within the slave.
Broadcast is not supported.

The function uses a two-byte subfunction code field in the query to define the type of test to be
performed. The slave echoes both the function code and subfunction code in a normal response.

Most of the diagnostic queries use a two-byte data field to send diagnostic data or control
information to the slave. Some of the diagnostics cause data to be returned from the slave in the
data field of a normal response.

Diagnostic Effects on the Slave

In general, issuing a diagnostic function to a slave device does not affect the running of the user
program in the slave. User logic, like discretes and registers, is not accessed by the diagnostics.
Certain functions can optionally reset error counters in the slave.

A slave device can, however, be forced into `Listen Only Mode' in which it will monitor the
messages on the communications system but not respond to them. This can affect the outcome
of your application program it it depends upon any further exchange of data with the slave
device. Generally, the mode is forced to remove a malfunctioning slave device from the
communications system.

How This Information is Organized in Your Guide

An example diagnostics query and response are shown on the opposite page. These show the
location of the function code, subfunction code, and data field within the messages.

A list of subfunction codes supported by the controllers is shown on the pages after the example
response. Each subfunction code is then listed with an example of the data field contents that
would apply for that diagnostic.

Query

Here is an example of a request to slave device 17 to Return Query Data. This uses a
subfunction code of zero (00 00 hex in the two-byte field). The data to be returned is sent in the
two-byte data field (A5 37 hex).

http://www.modicon.com/techpubs/diag7.html (2 of 16) [1/11/2000 10:43:10 PM]

Response

The normal response to the Return Query Data request is to loopback the same data. The
function code and subfunction code are also echoed.

The data fields in responses to other kinds of queries could contain error counts or other
information requested by the subfunction code.

3.2 Diagnostic Codes Supported by Controllers

Subfunction codes are listed in decimal; Y indicates that the subfunction is supported, and N
indicates that it is not supported.

http://www.modicon.com/techpubs/diag7.html (3 of 16) [1/11/2000 10:43:10 PM]

3.2.1 00 Return Query Data

The data passed in the query data field is to be returned (looped back) in the response. The
entire response message should be identical to the query.

3.2.2 01 Restart Communications Option

The slave's peripheral port is to be initialized and restarted, and all of its communications event
counters are to be cleared. If the port is currently in Listen Only Mode, no response is returned.
This function is the only one that brings the port out of Listen Only Mode. If the port is not
currently in Listen Only Mode, a normal response is returned. This occurs before the restart is
executed.

When the slave receives the query, it attempts a restart and executes its power-up confidence
tests. Successful completion of the tests will bring the port online.

http://www.modicon.com/techpubs/diag7.html (4 of 16) [1/11/2000 10:43:10 PM]

A query data field contents of FF 00 hex causes the port's Communications Event Log to be
cleared also. Contents of 00 00 leave the log as it was prior to the restart.

3.2.3 02 Return Diagnostic Register

The contents of the slave's 16-bit diagnostic register are returned in the response.

3.2.4 How the Register Data is Organized

The assignment of diagnostic register bits for Modicon controllers is listed below. In each
register, bit 15 is the high-order bit. The description is TRUE when the corresponding bit is set
to logic 1.

http://www.modicon.com/techpubs/diag7.html (5 of 16) [1/11/2000 10:43:10 PM]

http://www.modicon.com/techpubs/diag7.html (6 of 16) [1/11/2000 10:43:10 PM]

3.2.5 03 Change ASCII Input Delimiter

The character CHAR passed in the query data field becomes the end of message delimiter for
future messages (replacing the default LF character). This function is useful in cases where a
Line Feed is not wanted at the end of ASCII messages.

3.2.6 04 Force Listen Only Mode

Forces the addressed slave to its Listen Only Mode for Modbus communications. This isolates
it from the other devices on the network, allowing them to continue communicating without
interruption from the addressed slave. No response is returned.

When the slave enters its Listen Only Mode, all active communication controls are turned off.
The Ready watchdog timer is allowed to expire, locking the controls off. While in this mode,
any Modbus messages addressed to the slave or broadcast are monitored, but no actions will be
taken and no responses will be sent.

The only function that will be processed after the mode is entered will be the Restart
Communications Option function (function code 8, subfunction 1).

3.2.7 10 (0A Hex) Clear Counters and Diagnostic Register

For controllers other than the 584 or 984, clears all counters and the diagnostic register. For the
584 or 984, clears the counters only. Counters are also cleared upon power-up.

http://www.modicon.com/techpubs/diag7.html (7 of 16) [1/11/2000 10:43:10 PM]

3.2.8 11 (0B Hex) Return Bus Message Count

The response data field returns the quantity of messages that the slave has detected on the
communications system since its last restart, clear counters operation, or power-up.

3.2.9 12 (0C Hex) Return Bus Communication Error Count

The response data field returns the quantity of CRC errors encountered by the slave since its last
restart, clear counters operation, or power-up.

3.2.10 13 (0D Hex) Return Bus Exception Error Count

The response data field returns the quantity of Modbus exception responses returned by the
slave since its last restart, clear counters operation, or power-up. For a description of exception
responses, see page .

3.2.11 14 (0E Hex) Return Slave Message Count

The response data field returns the quantity of messages addressed to the slave, or broadcast,
that the slave has processed since its last restart, clear counters operation, or power-up.

3.2.12 15 (0F Hex) Return Slave No Response Count

The response data field returns the quantity of messages addressed to the slave for which it
returned no response (neither a normal response nor an exception response), since its last
restart, clear counters operation, or power-up.

http://www.modicon.com/techpubs/diag7.html (8 of 16) [1/11/2000 10:43:10 PM]

3.2.13 16 (10 Hex) Return Slave NAK Count

The response data field returns the quantity of messages addressed to the slave for which it
returned a Negative Acknowledge (NAK) exception response, since its last restart, clear
counters operation, or power-up. For a description of exception responses, see page .

3.2.14 17 (11 Hex) Return Slave Busy Count

The response data field returns the quantity of messages addressed to the slave for which it
returned a Slave Device Busy exception response, since its last restart, clear counters operation,
or power-up. For a description of exception responses, see page .

3.2.15 18 (12 Hex) Return Bus Character Overrun Count

The response data field returns the quantity of messages addressed to the slave that it could not
handle due to a character overrun condition, since its last restart, clear counters operation, or
power-up. A character overrun is caused by data characters arriving at the port faster than they
can be stored, or by the loss of a character due to a hardware malfunction.

3.2.16 19 (13 Hex) Return IOP Overrun Count (884)

The response data field returns the quantity of messages addressed to the slave that it could not
handle due to an 884 IOP overrun condition, since its last restart, clear counters operation, or
power-up. An IOP overrun is caused by data characters arriving at the port faster than they can
be stored, or by the loss of a character due to a hardware malfunction.

http://www.modicon.com/techpubs/diag7.html (9 of 16) [1/11/2000 10:43:10 PM]

Note: This function is specific to the 884.

3.2.17 20 (14 Hex) Clear Overrun Counter and Flag (884)

Clears the 884 overrun error counter and resets the error flag. The current state of the flag is
found in bit 0 of the 884 diagnostic register (see subfunction 02).

Note: This function is specific to the 884.

3.2.18 21 (15 Hex) Get / Clear Modbus Plus Statistics

Returns a series of 54 16-bit words (108 bytes) in the data field of the response (this function
differs from the usual two-byte length of the data field). The data contains the statistics for the
Modbus Plus peer processor in the slave device.

In addition to the Function code (08) and Subfunction code (00 15 hex) in the query, a two-byte
Operation field is used to specify either a Get Statistics or a Clear Statistics operation. The two
operations are exclusive-the Get operation cannot clear the statistics, and the Clear operation
cannot return statistics prior to clearing them. Statistics are also cleared on power-up of the
slave device.

The operation field immediately follows the subfunction field in the query:

V -- A value of 00 03 specifies the Get Statistics operation.

V -- A value of 00 04 specifies the Clear Statistics operation.

Query

This is the field sequence in the query:

Get Statistics Response

This is the field sequence in the normal response to a Get Statistics query:

http://www.modicon.com/techpubs/diag7.html (10 of 16) [1/11/2000 10:43:10 PM]

Clear Statistics Response

The normal response to a Clear Statistics query is an echo of the query:

3.2.19 Modbus Plus Network Statistics

http://www.modicon.com/techpubs/diag7.html (11 of 16) [1/11/2000 10:43:10 PM]

Note: Word 07 bitmaps are used internally by the peer processor to determine which paths have
already had a command sent to them during the current token ownership. This limits the number
of commands per path to one during a single token ownership.

Note: Words 08 ... 12 are token owner work tables. They are bitmaps representing work that
needs to be done by the node the next time it gets the token. Each byte is a bitmap
corresponding to work requested of each of the eight paths of the indicated type.

http://www.modicon.com/techpubs/diag7.html (12 of 16) [1/11/2000 10:43:10 PM]

Note: Words 13 ... 22 contain pairs of 8-bit counters that pertain to certain types of error
conditions as well as to successful transactions. Under normal operating conditions, the only
bytes that change are word 20 LO and HI. Word 14 HI could also increment because of an
MSTR or similar programming error in the application. If any other bytes increments, a possible
problem exists on the network-e.g., in a single station or wiring connection.

http://www.modicon.com/techpubs/diag7.html (13 of 16) [1/11/2000 10:43:11 PM]

Note: Words 23 ... 26 contain the active station bitmaps. An active station is any one that has
sent packets of data over the network.

Note: Words 27 ... 30 contain the token station table bitmaps. A token station is any one that
has token-passing capabilities.

http://www.modicon.com/techpubs/diag7.html (14 of 16) [1/11/2000 10:43:11 PM]

Note: Words 31 ... 34 contain the global data present table bitmaps. Each time a station passes a
token, it also passes the global data, even if there are zero bytes of global data. When one
station sees another pass the token with global data, it sets its bit in its table for that other
station. The bit remains set until the station reads the global data from that other station, after
which the bit is cleared. A second read of global data indicates that no global data is present.

Note: In screen 2 of the MBPSTAT program, the number of global data words present is
indicated under the station number. If this field is filled with spaces, then MBPSTAT has
requested the global data from a second time before the other station passed the token.

Note: The LO bytes of words 35 ... 37 indicate the use of the internal receive buffers within the
peer processor.

http://www.modicon.com/techpubs/diag7.html (15 of 16) [1/11/2000 10:43:11 PM]

http://www.modicon.com/techpubs/diag7.html (16 of 16) [1/11/2000 10:43:11 PM]

Chapter 4
Exception Responses

V Exception Responses

V Exception Codes

4.1 Exception Responses

Except for broadcast messages, when a master device sends a query to a slave device it expects
a normal response. One of four possible events can occur from the master's query:

V If the slave device receives the query without a communication error, and can handle the
query normally, it returns a normal response.

V If the slave does not receive the query due to a communication error, no response is returned.
The master program will eventually process a timeout condition for the query.

V If the slave receives the query, but detects a communication error (parity, LRC, or CRC), no
response is returned. The master program will eventually process a timeout condition for the
query.

V If the slave receives the query without a communication error, but cannot handle it (for
example, if the request is to read a nonexistent coil or register), the slave will return an
exception response informing the master of the nature of the error.

The exception response message has two fields that differentiate it from a normal response:

Function Code Field

In a normal response, the slave echoes the function code of the original query in the function
code field of the response. All function codes have a most significant bit (MSB) of 0 (their
values are all below 80 hexadecimal). In an exception response, the slave sets the MSB of the
function code to 1. This makes the function code value in an exception response exactly 80
hexadecimal higher than the value would be for a normal response.

With the function code's MSB set, the master's application program can recognize the exception
response and can examine the data field for the exception code.

Data Field

In a normal response, the slave may return data or statistics in the data field (any information
that was requested in the query). In an exception response, the slave returns an exception code
in the data field. This defines the slave condition that caused the exception. Here is an example
of a master query and slave exception response. The field examples are shown in hexadecimal.

http://www.modicon.com/techpubs/excpt7.html (1 of 3) [1/11/2000 10:43:26 PM]

In this example, the master addresses a query to slave device 10 (0A hex). The function code
(01) is for a Read Coil Status operation. It requests the status of the coil at address 1245 (04A1
hex).

Note: Only one coil is to be read, as specified by the number of coils field (0001).

If the coil address is nonexistent in the slave device, the slave will return the exception response
with the exception code shown (02). This specifies an illegal data address for the slave. For
example, if the slave is a 984-385 with 512 coils, this code would be returned.

4.2 Exception Codes

http://www.modicon.com/techpubs/excpt7.html (2 of 3) [1/11/2000 10:43:26 PM]

http://www.modicon.com/techpubs/excpt7.html (3 of 3) [1/11/2000 10:43:26 PM]

Chapter 5
Application Notes

V Maximum Query / Response Parameters

V Estimating Serial Transaction Timing

V Application Notes for the 584 and 984A / B / X

5.1 Maximum Query / Response Parameters

The listings show the maximum amount of data that each controller can request or send in a
master query, or return in a slave response. All function codes and quantities are in decimal.

184/384

484

http://www.modicon.com/techpubs/app7.html (1 of 7) [1/11/2000 10:44:32 PM]

These values are for an 8K controller. See the 484 User's Guide for limits of smaller controllers.

584

http://www.modicon.com/techpubs/app7.html (2 of 7) [1/11/2000 10:44:32 PM]

884

M84

http://www.modicon.com/techpubs/app7.html (3 of 7) [1/11/2000 10:44:32 PM]

984

http://www.modicon.com/techpubs/app7.html (4 of 7) [1/11/2000 10:44:32 PM]

5.2 Estimating Serial Transaction Timing

The following sequence of events occurs during a Modbus serial transaction. Letters in
parentheses () refer to the timing notes at the end of the listing.

1 The Modbus master composes the message.

2 The master device modem RTS and CTS status are checked. (A)

3 The query message is transmitted to the slave. (B)

4 The slave processes the query message. (C, D)

5 The slave calculates an error check field. (E)

6 The slave device modem RTS and CTS status are checked. (A)

7 The response message is transmitted to the master. (B)

8 The master application acts upon the response and its data.

Timing Notes

A If the RTS and CTS pins are jumpered together, this time is negligible. For J478 modems, the
time is about 5 ms.

B Use the following formula to estimate the transmission time:

Time (ms) = 1000 * (character count) * (bits/character)
Baud Rate

C The Modbus message is processed at the end of the controller scan. The worst-case delay is
one scan time, which occurs if the controller has just begun a new scan. The average delay is

http://www.modicon.com/techpubs/app7.html (5 of 7) [1/11/2000 10:44:32 PM]

half the scan time.

The time allotted for servicing Modbus ports at the end of the controller scan (before beginning
a new scan) depends upon the controller model. Timing for each model is described on the next
page.

For 484 controllers the time is approximately 1.5 ms. The Modbus port is available on a
contention basis with any J470 / J474 / J475 that is present.

For 584 and 984 controllers the time is approximately 1.5 ms for each Modbus port. The ports
are serviced sequentially, starting with port 1.

For 184 / 384 controllers the time varies according to the amount of data being handled. It
ranges from a minimum of 0.5 ms to a maximum of about 6.0 ms (for 100 registers), or 7.0 ms
(for 800 coils). If a programming panel is currently being used with the controller, the Modbus
port is locked out.

D Modbus functions 1 through 4, 15, and 16 permit the master to request more data than can be
processed during the time alloted for servicing the slave's Modbus port. If the slave cannot
process all of the data, it will buffer the data and process it at the end of subsequent scans.

The amount of data that can be processed during one service period at the Modbus port is as
follows:

Note: 984-X8X refers to 984 slot mount models (984-385, -685, etc).

For the 884, the processing time for multiple data is as follows:

E LRC calculation time is less than 1 ms. CRC calculation time is about 0.3 ms for each eight
bits of data to be returned in the response.

http://www.modicon.com/techpubs/app7.html (6 of 7) [1/11/2000 10:44:32 PM]

5.3 Notes for the 584 and 984A / B / X

Baud Rates

When using both Modbus ports 1 and 2, the maximum allowable combined baud rate is 19,200
baud.

Port Lockups

When using ASCII, avoid sending zero-data-length messages or messages with no device
address. For example, this is an illegal message:

: CR LF (colon, CR, LF)

Random port lockups can occur this kind of message is used.

Terminating ASCII Messages

ASCII messages should normally terminate with a CRLF pair. With the 584 and 984A/B/X
controllers, an ASCII message can terminate after the LRC field (without the CRLF characters
being sent), if an interval of at least 1 s is allowed to occur after the LRC field. If this happens,
the controller will assume that the message has terminated normally.

http://www.modicon.com/techpubs/app7.html (7 of 7) [1/11/2000 10:44:32 PM]

Chapter 6
LRC / CRC Generation

V LRC Generation

V CRC Generation

6.1 LRC Generation

The Longitudinal Redundancy Check (LRC) field is one byte, containing an eight-bit binary value. The LRC value is
calculated by the transmitting device, which appends the LRC to the message. The receiving device recalculates an LRC
during receipt of the message, and compares the calculated value to the actual value it received in the LRC field. If the two
values are not equal, an error results.

The LRC is calculated by adding together successive eight-bit bytes in the message, discarding any carries, then two's
complementing the result. The LRC is an eight-bit field, therefore each new addition of a character that would result in a value
higher than 255 decimal simply rolls over the field's value through zero. Because there is no ninth bit, the carry is discarded
automatically.

Generating an LRC

Step 1 Add all bytes in the message, excluding the starting colon and ending CRLF. Add them into an eight-bit field, so that
carries will be discarded.

Step 2 Subtract the final field value from FF hex (all 1's), to produce the ones-complement.

Step 3 Add 1 to produce the two's-complement.

Placing the LRC into the Message

When the the eight-bit LRC (two ASCII characters) is transmitted in the message, the high order character will be transmitted
first, followed by the low order character-e.g., if the LRC value is 61 hex (0110 0001):

Figure 8 LRC Character Sequence

Example

An example of a C language function performing LRC generation is shown below. The function takes two arguments:

unsigned char *auchMsg ; A pointer to the message buffer
con-
 taining
binary data to be used for
 generating
the LRC

unsigned short usDataLen ; The quantity of bytes in the
 message
buffer.

The function returns the LRC as a type unsigned char.

LRC Generation Function

static unsigned char LRC(auchMsg, usDataLen)

http://www.modicon.com/techpubs/crc7.html (1 of 5) [1/11/2000 10:44:55 PM]

unsigned char *auchMsg ; /* message to calculate */
unsigned short usDataLen ; /* LRC upon quantity of */
 /*
bytes in message */

{
 unsigned char uchLRC = 0 ; /* LRC char initialized */

 while (usDataLen--) /* pass through message */
 uchLRC += *auchMsg++ ; /* buffer add buffer byte*/
 /*
without carry */

 return ((unsigned char)(-((char_uchLRC))) ;
 /*
return twos complemen */
}

6.2 CRC Generation

The Cyclical Redundancy Check (CRC) field is two bytes, containing a 16-bit binary value. The CRC value is calculated by
the transmitting device, which appends the CRC to the message. The receiving device recalculates a CRC during receipt of the
message, and compares the calculated value to the actual value it received in the CRC field. If the two values are not equal, an
error results.

The CRC is started by first preloading a 16-bit register to all 1's. Then a process begins of applying successive eight-bit bytes
of the message to the current contents of the register. Only the eight bits of data in each character are used for generating the
CRC. Start and stop bits, and the parity bit, do not apply to the CRC.

During generation of the CRC, each eight-bit character is exclusive ORed with the register contents. The result is shifted in the
direction of the least significant bit (LSB), with a zero filled into the most significant bit (MSB) position. The LSB is extracted
and examined. If the LSB was a 1, the register is then exclusive ORed with a preset, fixed value. If the LSB was a 0, no
exclusive OR takes place.

This process is repeated until eight shifts have been performed. After the last (eighth) shift, the next eight-bit character is
exclusive ORed with the register's current value, and the process repeats for eight more shifts as described above. The final
contents of the register, after all the characters of the message have been applied, is the CRC value.

Generating a CRC

Step 1 Load a 16-bit register with FFFF hex (all 1's). Call this the CRC register.

Step 2 Exclusive OR the first eight-bit byte of the message with the low order byte of the 16-bit CRC register, putting the
result in the CRC register.

Step 3 Shift the CRC register one bit to the right (toward the LSB), zerofilling the MSB. Extract and examine the LSB.

Step 4 If the LSB is 0, repeat Step 3 (another shift). If the LSB is 1, Exclusive OR the CRC register with the polynomial value
A001 hex (1010 0000 0000 0001).

Step 5 Repeat Steps 3 and 4 until eight shifts have been performed. When this is done, a complete eight-bit byte will have been
processed.

Step 6 Repeat Steps 2 ... 5 for the next eight-bit byte of the message. Continue doing this until all bytes have been processed.

Result The final contents of the CRC register is the CRC value.

Step 7 When the CRC is placed into the message, its upper and lower bytes must be swapped as described below.

Placing the CRC into the Message

When the 16-bit CRC (two eight-bit bytes) is transmitted in the message, the low order byte will be transmitted first, followed
by the high order byte-e.g., if the CRC value is 1241 hex (0001 0010 0100 0001):

http://www.modicon.com/techpubs/crc7.html (2 of 5) [1/11/2000 10:44:55 PM]

Figure 9 CRC Byte Sequence

Example

An example of a C language function performing CRC generation is shown on the following pages. All of the possible CRC
values are preloaded into two arrays, which are simply indexed as the function increments through the message buffer. One
array contains all of the 256 possible CRC values for the high byte of the 16-bit CRC field, and the other array contains all of
the values for the low byte.

Indexing the CRC in this way provides faster execution than would be achieved by calculating a new CRC value with each
new character from the message buffer.

Note: This function performs the swapping of the high/low CRC bytes internally. The bytes are already swapped in the CRC
value that is returned from the function. Therefore the CRC value returned from the function can be directly placed into the
message for transmission.

The function takes two arguments:

unsigned char *puchMsg ; A pointer to the message buffer
 containing
binary data to be used
 for
generating the CRC

unsigned short usDataLen ; The quantity of bytes in the
 message
buffer.

The function returns the CRC as a type unsigned short.

CRC Generation Function

unsigned short CRC16(puchMsg, usDataLen)

unsigned char *puchMsg ; /* message to calculate CRC
upon */
unsigned short usDataLen ; /* quantity of bytes in message
*/

{
 unsigned char uchCRCHi = 0xFF ; /* high CRC byte
initialized */
 unsigned char uchCRCLo = 0xFF ; /* low CRC byte
initialized */
 unsigned uIndex ; /* will index into CRC
lookup*/

/* table
 */

 while (usDataLen--) /* pass through message buffer
 */
 {
 uIndex = uchCRCHi ^ *puchMsgg++ ; /* calculate the CRC
 */

http://www.modicon.com/techpubs/crc7.html (3 of 5) [1/11/2000 10:44:55 PM]

 uchCRCHi = uchCRCLo ^ auchCRCHi[uIndex} ;
 uchCRCLo = auchCRCLo[uIndex] ;
 }

 return (uchCRCHi << 8 | uchCRCLo) ;
}

High Order Byte Table

/* Table of CRC values for high-order byte */

static unsigned char auchCRCHi[] = {
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,
0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,
0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40,
0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,
0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40,
0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40,
0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,
0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
} ;

Low Order Byte Table

/* Table of CRC values for low-order byte */

static char auchCRCLo[] = {
0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06,
0x07, 0xC7, 0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D, 0xCD,
0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09,
0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A,
0x1E, 0xDE, 0xDF, 0x1F, 0xDD, 0x1D, 0x1C, 0xDC, 0x14, 0xD4,
0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3,
0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3,
0xF2, 0x32, 0x36, 0xF6, 0xF7, 0x37, 0xF5, 0x35, 0x34, 0xF4,
0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A,
0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9, 0x29,
0xEB, 0x2B, 0x2A, 0xEA, 0xEE, 0x2E, 0x2F, 0xEF, 0x2D, 0xED,
0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26,
0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60,

http://www.modicon.com/techpubs/crc7.html (4 of 5) [1/11/2000 10:44:55 PM]

0x61, 0xA1, 0x63, 0xA3, 0xA2, 0x62, 0x66, 0xA6, 0xA7, 0x67,
0xA5, 0x65, 0x64, 0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F,
0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68,
0x78, 0xB8, 0xB9, 0x79, 0xBB, 0x7B, 0x7A, 0xBA, 0xBE, 0x7E,
0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5,
0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71,
0x70, 0xB0, 0x50, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92,
0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C,
0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B,
0x99, 0x59, 0x58, 0x98, 0x88, 0x48, 0x49, 0x89, 0x4B, 0x8B,
0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C,
0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42,
0x43, 0x83, 0x41, 0x81, 0x80, 0x40
} ;

http://www.modicon.com/techpubs/crc7.html (5 of 5) [1/11/2000 10:44:55 PM]

	Title page
	Modbus Protocol description
	Table of Contents
	1 Modbus Protocol- Intro
	2 Data and Control Functions
	3 Diagnostic Subfunctions
	4 Exception Responses
	5 Application Notes
	6 LRC/CRC Generation

