

Modbus slave interface for digital Mass Flow / Pressure instruments

Doc. no.: 9.17.035S Date: 27-03-2013

٠	٠	٠	٠	٠
٠	٠	٠	٠	٠
٠	٠	٠	•	•
٠	٠	٠	•	٠

ATTENTION Please read this instruction manual carefully before installing and operating the instrument. Not following the guidelines could result in personal injury and/or damage to the equipment.

Head Office: Nijverheidsstraat 1a, NL-7261 AK Ruurlo, The Netherlands, Tel. +31 573 458800, info@bronkhorst.com

Disclaimer

Even though care has been taken in the preparation and publication of the contents of this manual, we do not assume legal or other liability for any inaccuracy, mistake, mis-statement or any other error of whatsoever nature contained herein. The material in this manual is for information purposes only, and is subject to change without notice.

Bronkhorst High-Tech B.V. July 2011

Symbols

Important information. Discarding this information could cause injuries to people or damage to the Instrument or installation.

Helpful information. This information will facilitate the use of this instrument.

Additional info available on the internet or from your local sales representative.

Warranty

The products of Bronkhorst High-Tech B.V. are warranteed against defects in material and workmanship for a period of three years from the date of shipment, provided they are used in accordance with the ordering specifications and the instructions in this manual and that they are not subjected to abuse, physical damage or contamination. Products that do not operate properly during this period may be repaired or replaced at no charge. Repairs are normally warranted for one year or the balance of the original warranty, whichever is the longer.

See also paragraph 9 of the Conditions of sales: <u>http://www.bronkhorst.com/files/corporate_headquarters/sales_conditions/en_general_terms_of_sales.pdf</u>

The warranty includes all initial and latent defects, random failures, and undeterminable internal causes.

It excludes failures and damage caused by the customer, such as contamination, improper electrical hook-up, physical shock etc.

Re-conditioning of products primarily returned for warranty service that is partly or wholly judged non-warranty may be charged for.

Bronkhorst High-Tech B.V. or affiliated company prepays outgoing freight charges when any party of the service is performed under warranty, unless otherwise agreed upon beforehand. However, if the product has been returned collect to our factory or service center, these costs are added to the repair invoice. Import and/or export charges, foreign shipping methods/carriers are paid for by the customer.

Table of contents

1	GEN	NERAL PRODUCT INFORMATION	4
	1.1	INTRODUCTION	4
	1.2	MULTIBUS TYPES	4
	1.3	REFERENCES TO OTHER APPLICABLE DOCUMENTS	5
	1.3.	3.1 Manuals and user guides:	5
	1.3.	3.2 Technical Drawings:	5
	1.3.	3.3 Software tooling:	5
	1.4	SHORT FORM START-UP	6
2	FIEL	ELD BUS INSTALLATION	7
	2.1	GENERAL	7
	2.2	MODBUS CONNECTOR	7
	2.2.	2.1 Shielded RJ45 modular jack	7
	2.2.	2.2 Shielded a coded M12 connector	8
	2.3	Modbus Cables and T-parts	9
	2.3.	8.1 RJ45 FTP cables	9
	2.3.	8.2 M12 DeviceNet drop cables	10
	2.4	TERMINATION	11
	2.4.	1.1 Termination resistors	11
	2.4.	1.2 Biasing resistors	11
3	CHA	IANGING SLAVE ADDRESS AND BAUD RATE	13
	3.1	VIA ROTARY SWITCHES ON THE SIDE OF THE INSTRUMENT (IF PRESENT)	13
	3.2	VIA RS232: FLOWFIX	13
	3.3	VIA RS232: OTHER PROGRAMS	14
	3.4	VIA MICRO-SWITCH AND LED'S ON THE INSTRUMENT (IF PRESENT)	14
	3.4.	1.1 Readout bus-address/MAC-ID and baud rate:	14
	3.4.	1.2 Change bus-address and baud rate:	15
	3.5	BY USER INTERFACE (IF PRESENT)	15
4	FUN		16
	4.1	GENERAL	16
	4.2	IMPLEMENTATION CLASS	16
	4.3		17
	4.4		17
	4.4.	1.1 Read Holding Registers (03)	17
	4.4.	1.2 Write Single Register (06)	1/
	4.4.	4.3 Write Multiple Registers (16)	
	4.4.4	I.4 Diagnostics (U8)	
	4.4.	H.S KEPORT SIAVE ID (17)	
	4.4.	i.b Available parameters	19
5	TRC	OUBLESHOOTING	21
	5.1	VISUAL DIAGNOSTICS	21
	5.2	STEP-BY-STEP	21
	5.3	BUS DIAGNOSTICS STRING	22
6	SER	RVICE	23

1 GENERAL PRODUCT INFORMATION

1.1 Introduction

This manual covers the Modbus interface, which offers a direct connection to Modbus for Bronkhorst¹⁾ digital mass-flow / pressure meters / controllers. The Modbus instrument will behave as a slave. This means all communication (instructions / readout) will be performed by a master device on the same Modbus system. Mostly this will be a PC controlling a process. This manual explains how to install a Bronkhorst instrument to your Modbus system.

¹⁾ Bronkhorst: This includes Bronkhorst High-Tech B.V. , Bronkhorst Cori-Tech B.V. and M+W Instruments GmbH.

More detailed information about Modbus can be found at <u>www.modbus.orq</u> or any website of the (local) Modbus organisation of your country (when available).

The implementation of the Modbus interface is based on the following standards:[1]Modbus_Application_Protocol_V1_1b.pdfDecember 28, 2006[2]Modbus over serial line_V1_02.pdfDecember 20, 2006

1.2 Multibus types

In 2000 Bronkhorst developed their first digital instruments according to the "multibus" principle. The basic pc-board on the instrument contained all of the general functions needed for measurement and control, including alarm, totalizing and diagnostic functions. It had **analog** I/O-signals and also an **RS232** connection as a standard feature. In addition to this there is the possibility of integrating an interface board with **DeviceNet**[™], **Profibus-DP**^{*}, **Modbus**, **FLOW-BUS** or **EtherCAT** protocol. The first generation (**MBC-I**) was based on a 16 bit Fujitsu controller. It was superseded in 2003 by the

Multibus type 2 (**MBC-II**). This version was also based on the 16 bit Fujitsu controller but it had several improvements to the MBC-I. One of them is the current steering of the valve. It reduced heat production and improved control characteristics. The latest version Multibus controller type 3 (**MBC3**) is introduced in 2011. It is build around a 72MHz 32 bit NXP ARM controller. It has AD and DA controllers on board which makes it possible to measure noise free and control valves without delays. The internal control loop runs 6 times faster compared to the MBC-II therefore control stability has improved significantly. It also has several improved functions like reverse voltage protection, inrush current limitation and overvoltage protection.

MBC3 instruments can be recognised by the "MBC3" placed on lower left side of the instrument label (see example).

500 In/h N2 9 bar (a) / 1 bar (a) 20 °C N.C. Control Valve

1.3 References to other applicable documents

Manuals and guides for digital instruments are modular. General instructions give information about the functioning and installation of instruments. Operational instructions explain the use of the digital instruments features and parameters. Field bus specific information explains the installation and use of the field bus installed on the instrument.

1.3.1 Manuals and user guides:

1.3.2 Technical Drawings:

Hook-up diagram laboratory-style Modbus(rHook-up diagram industrial style Modbus(rHook-up diagram CORI-FLOW Modbus(rHook-up diagram LIQUI-FLOW L30 digital Modbus(r

(document nr. 9.16.064) (document nr. 9.16.065) (document nr. 9.16.066) (document nr. 9.16.075)

1.3.3 Software tooling:

FlowPlot FlowView FlowFix FlowDDE

All these documents can be found at: <u>http://www.bronkhorst.com/en/downloads</u>

1.4 Short form start-up

All necessary settings for this module are already performed at Bronkhorst. To follow next steps carefully is the quickest way to get this module operational in your own Modbus environment.

Instruments with combined RS232 / RS485 signal lines and no user interface automatically detect the bus type at start-up.

Warning: this device uses a vendor specific pin layout on the RJ45 connector that differs from the Modbus recommended pin layout.

2 FIELD BUS INSTALLATION

2.1 General

Modbus is a 3-wire, RS485-based field bus communication system for parameter value exchange. In this system each instrument / device is equipped with a micro-controller for its own dedicated task but also for exchanging parameter value information with other instruments / devices connected to the same Modbus system.

The implementation of the Modbus interface is based on the following standards:[1]Modbus Application Protocol V1 1b.pdfDecember 28, 2006[2]Modbus over serial line V1 02.pdfDecember 20, 2006

Physical layer and communication protocol are detected automatically upon reception of messages. These messages must be sent using the correct combination of physical layer and communication protocol. After every power-up the communication detection mode is active.

Bronkhorst advices not to use more as 127 instruments in one bus system.

2.2 Modbus connector

2.2.1 Shielded RJ45 modular jack

Warning: this device uses a vendor specific pin layout on the RJ45 connector that differs from the Modbus recommended pin layout.

The shielded RJ45 modular jack connector (for non IP65 applications) has the following pin configuration:

RJ45 Connector	Receptable	Pin number	Description
Pin Position		1	+1524Vdc supply
76		2	0V
$\frac{34}{3}$		3	Shield
		4	0V
		5	+1524Vdc supply
		6	0V (Modbus common)
		7	D0 Modbus (A/A')
		8	D1 Modbus (B/ B')

The maximum contact rating for RJ45 connectors is 1.5A.

For MASS-VIEW instrument see manual 9.17.051 for pin layout. http://www.bronkhorst.com/en/downloads/instruction_manuals/

2.2.2 Shielded a coded M12 connector

M12 Connector	Male	Female	nr	Description
and the second se			1	Shield
			2	+1524Vdc supply
			3	0V
			4	D1 Modbus (B/ B')
	1 2	2 1	5	D0 Modbus (A/A')
		4 1 A-coded	5	3

The chassis M12 circular connector (for IP65 applications) has the following pin configuration:

The maximum contact rating for M12 connectors is 4A.

2.3 Modbus Cables and T-parts

2.3.1 RJ45 FTP cables

For connecting instruments to Modbus you need shielded cables with at least 3 wires (for data only). Recommended are twisted wire cables for RS485-communications with 100 or 120 Ohm impedance. All Bronkhorst Modbus cables have also integrated power-supply wires. For the use in the EL-FLOW range (non IP-65) it is best to use Shielded (+Foiled) Twisted Pair patch-cables with RJ45 modular jack connectors (8-pins for data and power-supply connections).

CAT.5e cables are available with a wire of: 26AWG (wire diameter 0.140mm², with a resistance of 137 Ohm/km). 24AWG (wire diameter 0.205mm², with a resistance of 86 Ohm/km).

More information about cat.5e cables can be found at:: <u>http://en.wikipedia.org/wiki/Category 5 cable</u>

2.3.2 M12 DeviceNet drop cables

For the use in for example the IN-FLOW range or CORI-FLOW range (IP-65 applications) it is best to use *DeviceNet Drop* cables assembled on both sides with male connector M12 – female connector M12 (5-pins for data and power-supply connections).

In case of powering instruments or transporting data over longer distances Bronkhorst offers also special RS485 Modbus data cable, with lower voltage-drop. Bronkhorst can advise you when to use this special cable, but for most cases the standard patch-cables will do well.

If more cables are used in one system, they have to be connected as a daisy-chain. This means that the total Modbus system has only one begin and one end. For connecting instruments to the bus, Bronkhorst offers special drop-cables which enable you to build a daisy chained network of Modbus modules.

2.4 Termination

For best quality of data transfer Modbus should be terminated correctly.

2.4.1 Termination resistors

A resistor is added in parallel with the receiver's "A" and "B" lines in order to match the data line characteristic impedance specified by the cable manufacturer (120 Ω is a common value). This value describes the intrinsic impedance of the transmission line and is not a function of the line length. A terminating resistor of less than 90 Ω should not be used. Termination resistors should be placed only at the extreme ends of the data line (see Termination schematics resistors RT1 and RT2), and no more than two terminations should be placed in any system that does not use repeaters.

2.4.2 Biasing resistors

When an RS-485 network is in an idle state, all nodes are in listen (receive) mode. Under this condition there are no active drivers on the network. All drivers are tri-stated. Without anything driving the network, the state of the line is unknown. If the voltage level at the receiver's A and B inputs is less than ±200 mV the logic level at the output of the receivers will be the value of the last bit received. In order to maintain the proper idle voltage state, bias resistors must be applied to force the data lines to the idle condition. Bias resistors are nothing more than a pull-up resistor (RB1) on the data D1 Modbus (B/B') line and a pull-down (to ground) on the data D0 Modbus (A/A') line. The "Termination schematic" illustrates the placement of bias resistors on a transceiver. The value of the bias resistors is dependent on termination and number of nodes in the system. The goal is to generate enough DC bias current in the network to maintain a minimum of 200 mV between the B and A data line. Consider the following example of bias resistor calculation.

Ideal situation:

Termination resistors:120 OhmReceiver resistance:omittedBias supply voltage:5VdcWanted situation is a minimum of 200mV between A and B lines and a common mode voltage of 2.5V.

Minimum current therefore:	200mV / 60 Ohm = 3.33mA
Total maximum bias resistor value is	(5V – 0.2V)/3.33mA = 1440 Ohm.
The maximum value of each biasing resistor:	720 Ohm.

Situation with 127 nodes:

Termination resistors:120 OhmReceiver resistance:12 KOhmNumber of instruments:127Bias supply voltage:5VdcWanted situation is a minimum of 200mV between A and B lines and a common mode voltage of 2.5V.

Total termination resistance: Minimum current therefore: Total maximum bias resistor value is The maximum value of each biasing resistors:

120 // 120 // 12000* 127 = 120 // 120 // 94.5 = 36.7 Ohm 200mV / 36.7 Ohm = 5.45mA (5V – 0.2V)/5.45mA = 880 Ohm. 440 Ohm.

Lower values may be used. (Depending on maximum power consumption of the resistors)

Bronkhorst advices the following resistor values for the following voltages.				
Supply voltage termination	Termination resistors	Bias Pull-up resistor	Bias Pull-down resistor	
+5V	121 Ohm	392 Ohm	392 Ohm	
+10V	121 Ohm	1210 Ohm	392 Ohm	
+15V	121 Ohm	2210 Ohm	392 Ohm	
+24V	121 Ohm	3480 Ohm	392 Ohm	

BRONKHORST®

Bronkhorst offers special begin-termination connectors with the resistor network. This handles correct termination but also gives a defined voltage on the Modbus D1 and D0 line for even more reliability of the bus system. An end-terminator is also offered by Bronkhorst and handles correct termination ad the end of the bus.

Termination can be performed with special termination-connectors, offered by Bronkhorst.

3 CHANGING SLAVE ADDRESS AND BAUD RATE

Default instruments will be delivered to customers on address 1 and with a baud rate of 19200 baud.

The slave address and baud rate of the Bronkhorst meter/controller Modbus slave can be changed to fit the instrument in your existing Modbus network. Standard baud rates for Modbus are 9600, 19200 (default) and 38400.

3.1 Via rotary switches on the side of the instrument (if present)

On the side of the instrument are rotary switches placed and a label with the explanation of the switches. Make sure to use a screwdriver which is suited for the switches.

The switches have the following function: ADDRESS (00 – 99)

With the ADDRESS switch, the instruments address can be set. The MSD is the high part of the decimal number and the LSD the low part. For instance address 25 means MSD on 2 and LSD on 5. The default switch position is 00. In this position the address is software programmable. The default software programmable address is 1.

During instrument initialisation, the address switches are read. If the switches specify a valid Modbus address, i.e. a value from 1 to 99, this value is used. If the specified address differs from the value stored in the instrument, the new address is saved in memory.

Adjusting the rotary switches during operation will not affect the actual address unless the instrument is re-powered and/or re-initialized.

When addressing by rotary switches is used, it's not possible to change the adress by RS-232 or by the microswitch.

3.2 Via RS232: FlowFix

'Off-line' via the RS232 communication port by means of a special tooling program, called FlowFix. FlowFix is a tool for multi-bus instruments that can be used for all field busses enabling the user to:

- Change slave address
- Read and optionally change the baud rate
- Make a service log file to be send to Bronkhorst in case of trouble

Connect your Bronkhorst meter / controller Modbus slave instrument to a free COM-port using the special cable with on one side a T-part (with male and female sub-D 9 connector) and on the other side a female sub-D 9 connector (part number 7.03.366). The single sub-D 9 connector should be connected to your COM-port and the female sub-D 9 of the T-part to the male sub-D 9 of the instrument. Standard cables are approx. 3 meters. Maximum length between PC and instrument allowed is approximately 10 meters.

instrument allowed is approximately 10 meters.

Start-up FlowFix.exe and select the COM-port. The configuration screen will appear.

Enter the Slave address and Baud rate and press [OK]. Valid values for the slave address are between 1 and 247, valid values for the baud rate are 9600, 19200, 38400, 57600 and 115200. The changed values will be effective immediately after changing.

	-	
Configuration		
Device configuration		
Enter the address for the	device on the fieldbus	
Address	1	
Baudrate	19200	
Device information		
Serial Number	982*****A	(
Firmware version	V6.28	UK
Fieldbus	MODBUS	Cancel
L		

3.3 Via RS232: other programs

It is also possible to read and or change the slave address or baud rate by means of any program via RS232 using the COM-port of your PC on 38400 baud.

More information about the RS232 protocol can be found in document 917027 Manual RS232 interface This document can be found at: http://www.bronkhorst.com/en/downloads/instruction_manuals/

3.4 Via micro-switch and LED's on the instrument (if present)

With the micro-switch on the instrument it is possible to change and readout the settings for slave address and baud rate. The LED's will indicate the tens of the address with green flashes and the units with red flashes. For baud rate-indication both LED's will flash.

3.4.1 Readout bus-address/MAC-ID and baud rate:

Pressing the switch 3x briefly with intervals of max. 1 second in normal running / operation mode will trigger the instrument to "show" its bus-address/MAC-ID and baud rate.

For indication the bus-address/MAC-ID the green LED will flash the amount of tens and the red LED the amount of units in the number. For indication of baud rate setting, both LED's will flash. The flashes are called "count-flashes" and have a pattern of 0.5 sec. on, 0.5 sec. off.

	LED indications	for bus-address and	baud rate
Green LED	Red LED	Time	Indication
🗢 Green	🔍 Red		
amount of count flashes (012)	Off	0 12 sec. Maximum	tens in bus-address for instrument
Off	Amount of count flashes (09)	0 9 sec. Maximum	units in bus-address for instrument
amount of count flashes (15)	amount of count flashes (15)	1 5 sec. Maximum	baudrate setting for instrument 1 = 9600 Baud 2 = 19200 Baud 3 = 38400 Baud 4 = 57600 Baud (MBC3 type only) 5 = 115200 Baud (MBC3 type only)

Note: Value zero will be indicated by a period of 1 sec. off (0.5 sec. off + 0.5 sec. off).

Examples:

- For bus-address 35 and 9600 baud the green LED will flash 3 times, the red LED will flash 5 times and both LED's will flash 1 time.
- For bus-address 20 and 19200 baud the green LED will flash 2 times, the red LED will flash 0 times and both LED's will flash 2 times.
- For bus-address 3 and 38400 baud the green LED will flash 0 times, the red LED will flash 3 times and both LED's will flash 3 times.

3.4.2 Change bus-address and baud rate:

Pressing the switch 5x briefly with intervals of max. 1 second in normal running/operation mode. Within the time-out period of 60 seconds it is possible to start changing the bus-address/MAC-ID of the instrument. For certain field bus systems it is necessary to select the baud rate also. Other field bus systems only have one baud rate or the baud rate setting will adapt to the setting of the master automatically. In these cases baud rate selection is not needed and will be skipped.

	Procedure for changing bus-address and baud rate			
Step	Action	Indication	time	handling
1	Start			Press the switch 5x briefly with intervals of max. 1
				second in normal running/operation mode.
2	Set tens of bus-	Green LED flashes	time-out:	Press switch and count green flashes for tens of
	address	0.1 sec on	60 sec	bus-address.
		0.1 sec off		Release when wanted amount has been count.
		count-flashes		Counts up to max. 12 and than starts at 0 again.
		start when switch		When counting fails, keep switch pressed and
		is pressed:		restart counting for next attempt.
		0.5 sec on,		
		0.5 sec off		
3	Set units of bus-	red LED flashes	time-out:	Press switch and count red flashes for units of bus-
	Address	0.1 sec on	60 sec	address.
		0.1 sec off		Release when wanted amount has been count.
		count-flashes		Counts up to max. 9 and than starts at 0 again.
		start when switch		When counting failed, keep switch pressed and
		is pressed:		restart counting for next attempt.
		0.5 sec on		
		0.5 sec off		
4	Set baud rate of	both 🔍 red	time-out:	Press switch and count red and green flashes for
	field bus	and 🔍 green	60 sec	baud rate setting.
	communication.	LED flashes		Release when wanted amount has been count.
		0.1 sec on		
	1 = 9600 Baud	0.1 sec off		Counts up to max. 5 and than starts at 0 again.
	2 = 19200 Baud			When counting failed, keep switch pressed and
	3 = 38400 Baud	count-flashes		restart counting for next attempt.
	4 = 57600 Baud	start when switch		
	5 = 115200 Baud	is pressed:		Note: selection of 0 means: No change
		0.5 sec on,		
		0.5 sec off		

Instrument returns to normal running / operation mode. Changes are valid when they are made within the time-out times.

Value zero will be indicated by a period of 1 sec. off (0.5 sec. off + 0.5 sec. off). When value zero is wanted, press switch shortly and release it again within 1 sec.

Before each action of flash-counting, the LED's to be used for counting will flash in a high frequency. (Pattern: 0.1 sec on, 0.1 sec off). As soon as the switch is pressed-down, this LED (or both LED's) will be off and the counting sequence will start.

3.5 By user interface (if present)

See the manual of the instrument for a description of the user interface.

4 FUNCTIONAL DESCRIPTION

4.1 General

The information found here is the basic information needed for the installation of a Modbus system.

The implementation of the Modbus interface is based on the following standards:[1]Modbus_Application_Protocol_V1_1b.pdfDecember 28, 2006[2]Modbus over serial line_V1_02.pdfDecember 20, 2006

4.2 Implementation class

The physical and data link layer are implemented conforming to the "basic slave" implementation class as described in document [2] "MODBUS over Serial Line specification and implementation guide V1.02". The following options have been implemented:

General settings		
parameter	options	remarks
addressing	address configurable from 1 to 247 (default 1)	
broadcast support	yes	
baud rate	9600 19200 (default) 38400 57600 Baud (MBC3 type only) 115200 Baud (MBC3 type only)	
electrical interface	RS485 2W-cabling	
data bits	RTU = 8, ASCII = 7	
stop bits	1	The use of no parity requires 2 stop bits

MBCII / CORI-FLOW		
parameter	options	remarks
parity	even	Not configurable
transmission mode	RTU	Not configurable

MBC3 / EL-FLOW Base		
parameter	options	remarks
parity	even / odd / none	Configurable
transmission mode	RTU / ASCII	Configurable (MBC3)
		Auto detection (EL-FLOW Base)

MASS-VIEW				
parameter	options	remarks		
parity	even	Not configurable		
transmission mode	RTU / ASCII	Configurable		

More detailed information about Modbus can be found at <u>www.modbus.org</u> or any website of the (local) Modbus organisation of your country (when available).

4.3 Response time

This slave device will respond on each valid request from the master within 100ms. This means that the response timeout setting of the master should be set to a value larger than or equal to 100ms.

4.4 Supported Modbus functions

This section describes the supported Modbus function codes. Refer to [1] for details.

4.4.1 Read Holding Registers (03)

Possible exception responses				
Code	Name	Meaning		
02	ILLEGAL DATA ADDRESS	in case of reading of non-existing address, or reading a part of a multi register parameter (float, long, etc)		
03	ILLEGAL DATA VALUE	in case of reading less than 1 or more than 125 registers		
04	SLAVE DEVICE FAILURE	in case of reading a write-only register		

Warning: the maximum message size for the Read Holding Registers function is 100 bytes at 9600 baud (200 bytes at 19200 baud and 400 bytes at 38400 baud). When this size is exceeded, corrupted responses may be received.

4.4.2 Write Single Register (06)

Possible exception responses					
Code	Name	Meaning			
02	ILLEGAL DATA ADDRESS	in case of writing to non-existing address, or writing to a part of a multi register parameter (float, long, etc)			
04	SLAVE DEVICE FAILURE	in case of writing to read-only register			
04	SLAVE DEVICE FAILURE	in case of writing illegal value to register			

4.4.3 Write Multiple Registers (16)

Possible exception responses					
Code	Name	Meaning			
02	ILLEGAL DATA ADDRESS	in case of writing to non-existing address, or writing to a part of a multi register parameter (float, long, etc)			
03	ILLEGAL DATA VALUE	in case of reading less than 1 or more than 123 registers			
04	SLAVE DEVICE FAILURE	in case of writing to read-only register			
04	SLAVE DEVICE FAILURE	in case of writing illegal value to register			

When one of the written registers raises an exception, the value written to all subsequent registers are discarded (ignored).

4.4.4 Diagnostics (08)

The following sub-functions are supported				
Sub-function code (dec)	Name			
00	Return Query Data			
10	Clear Counters and Diagnostics Register			
11	Return Bus Message Count			
12	Return Bus Communication Error Count			
13	Return Bus Exception Error Count			
14	Return Slave Message Count			
15	Return Slave No Response Count			
16	Return Slave NAK Count (always 0)			
17	Return Slave Busy Count (always 0)			
18	Return Bus Character Overrun Count			

Warning: the maximum message size for the Return Query Data sub function is 100 bytes at 9600 baud (200 bytes at 19200 baud and 400 bytes at 38400 baud). When this size is exceeded, corrupted responses may be received.

Possible exception responses					
Code	Name	Meaning			
01	ILLEGAL FUNCTION	of not-supported sub-function			
03	ILLEGAL DATA VALUE	in case of an incorrect value for the data field			
04	SLAVE DEVICE FAILURE	in case of writing illegal value to register			

4.4.5 Report Slave ID (17)

The Slave ID field in the response is a string with the same contents as FlowDDE parameter 1 (ident number + version nr/serial nr). The Run Indicator Status field in this message will indicate ON when the device is in normal operating mode (FB_NORMAL).

Possible exception responses				
Code	Name	Meaning		
04	SLAVE DEVICE FAILURE	in case of an internal error		

4.4.6 Available parameters

Modbus registers (in the data model) are numbered from 1 to 65536. In a Modbus PDU (Protocol Data Unit) these registers are addressed from 0 to 65535. This addressing model has been described in section 4.4 of [1].

MODBUS REGISTERS						
			PDU ADDRESS REGISTER		NUMBER	
PARAMETER NAME	PARAMETER TYPE	ACCESS	hex	Hex	Dec	REMARK
Wink	Unsigned char	W	0x0000	0x0001	1	Value 14592
Initreset	Unsigned char	RW	0x000A	0x000B	11	
Valve output	Unsigned int	RW	0x001F	0x0020	32	Range 032767
Measure	Unsigned int	R	0x0020	0x0021	33	
Setpoint	Unsigned int	RW	0x0021	0x0022	34	
Setpoint slope	Unsigned int	RW	0x0022	0x0023	35	
Analog input	Unsigned int	R	0x0023	0x0024	36	
Control mode	Unsigned char	RW	0x0024	0x0025	37	
Sensor type	Unsigned char	RW 🔑	0x002E	0x002F	47	
Capacity unit index	Unsigned char	RW 🖉	0x002F	0x0030	48	
Fluid number	Unsigned char	RW	0x0030	0x0031	49	
Alarm info	Unsigned char	R	0x0034	0x0035	53	
Temperature	Unsigned int	R	0x0427	0x0428	1064	See addr 0xA138
Alarm limit maximum	Unsigned int	RW	0x0C21	0x0C22	3106	
Alarm limit minimum	Unsigned int	RW	0x0C22	0x0C23	3107	
Alarm mode	Unsigned char	RW	0x0C23	0x0C24	3108	
Alarm setpoint mode	Unsigned char	RW	0x0C25	0x0C26	3110	
Alarm new setpoint	Unsigned int	RW	0x0C26	0x0C27	3111	
Alarm delay	Unsigned char	RW	0x0C27	0x0C28	3112	
Reset alarm enable	Unsigned char	RW	0x0C29	0x0C2A	3114	
Counter value	Unsigned int	RW	0x0D01	0x0D02	3330	See addr 0xE808
Counter unit index	Unsigned char	RW	0x0D02	0x0D03	3331	
Counter limit	Unsigned int	RW	0x0D03	0x0D04	3332	See addr 0xE818
Counter setpoint mode	Unsigned char	RW	0x0D05	0x0D06	3334	
Counter new setpoint	Unsigned int	RW	0x0D06	0x0D07	3335	
Counter mode	Unsigned char	RW	0x0D08	0x0D09	3337	
Identification number	Unsigned char	RW 🖉	0x0E2C	0x0E2D	3629	
Normal step c. resp.	Unsigned char	RW 🖉	0x0E45	0x0E46	3654	
Stable situation c. resp.	Unsigned char	RW 🖉	0x0E51	0x0E52	3666	
Open from zero c. resp.	Unsigned char	RW 🖉	0x0E52	0x0E53	3667	
Calibration mode	Unsigned char	RW 🖉	0x0E61	0x0E62	3682	
Monitor mode	Unsigned char	RW 🖉	0x0E62	0x0E63	3683	
Reset	Unsigned char	W	0x0E68	0x0E69	3689	
Bridge potmeter	Unsigned char	RW 🖉	0x0E85	0x0E86	3718	
Modbus slave address	Unsigned char	RW 🖉	0x0FAA	0x0FAB	4011	
Polynomial constant A	Float	RW 🖉	0x81280x8129	0x81290x812A	3306533066	
Polynomial constant B	Float	RW 🖉	0x81300x8131	0x81310x8132	3307333074	
Polynomial constant C	Float	RW 🖉	0x81380x8139	0x81390x81A	3308133082	
Polynomial constant D	Float	RW 🖉	0x81400x8141	0x81410x8142	3308933090	
Sensor differentiator dn	Float	RW 🖉	0x81580x8159	0x81590x815A	3311333114	
Sensor differentiator up	Float	RW 🔑	0x81600x8161	0x81610x8162	3312133122	
Capacity	Float	RW 🖉	0x81680x8169	0x81690x816A	3312933130	
Fluid name	String (10 bytes)	RW 🖉	0x81880x818C	0x81890x818D	3316133165	
Capacity unit	String (7 bytes)	RW 🖉	0x81F80x81FB	0x81F90x81FC	3327333276	

The following table lists the most commonly used parameters.

BRONKHORST®

			PDU ADDRESS	REGISTER N	DEMARK	
PARAIVIETER NAIVIE PARAIVIETER TITE ACCESS	hex	Нех	Dec	REIVIARA		
Fmeasure	Float	R	0xA1000xA101	0xA1010xA102	4121741218	
FSetpoint	Float	RW	0xA1180xA119	0xA1190xA11A	4124141242	
Temperature	Float	R	0xA1380xA139	0xA1390xA13A	4127341274	See addr 0x0427
Capacity 0%	Float	RW 🖉	0xA1B00xA1B1	0xA1B10xA1B2	4139341394	
Counter value	Float	RW	0xE8080xE809	0xE8090xE80A	5940159402	See addr 0x0D01
Counter limit	Float	RW	0xE8180xE819	0xE8190xE81A	5941759418	See addr 0x0D03
Counter unit	String (4 bytes)	R	0xE8380xE839	0xE8390xE83A	5944959450	
Device type	String (6 bytes)	R	0xF1080xF10A	0xF1090xF10B	6170561707	
BHTModel number	String (14 bytes)	RW 🔑	0xF1100xF116	0xF1110xF117	6171361719	
Serial number	String (16 bytes)	RW 🖉	0xF1180xF11F	0xF1190xF120	6172161728	
Customer model	String (16 bytes)	RW 🔑	0xF1200xF127	0xF1210xF128	6172961736	
Firmware version	String (5 bytes)	R	0xF1280xF12A	0xF1290xF12B	6173761739	
Usertag	String (13 bytes)	RW	0xF1300xF136	0xF1310xF137	6174561751	
PID-Kp	Float	RW 🖉	0xF2A80xF2A9	0xF2A90xF2AA	6212162122	
PID-Ti	Float	RW 🖉	0xF2B00xF2B1	0xF2B10xF2B2	6212962130	
PID-Td	Float	RW 🔑	0xF2B80xF2B9	0xF2B90xF2BA	6213762138	
Density actual	Float	R	0xF4780xF479	0xF4790xF47A	6258562586	
Dynamic display factor	Float	RW 🔑	0xF5080xF509	0xF5090xF50A	6272962730	
Static display factor	Float	RW 🖉	0xF5100xF511	0xF5110xF512	6273762738	
Exponential smoothing	Float	RW 🔑	0xF5200xF521	0xF5210xF522	6275362754	
Modbus baudrate	Long integer	RW 🔑	0xFD480xFD49	0xFD490xFD4A	6484164842	

Details and meaning can be found in document 9.17.023 Operation instructions digital instruments. This document can be found at:

http://www.bronkhorst.com/en/downloads/instruction manuals/

- Access indicates whether parameter can be Read and/or Written.
- When a byte parameter is read, the upper 8-bits of the Modbus register will be 0. When a byte parameter is written, the upper 8-bits must be set to 0.
- Long integer parameters have a length of 4 bytes and are mapped on two consecutive Modbus registers. The first register contains bit 32-16, the second register contains bit 15-0.
- Floating point parameters have a length of 4 bytes and are mapped on two consecutive Modbus registers. Floats are in single precision IEEE format (1 sign bit, 8 bits exponent and 23 bits fraction). The first register contains bit 32-16, the second register contains bit 15-0.
- String parameters can have a length of maximal 16 bytes and can take up to 8 Modbus registers where each register contains two characters (bytes). The upper byte of the first register contains the first character of the string. When writing strings, the write action should always start from the first register as a complete block (it is not possible to write a part of a string). If the string is shorter than the specified maximum length the string should be terminated with an 0.
- Parameters Temperature, Counter value and Counter limit can be found in the parameter table as an unsigned integer variant and as a floating point variant. Only the floating point variant supports the full parameter range and resolution.

5 TROUBLESHOOTING

5.1 Visual diagnostics

LED indications (if present) can be very useful in case of problems with the instrument.

The green LED is normally used for instrument status indication, like normal operation or special function mode. The red LED will burn continuously in case of a hardware failure. During normal operation, the red LED is switched on during frame reception or sending on the Modbus interface.

More information can be found in document 9.17.023 Operation instructions digital instruments. This document can be found at: <u>http://www.bronkhorst.com/en/downloads/instruction_manuals/</u>

5.2 Step-by-step

5.3 Bus diagnostics string

The bus diagnostics string can be found in the service report that can be created using FlowFix. The string is also available as parameter 202 in the Bronkhorst FlowDDE application.

The format of the string is "mAAAA eBBBB sCCCC cDDDD", where AAAA, BBBB, CCCC and DDDD are hexadecimal representations of 16-bit counters:

- AAAA = bus messages count (CPT1)
- BBBB = bus communication error count (CPT2)
- CCCC = slave message count (CPT4)
- DDDD = bus character overrun count (CPT8)

The following table may be helpful to find the source of communication problems on Modbus. In general, read out this string after trying to communicate between master and slave, without switching off the power in the meantime.

mAAAA	eBBBB	sCCCC	cDDDD	Diagnostics
=0000	=0000	=0000	=0000	No communication detected by slave, check RS485 network, especially D0 and D1 signals.
>0000	=0000	=0000	=0000	Slave detected valid Modbus messages for other addresses, make sure master uses correct slave address
=0000	>0000	=0000	=0000	Slave detected invalid messages on the bus, make sure master uses correct baud rate and parity settings
>0000	>0000	>0000	=0000	Slave detected both valid and invalid messages, make sure RS485 bus termination and polarization are used correctly and the maximum number of devices is not exceeded. See chapter Error! Reference source not found. for details.
=0000	>0000	=0000	>0000	Slave has received bytes faster than it could process, make sure master uses correct baud rate. You may want to try a lower baud rate.
>0000	=0000	>0000	=0000	No problem detected by slave, make sure application timeout of master is set to a value larger than 100 ms

6 SERVICE

For current information on Bronkhorst and service addresses please visit our website:

http://www.bronkhorst.com

Do you have any questions about our products? Our Sales Department will gladly assist you selecting the right product for your application. Contact sales by e-mail:

sales@bronkhorst.com

For after-sales questions, our Customer Service Department is available with help and guidance. To contact CSD by e-mail:

support@bronkhorst.com

No matter the time zone, our experts within the Support Group are available to answer your request immediately or ensure appropriate further action. Our experts can be reached at:

() +31 573 45 88 39