

Mode Conversion in Three Ion Species ICRF Heating Experiment

Yijun Lin, E. Edlund, P. Ennever, M. Porkolab, J. Wright, S.J. Wukitch and the Alcator C-Mod team

MIT Plasma Science and Fusion Center, Cambridge, MA 02139, USA

Work supported by US DoE Cooperative agreement DE-FC02-99ER54512 at MIT using the Alcator C-Mod tokamak, a DOE Office of Science user facility.

ICRF antennas on Alcator C-Mod

Total RF source power: 4 x 2 MW transmitters.

- D and E antennas are each powered by one transmitter and provide up to 1.8 MW (combined up to ~ 3.6 MW) RF power to plasma.
- J antenna is powered by 2 transmitters and provides up to 3 MW power to plasma.

Phase contrast imaging system (PCI)

- Acoustic-optical frequency shifter to modulate the laser beam to have a beat-frequency near the RF frequency (heterodyne scheme).
- RF waves can be measured in this setup at the beat frequency.

E. Nelson-Melby et al, PRL 90,155004 (2003).

Alcator

C-**M**od

• The system has recently been upgraded to have higher sensitivity at high frequencies and better calibration.

PCI is in front of E antenna but some toroidal angles away from D and J

RF signals shown in PCI data

80 MHz RF signal from E antenna, shown in PCI spectra at ~880 kHz after heterodyne modulation

For this typical D(H) minority heating plasma, the PCI signal is mostly from the fast wave.

- RF wave appears as a coherent signal in the PCI spectra (contour image in *frequency* and *time*);
- Signal amplitude is indicative of the wave E field amplitude;
- Signal phases from different PCI channels $\leftarrow \rightarrow k_R$ of the RF waves.

ICRF 3-ion heating scenario

- Majority D and H, e.g., ~50% each
- And small amount of $X[^{3}He] = n_{^{3}He}/n_{e} \sim \le 1\%$
- →³He cyclotron resonance in the vicinity of both the D-³He hybrid layer and ³He-H hybrid layer.
- Potentially strong absorption on ³He ions due to favorable wave polarization at the ³He cyclotron resonance.
- This scenario can be used for general plasma heating and also for fast ion generation, e.g., fast ion confinement study on W7-X.
- It is also possibly applicable for ITER D-T plasma heating.

ICRF waves in a 3-ion species plasma

Alcator

C-**∭**od

Energetic ions are generated in plasmas with low ³He and high RF power

- AE activities are indicative of the existence of a population of energetic ³He ions near the plasma center.
- $X[^{3}He] = n_{3He}/n_{e} \sim 0.6\%, P_{ICRF} \sim 4 MW$

(More discussion in Kazakov's and Wright's talks)

Heating effectiveness strongly depends on the amount of ³He puffed

Alcator

C-Mod

- Best effective heating occurs at X[³He] = n_{3He}/n_e ~ 0.5%-1%.
- This study focuses on the two plasma shots, 1160901015 (75 ms ³He puff, 0.4 Torrliter) and 1160901016 (200 ms ³He puff, 1.5 Torr-liter).
- In both shots, mode conversion was clearly observed by PCI.

- PCI has 32 channels, covering 0.64 m < R < 0.74 m.
- Two peaks are observed at R ~ 0.64 m and R ~ 0.71 m, corresponding to the HFS and LFS MC layer locations. Ion cyclotron resonance is at R = 0.69 m.

Determine X[³He] and X[H] from the two observed MC locations

- The location of the two MC locations from PCI can be used to estimate X[H] and X[³He]
 - Larger X[H] moves both layers to HFS;
 - Larger X[³He] increases the distance between the two layers.
- X[H] \approx 65% and X[³He] \approx 0.9% have the best match.

MC locations vs. X[³He] and X[H]

Alcator

C-**M**od

TORIC simulation shows E-field pattern for strong ion absorption

Alcator

C-Mod

- TORIC is a 2-D ICRF simulation code. Simulation using X[H] ≈ 65% and X[³He] ≈ 0.9%, RF frequency 78 MHz, and equilibrium of shot 1160901015.
- Shown are E fields for the case of toroidal mode $n_{\phi} = -13$. $R_{mgx} \approx 68$ cm, the magnetic axis.

PCI also provides k_R spectrum of the MC waves, in agreement with TORIC

Alcator

C-Mod

- The observed MC waves have $k_R \sim 4 \text{ cm}^{-1}$, corresponding to $\lambda_R \sim 1.6 \text{ cm}$.
- In agreement with the field pattern of the short-wavelength waves shown in the TORIC simulation.

Power deposition to ions and electrons in 2-D from simulation

Alcator

C-Mod

- Power deposition to ³He ions is through the interaction of ³He ions with fast wave and the MC waves at the resonance;
- Power to electrons is mostly through MC waves and relatively much weaker.

RF power mostly goes to the ³He ions

Alcator

C-**M**od

- For this plasma, most RF power is absorbed by the ³He ions.
- 69% to ³He ions, 30% to electrons, and the rest to D and H ions.
- See Wright TO4.012 for simulation on how the fast ions are generated.

- With increase of ³He, the distance between the HFS and LFS MC layers are increased.
- Only the HFS MC at R ~ 0.64 m is observed in the PCI window for J antenna power at 78 MHz and the LFS MC is out of the PCI window.

The LFS MC is observed at 80.5 MHz

• The LFS MC at R ~ 0.74 m appears in 80.5 MHz D antenna signal, while the HFS MC at this frequency is out of the PCI window.

Combined the observation of at 80.5 MHz and 78 MHz → X[H] and X[3He]

Alcator

C-Mod

• X[H] \approx 58% and X[³He] \approx 2.8% is the best match to the observed MC locations.

Electric field pattern is not conducive for ion absorption

Alcator

C-Mod

- Clear short wavelength MC waves appear at both HFS and LFS MC layers.
- IC resonance is quite far away from the region with large E+ field. The Doppler broadening of the resonance (~ ±1 cm for thermal ions) would be insufficient for strong ion absorption.

Power deposition to ions is weaker than to electrons

- Power deposition to ³He ions is much weaker than in shot 1160901015;
- Power to electrons is through MC waves and it is much broader and stronger than that in shot 1160901015.

Most RF power goes to electrons via mode conversion electron heating

Alcator

C-Mod

- 15% power to ³He ions, 82% power electrons and the rest to D and H ions.
- Power to electrons is off-axis and broad.
- Heating effectiveness (increment in stored energy vs. P_{RF}) is low.

Summary

- RF waves have been measured by PCI in the 3-ion species ICRF heating experiment;
- Double mode-conversion has been confirmed, and the PCI measurement is used to infer the species concentrations;
- TORIC simulation shows that for the low ³He scenario (X[³He] <1%), most RF power is deposited to ions and such power deposition can generate energetic ions at high RF power.
- At higher level of X[³He], most RF power is deposited to electrons via mode conversion, and heating effectiveness is significantly reduced.

More on 3-ion ICRF heating experiment on C-Mod and JET: Yevgen Kazakov – Invited talk NI3.005, Wednesday morning John Wright – ITER session TO4.012, Thursday morning