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The purpose of this study was to investigate the applicability of the existing lay-up 

independent fracture criterion for notched composite laminates. A detailed finite element analysis 

of notched graphite/epoxy laminates was performed to understand the nature of stresses and 

crack tip parameters in finite-width composite panels. A new laminate parameter β  has been 

identified which plays a crucial role in the fracture of laminated composites. An empirical 

formula has been developed for finite-width correction factors for composite laminates in terms 

of crack length to panel width ratio and β . The effects of blunt crack tip and local damage on 

fracture behavior of notched composite laminates are investigated using the FE analysis. The 

results of experiments performed elsewhere are analyzed in the light of new understanding of 

crack tip stresses, and the applicability of the lay-up independent fracture criterion for notched 

composite laminates is discussed. It is determined that the analytical lay-up independent fracture 



 

xii  

model that considers local damage effect provides good correlation with experimental data, and 

the use of orthotropic finite-width correction factor improves the accuracy of notched strength 

prediction of composite laminates. 
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CHAPTER 1 
INTRODUCTION 

1.1 Background and Objectives 

 Composite laminates are widely used in aerospace, automobile and marine 

industries. Because of their high strength-to-weight and stiffness-to-weight ratio, use of 

fiber-reinforced composite materials in advanced engineering structures such as high-

performance aircraft has been increasing.  Recently, laminated composites have been 

increasingly used in military fighter airframes and external surfaces because those 

designs are required to handle high aerodynamic forces, be lightweight for maximizing 

air-to-air performance, minimize radar cross section, and withstand foreign object and 

battle damage. In addition, by properly sequencing the stacking lay-up, a wide range of 

design requirements can be met.  Laminated composites posses distinctive advantages as 

mentioned above; however, fiber-reinforced composites exhibit notch sensitivity, and this 

can be an important factor in determining safe design. The problem of predicting the 

notched strength of laminated composites has been the subject of extensive research in 

the past few years.  Owing to the inherent complexity and the number of factors involved 

in their fracture behavior, several semi-empirical failure criteria have been proposed and 

have gained popularity.  Some failure criteria are based on concepts of linear-elastic 

fracture mechanics (LEFM), while others are based on the characteristic length and stress 

distribution in the vicinity of the notch.  In general, these models rely on a curve-fitting 

procedure for the determination of a number of material and laminate parameters, 

involving testing of notched and unnotched specimens for each selected lay-up.  



 2 

 One limitation commonly reported is that the fracture toughness in many cases is 

dependent upon laminate configuration, the specific fiber/matrix system, etc.  The use of 

these failure criteria without properly accounting for this dependence has led to some 

mixed results. Awerbuch and Madhukar [1] reviewed some of the most commonly used 

fracture criteria for notched laminated composites.  They collected data from several 

sources and different materials and evaluated the performance of each criterion. They 

concluded that the parameters are strongly dependent on laminate configuration and 

material system and must be determined experimentally for each new material system 

and laminate configuration. To overcome this limitation of those popular failure criteria, 

recently a lay-up independent fracture criterion was developed by employing linear-

elastic fracture mechanics concepts. The fracture toughness of the load-carrying ply in 

the presence of fiber breakage was considered as the principal fracture parameter.  

The main objective of this research was to further verify and also improve the 

existing lay-up independent fracture criterion for notched laminated composites. Detailed 

finite element analyses, both 2D and 3D, of the laminate were performed to understand 

the average laminate stresses as well as stresses in individual layers. An analytical model 

for determining the principal fracture parameter, fracture toughness of the load-carrying 

ply, was also developed. It has been found that factors such as crack bluntness, local 

damage such as fiber splitting, delamination, etc. in the vicinity of crack tip play a 

significant role in reducing the stresses in angle plies and thus increasing the stresses and 

stress intensity factor in the load-carrying ply.  A new laminate parameter, referred to as 

β , has been identified. This parameter represents the ratio of the axial and normal 

stresses at points straight ahead of crack tip, and plays a crucial role in the failure of the 
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notched laminate.  

A secondary objective was to develop a semi-empirical solution for finite-width 

correction factor (FWC) for laminated composites to improve the accuracy of prediction 

of notched strength. Due to the lack of a closed form solution for orthotropic finite-width 

correction factor, most existing failure criterion used the isotropic finite-width correction 

factor for prediction of notched strength of laminates.  In some cases, the application of 

the isotropic finite-width correction factors to estimate the anisotropic or orthotropic 

finite-width correction factors can cause significant error.  An attempt was made to 

reduce the error in predicting the notched strength by developing an orthotropic finite-

width correction factor for various laminates configurations.  

1.2 Literature Review 

Numerous failure models have been developed for the prediction of the notched 

strengths of composite laminates.  Due to the complication of analyzing the fracture 

behavior of notched composite laminates, a number of assumptions and approximations 

were contained in most commonly used failure models to predict the tensile strengths of 

notched composite laminates. In recent years several simplified fracture models have 

been proposed.  The scope of this research was limited to laminated composites 

containing a straight center crack when subjected to uniaxial tensile loading.  

 Waddoups, Eisenmann, and Kaminkski (WEK-LEFM models) [2] applied Linear 

Elastic Fracture Mechanics to composites. Their approach was to treat the local damage 

zone as a crack, and apply fracture mechanics. Whitney and Nuismer [3] proposed the 

stress-failure models. These models named the Average-Stress Criterion (ASC) and the 

Point-Stress Criterion (PSC) assumed that fracture occurs when the point stress or the 
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average stress over some characteristic distance away from the discontinuity is equal to 

the ultimate strength of the unnotched laminate. The characteristic distances in point 

stress criterion and average-stress criterion, are considered to be material constants and 

the evaluation of the notched tensile strength is based on the closed form expressions of 

the stress distribution adjacent to the circular hole. Tan [4] extended this concept and 

developed more general failure models, the Point Strength Model (PSM) and Minimum 

Strength Model (MSM). These models successfully used to predict the notched strength 

of composite laminates subjected to various loading conditions. Such models using a 

characteristic length concept have been widely used to predict ultimate strength in the 

presence of notches. The main disadvantage is that the characteristic length is not a 

material constant and depends on factors such as the lay-up configuration, the geometry 

of the notch, etc. Therefore, the characteristic length obtained from tests on one laminate 

configuration may not be extrapolated to predict the failure of other laminates of the same 

material system. Mar and Lin [5] proposed LEFM fracture model called Mar-Lin 

criterion, the damage zone model, and the damage zone criterion. They assumed that the 

laminate fracture must occur through the propagation of a crack lying in matrix material 

at the matrix/filament interface. It was able to provide good correlation with experimental 

data and at the same time is very simple to apply. However, the fracture parameter, which 

was used in Mar-Lin criterion, depends on the laminate lay-up configuration. Therefore, 

the application of this fracture criterion requires experimental determination of the 

fracture parameter for each laminate. Chang and Chang [6] and Tan [7] proposed 

progressive damage models which were developed to predict the extent of damage and 

damage progression, respectively, in notched composite laminates. The models accounted 
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for the reduced stress concentration associated with mechanisms of damage growth at a 

notch tip by reducing local laminate stiffness.  

Past experimental investigations, which were carried out by Poe [8], have 

revealed that fiber failure in the principal load-carrying plies governs the failure of 

notched laminated composites.  Poe and Sova [8, 9] proposed a general fracture-

toughness parameter, critical strain intensity factor, which is independent of laminate 

orientation. This parameter was derived on the basis of fiber failure of the principal load-

carrying ply and it is proportional to the critical stress intensity factor. Such an idea was 

adopted by Kageyama [10] who estimated the fracture toughness of the load-carrying ply 

by three dimensional finite element analysis.  Such analyses led to lay-up independent 

fracture criteria based on the failure mechanism of the load-carrying ply, which governs 

the failure of entire laminate. Recently, Sun et al. [11, 12] proposed a new lay-up 

independent fracture criterion for composites containing center cracks. In their analysis, 

the fracture toughness of the load-carrying ply was introduced as the material parameter. 

Such an analysis is approximate, since it does not take into account any stress 

redistribution caused by local damage and it used the isotropic form factor instead of an 

orthotropic finite-width correction factor to account for finite width of the laminated 

specimens.  

There are several analytical and numerical methods [13-15] to determine the 

orthotropic finite-width correction factor including the boundary integral equation, finite 

element analysis, modification of isotropic finite-width correction factor, etc.  However, 

no closed form solutions are available. Therefore, the closed form solution for isotropic 

materials is frequently used for orthotropic material as well. 
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Current study aims to further verify the lay-up independent model including new 

fracture parameter and improve the accuracy for the notched strength prediction of 

composite laminates by using orthotropic finite-width correction factor. 

Chapter 1 provides an introduction and a literature review of fracture models for 

notched laminated composites. Chapter 2 describes a general concept of the lay-up 

independent fracture model and the analytical derivation of the stress intensity factor in 

the load-carrying ply. Chapter 3 describes a FE modeling procedure including damage 

modeling and the development of the orthotropic finite-width correction factor based on 

FE analysis.  Conclusions and some recommendations for future work are presented in 

Chapter 4.  
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CHAPTER 2 
LAY-UP INDEPENDENT FRACTURE CRITERION 

2.1 Introduction 

Fibrous composite materials have high strength and stiffness as mentioned before. 

Under tension loading, however, most advanced laminated composites are severely 

weakened by notches or by fiber damage. Thus, a designer needs to know the fracture 

toughness of composite laminates in order to design damage tolerant structures.  The 

fracture toughness of composite laminates depends on material property and laminates 

configuration.  Consequently, testing to determine fracture toughness for each possible 

laminate configuration would be expensive and time-consuming work. Thus, a single 

fracture parameter can be used to predict fracture toughness for all laminates 

configurations of the same material system. Poe and Sova [8, 9] proposed a general 

fracture toughness parameter, CQ , which was derived using a strain failure criterion for 

fibers in the load-carrying ply. Sun and Vaiday [11] also proposed a single fracture 

parameter, stress intensity factor in the load-carrying ply which was derived using 

classical lamination theory and LEFM theory. 

In this chapter, exact LEFM analytical expression for lay-up independent failure 

model is presented and it is compared with the similar methodology proposed by Sun and 

Vaiday [11] 
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2.2 Stress Intensity Factor Measurements 

2.2.1 Experimental Background 

As mentioned earlier we have analyzed the results of fracture tests performed by 

Sun et al. [11, 12]. The material properties, laminate configurations used and failure load 

are presented here for the sake of completion. Nine different laminate configurations 

made from AS4/3501-6 (Hercules) graphite/epoxy were tested. The panels were made of 

unidirectional prepreg tape with a nominal thickness of 0.127 mm. The material 

properties for this unidirectional prepreg tape are shown in Table 2-1.  The panel 

specifications, geometry, and coordinate system used for the present analysis is shown in 

Figure 2-1. All the test specimens reported here were fabricated using the hand lay-up 

technique and cured in an autoclave. Different laminate configurations were selected such 

that each one had at least one principal load-carrying ply (0E), i.e., plies with fibers 

aligned along the loading direction. 

   Table 2-1  Material properties of unidirectional AS4/3501-6 graphite/epoxy 
 

Young’s Moduli (GPa) Poisson’s 
Ratio 

Shear 
modulus Material 

EL ET vLT GLT, (GPa) 

Prepreg 
thickness 

(mm) 
graphite/epoxy 138 9.65 0.3 5.24 0.127 

      
 

                

                          Figure 2-1  Specimen specification and fiber directions     
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To make the crack, a starter hole was first drilled in the laminates to minimize any 

delamination caused by the waterjet. The crack was then made by a waterjet cut and 

further extended with a 0.2 mm thick jeweler’s saw blade.  

The failure stress (load over nominal cross section of the laminate) for each 

laminate configuration tested are shown in Table 2-2. The fracture toughness estimated 

using the nominal stress intensity factor for the laminate is shown under the column 

“Laminate fracture toughness”. This is computed using the formula 

awaYK yQ πσ )/(∞=                                                             (1) 

where ∞
yσ is the remote stress and Y is the finite-width correction factor. Sun et al. [11, 12] 

used the Y for isotropic material which is equal to 1.0414 for the present case 

(a/w=0.2627). One can note that the fracture toughness estimated using this method is not 

the same for different laminates and hence cannot be considered as a material property. 

The last column of Table 2-2 is the fracture toughness of the load-carrying ply calculated 

by Sun and Vaiday [11], which will be discussed in subsequent sections. 

     Table 2-2  Fracture toughness of AS4/3501-6 graphite epoxy laminates [11] 
 

Notation Laminate 
configuration 

Failure 
stress 
(MPa) 

Laminate fracture 
toughness 
QK  ( )mMPa  

Fracture toughness of  
the load-carrying ply 

L
QK  ( )mMPa  

S1 [0/90/±45]s 343.00 44.83 ± 3.05 115.66 

S2 [±45/90/0]s 323.27 42.19 ± 1.87 108.82 

S3 [90/0/±45]s 316.05 41.25 ± 1.46 106.43 
S4 [0/±15]s 695.84 90.82 ± 4.01 101.81 
S5 [0/±30]s 466.14 60.84 ± 3.14 101.00 
S6 [0/±45]s 351.14 45.83 ± 2.17 106.32 
S7 [0/90]2s 446.76 58.31 ± 5.30 109.04 

S8 [±45/0/±45]s 287.16 37.48 ± 0.43 119.81 
S9 [±452/0/±45]s 248.40 32.42 ± 0.60 123.64 



 10 

2.2.2 Stress Intensity Factor Calculations 

 A parameter commonly used to represent the notch sensitivity of materials is the 

critical stress intensity factor (S.I.F.) or the fracture toughness, QK . Numerous 

investigations have attempted to determine the critical stress intensity factor for a variety 

of composite laminates, and those results indicate that it depends primarily on the 

material, laminate configuration, stacking sequence, specimen geometry and dimensions, 

notch length, etc.  In addition, stress intensity factor is strongly affected by the extent of 

damage and failure modes at the notch tip. Therefore, it is a critical parameter to design 

composite laminates structure. 

  The stress intensity factor of notched laminates can be calculated in three 

different ways. 

1. From Eq. (1) using failure stress directly from the experiment  

2. Finite Element Analysis I : From the normal stress distribution obtained from a 

series of finite element models using the following equation.  

rrK yrI πσ 2)0,(lim
0→

=                                                   (2) 

where r is the distance from the crack tip and normal stress component yσ  (r,0) is the 

average stress of the each ply. 

3. Finite Element Analysis II : From the J- integral calculated from finite element 

models. The relation of the energy release rate and stress intensity factor is given by the 

following equation [17].  

                                          

2/1

11

6612

2/1

11

22
2/1

22112

2
2

2 









 +
+














=

a
aa

a
aaa

KG II                      (3)                  
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where ija  are elastic constants. When the remote applied stress is the failure stress, stress 

intensity factor IK  becomes the fracture toughness QK . The stress intensity factor of the 

load-carrying ply, L
QK , can be estimated in two different ways.  

1. From simple stress analysis using LEFM and lamination theory by calculating 

the portion of the applied load that is carried by the load-carrying ply.  The analytical 

derivation of the fracture toughness of the load-carrying ply is presented in following 

section. 

2. Same procedure as in Eq. (2) but using normal stress field of the load-carrying 

ply extracted from a series of finite element models using the following equation.   

rrK L
yr

L
I πσ 2)0,(lim

0→
=                                                     (4) 

 In order to estimate fracture toughness of various laminates configurations, the 

failure stresses of the notched laminates have to be determined from experiments. 

However, if the general fracture parameter, the fracture toughness of the load-carrying 

ply which is lay-up independent, is determined from preliminary test, laminates fracture 

toughness can be obtained using simple analysis. Consequently, it will be discussed in the 

following section. 

2.3 Derivation of Stress Intensity Factor in the Load-Carrying Ply 

In this section, we derive an analytical expression for the stress intensity factor for 

the load-carrying ply in terms of the average laminate stress intensity factor obtained 

using three methods mentioned earlier. The derivation of stress intensity factor presented 

here is based on LEFM and classical lamination theory. The detailed derivation 

procedure can be found in Appendix A and B.  
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Figure 2-2  Local coordinate system of crack tip area stress components 

The state of stress in the vicinity of a crack in an orthotropic material is given by  

[ ]1Re
2

)0,(
r

K
r I

y π
σ =                                                                (5.a) 

( ) [ ]21Re
2

0, ss
r

K
r I

x −=
π

σ                                                          (5.b) 

where the parameters s1 and s2  are related to the orthotropic elastic constants as explained 

in Appendix B. We will use a new laminate parameter β  to denote the ratio between the 

two normal stresses shown in Eqs. (5.a) and (5.b).  

( )
( ) [ ]21Re

0,
0, ss

r
r

y

x −==
σ
σβ                                                         (6) 

We will use the classical lamination theory to extract the stresses in the load-carrying ply 

from the force resultants acting in the entire laminate. According to the classical 

lamination theory presented in Appendix A, in the case of symmetric laminated plates 

without coupling under plane stress or plane strain conditions, the force-mid-plane strain 

equations can be expressed in matrix form as 
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where [A] is the laminate extensional stiffness matrix. The inverse relation is given by 
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where superscript * denotes the component of inverse matrix of [ ]A . The stresses in the 

load-carrying ply can be derived from the mid-plane strains as 
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where superscript L  indicates the load carrying ply and the quantities Qij (i,j = 1, 2, 6) are 

the stiffness coefficients of the principal load carrying plies. Substituting Eq. (8) into Eq. 

(9) yields the following equation. 
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In the vicinity of the crack tip the force resultants can be written in terms of the average 

stresses in the orthotropic laminate 

0,, ===== xyxyyyyxx tNtNttN τσβσσ                                (11) 
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where t is the total thickness of laminates. Substituting from Eq. (11) into Eq. (10) we 

obtain the stresses in the load-carrying ply as 
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                                  (12) 

In particular we are interested in the stress component L
yσ  responsible for fracture and it 

is obtained from Eq. (9) as 

( ) ( )[ ] ( )y

LLL
y tAAQAAQ σββσ *

22
*
1222

*
12

*
1112 +++=                                 (13) 

Then the stress intensity factor L
QK in the load-carrying ply can be expressed in terms of 

the laminate stress intensity factor QK as 

( ) ( )[ ] Q

LLL
AQ KAAQAAQtK *

22
*
1222

*
12

*
1112)( +++= ββ                                 (14) 

In deriving Eq. (14) we have used the assumption Q
L
Qy

L
y KK // =σσ .          

The lay-up independent fracture criteria assume that there is a critical value of 

L
QK  for each material system and is independent of laminate configuration as long as 

there is a load-carrying ply in the laminate. In order to verify this concept we computed 

QK  from the experimental failure loads [11] using Eq. (1). Then L
QK  at the instant of 

fracture initiation was computed using Eq. (14).  The resulting fracture toughness will be 

called L
AQK )( .  

Sun and Vaiday [11] used a similar approach to calculate the stress intensity 

factor in the load-carrying ply, but they used the remote stresses applied to the laminate 
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in order to determine the ratio of yx σσ / .  Since the applied load is uniaxial, this ratio 

was equal to zero in their case. This is equivalent to taking the factor β   as equal to zero. 

It should be emphasized that this stress ratio is not equal to zero in the vicinity of the 

crack tip, as there is a nonzero component of xσ is present (see Eq. 5b). We denote this 

fracture toughness as L
BQK )( . Thus the relation between L

BQK )(  and QK  can be obtained by 

setting β =0 in Eq. (14) and it takes the form 

[ ] Q

LLL
BQ KAQAQtK *

2222
*
1212)( +=                                          (15) 

2.4 Results and Discussion 

The values of L
AQK )(  and L

BQK )(  are shown in Figure 2-3 for the nine laminate 

configurations. The average values and corresponding standard deviation are 74.35 MPa-

m1/2 and 18.35 % for L
AQK )( , and 110.28 MPa-m1/2 and 9.8 % for L

BQK )( .  Surprisingly the 

case B wherein the β  value was taken as zero yielded consistent layer independent 

fracture toughness compared to the case A where the actual stress ratio (β>0) was used. 
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Such analyses are approximate, since they do not consider any stress 

redistribution caused by physical fracture behavior such as local damage in the form of 

matrix cracking, delamination, etc. In order to fully understand the nature of crack tip 

stress field in finite-width laminates a detailed finite element analysis was performed. 

The procedures and the results are discussed in Chapter 3. 
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CHAPTER 3 
FINITE ELEMENT ANALYSIS 

A detailed finite element analysis of fracture behavior of notched laminated 

composites was conducted in conjunction with the analytical failure models described 

earlier.  The purpose of the finite element analysis was to develop a model that could 

predict the fracture parameters of notched laminated composites and investigate the effect 

of local damage and crack tip shape on the stress intensity factor for notched laminated 

composites. Another goal of the study was to determine the orthotropic finite-width 

correction factor using J- integral. One of the leading commercial FE packages, ABAQUS 

6.2 [18] was used to analyze the various test specimens. Two types of analyses were 

performed. In the 2D model the specimens were modeled as orthotropic laminate. In the 

second model 3D solid elements were used to model the individual layers of the laminate. 

In both cases sub-modeling was performed to improve the accuracy of the calculated 

crack tip parameters such as stress intensity factor and J-Integral. The mode I stress 

intensity factor, IK , can be calculated in two different ways based on the finite element 

analysis as mentioned earlier. 

 However, stress intensity factor of the load-carrying ply can be calculated only 

one way using the Eq. (4) because ABAQUS can not calculate  J-integral for each ply 

level.  )0,(rL
yσ  is extracted from normal stress field in the load-carrying ply of FE model.  

 The stress intensity factors obtained using the above methods from two types of 

FE models are compared with the analytical models in the subsequent section.  
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It is noted that overall analysis procedure and detailed results are presented for 

case of the [0/±45]s laminate and the results of other eight laminate configurations are 

summarized.  

3.1 2D Finite Element Global Model 

The purpose of the 2D analysis is to compare the results with the analytical model 

so that the effect of finite-width of the specimen can be understood. Further FE models 

can be used to understand the effects of blunt crack tip and also other forms of damage 

such as delamination and fiber splitting. The various laminate configurations with center 

notch were modeled with eight node plane stress elements (CPS8R element).  A quarter 

model was used, with symmetric boundary conditions. The width of the model, w, was 

19.05 mm, and the length was 254 mm. The notch was modeled as a sharp crack with a 

half width, a= 5 mm. Since the lay-up is symmetric, it was only necessary to model half 

of the thickness. 

The main difference between global model and sub-model is mesh refinement. 

The FE global model uses relatively coarse mesh compared to the FE sub models. A 

fixed element size with width of 1 mm was used in the FE global model. A relatively fine 

mesh was used adjacent to the notch. The geometry and the finite element models were 

created using ABAQUS/CAE modeling tool and ABAQUS keyword editor. Figure 3-2 

shows the initial mesh of the upper left quadrant. Separate elements were used to 

represent each ply and common nodes were used for interface of plies. Figure 3-1 shows 

the scheme of two-dimensional FE model of [0/±45]s laminate. Figure 3-3 shows the 

overall global modeling procedure in case of [0/±45]s laminate. The material property of 

each ply was modeled as a homogeneous linear elastic orthotropic material throughout 
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this FE analysis. In order to use a single global coordinate system, the material properties 

of angle plies were transformed using the transformation relation for engineering 

constants. Orthotropic properties for AS4/3501-6 graphite/epoxy unidirectional prepreg 

were defined as shown in Table 2-1. The material property of each angle ply was 

implemented in ABAQUS by means of user material subroutine (UMAT). The fixed grip 

loading condition was simulated by constraining the nodes along the edge of the plate to 

have the same displacement under an applied load. This was also implemented by using 

the EQUATION command. The failure load obtained from experiments (see Table 2-1) 

was applied. In global model analysis, J- integral also was calculated using ten contour 

lines to determine the orthotropic finite-width correction factors. It will be discussed in 

Chapter 3.4. 
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Figure 3-1 Scheme of two-dimensional FE model of [0/±45]s laminate 
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Figure 3-2  Finite element global model mesh and boundary condition 
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Figure 3-3 Scheme of 2D FE global model analysis procedure 
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 Figure 3-4 shows the distribution of normal stress of the load-carrying ply and 

average normal stress of the laminate, respectively, for the global model. From the 

normal stress distribution in the Figure 3-4, it is clear that yσ  stress in the load-carrying 

ply is much higher than the average and hence that of angle ply. In the Figure,  yσ  was 

defined as 
3

4545 −+ ++ yy
L
y σσσ

. A contour plot of yσ  distribution is shown in Figure 3-6. 

Figure 3-5 shows the values of  rL
y πσ 2  and ry πσ 2  as a function of r in the [0/±45]s 

laminate. The stress intensity factor of the load-carrying ply and the laminate can be 

obtained by extrapolating measured normal stress distribution from the FE global model 

based on Eqs. (2) and (4). The stress intensity factor obtained from global FE model 

agree well with the analytical model case B (Eq. 15) which was calculated assuming xσ = 

0 ahead of crack tip.  
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Figure 3-4 Normal stress distribution in the global model in the [0/±45]s laminate 
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Figure 3-5 Stress intensity factor in the global model for [0/±45]s laminate 
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(a) Load-carrying ply, 0Edegree 
 

 
 
 

 
 

(b) +45E ply 
 
 

Figure 3-6  yσ distribution in the [0/±45]s laminate under a load of 351.14 MPa
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3.2 2D Finite Element Sub-Model 

The analysis was repeated with a very refined element size in order to investigate 

the local fracture behavior and the sensitivity of the results to mesh refinement.  All other 

aspects of the analysis were kept the same as global model.  For efficiency of 

computation, the finite element sub-modeling analysis technique was adopted. The sub-

modeling analysis is most useful when it is necessary to obtain an accurate, detailed 

solut ion in a local area region based on interpolation of the solution from an initial, 

relatively coarse, global model. The sub-model is run as a separate analysis. The link 

between the sub-model and the global model is the transfer of results saved in the global 

model to the relevant boundary nodes of the sub-model. Thus, the response at the 

boundary of the sub-model is defined by the solution of the global model.  However, in 

order to adopt sub-modeling technique, the accuracy of sub-model should be ensured by 

checking the comparing important parameter to determine reasonable sub-modeling size. 

Three different sizes of sub-models were modeled to determine adequate sub-model size 

to minimize the execution time and maximize accuracy. Figure 3-7 shows the different 

size of sub-model and Figure 3-8 shows the results of comparison of stress intensity 

factor obtained from sub-models with stress intensity factor obtained from J- integral 

using Eq. (3).  For efficiency of computation, sub-model size B was chosen for 

subsequent studies. 
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Figure 3-7  Different sizes of sub-model (A= 10 %, B= 20 %, C= 40 % of crack size, a) 

 

 

Figure 3-8  Comparison of SIF obtained from different sizes of sub-model 
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A fixed mesh size, 0.01 mm was used in the sub-model and overall size of sub-model is 

20% of crack size, a. Figure 3-9 shows sub-model mesh and linking with global model. 

 

              
 

Figure 3-9  Finite element sub-model mesh and linking with global model 

Figure 3-10 shows the distribution of normal stress of the load-carrying ply and 

average normal stress of the laminate, respectively, for the sub-model.  From the Figure 

for normal stress distribution (Fig. 3-10), it can be seen that the nature of stress variation 

is similar to that of global model shown in Figure 3-4. Same procedures of global model 

analysis were repeated to estimate the stress intensity factor of the load-carrying ply and 

the average stress intensity factor for the laminate in the sub-model. It is noted that the 

average stress intensity factor for the laminate obtained from the sub-model, 45.7 MPa-

m1/2, is almost same as that of global model, 45.9 MPa-m1/2. However, the stress intensity 

factor of the load-carrying ply, 59.2 MPa-m1/2, is much less compared to that of global 

model, 107 MPa-m1/2.     
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Figure 3-10  Normal stress distribution in the sub-model in case of [0/±45]s laminate 
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Figure 3-11  Stress intensity factor in the sub-model in case of [0/±45]s laminate 
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(a) Load-carrying ply, 0Edegree 
 

 

 

(a) +45 ply 
 

Figure 3-12 yσ distribution in the [0/±45]s laminate under a load of 351.14 MPa 
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3.3 Comparison of FE Results and Analytical Model 

 The stress intensity factor in the load-carrying ply was calculated using both the 

global and sub-model. The laminate stress intensity factors calculated from the two 

models were in good agreement for all laminate configurations indicating that the mesh 

refinement was sufficient. From the laminate stress intensity factor, we can calculate the 

finite-width correction factor Y using the relation 

aYK yQ πσ ∞=                                                              (16) 

The values of Y for various laminate configurations are shown as a function of 

a/w and β  in Figure 3-21. It has been found that the finite-width correction factor is a 

strong function of the newly introduced lamination parameter β .  More on this effect and 

significance of β  will be presented in Chapter 3.4.  The results for the load-carrying ply 

stress intensity factor yielded some interesting trends. The results of L
QK estimated 

through the finite element analysis are shown in Figure 3-16 and compared with two 

analytical models. The L
BQK )(  calculated from Eq. (15) agrees well with the results of the 

global model, which has a relatively coarse mesh. On the other hand, the L
AQK )(  

calculated from the exact LEFM solution, Eq. (14), shows good agreement with the 

results of sub-model, which has a very fine mesh. It is obvious from the results that the 

xσ  stresses ahead of the crack tip play a significant role in the estimation of L
QK . The 

coarse mesh of global model does not have sufficient nodes to capture the xσ  effect, 

although it is good enough for determining yσ . The global model is not able to present a 

complete picture of stresses in the vicinity of the crack tip. 

 



 32 

 

 

0.00E+00

2.00E+09

4.00E+09

6.00E+09

8.00E+09

1.00E+10

0.00E+00 1.00E-04 2.00E-04 3.00E-04 4.00E-04 5.00E-04

global model

global model

sub-model

sub-model

 

 Figure 3-13  Comparison of normal stress distribution in the sub-model and global model  
                      in case of [0/±45]s laminate 
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Figure 3-14  Stress intensity factor in the global model in case of [0/±45]s laminate 
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Figure 3-15  Stress intensity factor in the sub-model in case of [0/±45]s laminate 
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       Figure 3-16  Comparisons of the fracture toughness of principal load-carrying ply 
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3.4 Finite-Width Correction (FWC) Factor 

3.4.1 Isotropic Finite-Width Correction Factor   

The lay-up independent failure model presented in Ref. [11] enables the 

prediction of the notched strength of composite laminates. This model was formulated 

assuming that the plates are of infinite width, thus, the infinite width notched strength, 

∞
Nσ , is predicted. However, experimental data provide notched strength data on finite 

width specimens, Nσ . To account for finite width of the specimen, the finite-width 

correction (FWC) factor Y  is required to estimate the stress intensity factor accurately. 

According to the definition, the finite-width correction factor is a scale factor, which is 

applied to multiply the notched infinite solution to obtain the notched finite plate result. 

A common method used extensively in the literature is to relate experimental notched 

strength, Nσ , for plates of finite width to the notched strength of plates of infinite width 

is to simply multiply Nσ by the finite-width correction factor Y, where IK  is the mode I 

stress intensity factor. 

∞
∞ =

I

I
NN K

K
σσ                                                              (17) 

The mode I critical stress intensity factor for isotropic plate of finite width is 

calculated from following equation. 

aYK NISOQ πσ=                                                        (18) 

Due to the lack of an analytical expression for orthotropic or anisotropic finite-width 

correction factors, the existing lay-up independent failure models used isotropic finite-

width correction factor, YISO , to evaluate stress intensity factor of notched composite 
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laminates. Usually YISO is a 3rd order polynomial in a/w, which was developed 

empirically for the case of center cracks in isotropic panels. For example 

32 )/(5254.1)/(2881.0)/(1282.01 wawawaYISO +−+=                    (19) 

can be found in Ref. [11]  

However, the isotropic finite-width correction factor does not properly account 

for the anisotropy exhibited by different laminate configuration. In some cases, the 

application of the isotropic finite-width correction factors to estimate the anisotropic or 

orthotropic finite-width correction factors can cause significant error. 

3.4.2 Orthotropic Finite-Width Correction Factor 

3.4.2.1 Developing procedure for FWC solution 

To improve the accuracy of notched strength predictions for finite-width notched 

composite laminates, orthotropic finite-width correction factor is obviously required. 

There are a couple of methods to determine the orthotropic finite-width correction factor 

[13-15].  However, no closed form solution is available. For this purpose, closed form of 

orthotropic finite-width correction factor is developed empirically based on the results of 

finite element analysis. It is found that Y depends on ß also.   

The finite-width correction factor for orthotropic plate can be obtained from 

following equation, where )0,(xy
∞σ is the normal stress distribution in an infinite plate. 

a
K

Y
y

I
OT

πσ 2∞
=                                                               (20) 

where ∞
yσ is the remote uniaxial stress, and a is the half crack length. 

 However, a closed form expression for IK does not exist. To estimate values of 

IK for various laminate configurations, the commercial finite element code, ABAQUS 
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6.2/Standard, was used. The stress intensity factor, KI, can be calculated in two different 

ways based on the finite element analysis as mentioned earlier.  

 The accuracy of these methods is investigated by comparison between a known 

closed form solution Eq. (19) for notched isotropic plate and the solution obtained from 

ABAQUS finite element models.  In the finite element analysis, eight node, plane stress 

elements were used to model notched plates made from isotropic material with material 

property E = 100 GPa and v = 0.25. Geometry and mesh size of the global model were 

used to evaluate the J- integral for the range of crack sizes given by wa /  =  0.05, 0.1, 0.2, 

0.2625 (specimen), 0.3, 0.4, 0.5.  Ten contour lines were used to evaluate the J- integral in 

the finite element models. Each contour is a ring of elements completely surrounding the 

crack tip starting from one crack face and ending at the opposite crack face. These rings 

of elements are defined recursively to surround all previous contours. ABAQUS 6.2 

automatically finds the elements that form each ring from the node sets given as the 

crack-tip or crack-front definition. Each contour provides an evaluation of the J- integral 

Figure 3-17 shows the estimated finite-width correction factor determined by 

finite element methods and a closed form solution for an isotropic notched plate with 

various notch sizes. Excellent agreement between these analysis methods is noted over 

the whole notch size of the plate.  
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    Figure 3-17  Comparison of the finite-width correction factors in an isotropic plate       
                         computed by the finite element methods with the closed form solution 

 
The most accurate method, finite element J- integral, was adopted to develop the 

finite-width correction factor for orthotropic plates. Figure 3-18 shows the calculated J-

integral value from FE global model for the material and lay-ups in Table 2-1. Ten 

contour lines were used to evaluate J- interagl and these values are reasonably 

independent of the path as expected. The first four J- integral values were taken to 
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finite-width correction factor obtained using Eq. (20) are shown in Figure 3-19.  As 
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ratio. Additionally, the finite-width correction factor strongly depends on the anisotropy 

of laminate characterized by ß. Figure 3-20 shows the finite-width correction factor for 

different values of anisotropy parameter β  and the β  values of laminated composite 

panel using Eq. (6) are shown in Table 3-2.
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Figure 3-18  J-integral vs. contour line calculated from FE model of the [0/±45]s laminate 
 

    Table 3-1  J- integral value calculated from FE model of the [0/±45]s laminate 

Crack size 
(a/w) 0.1 0.2 0.26 0.3 0.4 0.5 

Contour 1 1.31E+02 2.72E+02 3.75E+02 4.44E+02 6.71E+02 9.63E+02 

Contour 2 1.31E+02 2.81E+02 3.88E+02 4.59E+02 6.82E+02 9.75E+02 

Contour 3 1.31E+02 2.81E+02 3.88E+02 4.59E+02 6.82E+02 9.75E+02 

Contour 4 1.26E+02 2.81E+02 3.88E+02 4.59E+02 6.82E+02 9.75E+02 

Contour 5 1.29E+02 2.81E+02 3.88E+02 4.59E+02 6.82E+02 9.75E+02 

Contour 6 1.37E+02 2.70E+02 3.88E+02 4.59E+02 6.82E+02 9.75E+02 

Contour 7 1.48E+02 2.76E+02 3.73E+02 4.59E+02 6.82E+02 9.75E+02 

Contour 8 1.64E+02 2.87E+02 3.81E+02 4.41E+02 6.82E+02 9.75E+02 

Contour 9 1.75E+02 3.16E+02 3.96E+02 4.44E+02 6.55E+02 9.75E+02 

Contour 10 1.97E+02 3.38E+02 4.04E+02 4.59E+02 6.60E+02 9.75E+02 
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Figure 3-19  The finite-width correction factors vs. ratio of crack size to panel width  
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Figure 3-20  The finite-width correction factors vs. anisotropy parameter, β  
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      Table 3-2  Values of the anisotropy parameter, ß, for the test specimens 
 

specimen S1 S2 S3 S4 S5 S6 S7 S8 S9 

β  1 1 1 0.285 0.396 0.656 1 0.767 0.823 

   
The above results indicated that there is a definite relation between the finite-

width correction factors, geometric parameter, a/w, and anisotropy parameter, β . Thus, 

the general semi-empirical solution of orthotropic finite-width correction factor was 

developed using multiple least square regressions to fit measured data in the finite 

element analysis. It can be expressed in terms of ß and ratio of crack size, a/w, in the 

following form    

( ) )1()1(11 2
65

3

3
2
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+=     (21) 

 
where B is defined as 1- β , and the coefficients of least square fit are shown in Table 3-3. 

A 3D plot of the finite-width correction factors is given in Figure 3-21 and estimated 

values of the factor are summarized in Table 3-4.  Note that YOT  increases with a/w and 

B. 

     Table 3-3  The coefficients of semi-empirical solution of orthotropic finite-width          
                       correction factor 
 

b1 c1 c2 b2 c3 c4 b3 c5 c6 

0.1091 5.0461 -2.1324 -0.2319 -2.9103 -4.4927 1.4727 -1.5124 -0.0375 
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Figure 3-21  The finite-width correction factors as a function of anisotropy parameter, ß,                              
                     and ratio of crack size to panel width, a/w.   

 
 

Table 3-4  The finite-width correction factors obtained from the semi-empirical  
                  solution  (Eq. 21) 
 

Orthotropic, YOT Isotropic, 
a/w 

S1 S2 S3 S4 S5 S6 S7 S8 S9 YISO 

0.10 1.011 1.011 1.011 1.046 1.041 1.029 1.010 1.023 1.020 1.01 

0.20 1.024 1.024 1.024 1.107 1.094 1.065 1.024 1.052 1.045 1.02 

0.26 1.040 1.040 1.040 1.152 1.134 1.092 1.040 1.075 1.066 1.04 

0.30 1.051 1.051 1.051 1.182 1.160 1.111 1.052 1.091 1.082 1.05 

0.40 1.101 1.101 1.101 1.269 1.239 1.173 1.101 1.148 1.136 1.10 

0.50 1.181 1.181 1.181 1.369 1.331 1.254 1.181 1.227 1.214 1.18 
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3.4.2.2 Anisotropy parameter, ß     

The anisotropy parameter, β , has been calculated using classical lamination 

theory for a variety of AS4/3501-6 graphite/epoxy composite laminates. The values of β  

depend on both material property and laminate configuration. It is equal to 1 when the 

laminate is isotropic or quasi- isotropic. As the anisotropy increases, the value of β  

increases to certain finite value. The finite-width correction factors for orthotropic 

laminates depend on the ratio of crack length to panel width, a/w, and also the anisotropy 

parameter, β . In general, Y increases with a/w and β . A plot of variation of the 

anisotropy parameter as a function of θ  for [±θ ]s  and [0/±θ ]s  is given in Figure 3-22. 

Notice that the anisotropy parameter, β , attains a maximum value at θ =90º in [±θ ]s 

laminates. 
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Figure 3-22  Anisotropy parameter, ß, as a function of lamination angle for   
                     graphite/epoxy [± θ ]s and [0/±θ ]s laminates 

 
Anisotropy parameter, β , can be +∞≤≤ β0 . However, the range of the values is 

quite limited in most existing laminate materials. For example, the ranges of computed 

Fiber angle, θ (degree) 
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β  
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values of anisotropy parameter for a few laminate materials, which are widely used in 

composite structures, are shown in Table 3-5.  

  Table 3-5  Ranges of anisotropy parameter, β , various composite materials 
 

 Material property 

 ET (GPa) EL (GPa) vLT GLT (GPa) 
Ranges of β  

AS4/3501-6 
graphite/epoxy 9.65 138 0.3 5.24 0.264 ≤≤ β 3.781 

E-Glass/Epoxy 19.5 52 0.28 3.24 0.612 ≤≤ β 1.633 

S-Glass/Epoxy 8.9 43 0.27 4.5 0.454 ≤≤ β 2.198 

Kevlar 149/Epoxy 5.5 87 0.34 2.2 0.251 ≤≤ β 3.977 

CFS003/LTM25 
Carbon/Epoxy 54.0 54.7 0.065 4.05 0.993 ≤≤ β 1.006 

 
The semi-empirical solution (Eq. 21) for the finite-width correction factor for an 

orthotropic material was developed using a curve fitting method from anisotropy 

parameter, 1285.0 ≤≤ β . According to the characteristic of a curve fitting method, if 

data for prediction is far beyond the limits of the observed data, a prediction can cause a 

relatively large error. However, the ranges of practical values are within small bounds. 

Therefore, the methodology described above can be used to develop the finite-width 

correction factor solution for most widely used composite materials. 

3.5 Effect of Blunt Crack Tip Shape 

3.5.1 2D FE Modeling Procedure 

The effect of the shape of the crack tip is not considered in any of the fracture 

models when calculating stress intensity factor that controls the laminate failure.  The 

effects of different initial crack tip shape were analyzed. According to the specimen 

preparation process [11], to make the initial cracks, a starter hole was first drilled in the 

laminate to minimize any delamination caused by the waterjet. The crack was made by 
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waterjet cut and further extended with a 0.2mm thick jeweler’s saw blade. Thus, in the 

present analysis, the crack tip thickness was assumed less than 0.2mm and three different 

crack tip shapes, elliptical, triangle, and rectangular, were considered. These assumptions 

were carefully investigated through the series of FE sub-models and the results are 

discussed below for the case of [0/±45]s laminate.  

 

 

 Figure 3-23  Crack tip shape profiles 
 

3.5.2 Results and Discussion 

Figures 3-24 and 3-25 compare the effect of crack tip profile and crack thickness 

on the stress intensity factor of principal load-carrying ply using global and sub-model. In 

this analysis, thickness of the crack was assumed to be less than 0.2 mm.  The global 

nature of FE models requires that the details of the crack tip shape are not explicitly 

modeled due to the mesh size. Therefore, the global model may not accurately capture the 

details near the crack tip and is not reliable in capturing the behavior of the crack tip 

shape. From the results of the global model, it is evident that stress intensity factors of 

global model are not greatly influenced by crack tip shape. 
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    Figure 3-24  Effect of crack tip shape on predicted fracture toughness of [0/±45]s             
                         laminate ; 2D FE global model results 
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     Figure 3-25  Effect of crack tip shape on predicted fracture toughness of [0/±45]s  
                          laminate ; 2D FE sub-model results 
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However, the results of the sub-model indicate that the crack tip shape has a 

significant effect on the stress intensity factor at the crack tip. Furthermore, the large 

variation was observed in the results shown in Figure 3-25. It indicates that the stress 

intensity factor is very sensitive to the crack tip slope ahead of the crack tip. The results 

shows that the crack tip slope near the crack tip is a more critical parameter than the 

crack tip thickness. The results clearly indicate that the stress intensity factors at the crack 

tip are strongly affected by the behavior of the crack tip shape.  

3.6 Effect of Local Damage 

The complicated nature of fracture behavior in notched composite laminates 

makes it difficult to predict the exact position and size of every fiber break, matrix crack, 

and delamination even in a relatively simple notched panel studied here. The philosophy 

is not to model exactly, but to make approximations that agree well with actual behavior. 

 The objective of this section is to study the effect of damage in the vicinity of 

crack tip such as delamination and fiber splitting by comparing stress intensity factor 

computed using the three-dimensional FE analysis. It has been noted that for a tension 

loaded laminate, local damage is produced ahead of the crack tip in the form of the 

matrix cracks in off-axis plies, splitting in 0E plies and some delamination [11]. This 

local damage acts as a stress-relieving mechanism and relieves some portion of the high 

stress concentrated around the crack tip. This damage, such as matrix cracking and 

delamination, may significantly affect the structural integrity of the structures when they 

become sufficiently severe. However, failure models discussed in the previous section do 

not represent any effects of local damage. Axial splitting and delamination are the most 

common types of damage in laminated fiber reinforced composites due to the ir relatively 
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weak interlaminar strengths.   

Previous finite element analysis used plane stress element in two-dimensional 

modeling. Therefore, the effect of delamination between plies in the thickness direction 

can not be modeled. In present finite element models, three-dimensional analysis was 

adopted to investigate the effect of delamination and axial splitting using twenty node, 

solid element (C3D20R element). Typically, solid element with reduced integration, is 

used to form the element stiffness for more accurate results and reduce running time.  

Sub-modeling analysis can be applied to shell-to-solid sub-model, however, the z-

direction (thickness direction) stress and strain field can not be interpolated to 3D solid 

sub-model boundary from 2D global model. Thus, 3D global models were modeled to 

analyze 3D sub-model with local damage. Figure 3-26 shows the Von-Mises stress 

distribution in the [0/±45]s laminate of 3D global model and 3D sub-model. It should be 

noted that before interpolating the results of the 3D global model, the comparison 

between the results of 2D global model and 3D global model should be checked for 

consistent analysis. In Figure 3-27, the estimated stress intensity factors in the load-

carrying ply from 3D global model are compared with those of 2D global model. The 

stress intensity factors obtained from 3D global model are slightly underestimated 

compared to those of the 2D global-model, however, these estimated values are fairly 

consistent for the nine laminate configurations. Consequently, two types of damage were 

modeled using 3D sub-model to predict the effect of local damage on the stress intensity 

factor of the load-carrying ply.   
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(a) 3D global model 

 

 

 

(b) 3D sub-model 

Figure 3-26  Von-Mises stress distribution in [0/"45]s laminate  
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      Figure 3- 27  Comparison of stress intensity factor of the load-carrying ply between  
                            2D and 3D global model  

 
3.6.1 3D FE Modeling Procedure for Delamination 

 All aspects of the finite element model were kept the same as 3D sub-model 

except interface of ply. Each ply was modeled by four elements through the thickness as 

shown in Figure 3-26(b).  Elements of layers are connected through either side of any ply 

interfaces at common nodes except where delamination is expected. The delamination 

was modeled as separate, unconnected nodes with identical coordinates. Figure 3-28 

show the schematic of ply interface mesh where delamination is expected. To estimate 

delamination area, a simple delamination criterion was implemented in ABAQUS by 

means of a UVAR user subroutine using the following equation.  

Delamination area : Tzzyzxz S≤++ 222 σττ                                         (22 ) 

where ST is critical stress of matrix which is 75 MPa based on typical epoxy yield 

strength. Figure 3- 29 shows the estimated delamination area using the above 
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delamination criterion in the ply between the load-carrying ply and +45E ply of [0/±45]s 

laminate.   

 
 

 
  (a) no damage        (b) delamination 

 
Figure 3-28  Scheme of ply interface mesh in the [0/±45]s laminate 

 

 

 

 

   Figure 3-29  Estimated delamination area on interface between 0E and +45E ply in the  
                        [0/±45]s laminate 

crack line  
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3.6.2 3D FE Modeling Procedure for Axial Splitting 

 When a notched composite panel is subjected to tension loading axial splitting 

occurs in the crack tip area due to high stress concentration and low matrix tensile 

strength. Apparently, this failure mode causes severe stiffness reduction in transverse 

direction.  Thus, transverse stiffness of axial splitting area can be modeled by taking 

0≈TE .  This failure mode and assumption are illustrated in Figure 3-30. Similar method 

described in the previous section was used to estimate axial splitting area where reduced 

stiffness property was implemented, ET =10 Pa that is extremely small compared to initial 

modulus, ET =9.65 GPa. A critical stress of 75 MPa was used, based on a typical epoxy 

yield stress. Figure 3-31 shows the estimated axial splitting area in the interface between 

0E and +45E ply for a tensile loading 351.14 MPa. 

 

     

Figure 3-30  Axial splitting failure mode in the load-carrying ply 
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       Figure 3-31  Estimated axial splitting area on interface between 0E and +45E ply 
 
3.6.3 Results and Discussion 
 
 Typical damage in notched laminated composites occurs in the form of axial 

splitting in the load-carrying ply and delamination. This damage was modeled to study 

effect of local damage on the normal stress distribution in the vicinity of crack tip in the 

load-carrying ply. The estimated delamination area and axial splitting area are modeled 

by having duplicate nodes and reduced stiffness, respectively.   

 Results of normal stress distribution are shown in Figure 3-32.  From the results it 

is observed that s y distribution in the FE model without damage shows the typical square 

root singularity. Axial splitting and delamination removes the singularity, though there 

still is a region of high stress concentration near the crack tip. It also can be seen that yσ  

distribution increases away from the crack tip and xσ  distribution in the model with 

damage decreases than in the model with no damage.  Thus, the stress field is strongly 

affected by the presence of local damage. From the results, it is obvious that the local 

crack line  
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damage serve as main mechanism to increase yσ  distribution and decreases xσ  

distribution in the load-carrying ply. This simulation is similar to the redistribution of 

stress in the presence of small scale yielding in homogenous materials. 
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Figure 3-32  Effect of the local damage on normal stress distribution in the load- 
                     carrying ply in the [0/±45]s laminate 

 
3.7 Summary of FE Results and Discussion 

 
 It is well established that the fracture behavior of composite laminates depends on 

a variety of variables. All may affect to varying degrees the fracture behavior of the 

notched laminates. A comprehensive evaluation is still lacking regarding the effects of all 

variables on the notch sensitivity of composite laminates. Through the detailed finite 

element analysis, we investigated effect of distinct factors such as crack tip shape and 

local damage. 

The presence of blunt crack tip has a significant effect on the behavior of notched 

composites, and leads to stress redistribution. This relives the stresses in the non- load-

carrying plies and increases the SIF of the load-carrying plies. Similar effects are 

observed when local damage such as matrix cracking and delamination are introduced. 
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Figure 3-33 shows the results of finite element sub-model, which include blunt crack tip 

and local damage. From the comparison of the results between models with and without 

damage, it is obvious that these effects also increase the stress intensity factor of the load-

carrying ply as a result of the reduction in xσ stress concentration in the laminate.  By 

comparing the results of finite element analysis with analytical failure model, it can be 

reasonably assumed that the effect of initial damage is accounted by reducing the 

xσ component ahead of crack tip to zero.  
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Figure 3-33  Effect of the local damage on stress intensity factor in the load-  
                                 carrying ply 
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CHAPTER 4 
CONCLUSIONS AND FUTURE WORK 

CONCLUSIONS 

The SIF of the load-carrying ply is a critical parameter for predicting the failure of 

notched composite laminates. The SIF of the load-carrying ply, L
QK , can be estimated by 

using a detailed 3D FE analysis which can model local damage modes such as fiber 

splitting and delamination that occurs prior to fracture. Then the SIF of the load-carrying 

ply can be calculated accurately and compared with the critical value for the material 

system to predict fracture. The results from this model are presented in Column 2 of 

Table 4-1. 

On the other hand, a simpler analytical model could be used. In this model finite-

width correction factor for orthotropic laminates should be used. The effects of local 

damage at the crack tip is accounted for by setting the parameter β=0 in Eq. (15) for 

calculating the SIF of the load-carrying ply. Results from such analysis are shown in 

Column 3 of Table 4-1. The results from calculations performed by Sun and Vaiday [11] 

are given in Column 4 for comparison. 

Using a mean value of 113.81 MPa-m1/2 for L
QK  in the analytical model, the 

predictions of the laminate fracture toughness are compared with the experimental results 

in Figure 4-2 for various value of η .  
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Figure 4-1  Comparison of the fracture toughness of load-carrying ply 
 
 
 

Table 4-1  Comparison of the fracture toughness of load-carrying ply obtained  
                  from different methods 

 
 Fracture toughness of load-carrying ply, L

QK , MPa-m1/2 

Specimen 3D FE analysis Analytical 
model 

Ref. [11] 

S1 116.65 115.66 115.66 
S2 114.23 108.82 108.82 
S3 115.71 106.43 106.43 
S4 118.16 112.62 101.81 
S5 115.21 109.97 101.00 
S6 113.53 111.52 106.32 
S7 121.40 109.04 109.04 
S8 116.01 123.66 119.81 
S9 110.51 126.58 123.64 

average 115.71 113.81 110.28 
S.D.† 3.03 % 6.95 % 9.80 % 

 
  † standard deviation 
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The variable η  was defined as ratio of stress intensity factor of the load-carrying 

ply to that of laminate and can be obtained from Eq. (15). It should be noted that ?, like ß, 

depends entirely on the laminate properties. Good agreement is observed between the 

experiments and predictions. By comparison with experimental results, it is concluded 

that the proposed lay-up independent model with orthotropic finite-width correction 

factor is capable of predicting fracture toughness of notched laminated composites with 

reasonable accuracy for mode I loading. 
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Figure 4-2  Comparison of experimental results with failure model predictions 
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Figure 4-3  Comparison of experimental results with failure model predictions  

(log scale) 
 
 

   Table 4-2  Comparison of experimental results with failure model predictions 
 

Specimen Fracture toughness of laminates, QK  (MPa-m1/2) 

Notation Lay-up 
η  

Experiment† Prediction‡ Relative error (%) 

S1 [0/90/±45]s 2.5791 44.67768 44.1295 1.23 

S2 [±45/90/0]s 2.5791 40.22554 44.1295 -9.71 

S3 [90/0/±45]s 2.5791 41.16729 44.1295 -7.20 

S4 [0/±15]s 1.1209 100.4675 101.5384 -1.07 

S5 [0/±30]s 1.6619 66.24291 68.48451 -3.38 

S6 [0/±45]s 2.3215 48.07307 49.02623 -1.98 

S7 [0/90]2s 1.8706 58.19245 60.84379 -4.56 

S8 [±45/0/±45]s 3.1979 38.68474 35.59036 7.99 

S9 [±452/0/±45]s 3.8168 33.19171 29.81933 10.16 

 
† Fracture toughness of laminates obtained using Eq. (1) with orthotropic finite-width  
  correction factor in Table 3-4. 
‡ Predicted fracture toughness of laminates calculated using the mean value,  
  113.81 MPa-m1/2, for L

QK  in the analytical model.  
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FUTURE WORK 

There seems to be ample room for further investigation of this problem. Fracture 

problem studied in the current study was limited to AS4/3501-6 graphite/epoxy laminated 

panel containing a center straight crack subjected to tension loading.  For general 

application, validity of currently proposed lay-up independent criterion can be further 

verified for the case of laminated composite panels containing double edge notch, single 

edge notch, circular hole, etc. with different material systems using experimental and 

numerical analyses for mode II and mixed loading conditions. Additionally, this failure 

model can be compared with other popular failure models such as Point Stress Criterion, 

Average Stress Criterion, Mar-Lin failure model, etc. so that composite structure 

designers can select an appropriate failure model in diverse practical situations. 
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APPENDIX A 
LAMINATION THEORY 

For laminated plates with bending-extension coupling under plane stress, the 

complete set of force-mid-plane deformation equations can be expressed in matrix form 

as 
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where N and M are the in-plane forces and moments, respectively, and 0ε  is the mid-

plane strains, and κ  is the curvature.   

In the case of symmetric laminates without coupling, Eq. (A-1) is reduced to  
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where the laminate extensional stiffness are given by 

∫−
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where t is the thickness of the laminate. If there are N layers in the lay-up, we can rewrite 

the above equations as a summation of integrals over the laminate. The material 

coefficients will then take the form 

 ∑
=

−−=
N

k
kkkijij zzQA

1
1)()(                                              (A-4) 



 61 

 
Figure A-1  Laminated plate geometry 

 
where the kz and 1−kz   in these equation indicate that the k th  lamina is bounded by 

surfaces kz  and 1−kz .  Thus, the ijQ  depend on the material properties and fiber 

orientation of the k th layer. It can be obtained using the following equation.  
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where  
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m=cosθ   and  n=sinθ  

where the ijQ  are the components of the transformed lamina stiffness matrix which are 

defined as follows 
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 where superscript * denotes the component of inverse matrix of [ ]A          

The stresses in each ply can be recovered form the mid-plane strains. In particular, 

the stresses in the load-carrying ply can be expressed as  
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 where superscript L means the component of principal load carrying ply 

The normal stress field applied in the load-carrying ply can be obtained by 

calculating the portion of the applied load that is carried by the load-carrying ply using 

lamination theory using Eqs. (A-8) and (A-9). 
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APPENDIX B 
MATHEMATICAL THEORIES OF BRITTLE FRACTURE  

 The objective of this Appendix was to provide the brief review of mathematical 

formulation of crack problems for derivation of stress intensity factor in homogeneous 

orthotropic materials [17]. 

 For orthotropic materials in the case of plane stress, the generalized Hooke law 

can be expressed as 
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The equilibrium equations under plane stress conditions are 
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The equilibrium equations will be satisfied if the stress function U(x,y) is 

expressed as  
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Substituting for xxσ , yyσ , xyτ  from Eq. (B-3) in the compatibility equation  
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The governing characteristic equation of plane stress of orthotropic materials can 

be expressed as 
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Defining the operators Dj (j= 1, 2, 3, 4) as 
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The governing equation in U(x,y) becomes 

D1 D2 D3 D4 U (x,y) = 0                                             (B-7) 

and jµ  are the roots of the characteristic equation.  
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 The roots are either complex or purely imaginary and cannot be real and can be 

expressed as  
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where iα , jδ (j= 1, 2) are real constants. 

The stress function U(x,y) can be expressed in the form 

U(x,y)=2 Re [U1(z1)+U2(z2)]                                             (B-10) 

where U1(z1) and U2(z2) are the arbitrary functions of the complex variables ysxz 11 +=  

and  ysxz 22 += , respectively. Let new functions 

111 /)( dzdUz =φ ,  222 /)( dzdUz =ψ                                     (B-11) 

Substituting the stress function from Eq. (B-10) into the Eq. (B-3) and taking into 

account the relations in Eq. (B-11), the stress components can be expressed as  
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For pure mode I case, the stress components in the vicinity of crack tip can be 

expressed in terms of stress intensity factor, KI ,  and the roots of characteristic Eq. (B-8) 
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Figure B-1  Stress components in the vicinity of crack tip 

 
when θ  = 0, the new parameter ß introduced in the Chapter 2.3 can be expressed as ( 
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Consequently, the model I stress intensity factor can be expressed as  
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KI  can also be expressed in terms of xσ as 
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  The increase in strain energy due to the presence of the crack can be calculated 

using following equation for mode I case. 

                                       ∫
−

∆=∆
a

a
yyy dxuxW )0,(

2
1

σ                                                      (B-17) 

 The derivative of W∆ with respect to crack size, a, yield  
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 The energy release rate can be expressed in terms of stress intensity factor  
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where si (j = 1,2) are the roots of the characteristic equation (B-8) which can be derived 

from the elastic constants as   
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Then, the relation equation between GI  and KI for an orthotropic material can be 

expressed as                                                                       
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