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The purpose of this study was to investigate the gpplicability of the exiding lay-up
independent fracture criterion for notched compodite laminates. A detailed finite dement analysis
of notched graphite/epoxy laminates was performed to understand the nature of stresses and

crack tip parametersin finite-width composite panels. A new laminate parameter b has been

identified which playsacrucid role in the fracture of laminated composites. An empirical
formula has been developed for finite-width correction factors for composite laminates in terms

of crack length to pand width ratio and b . The effects of blunt crack tip and loca damage on

fracture behavior of notched composite laminates are investigated using the FE andlyss. The
results of experiments performed e sawhere are andyzed in the light of new understanding of
crack tip stresses, and the gpplicability of the lay-up independent fracture criterion for notched

composite laminates is discussed. It is determined that the andytica lay-up independent fracture



modd that consders locd damage effect provides good correlation with experimenta data, and
the use of orthotropic finite-width correction factor improves the accuracy of notched strength

prediction of composite laminates.
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CHAPTER 1
INTRODUCTION

1.1 Background and Objectives

Composite laminates are widely used in aerospace, automobile and marine
industries. Because of their high strength-to-weight and stiffness-to-weight ratio, use of
fiber-reinforced composite materials in advanced engineering structures such as high-
performance aircraft has been increasing. Recently, laminated composites have been
increasingly used in military fighter airframes and external surfaces because those
designs are required to handle high aerodynamic forces, be lightweight for maximizing
ar-to-air performance, minimize radar cross section, and withstand foreign object and
battle damage. In addition, by properly sequencing the stacking lay-up, a wide range of
design requirements can be met. Laminated composites posses distinctive advantages as
mentioned above; however, fiber-reinforced composites exhibit notch sensitivity, and this
can be an important factor in determining safe design. The problem of predicting the
notched strength of laminated composites has been the subject of extensive research in
the past few years. Owing to the inherent complexity and the number of factors involved
in their fracture behavior, several semi-empirical failure criteria have been proposed and
have gained popularity. Some failure criteria are based on concepts of linear-elastic
fracture mechanics (LEFM), while others are based on the characteristic length and stress
distribution in the vicinity of the notch. In general, these models rely on a curve-fitting
procedure for the determination of a number of material and laminate parameters,

involving testing of notched and unnotched specimens for each selected lay-up.



One limitation commonly reported is that the fracture toughness in many cases is
dependent upon laminate configuration, the specific fiber/matrix system, etc. The use of
these failure criteria without properly accounting for this dependence has led to some
mixed results. Awerbuch and Madhukar [1] reviewed some of the most commonly used
fracture criteria for notched laminated composites. They collected data from severa
sources and different materials and evaluated the performance of each criterion. They
concluded that the parameters are strongly dependent on laminate configuration and
material system and must be determined experimentally for each new material system
and laminate configuration. To overcome this limitation of those popular failure criteria,
recently a lay- up independent fracture criterion was developed by employing linear-
elagtic fracture mechanics concepts. The fracture toughness of the load-carrying ply in
the presence of fiber breakage was considered as the principal fracture parameter.

The main objective of this research was to further verify and also improve the
existing lay- up independent fracture criterion for notched laminated composites. Detailed
finite element analyses, both 2D and 3D, of the laminate were performed to understand
the average laminate stresses as well as stresses in individual layers. An analytical model
for determining the principal fracture parameter, fracture toughness of the load-carrying
ply, was also developed. It has been found that factors such as crack bluntness, local
damage such as fiber splitting, delamination, etc. in the vicinity of crack tip play a
significant role in reducing the stresses in angle plies and thus increasing the stresses and
stress intengity factor in the load-carrying ply. A new laminate parameter, referred to as

b , has been identified. This parameter represents the ratio of the axial and normal

stresses at points straight ahead of crack tip, and plays a crucial role in the failure of the



notched laminate.

A secondary objective was to develop a semi-empirical solution for finite-width
correction factor (FWC) for laminated composites to improve the accuracy of prediction
of notched strength. Due to the lack of a closed form solution for orthotropic finite-width
correction factor, most existing failure criterion used the isotropic finite-width correction
factor for prediction of notched strength of laminates. In some cases, the application of
the isotropic finite-width correction factors to estimate the anisotropic or orthotropic
finite-width correction factors can cause significant error. An attempt was made to
reduce the error in predicting the notched strength by developing an orthotropic finite-
width correction factor for various laminates configurations.

1.2 Literature Review

Numerous failure models have been developed for the prediction of the notched
strengths of composite laminates. Due to the complication of analyzing the fracture
behavior of notched composite laminates, a number of assumptions and approximations
were contained in most commonly used failure models to predict the tensile strengths of
notched composite laminates. In recent years severa simplified fracture models have
been proposed. The scope of this research was limited to laminated composites
containing a straight center crack when subjected to uniaxial tensile loading.

Waddoups, Eisenmann, and Kaminkski (WEK-LEFM models) [2] applied Linear
Elastic Fracture Mechanics to composites. Their approach was to treat the local damage
zone as a crack, and apply fracture mechanics. Whitney and Nuismer [3] proposed the
stress-failure models. These models named the Average- Stress Criterion (ASC) and the

Point- Stress Criterion (PSC) assumed that fracture occurs when the point stress or the



average stress over some characteristic distance away from the discontinuity is equal to
the ultimate strengthof the unnotched laminate. The characteristic distances in point
stress criterion and average-stress criterion, are considered to be materia constants and
the evaluation of the notched tensile strength is based on the closed form expressions of
the stress distribution adjacent to the circular hole. Tan [4] extended this concept and
developed more general failure models, the Point Strength Model (PSM) and Minimum
Strength Model (MSM). These models successfully used to predict the notched strength
of composite laminates subjected to various loading conditions. Such models using a
characteristic length concept have been widely used to predict ultimate strength in the
presence of notches. The main disadvantage is that the characteristic length is not a
material constant and depends on factors such as the lay-up configuration, the geometry
of the notch, etc. Therefore, the characteristic length obtained from tests on one laminate
configuration may not be extrapolated to predict the failure of other laminates of the same
material system. Mar and Lin [5] proposed LEFM fracture model called Mar-Lin
criterion, the damage zone model, and the damage zone criterion. They assumed that the
laminate fracture must occur through the propagation of a crack lying in matrix material
at the matrix/filament interface. It was able to provide good correlation with experimental
data and at the same time is very ssmple to apply. However, the fracture parameter, which
was used in Mar-Lin criterion, depends on the laminate lay-up configuration. Therefore,
the application of this fracture criterion requires experimental determination of the
fracture parameter for each laminate. Chang and Chang [6] and Tan [7] proposed
progressive damage models which were developed to predict the extent of damege and

damage progression respectively, in notched composite laminates. The models accounted



for the reduced stress concentration associated with mechanisms of damage growth at a
notch tip by reducing local laminate stiffness.

Past experimental investigations, which were carried out by Poe [8], have
revealed that fiber failure in the principal load-carrying plies governs the failure of
notched laminated composites. Poe and Sova[8, 9] proposed a genera fracture-
toughness parameter, critical strain intensity factor, which is independent of laminate
orientation. This parameter was derived on the basis of fiber failure of the principal |oad-
carrying ply and it is proportional to the critical stress intensity factor. Such an idea was
adopted by Kageyama [10] who estimated the fracture toughness of the load-carrying ply
by three dimensional finite element analysis. Such analyses led to lay-up independent
fracture criteria based on the failure mechanism of the load-carrying ply, which governs
the failure of entire laminate. Recently, Sun et al. [11, 12] proposed a new lay-up
independent fracture criterion for composites containing center cracks. In their analysis,
the fracture toughness of the load-carrying ply was introduced as the material parameter.
Such ananalysis is approximate, since it does not take into account any stress
redistribution caused by local damage and it used the isotropic form factor instead of an
orthotropic finite-width correction factor to account for finite width of the laminated
specimens.

There are severa anaytical and numerical methods [13-15] to determine the
orthotropic finite-width correction factor including the boundary integral equation, finite
element analysis, modification of isotropic finite-width correction factor, etc. However,
no closed form solutions are available. Therefore, the closed form solution for isotropic

materials is frequently used for orthotropic materia as well.



Current study aims to further verify the lay- up independent model including new
fracture parameter and improve the accuracy for the notched strength prediction of
composite laminates by using orthotropic finite-width correction factor.

Chapter 1 provides an introduction and a literature review of fracture models for
notched laminated composites. Chapter 2 describes a general concept of the lay-up
independent fracture model and the analytical derivation of the stress intensity factor in
the load-carrying ply. Chapter 3 describes a FE modeling procedure including damage
modeling and the development of the orthotropic finite-width correction factor based on
FE analysis. Conclusions and some recommendations for future work are presented in

Chapter 4.



CHAPTER 2
LAY-UPINDEPENDENT FRACTURE CRITERION

2.1 Introduction

Fibrous composite materials have high strength and stiffness as mentioned before.
Under tension loading, however, most advanced laminated composites are severely
weakened by notches or by fiber damage. Thus, a designer needs to know the fracture
toughness of composite laminates in order to design damage tolerant structures. The
fracture toughness of composite laminates depends on material property and laminates
configuration. Consequently, testing to determine fracture toughness for each possible
laminate configuration would be expensive and time-consuming work. Thus, asingle
fracture parameter can be used to predict fracture toughness for al laminates
configurations of the same material system. Poe and Sova [8, 9] proposed a general

fracture toughness parameter, Q. , which was derived using a strain failure criterion for

fibers in the load-carrying ply. Sun and Vaiday [11] also proposed a single fracture
parameter, stress intensity factor in the load-carrying ply which was derived using
classical lamination theory and LEFM theory.

In this chapter, exact LEFM analytical expression for lay-up independent failure
model is presented and it is compared with the ssimilar methodology proposed by Sun and

Vaiday [11]



2.2 Stress Intensity Factor M easurements

2.2.1 Experimenta Background

As mentioned earlier we have analyzed the results of fracture tests performed by
Sunet al. [11, 12]. The material properties, laminate configuraions used and failure load
are presented here for the sake of completion. Nine different laminate configurations
made from A S4/3501-6 (Hercules) graphite/epoxy were tested. The panels were made of
unidirectional prepreg tape with a nominal thickness of 0.127 mm. The material
properties for this unidirectional prepreg tape are shown in Table 2-1. The pandl
specifications, geometry, and coordinate system used for the present analysis is shown in
Figure 2-1. All the test specimens reported here were fabricated using the hand lay-up
technique and cured in an autoclave. Different laminate configuratiorns were selected such
that each one had at least one principa load-carrying ply (OE), i.e., plies with fibers
aligned along the loading direction.

Table2-1 Material properties of unidirectional AS4/3501-6 graphite/epoxy

, . Poisson's Shear Prepreg
Material Young's Moduli (GPa) Ratio modulus thickness
EL Er VLT Gi1, (GPa) (mm)
graphite/epoxy 138 9.65 0.3 5.24 0.127

layer thickness, 0.125 mm
T
<":| M fiber S
direction
¥

Figure 2-1 Specimen specification and fiber directions

|

2w, 381 mm

Za, 10 mm

fensile load

. "I
254 mm



To make the crack, a starter hole was first drilled in the laminates to minimize any
delamination caused by the waterjet. The crack wasthen made by a waterjet cut and
further extended with a 0.2 mm thick jeweler’s saw blade.

The failure stress (load over nominal cross section of the laminate) for each
laminate configuration tested are shown in Table 2-2. The fracture toughness estimated
using the nominal stress intensity factor for the laminate is shown under the column

“ Laminate fracture toughness’. This is computed using the formula
Ko =S £Y(a/wh/pa 1)
where s ! isthe remote stress and Y is the finite-width correction factor. Sun etal. [11, 12]

used the Y for isotropic material which is equal to 1.0414 for the present case
(a/w=0.2627). One can note that the fracture toughness estimated using this method is not
the same for different laminates and hence cannot be considered as a material property.
The last column of Table 2-2 is the fracture toughness of the load-carrying ply calculated
by Sun and Vaiday [11], which will be discussed in subsequent sections.

Table 2-2 Fracture toughness of AS4/3501-6 graphite epoxy laminates[11]

Failure  Laminate fracture  Fracture toughness of

Notation La_mi nate stress toughness the load-carrying ply
configuration (MPa) Ko (MPaﬁ) K (MPa«/E)
S1 [0/90/+45]s  343.00 44.83 + 3.05 115.66
S2 [£45/90/0]s  323.27 4219+ 1.87 108.82
S3 [90/0/+45]s  316.05 41.25 + 1.46 106.43
A [0/+15]s 695.84 90.82 + 4.01 101.81
S5 [0/+30]s 466.14 60.84 £ 3.14 101.00
S6 [0/+45] 351.14 45.83 £ 2.17 106.32
S7 [0/90] 25 446.76 58.31£5.30 109.04
S8 [+45/0/+45]s  287.16 37.48£0.43 119.81

S9 [+45,/0/+45]s  248.40 32.42 +0.60 123.64
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2.2.2 Stress Intensity Factor Calculations

A parameter commonly used to represent the notch sensitivity of materialsis the
critical stress intensity factor (S.I.F.) or the fracture toughness, K, . Numerous

investigations have attempted to determine the critical stress intensity factor for a variety
of composite laminates, and those results indicate that it depends primarily on the
material, laminate configuration, stacking sequence, specimengeometry and dimensions,
notch length, etc. In addition stress intensity factor is strongly affected by the extent of
damage and failure modes at the notch tip. Therefore, it isacritical parameter to design
composite laminates structure.

The stress intensity factor of notched laminates can be calculated in three
different ways.

1. From Eq. (1) using failure stress directly from the experiment

2. Finite Element Analysis | : From the normal stress distribution obtained from a

series of finite element models using the following equation.

K, =lims ,(r,0/2pr )

wherer isthe distance from the crack tip and normal stress component s , (r,0) isthe
average stress of the each ply.

3. Finite Element Analysis |l : From the J-integral calculated from finite element
models. The relation of the energy release rate and stress intensity factor is given by the

following equation [17].

1/2

12 A L1/2 u
G, = Klzﬁuazz 0 o, 0 + 2a,, +ag i

eszaila zallé

3)



11

where a; are elastic constants. When the remote applied stress is the failure stress, stress
intensity factor K, becomes the fracture toughness K. The stress intensity factor of the

load-carrying ply, K, can be estimated in two different ways.

1. From simple stress analysis using LEFM and lamination theory by calculating
the portion of the applied load that is carried by the load-carrying ply. The analytica
derivation of the fracture toughness of the load-carrying ply is presented in following
section.

2. Same procedure as in EQ. (2) but usng normal stress field of the load-carrying

ply extracted from a series of finite element models using the following equation.
K= lim s 5 (r,00/2pr (4)

In order to estimate fracture toughness of various laminates configurations, the
failure stresses of the notched laminates have to be determined from experiments.
However, if the general fracture parameter, the fracture toughness of the load-carrying
ply which is lay-up independent, is determined from preliminary test, laminates fracture
toughness can be obtained using ssimple analysis. Consequently, it will be discussed in the
following section.

2.3 Derivationof Stress Intensity Factor in the Load-Carrying Ply

In this section, we derive an analytical expression for the stress intensity factor for
the load-carrying ply in terms of the average laminate stress intensity factor obtained
using three methods mentioned earlier. The derivation of stress intensity factor presented
here is based on LEFM and classical lamination theory. The detailed derivation

procedure can be found in Appendix A and B.
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(e, VS =n.__k

P

Figure 2-2 Loca coordinate system of crack tip area stress components

The state of stressin the vicinity of a crack in an orthotropic material is given by

— K|
s,(r0)= mRe[l] (5.9
s (r,0)= A Re[- s5,] (5.b)

X ,mr

where the parameters s; and s, are related to the orthotropic elastic constants as explained
in Appendix B. We will use a new laminate parameter b to denote the ratio between the

two normal stresses shown in Egs. (5.a@) and (5.b).

b =2 ; E:g; =Re[- 55 ©)

We will use the classical lamination theory to extract the stresses in the load-carrying ply
from the force resultants acting in the entire laminate. According to the classical
lamination theory presented in Appendix A, in the case of symmetric laminated plates
without coupling under plane stress or plane strain conditions, the force-mid-plane strain

equations can be expressed in matrix form as
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I'N, u eA&l A, ALG U' ef
l y y eAL2 A, Aze a e)? (7)
I Nzy p @'Als Aze A\seﬂ”gxyp

where[A] is the laminate extensiona stiffness matrix. The inverse relation is given by
le 0 €A, A, Al N,
ol _ . Ul I
| eyy eALz A, Al Nyy ®)
* * ’I I
|gxy eAis Pos Pt nyp
where superscript * denotes the component of inverse matrix of [A] The stresses in the

load-carrying ply can be derived from the mid-plane strains as

—L -
Is . u R Q12 Qs llj' ey u
[ 0 _==L =L |,
iS ;)'/ - @12 sz Qze u € O )
S A, u
%t Y éle Qze 1 g l)
where superscript - indicates the load carrying ply and the quantities Qj(i,j=1206)ae
the stiffness coefficients of the principal load carrying plies. Substituting Eg. (8) into EQ.

(9) yields the following equation.

Isii Q. Qq Qm@l A, AgU N, U
| | ~~L =L * « Ul |
iS ;y: §Q12 sz Qze ueA12 A, A uI Nyy (10)

%t >I<_y éQlﬁ Q26 QGG $A16 A26 A;;GE}ll NXVL)

In the vicinity of the crack tip the force resultants can be written in terms of the average

stresses in the orthotropic laminate

N,=ts, =tbs , N, =ts , N, =t , =0 (11)
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wheret is the total thickness of laminates. Substituting from Eqg. (11) into Eq. (10) we

obtain the stresses in the load-carrying ply as

isto Q. 0 Qui Ab A
_:,S )Il_i’/ ée(glll:z Q22 Qzeu Aizb + Azz)/(ts ) (12)
%t kyi) ge1s Qze eeg Ale Aze

In particular we are interested in the stress comporent s yL responsible for fracture and it

is obtained from Eq. (9) as
—L * * —L * *
s =[Qn(Ab + AL Qs (A + A, () 19
Then the stress intensity factor KS in the load-carrying ply can be expressed in terms of

the laminate stress intensity factor K, as

K =t [Qa(Ab + AL)+ Qs (A +AL)| Kq (14)

In deriving Eq. (14) we have used the assumption's ; /s , = K /K.

The lay- up independent fracture criteria assume that there is a critical value of
KQL for each material system and is independent of laminate configuration as long as
there is aload-carrying ply in the laminate. In order to verify this concept we computed
Ko from the experimental failure loads [11] using Eq. (1). Then K$ a the instant of
fracture initiation was computed using Eq. (14). The resulting fracture toughness will be
called KQ( A
Sun and Vaiday [11] used a similar approach to calculate the stress intensity

factor in the load-carrying ply, but they used the remote stresses applied to the laminate
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in order to determine theratio of s , /s . Since the applied load is uniaxid, thisratio

was equal to zero in their case. Thisis equivaent to taking the factor b as equal to zero.
It should be emphasized that this stress ratio is not equal to zero in the vicinity of the

crack tip, as there is a nonzero component of s, is present (see Eq. 5b). We denote this
fracture toughness as KQL(B) . Thus the relation between KQL(B) and K, can be obtained by
setting b =0 in Eq. (14) and it takes the form
—L * —L *
K(5(:3) =t [QuA, + QA Ko (15)

2.4 Results and Discussion

The valuesof Kg, . and Kg s, are shown in Figure 2-3 for the nine laminate
configurations. The average values and corresponding standard deviation are 74.35 MPa
m"? and 18.35 % for K, , and 110.28 MPa-m"? and 9.8 % for K, . Surprisingly the

case B wherein the b value was taken as zero yielded consistent layer independent

fracture toughness compared to the case A where the actual stress ratio (b>0) was used.
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Figure 2-3 Comparison of the fracture toughness of the load-carrying ply
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Such analyses are approximate, since they do not consider any stress
redistribution caused by physical fracture behavior such as local damage in the form of
matrix cracking, delamination, etc. In order to fully understand the nature of crack tip
stress field in finite-width laminates a detailed finite element analysis was performed.

The procedures and the results are discussed in Chapter 3.



CHAPTER 3
FINITE ELEMENT ANALY SIS

A detailed finite element analysis of fracture behavior of notched laminated
composites was conducted in conjunction with the analytical failure models described
earlier. The purpose of the finite element analysis was to develop a model that could
predict the fracture parameters of notched laminated composites and investigate the effect
of local damage and crack tip shape on the stress intensity factor for notched laminated
composites. Another goa of the study was to determine the orthotropic finite-width
correction factor using J-integral. One of the leading commercial FE packages, ABAQUS
6.2 [18] was used to analyze the various test specimens. Two types of analyses were
performed. In the 2D model the specimens were modeled as orthotropic laminate. In the
second model 3D solid elements were used to model the individual layers of the laminate.
In both cases sub- modeling was performed to improve the accuracy of the calculated
crack tip parameters such as stress intensity factor and J-Integral. The mode | stress
intensity factor, K, , can be calculated in two different ways based on the finite element
analysis as mentioned earlier.

However, stress intensity factor of the load-carrying ply can be calculated only
one way using the Eq. (4) because ABAQUS can not calculate J-integral for each ply

level. s ;(r,O) is extracted from normal stress field in the load-carrying ply of FE model.

The stress intensity factors obtained using the above methods from two types of

FE models are compared with the analytical models in the subsequent section.

17
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It is noted that overall analysis procedure and detailed results are presented for
case of the [0/+45] s laminate and the results of other eight laminate configurations are
summarized.

3.1 2D Finite Element Global Model

The purpose of the 2D analysisis to compare the results with the analytical model
so that the effect of finite-width of the specimen can be understood. Further FE models
can be used to understand the effects of blunt crack tip and also other forms of damage
such as delamination and fiber splitting. The various laminate configurations with center
notch were modeled with eight node plane stress elements (CPS8R element). A quarter
model was used, with symmetric boundary conditions. The width of the model, w, was
19.05 mm, and the length was 254 mm. The notch was modeled as a sharp crack with a
half width, a='5 mm. Since the lay-up is symmetric, it was only necessary to model half
of the thickness.

The main difference between global model and sub-model is mesh refinement.
The FE globa model uses relatively coarse mesh compared to the FE sub models. A
fixed element size with width of 1 mm was used in the FE global model. A relatively fine
mesh was used adjacent to the notch. The geometry and the finite element models were
created using ABAQUS/CAE modeling tool and ABAQUS keyword editor. Figure 3-2
shows the initial mesh of the upper left quadrant. Separate elements were used to
represent each ply and common nodes were used for interface of plies. Figure 3-1 shows
the scheme of two-dimensional FE model of [0/+45] s laminate. Figure 3-3 shows the
overall global modeling procedure in case of [0/+45]s laminate. The material property of

each ply was modeled as a homogeneous linear elastic orthotropic material throughout



19

this FE analysis. In order to use asingle global coordinate system, the material properties
of angle plies were transformed using the transformation relation for engineering
constants. Orthotropic properties for AS4/3501-6 graphite/epoxy unidirectional prepreg
were defined as shown in Table 2-1. The material property of each angle ply was
implemented in ABAQUS by means of user material subroutine (UMAT). The fixed grip
loading condition was simulated by constraining the nodes along the edge of the plate to
have the same displacement under an applied load. This was aso implemented by using
the EQUATION command. The failure load obtained from experiments (see Table 2-1)
was applied. In global model analysis, J-integral also was calculated using ten contour
lines to determine the orthotropic finite-width correction factors. It will be discussed in

Chapter 3.4.
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0% Load-carrying ply T +45%ply

Fiber orientation

3 layers of orthotropic
elements

Elements attached at
common nodes

L

Figure 3-1 Scheme of two-dimensional FE model of [0/+45]s laminate
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Figure 3-2 Finite element global model mesh and boundary condition
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[ Keyword Editor |
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- Visualize the stress and displacement distribution

MATLAB

- Convert J-integral to K using
Eq. 3

Figure 3-3 Scheme of 2D FE globa model analysis procedure
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Figure 3-4 shows the distribution of normal stress of the load-carrying ply and
average normal stress of the laminate, respectively, for the global model. From the

normal stress distribution in the Figure 3-4, it isclear that s , stressin the load-carrying

ply is much higher than the average and hence that of angle ply. In the Figure, s, was

L yg *5 4g %5
defined as —2 y3 —. A contour plotof s, distribution is shown in Figure 3-6.

Figure 3-5 shows the values of s [+/2pr and s7,+/2pr asafunction of r in the [0/+45]s

laminate. The stress intensity factor of the load-carrying ply and the laminate can be
obtained by extrapolating measured normal stress distribution from the FE global model
based on Egs. (2) and (4). The stress intensity factor obtained from global FE model

agree well with the analytical model case B (Eq. 15) which was calculated assuming s , =

0 ahead of crack tip.
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Viewport: 1 ODE: C:DOCUME ~1/BEOKWOH-1.KORLL..LOCAL! ‘enp/3d04545.0db

ODB: 3d04545.0db  ABAQUS/Standard 6.2-1N  Ued Feb 05 22:28:32 w i geigud 2003
1
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(a) Load-carrying ply, OEdegree
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Figure 3-6 s  distribution in the [0/+45]s laminate under aload of 351.14 MPa
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3.2 2D Finite Element Sub-M odel

The analysis was repeated with a very refined element size in order to investigate
the local fracture behavior and the sensitivity of the results to mesh refinement. All other
aspects of the analysis were kept the same as global model. For efficiency of
computation, the finite element sub- modeling analysis technique was adopted. The sub-
modeling analysis is most useful when it is necessary to obtain an accurate, detailed
solution in alocal arearegion based on interpolation of the solution from an initial,
relatively coarse, global modd. The sub-model is run as a separate analysis. The link
between the sub- model and the global modd is the transfer of results saved in the global
model to the relevant boundary nodes of the sub-model. Thus, the response at the
boundary of the sub-model is defined by the solution of the global model. However, in
order to adopt sub- modeling technique, the accuracy of sub- model should be ensured by
checking the comparing important parameter to determine reasonable sub- modeling size.
Three different sizesof sub-models were modeled to determine adequate sub-model size
to minimize the execution time and maximize accuracy. Figure 3-7 shows the different
size of sub-model and Figure 3-8 shows the results of comparison of stress intensity
factor obtained from sub- models with stress intensity factor obtained from J-integral
using Eq. (3). For efficiency of computation, sub- modd size B was chosen for

subsequent studies.
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ABC
Figure 3-7 Different sizes of sub-modd (A= 10 %, B= 20 %, C= 40 % of crack size, a)
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Figure 3-8 Comparisonof SIF obtained from different sizes of sub-model
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A fixed mesh size, 0.01 mm was used in the sub-model and overall size of sub-modd is

20% of crack size, a. Figure 3-9 shows sub-model mesh and linking with global mode.

i =)
i )
i =)
i =)
i m]
' =
(1 m]
uJ
i )
o

o - Sub-model
boundary

i
i

s [rerS R peas
- -

(J nodes of global model
solution for interpolation

to sub-model boundary

crack tip

Figure 3-9 Finite element sub-model mesh and linking with global model

Figure 3-10 shows the distribution of normal stress of the load-carrying ply and
average normal stress of the laminate, respectively, for the sub-model. From the Figure
for normal stress distribution (Fig. 3-10), it can be seen that the nature of stress variation
issimilar to that of global model shown in Figure 3-4. Same procedures of global model
analysis were repeated to estimate the stress intensity factor of the load-carrying ply and
the average stress intensity factor for the laminate in the sub-modd. It is noted that the
average stress intensity factor for the laminate obtained from the sub-model, 45.7 M Pa-
m2, is almost same as that of global model, 45.9 MPa-m"?. However, the stress intensity
factor of the load-carrying ply, 59.2 MPa-m”2, is much less compared to that of global

model, 107 MPa-m‘?.
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Figure 3-12 s  distribution in the [0/+45]s laminate under aload of 351.14 MPa
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3.3 Comparison of FE Results and Analytical Model

The stress intensity factor in the load-carrying ply was calculated using both the
global and sub-model. The laminate stress intensity factors calculated from the two
models were in good agreement for all laminate configurations indicating that the mesh
refinement was sufficient. From the laminate stress intensity factor, we can calculate the

finite-width correction factor Y using the relation
o ¥
Ko =s ¥Y+pa (16)

Thevalues of Y for various laminate configurations are shown as a function of

a/lwand b inFigure 3-21. It has beenfound that the finite-width correction factor isa
strong function of the newly introduced lamination parameter b . More on this effect and
significance of b will be presented in Chapter 3.4. The results for the load-carrying ply
stress intensity factor yielded some interesting trends. The results of Kg estimated
through the finite element analysis are shown in Figure 3-16 and compared with two

analytical models. The Kg(B) calculated from Eq. (15) agrees well with the results of the

global model, which has a relatively coarse mesh. On the other hand, the Kg(A)

calculated from the exact LEFM solution, Eq. (14), shows good agreement with the

results of sub-model, which has a very fine mesh. It is obvious from the results that the

s, stresses ahead of the crack tip play a significant role in the estimation of Kg . The
coarse mesh of global model does not have sufficient nodes to capture the s | effect,
adthough it is good enough for determining s . The global model is not able to present a

complete picture of stresses in the vicinity of the crack tip.
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3.4 Finite-Width Correction (FWC) Factor

3.4.1 Isotropic Finite-Width Correction Factor

The lay- up independent failure model presented in Ref. [11] enables the
prediction of the notched strength of composite laminates. This model was formulated

assuming that the plates are of infinite width, thus, the infinite width notched strength,

s ¥, is predicted. However, experimental data provide notched strength data on finite

width specimens, s . To account for finite width of the specimen, the finite-width

correction (FWC) factor Y isrequired to estimate the stress intensity factor accurately.
According to the definition, the finite-width correction factor is a scale factor, which is
applied to multiply the notched infinite solution to obtain the notched finite plate result.
A common method used extensively in the literature isto relate experimental notched

strength, s, for plates of finite width to the notched strength of plates of infinite width

isto smply multiply s , by the finite-width correction factor Y, where K, isthe mode |

stress intensity factor.
sh=suir a7)
The mode | critical stress intensity factor for isotropic plate of finite width is
calculated from following equation.
Kq =Yis0S v Vpa (18)
Due to the lack of an analytical expressionfor orthotropic or anisotropic finite-width

correction factors, the existing lay- up independent failure models used isotropic finite-

width correction factor, Yiso , to evaluate stress intensity factor of notched composite
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laminates. Usually Yiso isa3™order polynomial in a/w, which was developed
empirically for the case of center cracks in isotropic panels. For example
Yo =1+0.1282a/w)- 0.2881(a/w)’ +1.5254(a/w)° (19)

can be found in Ref. [11]

However, the isotropic finite-width correction factor does not properly account
for the anisotropy exhibited by different laminate configuration. In some cases, the
application of the isotropic finite-width correction factors to estimate the anisotropic or
orthotropic finite-widthcorrection factors can cause significant error.

3.4.2 Orthotropic Finite-Width Correction Factor

3.4.2.1 Developing procedure for FWC solution

To improve the accuracy of notched strength predictions for finite-width notched
composite laminates, orthotropic finite-width correction factor is obviously required.
There are a couple of methods to determine the orthotropic finite-width correction factor
[13-15]. However, no closed form solution isavailable. For this purpose, closed form of
orthotropic finite-width correctionfactor is developed empirically based on the results of
finite element analysis. It is found that Y depends on (3 al so.

The finite-width correction factor for orthotropic plate can be obtained from

following equation, where s ;‘ (x,0) isthe normal stress distribution in an infinite plate.
YOT - (20)

where s ;‘ is the remote uniaxial stress, and a is the half crack length.

However, a closed form expression for K, does not exist. To estimate values of

K, for various laminate configurations, the commercial finite element code, ABAQUS
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6.2/Standard, was used. The stress intensity factor, K;, can be calculated in two different
ways based on the finite element analysis as mentioned earlier.

The accuracy of these methods is investigated by comparison betweena known
closed form solution Eq. (19) for notched isotropic plate and the solution obtained from
ABAQUS finite element models. In the finite element analysis, eight node, plane stress
elements were used to model notched plates made from isotropic material with material
property E = 100 GPa and v = 0.25. Geometry and mesh size of the global model were
used to evaluate the J-integral for the range of crack sizes given by a/w = 0.05, 0.1, 0.2,
0.2625 (specimen), 0.3, 0.4, 0.5. Tencontour lines were used to evaluate the J-integral in
the finite element models. Each contour isaring of elements completely surrounding the
crack tip starting from one crack face and ending at the opposite crack face. These rings
of elements are defined recursively to surround al previous contours. ABAQUS 6.2
automatically finds the elements that form each ring from the node sets given as the
crack-tip or crack- front definition. Each contour provides an evaluation of the J-integral

Figure 3-17 shows the estimated finite-width correction factor determined by
finite element methods and a closed form solution for an isotropic notched plate with
various notch sizes. Excellent agreement between these analysis methods is noted over

the whole notch size of the plate.
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Figure 3-17 Comparison of the finite-width correction factors in an isotropic plate
computed by the finite element methods with the closed form solution

The most accurate method, finite element J-integral, was adopted to develop the
finite-width correction factor for orthotropic plates. Figure 3-18 shows the calculated J-
integral value from FE global model for the material and lay-upsin Table 2-1. Ten
contour lines were used to evaluate J-interagl and these values are reasonably
independent of the path as expected. The first four J-integra values were taken to
calculate average J-integral and it was used to estimate K; using Eq. (3). The orthotropic
finite-width correction factor obtained using Eqg. (20) areshown in Figure 3-19. As
expected, the finite-width correction factors increase with the crack size to panel width
ratio. Additionally, the finite-width correction factor strongly depends on the anisotropy
of laminate characterized by (3. Figure 3-20 shows the finite-width correction factor for

different values of anisotropy parameter b and theb values of laminated composite

panel using Eqg. (6) are shown in Table 3-2.
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Figure 3-18 J-integral vs. contour line calculated from FE model of the [0/£45]s laminate

Table 3-1 J-integral value calculated from FE model of the [0/+45]s laminate

Crack size
(alw)

Contour 1  1.31E+02 272E+02 3.75E+02 4.44E+02 6.71E+02 9.63E+02
Contour 2 1.31E+02 2.81E+02 3.88E+02 4.59E+02 6.82E+02 9.75E+02
Contour 3 1.31E+02 281E+02 3.88E+02 4.59E+02 6.82E+02 9.75E+02
Contour 4 1.26E+02 281E+02 3.88E+02 4.59E+02 6.82E+02 9.75E+02
Contour 5 1.29E+02 2.81E+02 3.88E+02 4.59E+02 6.82E+02 9.75E+02
Contour 6 1.37E+02 2.70E+02 3.88E+02 4.59E+02 6.82E+02 9.75E+02
Contour 7 1.48E+02 2.76E+02 3.73E+02 4.59E+02 6.82E+02 9.75E+02
Contour 8 1.64E+02 2.87E+02 3.81E+02 4.41E+02 6.82E+02 9.75E+02
Contour 9 1.75E+02 3.16E+02 3.96E+02 4.44E+02 6.55E+02 9.75E+02
Contour 10 1.97E+02 3.38E+02 4.04E+02 4.59E+02 6.60E+02 9.75E+02

0.1 0.2 0.26 0.3 0.4 0.5
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Table 3-2 Values of the anisotropy parameter, 3, for the test specimens

specimen Sl 2 3 A S5 6 S7 8 9

b 1 1 1 0285 0396 0.656 1 0.767 0.823

The above results indicated that there is a definite relation between the finite-
width correction factors, geometric parameter, a/w, and anisotropy parameter, b . Thus,
the general semi-empirical solution of orthotropic finite-width correction factor was
developed using multiple least square regressions to fit measured data in the finite
element analysis. It can be expressed in terms of (3 and ratio of crack size, a/w, in the

following form
2 0 A o8 o

Yor =1+b,822 (14 ¢ B+c,B%) +b,&22 (1+¢,B+¢,BY) +b,22 (1+c,B+c,B%)  (21)
eWg eWg eWg

where B isdefined as 1- b , and the coefficients of least square fit are shown in Table 3-3.
A 3D plot of the finite-width correction factors is given in Figure 3-21 and estimated
values of the factor are summarized in Table 3-4. Notethat Yor increaseswith a/w and
B.

Table 3-3 The coefficients of semi-empirical solution of orthotropic finite-width
correction factor

by G C b Cs Cs bs Cs Cs
0.1091 5.0461 -2.1324 -0.2319 -2.9103 -4.4927 1.4727 -15124 -0.0375
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Figure 3-21 The finite-width correction factors as a function of anisotropy parameter, (3,
and ratio of crack size to panel width, a/w.

Table 3-4 The finite-width correction factors obtained from the semi-empirical
solution (Eq. 21)

Orthotropic, Yot I sotropic,
alw

S1 2 S3 HA 5 6 S7 B Y Yiso

0.10 1011 1011 1011 1046 1041 1029 1010 1023 1.020 101
0.20 1.024 1024 1024 1107 1094 1065 1024 1052 1.045 1.02
0.26 1.040 1040 1040 1152 1.134 1.092 1040 1075 1.066 1.04
0.30 1051 1051 1051 1182 1160 1111 1052 1091 1082 1.05
0.40 1101 1101 1101 1269 1239 1173 1101 1148 1136 1.10
0.50 1181 1181 1181 1369 1331 1254 1181 1227 1214 118
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3.4.2.2 Anisotropy parameter, 3

The anisotropy parameter, b , has been calculated using classical lamination
theory for a variety of AS4/3501-6 graphite/epoxy composite laminates. The values of b
depend on both material property and laminate configuration. It is equal to 1 when the
laminate is isotropic or quas-isotropic. As the anisotropy increases, the value of b
increases to certain finite value. The finite-width correction factors for orthotropic
laminates depend on the ratio of crack length to panel width, a/w, and also the anisotropy
parameter, b . In general, Yincreases with a/lw and b . A plot of variation of the
anisotropy parameter as afunction of q for [+q]s and [0/£q ]s is given in Figure 3-22.
Notice that the anisotropy parameter, b , attains amaximum value at g =90° in [£q |s

laminates.

| | | [+] s lay-up

[0/xQ ]s lay-up

0 10 20 30 40 50 60 70 80 90
Fiber angle, ( (degree)

Figure 3-22 Anisotropy parameter, (3, as a function of lamination angle for
graphite/epoxy [+q]sand [0/+q ]s laminates

Anisotropy parameter, b , canbe O £ b £ +¥ . However, the range of the valuesis

quite limited in most existing laminate materials. For example, the ranges of computed
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values of anisotropy parameter for a few laminate materials, which are widely used in

composite structures, are shown in Table 3-5.

Table 3-5 Ranges of anisotropy parameter, b , various composite materials

Materia property

Rangesof b
Er (GPa) E. (GPa) VT G (GPa)

ASA/3501-6 9.65 138 0.3 524 0264 £b £3781
graphite/epoxy

E-Glass/Epoxy 195 52 0.28 324 0.612£ b £1.633

S-GlassEpoxy 8.9 43 0.27 4.5 0454£ b £2.198

Kevlar 149/Epoxy 55 87 0.34 2.2 0.251£ b £3977
CFS003/LTM25

Carbor/Epoxy 54.0 54.7 0.065 4.05 0.993£ b £1.006

The semi-empirical solution (Eq. 21) for the finite-width correction factor for an
orthotropic material was developed using a curve fitting method from anisotropy
parameter, 0.285£ b £1. According to the characteristic of a curve fitting method, if
data for prediction is far beyond the limits of the observed data, a prediction can cause a
relatively large error. However, the ranges of practical values are within small bounds.
Therefore, the methodology described above can be used to develop the finite-width
correction factor solution for most widely used composite materials.

3.5 Effect of Blunt Crack Tip Shape

3.5.1 2D FE Modding Procedure

The effect of the shape of the crack tip is not considered in any of the fracture
models when calculating stress intensity factor that controls the laminate failure. The
effects of different initial crack tip shape were analyzed. According to the specimen
preparationprocess [11], to make the initia cracks, a starter hole was first drilled in the

laminate to minimize any delamination caused by the waterjet. The crack was made by
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waterjet cut and further extended with a 0.2mm thick jeweler’ s saw blade. Thus, in the
present analysis, the crack tip thickness was assumed |ess than 0.2mm and three different
crack tip shapes, dliptical, triangle, and rectangular, were considered. These assumptions
were carefully investigated through the series of FE sub- models and the results are

discussed below for the case of [0/£45] s laminate.

.

rectangle triangle semi circle
\ D

y crack tip

Figure 3-23 Crack tip shape profiles

3.5.2 Results and Discussion

Figures 3-24 and 3-25 compare the effect of crack tip profile and crack thickness
on the stress intensity factor of principal load-carrying ply using global and sub-model. In
thisanalysis, thickness of the crack was assumed to be less than 0.2 mm. The global
nature of FE models requires that the details of the crack tip shape are not explicitly
modeled due to the mesh size. Therefore, the global model may not accurately capture the
details near the crack tip and is not reliable in capturing the behavior of the crack tip
shape. From the results of the global model, it is evident that stress intensity factors of

global model are not greatly influenced by crack tip shape.
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Figure 3-24 Effect of crack tip shape on predicted fracture toughness of [0/+£45]
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Figure 3-25 Effect of crack tip shape on predicted fracture toughness of [0/+45]
laminate ; 2D FE sub-mode results
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However, the results of the sub-modd indicate that the crack tip shape has a
significant effect on the stress intensity factor at the crack tip. Furthermore, the large
variation was observed in the results shown in Figure 3-25. It indicates that the stress
intensity factor is very sensitive to the crack tip slope ahead of the crack tip. The results
shows that the crack tip slope near the crack tip is amore critical parameter than the
crack tip thickness. The results clearly indicate that the stress intensity factors at the crack
tip are strongly affected by the behavior of the crack tip shape.

3.6 Effect of Loca Damage

The complicated nature of fracture behavior in notched composite laminates
makes it difficult to predict the exact position and size of every fiber break, matrix crack,
and delamination even in arelatively simple notched panel studied here. The philosophy
is not to nodel exactly, but to make approximations that agree well with actual behavior.

The objective of this section is to study the effect of damage in the vicinity of
crack tip such as delamination and fiber splitting by comparing stress intensity factor
computed using the three-dimensional FE analysis. It has been noted that for atension
loaded laminate, local damage is produced ahead of the crack tip in the form of the
matrix cracks in off-axis plies, splitting in OE plies and some delamination [11]. This
local damage acts as a stress-relieving mechanism and relieves some portion of the high
stress concentrated around the crack tip. This damage, such as matrix cracking and
delamination, may significantly affect the structural integrity of the structures when they
become sufficiently severe. However, failure models discussed in the previous section do
not represent any effects of local damage. Axial splitting and delamination are the most

common types of damage in laminated fiber reinforced composites due to their relatively
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weak interlaminar strengths.

Previous finite element analysis used plane stress element in two-dimensional
modeling. Therefore, the effect of delamination between plies in the thickness direction
can not be modeled. In present finite element models, three-dimensional analysis was
adopted to investigate the effect of delamination and axia splitting using twenty node,
solid element (C3D20R element). Typically, solid element with reduced integration, is
used to form the element stiffness for more accurate results and reduce running time.
Sub-modeling analysis can be applied to shell-to-solid sub- model, however, the z-
direction (thickness direction) stress and strain field can not be interpolated to 3D solid
sub- model boundary from 2D globa model. Thus, 3D global models were modeled to
analyze 3D sub-model with local damage. Figure 3-26 shows the Von-Mises stress
distribution in the [0/+45]s laminate of 3D global model and 3D sub-model. It should be
noted that before interpolating the results of the 3D globa model, the comparison
between the results of 2D global model and 3D globa model should be checked for
consistent analysis. In Figure 3-27, the estimated stress intensity factors in the load-
carrying ply from 3D global model are compared with those of 2D global modd. The
stress intensity factors obtained from 3D global model are dlightly underestimated
compared to those of the 2D global- model, however, these estimated values are fairly
consistent for the nine laminate configurations. Consequently, two types of damage were
modeled using 3D sub-model to predict the effect of local damage on the stress intensity

factor of the load-carrying ply.
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Figure 3-26 Von-Mises stress distributionin [0/*45]s laminate
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Figure 3- 27 Comparison of stress intensity factor of the load-carrying ply between
2D and 3D global model

3.6.1 3D FE Modeling Procedure for Delamination

All aspects of the finite element model were kept the same as 3D sub-model
except interface of ply. Each ply was modeled by four elements through the thickness as
shown in Figure 3-26(b). Elements of layers are connected through either side of any ply
interfaces at common nodes except where delamination is expected. The delamination
was modeled as separate, unconnected nodes with identical coordinates. Figure 3-28
show the schematic of ply interface mesh where delamination is expected. To estimate
delamination area, a simple delamination criterion was implemented in ABAQUS by

means of a UVAR user subroutine using the following equation.

Delaminationarea: (t2 +t2 +s2 £S (22)
where Sy is critical stress of matrix which is 75 MPa based on typical epoxy yield

strength. Figure 3- 29 shows the estimated delamination area using the above



50

delamination criterion in the ply between the load-carrying ply and +45E ply of [0/+45]s

laminate.

(&) no damage (b) delamination

Figure 3-28 Schemeof ply interface mesh in the [0/+45]s laminate

Viewpart: 1 ODB: C:/TEMP Adsaub 34545 _mod.odb

:
REHEE i
crack line VANIIIVAN & VANNERVAN
1 0E: Fdzub04545 nod.odh ABRQUS/Srandard & 2-1K Wed Feb 05 22:34:24 \&‘i _t‘mL.l 2003

Tize = 1.
emation Scale Factes: 10.000e+00

Figure 3-29 Estimated delamination area oninterface between OE and +45E ply in the
[0/x45]s laminate



51

3.6.2 3D FE Moddling Procedure for Axial Splitting

When a notched composite panel is subjected to tension loading axia splitting
occurs in the crack tip area due to high stress concentration and low matrix tensile
strength. Apparently, this failure mode causes severe stiffness reduction in transverse
direction. Thus, transverse stiffness of axial splitting area can be modeled by taking
E; » 0. Thisfailure mode and assumption are illustrated in Figure 3-30. Similar method
described in the previous section was used to estimate axial splitting area where reduced
stiffness property was implemented, Er =10 Pathat is extremely small compared to initial
modulus, E1=9.65 GPa. A critical stress of 75 MPawas used, based on atypical epoxy
yield stress. Figure 3-31 shows the estimated axial splitting areain the interface between

OE and +45E ply for atensile loading 351.14 MPa.

Axial splitting area

| !
B [ l /| ; (Er=0)
:_lll_ I. :

i"'l'"l"'l i

Figure 3-30 Axia splitting failure mode in the load-carrying ply
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Figure 3-31 Estimated axial splitting area on interface between OE and +45E ply

3.6.3 Results and Discussion

Typical damage in notched laminated composites occurs in the form of axial
splitting in the load-carrying ply and delamination. This damage was modeled to study
effect of local damage on the normal stress distribution in the vicinity of crack tip in the
load-carrying ply. The estimated delamination area and axial splitting area are modeled
by having duplicate nodes and reduced stiffness, respectively.

Results of normal stress distributionare shown in Figure 3-32. From the results it
is observed that sy distribution in the FE model without damage shows the typical square
root singularity. Axial splitting and delamination removes the singularity, though there

still isaregion of high stress concentration near the crack tip. It also canbe seenthat s |

distributionincreases away from the crack tip and s, distribution in the model with

damage decreases than in the model with no damage. Thus, the stress field is strongly

affected by the presence of local damage. From the results, it is obvious that the local
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damage serve as main mechanism to increase s , distribution and decreases s ,

distribution in the load-carrying ply. This simulation is similar to the redistribution of

stress in the presence of small scale yielding in homogenous materials.

1.00E+10 | |

| Sy with no damage
8.00E+09 H— = Sx with no damage

—=s— Sy with damage

6.00E+09 &
4.00E+09 Km :

2.00E+09 e e e e e
44

- Sx with damage

Normal stress, (MPa)

AAAAAAQ; CAAA -y
40620999 pO-Tv0 - 0009

888848 20804 ,
0.00E+00 634888808084

0.00E+00 1.00E-04 2.00E-04 3.00E-04 4.00E-04 5.00E-04
Distance from crack tip, r (m)

Figure 3-32 Effect of the local damage on normal stress distribution in the load-
carrying ply in the [0/+45]s laminate

3.7 Summary of FE Results and Discussion

It iswell established that the fracture behavior of composite laminates depends on
avariety of variables. All may affect to varying degrees the fracture behavior of the
notched laminates. A comprehensive evaluation is still lacking regarding the effects of all
variables on the notch sensitivity of composite laminates. Through the detailed finite
element analysis, we investigated effect of distinct factors such as crack tip shape and
local damage.

The presence of blunt crack tip has a significant effect on the behavior of notched
composites, and leads to stress redistribution. This relives the stresses in the non-load-
carrying plies and increases the SIF of the load-carrying plies. Similar effects are

observed when local damage such as matrix cracking and delamination are introduced.
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Figure 3-33 shows the results of finite element sub-model, which include blunt crack tip
and local damage. From the comparison of the results between models with and without
damage, it is obvious that these effects also increase the stress intensity factor of the load-
carrying ply as aresult of the reduction in s , stress concentration in the laminate. By
comparing the results of finite element analysis with analytical failure model, it can be
reasonably assumed that the effect of initial damage is accounted by reducing the

s, component ahead of crack tip to zero.
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Figure 3-33 Effect of the local damage on stress intensity factor in the load-
carrying ply



CHAPTER 4
CONCLUSIONSAND FUTURE WORK

CONCLUSIONS

The SIF of the load-carrying ply isacritica parameter for predicting the failure of
notched composite laminates. The SIF of the load-carrying ply, Kg , can be estimated by
using adetailed 3D FE analysis which can model local damage modes such as fiber
splitting and delamination that occurs prior to fracture. Then the SIF of the load-carrying
ply can be calculated accurately and compared with the critical value for the material

system to predict fracture. The results from this model are presented in Column 2 of

Table4-1.

On the other hand, a simpler analytical model could be used. In this model finite-
width correction factor for orthotropic laminates should be used. The effects of local
damage at the crack tip is accounted for by setting the parameter b=0in Eq. (15) for
calculating the SIF of the load-carrying ply. Results from such analysis are shown in
Column 3 of Table 4-1. The results from calculations performed by Sun and Vaiday [11]
are given in Column 4 for comparison.

Using a mean value of 113.81 MPa-m'? for K in the analytical model, the

predictions of the laminate fracture toughness are compared with the experimental results

in Figure 4-2 for various value of h .

55
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Figure4-1 Comparison of the fracture toughness of load-carrying ply

Table4-1 Comparison of the fracture toughness of load-carrying ply obtained
fromdifferent methods

Fracture toughness of load-carrying ply, K, MPa-m™?
Anaytica

Specimen 3D FE analysis model Ref. [11]
S1 116.65 115.66 115.66
S2 114.23 108.82 108.82
S3 115.71 106.43 106.43
A 118.16 112.62 101.81
S5 115.21 109.97 101.00
S6 113.53 111.52 106.32
S7 121.40 109.04 109.04
S8 116.01 123.66 119.81
9 110.51 126.58 123.64

average 115.71 113.81 110.28
SD. 3.03% 6.95 % 9.80 %

T standard deviation
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The variable h was defined as ratio of stress intensity factor of the load-carrying
ply to that of laminate and can be obtained from Eq. (15). It should be noted that ?, like [3,
depends entirely on the laminate properties. Good agreement is observed between the
experiments and predictions. By comparison with experimental results, it is concluded
that the proposed lay-up independent model with orthotropic finite-width correction
factor is capable of predicting fracture toughness of notched laminated composites with

reasonable accuracy for mode | loading.
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Figure 4-2 Comparison of experimenta results with failure model predictions
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Table4-2 Comparison of experimental results with failure model predictions

1/2

Specimen N Fracture toughness of laminates, K, (MPa-m
Notation Lay-up Experiment’  Prediction’  Relative error (%)

SL  [0/90/+45], 25791 4467768 44,1295 1.23

2 [+45/90/0], 25791 40.22554 44,1295 -9.71
3 [90/0/+45] 25791 41.16729 44,1295 -7.20
A [0/£15]¢ 1.1209 100.4675 101.5384 -1.07
5 [0/£30]s 1.6619 66.24291 68.48451 -3.38
S5 [0/+45], 2.3215 48.07307 49.02623 -1.98
S7 [0/90] 26 1.8706 58.19245 60.84379 -4.56
3 [£45/0/+45] 3.1979 38.68474 35.59036 7.9

e [£452/0/%45] 3.8168 3319171 29.81933 10.16

" Fracture toughness of laminates obtained using Eq. (1) with orthotropic finite-width
correction factor in Table 3-4.
* Predicted fracture toughness of laminates calculated using the mean value,

113.81 MPa-m"?, for K in the analytical model.
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FUTURE WORK

There seems to be ample room for further investigation of this problem. Fracture
problem studied in the current study was limited to AS4/3501-6 graphite/epoxy laminated
panel containing a center straight crack subjected to tension loading. For genera
application, validity of currently proposed lay- up independent criterion can be further
verified for the case of laminated composite panels containing double edge notch, single
edge notch, circular hole, etc. with different material systems using experimental and
numerical analyses for mode Il and mixed loading conditions. Additionally, this failure
model can be compared with other popular failure models such as Point Stress Criterion,
Average Stress Criterion, Mar-Lin failure model, etc. so that composite structure

designers can select an appropriate failure model in diverse practical situations.



APPENDIX A
LAMINATION THEORY

For laminated plates with bending-extension coupling under plane stress, the
complete set of force-mid-plane deformation equations can be expressed in matrix form

as

)('D\

ﬁ_
M}

"1

BUj e’ f
- (A-1)
DB

where N and M are the in-plane forces and moments, respectively, and e° isthe mid-
plane strains, and k isthe curvature.

In the case of symmetric laminates without coupling, Eq. (A-1) is reduced to

I N, U eA&l A, Aieul ef
I Ny y Aiz Azz Azeul eo (A'Z)
I Nzyp %6 A26 ASGHng

where the laminate extensional stiffness are given by

2=
A = le(Qij)de (A-3)
wheret is the thickness of the laminate. If there are N layers in the lay-up, we can rewrite

the above equations as a summeation of integrals over the laminate. The material

coefficients will then take the form

A =8 (Q)i(z - 2 (A-4)
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Figure A-1 Laminated plate geometry

wherethe z, and z, , in these equationindicate that the k™ laminais bounded by

surfaces z, and z,,. Thus, the 6”. depend on the material properties and fiber

orientation of the k ™" layer. It can be obtained using the following equation.

[Ql=[r*/[QI [R 1] |~ (A-5)
where
ém’ n’ mn U él 0 Ou
[T]:g n m  -m 3 [R]:go 1 OH (A-6)
& 2mn 2mn m?- n’Y g0 0 2§

m=cosq and n=sinq
where the 6” are the components of the transformed lamina stiffness matrix which are

defined as follows

Q,, =Q, c0s*q +Q,,9n"q +2(Q,, +2Q,,)sn 2q cos?q

Q,, =(Q, +Q,, - 4Q,;)sn2qcos’q +Q,(sn*q +cos’q)

Q= Q8N *q +Qy, 008'q +2(Q;, +2Q;)sin g cos’q

Qus = (Qu- Qi - 2Qu)sNq o8’ +(Q, - Qy +2Q)dN °q cosy
Qs =(Qu - Q- 2Qi)SN°qcosq +(Qy, - Qy, +2Qge) SN cos’q

666 = (Qll + Q12 - 2Q12 - 2Qee)gn 2C| COqu +Q66(§n 4C| + COS4Q) (A'7)
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leJi €A, A, AU N, U

| | e+ * * Ul |

i efy =aA, An Ay ul N, y (A-8)
(407 éa .

99 p &As A A Ut al zyb

where superscript * denotes the component of inverse matrix of [A]
The stresses in each ply can be recovered form the mid-plane strains. In particular,

the stresses in the load-carrying ply can be expressed as

|s u tel Qs Qlee 1]

— Y
IS yy e 2 ng; Q2L6u| eyy (A-9)
p e(gllé Qzlé Q66 ul gxyp
where superscript - means the component of principal load carrying ply
The normal stressfield applied in the load-carrying ply can be obtained by
calculating the portion of the applied load that is carried by the load-carrying ply using
lamination theory using Egs. (A-8) and (A-9).
;5 :J q311 @ le LbA‘.Ll A, Ag Hll N, Iu
|S ;y éle Q_sz Q26 LbAiz A Ay u| Ny_)? (A-10)
xyp a 1Le QzLe QeeueAi Aza A66H|1nyij



APPENDIX B
MATHEMATICAL THEORIES OF BRITTLE FRACTURE

The objective of this Appendix was to provide the brief review of mathematical
formulation of crack problems for derivation of stress intensity factor in homogeneous
orthotropic materials [17].

For orthotropic materials in the case of plane stress, the generalized Hooke law

can be expressed as

€ TS o ¥ AS T
eyy =a,.S +a228yy +a26txy (B'l)
gxy :a1§xx+a2§yy+a64xy

The equilibrium equations under plane stress conditions are

_ﬂsxx+ﬂt_xy—0 ﬂt_yx+_ﬂsyy

: =0 (B-2)
™x Ty x Ty
The equilibrium equations will be satisfied if the stress function U(X,y) is

expressed as

_T1u _Tu _ U ]
sxx—ﬂyz, SW_ﬂxz’ ty= Tyix (B-3)

Substituting for s , ;s ,, .t ,, from Eq. (B-3) in the compatibility equation

Te, , Te, _ Mg,
v % Xy

(B-4)
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The governing characteristic equation of plane stress of orthotropic materials can

be expressed as
T°U 1°U U 1°U T°U
a,—r - 28,,————+t(2a,ta,)———- 2 + =0 (B-5)
22 1.[)(4 a26 ﬂxaﬂyz aiZ a66 ﬂxzﬂyz a16 ﬂxﬂys all 1.[y4
Defining the operators D; (j=1, 2, 3, 4) as
1 T .
D=—-m— (=1223,4 B-6
VR { ) (B-6)
The governing equation in U(x,y) becomes
D1 D2D3D4sU (xy) =0 (B-7)
and m, are the roots of the characteristic equation.
aun? - 2a16m? + (2a12 + aee) rT]JZ - 2a26m ta,, = 0 (B'8)

The roots are either complex or purely imaginary and cannot be real and can be

expressed as

u, =0, u, =0, (B-9)
where a; d, (j= 1, 2) arereal constants.
The stress function U(X,y) can be expressed in the form
U(X,y)=2 Re [Uy(z1)+ U2(2)] (B-10)
where Uy(z) and Ux(2) are the arbitrary functions of the complex variables z, =x+s,y
and z, =x+S,Y, respectively. Let new functions
f(z)=dU,/dz, y (z,)=dU,/dz, (B-11)
Substituting the stress function from Eqg. (B-10) into the Eq. (B-3) and taking into

account the relations in Eg. (B-11), the stress components can be expressed as
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s, =2Rd s/ X '(z)+5; '(2,)]
s, =2Rdf '(z)+y '(z,)] (B-12)
ty =-2Relsf '(z) +sy '(z,)]

For pure mode | case, the stress components in the vicinity of crack tip can be

expressed in terms of stress intensity factor, K, , and the roots of characteristic Eq. (B-8)

K €1 & g s o
Sy: | Reé C 2 _U
J2or g8 - 5, & cosq +s,5nq Joosy + snq
d‘J

o= K pegdn € *__% e
J2pr gsl s, §/cosq +5,8nq  Jcosq +5 Snq 74
" Jopr S-S, 64050 +5,8nq  oJoosq +5,9nq
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Figure B-1 Stress components in the vicinity of crack tip

when q = 0, the new parameter 3 introduced in the Chapter 2.3 can be expressed as (

N—r

s (r,0

b =
s,(r0

=Re[- s3] (B-14)

SN

Conseguently, the model | stress intensity factor can be expressed as

K, = Irigtl)s y(r L0)/2pr (B-15)
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Ki can aso be expressedintermsof s, as

Ilms T, 0)+/2pr
K, =120 - (B-16)

The increase in strain energy due to the presence of the crack can be calculated

using following equation for mode | case.

N|I—‘

(‘;; (x,0)Du,dx (B-17)

The derivative of DW with respect to crack size, a, yield

+s, AU
ﬂDZV - KZa,, Reé B TS a (B-18)
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The energy release rate can be expressed in terms of stress intensity factor

as +s, (U

——a Reé (B-19)
“ gizo

where s (] = 1,2) are the roots of the characteristic equation (B-8) which can be derived

from the elastic constants as

.1/2 .1 2

__a&8,0 \/_ ﬁa’lz
§S, =" § +s, =i ? gi (B-20)
? a; g %
Then, the relation equation between G, and K, for an orthotropic materia can be

expressed as

2

2 112 G

%2 0] p

G, = Klzéﬁnazzo : 2+ +mg (B-21)
é& 2 g gama 28, g
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