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The mode spectrum in an optical nanowaveguide consisting of a dielectric-core layer surrounded by two
identical metal layers is investigated. A simple model based on mode matching to predict the properties
of mode propagation in such optical nanowaveguides is proposed. It is shown that quasi-TM00 and
quasi-TM10 modes supported by an optical microstrip line do not have a cutoff frequency, regardless of the
size of the metal strips, the thickness of the dielectric slab, and the cross-sectional shape. The transverse
size of the TM00 mode supported by a nanosized microstrip line was found to be approximately equal to
the transverse dimension of the microstrip line. In closed rectangular and elliptical nanowaveguides, i.e.,
in which all dielectric surfaces are covered with metal films, the cross-sectional shape of the waveguide
should be stretched along one side to produce propagation conditions for the fundamental mode. © 2005
Optical Society of America
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1. Introduction

The spatial resolution of a conventional optical system is
limited by diffraction and is approximately equal to half
of a wavelength. To overcome this limitation, a scanning
near-field optical microscope (NSOM) was designed to
produce subwavelength spatial resolution.1–4 Despite
constant efforts to improve its characteristics,5–13 the
NSOM has a poor light throughput because of its small
optical transmission through a subwavelength hole at
the apex of the probe. A more sophisticated nanostruc-
ture than a dielectric probe coated with a metal film with
a hole at the apex is needed for obtaining a NSOM with
a large throughput. NSOM probes have nanosized ele-
ments, with their dimensions controlled to a high degree
of accuracy, which makes their fabrication difficult (a
special difficulty lies in the fabrication of the metal coat-
ing). This difficulty in fabrication of nano objects with
specific cross-sectional shapes restricts the progress of
NSOM technology.

Theoretical research, unlike experiments, places
no restriction on the nanostructures’ shapes and

hence can be useful for the design of NSOMs with
high optical throughput. Previously Lapchuk14,15 and
Lapchuk and Kryuchin16 proposed using a microstrip
probe for the NSOM to significantly improve its
optical throughput. However, sufficient theoretical
background was not provided, and thus improve-
ments are needed.

The theory of regular waveguides can be a basis for
investigation of wave propagation in irregular waveguide
structures such as NSOM probes. Although the charac-
teristics of circular optical waveguides are well under-
stood in sufficient detail,17–20 there have not been many
studies of nanosized waveguides with other cross-
sectional shapes.21 Our main purpose in this paper is to
investigate the mode spectrum and propagation condi-
tions for nanosized optical waveguides with various
cross-sectional shapes that may potentially be useful in
NSOM probes. The mode spectrum in an optical nano-
waveguide has a complex dependence on structural pa-
rameters, optical constants of materials, and the
wavelength,17 owing to a strong penetration of the modal
field inside the metal layers and to the surface-plasmon
effect, which makes a full investigation of the mode-
propagation characteristics of optical nanowaveguides
difficult.

As only a few lowest modes play important roles
in energy transmission to the aperture in NSOM
probes, our investigation is concentrated on these
low-order modes only. As there is no commercial soft-
ware that can be directly applied to solution of the
eigenvalue problem under study as far we know, we
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have developed a simple theory for qualitative under-
standing of the characteristics of nanowaveguide
modes. The eigenmode problem for TM and TE modes
propagating in a planar waveguide structure consist-
ing of a dielectric layer surrounded by two identical
metal layers is regarded as the key problem in this
investigation. The simple assumption for mode inter-
actions with sidewalls, elaborated in microwave the-
ory, was used to predict the properties of propagating
modes in nanowaveguides.

A commercial Microwave Studio software package
(MWS) based on a finite-integral technique22–24 (FIT)
was used to verify the theoretical results obtained
from the simple theory for the microstrip and the
rectangular waveguide and to produce additional re-
sults for waveguides that have more-complex cross-
sectional shapes.

2. Transverse-Magnetic and Transverse-Electric
Modes in Planar Nanowaveguides

The modes of planar waveguides are a basis for cal-
culation of the characteristics of three-dimensional
waveguide modes in a mode-matching method (MMM).
Because the propagation characteristics of modes sup-
portable by planar nanowaveguides25 and a mathemati-
cal method for solution dispersion characteristics26,27 are
well known, we present here only their characteristics
that we use hereinafter for the analysis of modes in three-
dimensional nanowaveguides. The properties of bulk
metals given in Refs. 28 and 29 were used in our numer-
ical simulation.

The geometry of the basic planar optical nano-
waveguide structure under study is schematically il-
lustrated in Fig. 1. The waveguide structure consists
of a planar dielectric-core layer (with dielectric con-
stant �1 and layer thickness a) surrounded by two
identical metal layers (with complex dielectric con-
stant �̃2 and layer thickness t). A dielectric medium
(usually air) with dielectric constant �3, in turn, sur-
rounds the metal layers. The structure is symmetri-
cal with respect to the y � 0 plane and, thus, the TM
and the TE eigenmode problems can be separated
into two independent cases with metal and magnetic
walls placed at the symmetry plane.

We indexed the waveguide modes according to the
values of their wavenumbers (the larger the wavenum-
ber, the smaller the index of the mode) as they are
conventionally used in the two-dimensional waveguide
theory.30,31 Generally, the index of the waveguide
mode represents the field dependence on the trans-
verse coordinate. This classification, however, is a little
ambiguous because the order of wavenumbers of
modes depends on waveguide parameters and can
change with changing waveguide parameters.

In the research reported in this paper, attenuation
coefficient kp was used as an indication for power at-
tenuation when a mode is propagating along the
waveguide. We define it as kP � I1�I0 � exp��2�s�,
where � is a mode attenuation constant and I0 and I1
are the powers of an incident wave and of a wave
after propagating along a line interval, respectively.
The propagation length was chosen to be 100 nm in
the simulation, which corresponds to a typical size of
the apex of a NSOM probe.

Figure 2 shows the dependence of slow-wave factor
ksw � ��k and power attenuation coefficient kp for
the symmetrical TM0 and the antisymmetrical TM1
modes on the thickness of the inner dielectric layer.

Fig. 1. Schematic of a planar optical nanowaveguide that has a
dielectric-core layer surrounded by metal layers.

Fig. 2. Slow-wave factor (solid curves) and power attenuation
coefficient (dashed curves) of TM0 and TM1 waves as a function of
the dielectric core’s thickness ��1 � 2.25� for two metal layer thick-
nesses: �a� t � 50 nm and �b� t � 10 nm at � � 780 nm.
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As the thickness of the inner dielectric increases, the
slow-wave factor and the attenuation coefficient for
two waveguide modes �TM0 and TM1� converge to the
same value. That is, the TM0 and the TM1 waveguide
modes are expected to have nearly the same field
structure in the limit of large inner-dielectric-layer
thickness. As is shown in Figs. 3(a) and 3(b), the
electric field exhibits two intensity peaks at the two
dielectric–metal interfaces, and its intensity de-
creases exponentially away from these interfaces. In
the center of the inner dielectric layer the electric
field intensity becomes close to zero. This means that,
for a thick dielectric layer, the TM0 and TM1 modes
can be represented as even and odd sums, respec-
tively, of two uncoupled surface-plasmon waves prop-
agating along the two metal–dielectric interfaces.
The two surface-plasmon waves start to interact with
each other if the thickness of the inner dielectric layer
becomes smaller than the width of the evanescent tail
of the surface-plasmon waves. As the thickness of the
dielectric layer decreases, the fields of the symmetric
TM0 mode becomes concentrated in the dielectric and
metal layers owing to constructive interference of the
two surface-plasmon waves. The field penetration in
the metal causes a fast increase of the slow-wave
factor and dissipation losses. The field structure of
the TM0 mode for a thin dielectric is nearly homoge-
neous inside the dielectric layer [Fig. 3(c)], which is
similar to the case for fields of a TEM wave between
perfect conductor layers. The fields of a TM1 mode,
unlike those of a TM0 mode, with decreasing dielec-
tric thickness are forced out of the dielectric and
metal layers [Figs. 3(b) and 3(d)] in outer space owing
to destructive interference of the surface-plasmon
waves inside the dielectric-core layer (odd symme-
try). This causes the fast decrease of the slow-wave
factor [it is approximately 1, as was shown in

Figs. 2(a), 2(b), and 4(a)] and dissipation losses. The
beam width becomes larger than � [Figs. 3(d) and
4(b)] in this case. As a result the TM1 mode is trans-
formed (for the case of a large dielectric thickness)
into an antisymmetrical slow wave propagating along
the metal–air interface. Therefore (because of trans-
mission of the field intensity peaks from the inner
metal–dielectric layers to the outer metal–air re-
gions) the TM1 mode has a complex nonmonotonic
dependence of ksw and kp on the thickness of the
dielectric layer (Figs. 2 and 4).

The TM2 mode is a symmetrical surface-plasmon
wave propagating along the outer metal–dielectric
(air) interface with a small field penetration inside
the dielectric layer, as is shown in Figs. 5(b) and 5(c).
The abrupt change in the slow-wave factor and the
power attenuation coefficient of the dielectric layer’s
thickness [Fig. 5(a)] may be due to the resonance in
the dielectric layer [see the field distribution in
Fig. 5(c)]. The symmetrical TM2 wave does not exhibit

Fig. 3. Power flow distribution (arbitrary units) across the struc-
ture with a thickness of the glass layers of b � 800 nm for metal
coating thicknesses of �a� t � 50 nm and �b� t � 10 nm. Power flow
distribution (arbitrary units) across the structure with a thickness
of the glass layers of a � 10 nm and a metal layer thickness of the
t � 50 nm for the (c) TM0 and the (d) TM1 modes.

Fig. 4. TM1 mode parameters of an optical nanowaveguide with a
silicon ��1 � 13.7� and a 40 nm thick silver coating layer
at � � 780 nm: (a) slow-wave factor (solid curve) and power at-
tenuation coefficient (dashed curve) as functions of dielectric-core
thickness, (b) power flow distribution across the layers for two
dielectric-core thicknesses b.

Fig. 5. Propagation characteristics of the TM2 mode for a planar-
optical nanowaveguide with a silicon ��1 � 13.7� core and 80 nm
thick silver coating layers at � � 780 nm. (a) Slow-wave factor
(solid curve) and power attenuation coefficient (dashed curve) as a
function of the thickness of the silicon core layer. Power flow dis-
tribution along layers Pz and Py for core thicknesses of �b� a �

20 nm and �c� b � 400 nm.
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cutoff and remains a slow wave for a small dielectric
thickness. The TM2 mode, similarly to the TM1 mode,
has a slow-wave factor close to 1 and a large cross-
sectional beam size.

Analysis of TE modes has shown that their field
structures and dispersion characteristics, as for a cir-
cular waveguide,17 are similar to those of conven-
tional TE waves in a microwave band [with a cutoff
dielectric-layer thickness approximately equal to
m���2n�, where n is a positive integer]. The only dif-
ference is that modes are transformed into leaky
waves (radiated modes) with decreasing dielectric-
core layer thickness rather than being evanescent as
they are in the microwave regime, owing to transpar-
ency of the waveguide walls.

3. Optical Microstrip, Rectangular, Circular, and
Elliptical Waveguides

The MMM is often used in microwave theory32–34

for calculation of the characteristics and fields of
waveguide modes for a waveguide with a stepwise
constant refractive-index profile. There are three
steps in the solution of an eigenmode problem by
the MMM. First, for each slab, one has to write
the field of the mode as a sum of physically reason-
able fundamental solutions of the wave equation
(the field of the plane waveguide mode). Second, the
continuity requirements for the electromagnetic
fields must be incorporated to connect the unknown
coefficients on neighboring slabs, resulting in a sys-
tem of linear equations. Third, this system has to be
solved for a nonvanishing field.

The MMM commonly is applied for solution of
eigenmode problems for closed waveguides. The
modes of the plane waveguide form a complete set of
functions for the area inside the closed waveguide,
and this fact is the basis of the MMM. For an open
structure such as a microstrip line the MMM should
be modified because the set of eigenmodes of a plane
structure is not complete for an infinite area. The
simplified MMM is usually used in the microwave
band for a microstrip line for engineering calculation.
The simplified MMM is based on the assumption that
only one mode of a plane waveguide is essential for
calculation of the basic mode of a microstrip line.32–34

Knowledge of the reflection coefficient of this mode
from the side waveguide’s walls is needed for using
the simplified MMM to find the solution of the eigen-
mode problem. Calculation of the reflection coefficient
of the plane waveguide mode from the plane struc-
ture end (from the microstrip sidewall) is a complex
exercise that often is handled separately from the
eigenmode problem.35 Often in microwave theory the
magnetic sidewall model (with appropriate change of
waveguide width and dielectric constant to effective
ones) is used for the calculation of the basic quasi-
TM00 mode.

The nanowaveguides in an optical wave band are
open structures because of partial penetration of the
electromagnetic field through the nanometer metal
layer in the optical wave band, and therefore a sim-
plified MMM and indirect eigenmode calculation

with the MWS are used here for obtaining the char-
acteristics of the modes of the nanowaveguide.

The condition for a wave of plane structure to cre-
ate a waveguide mode by reflection from the struc-
ture’s two sidewalls (see Fig. 6) can be written by use
of the phase of the reflection coefficient (from the
waveguide sidewall) as follows:

2kxa � 2	 � 2n
, (1)

from which a dispersion equation can be obtained by

kx � �n
 � 	��a ,

kz � �ks1
2 � kx

2�1�2, (2)

where ks1 is the wavenumber of the planar
waveguide; kx and kz are the x and z components,
respectively, of ks1; n is the waveguide-mode index
along the x axis; and � is the phase of the reflection
coefficient. Using the simplified MMM reduces the
complex problem of field propagation in a nano-
waveguide to a simple problem of mode propagation
in a planar structure and to calculation of the phase
of the reflection coefficient from the sidewall.

Although many types of microstrip line are used in
a microwave technique,35,36 we are interested mainly
in the simplest form of a microstrip line in the optical
regime, as shown in Fig. 7. This optical microstrip
consists of a rectangular dielectric rod coated with
thin metal strips on the upper and lower surfaces. As
was shown above, for an optical wave band the TM0
wave propagating in a thin dielectric layer covered
with two metal layers has a field structure similar to
that of a TEM wave propagating in a dielectric layer

Fig. 6. Schematic of a simplified mode-matching method.

Fig. 7. Schematics of (a) the optical microstrip and (b) the optical
rectangular waveguide under study.
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surrounded by perfectly conducting metal plates. A
model for a microstrip optical probe14–17 that used the
similarity of the field structures of the fundamental
modes of microstrip lines in microwave and optical
wave bands was proposed, and it was shown that a
significant improvement in optical throughput, com-
pared with that for a conventional probe, and a strong
field enhancement were achievable. As was found
above, however, some parameters of the TM0 mode in
the optical band are significantly different from those
of the TEM wave owing to strong field penetration in
metals. In addition, unlike for the ideal metal layers,
there are also other types of mode that can propagate
in a thin dielectric layer between two metal lay-
ers �TM1 and TM2, for example) in an optical band,
which can cause the accuracy of the simple model in
an optical wave band to deteriorate. Therefore this
approach should be verified either by a rigorous so-
lution of the waveguide problem (indirect calculation
with the MWS, for example) or by an experiment.

We used the TM0 wave parameters obtained from
the analytical solution to test the accuracy of the FIT
in the optical wave band (see Fig. 8). Because the
MWS does not provide direct eigenmode solutions for
a medium with high losses (as it does for an optical
wave band) we used a long section of a homogeneous
line and a quasi-TEM wave (fundamental microstrip
mode), incident from a microstrip line that had per-
fectly conducting metal strips, to excite our structure
to obtain TM0 wave parameters. We used a microstrip
region far from the junction to extract mode param-
eters of the optical microstrip. It should be noted that,
owing to the symmetry of the structure and to the
field excitation, the field in the far region could be
represented as a superposition of TM0 and TM2

modes, which can decrease the accuracy of data ob-
tained for the TM0 mode. Nevertheless, the field
patterns in the far region obtained by numerical sim-
ulations are in good agreement with those from the
analytical solution for the TM0 mode (Fig. 8). This
may be due to weak coupling between the incident
TEM mode and the TM2 waves, which have different
field structures. Numerical comparison has shown
that wavenumbers and dissipation losses obtained by
the two methods agree well, with errors within
1.5% and 3.2%, respectively. This level of error is
within the accuracy of the method, which was applied
to extract the mode parameters from the numerical
results.

We are interested mainly in a few first quasi-TMnm

modes, which can propagate in the region near the
probe apex of the NSOM, where the first subscript, n,
denotes the field dependence on the x axis (coordinate
across the layer) and the second subscript, m, on the
y axis (along the layer in the microstrip’s cross sec-
tion). It should be noted that, for a complex structure
such as a microstrip line, this notation is somewhat
ambiguous because of the complexity of the field
structure of microstrip modes. For small microstrip
sizes, however, only a few waves can propagates in
the line. The properties of these modes are assumed
to be derivable from the properties of the TMn waves
propagating in the infinite two-dimensional
dielectric–metal-layer structures analyzed above,
and thus our notation for the microstrip mode is
based on this fact.

We used the excitation of a nanowaveguide by the
field of a mode of a microstrip line with perfectly
conducting strips in all cases of nanostructure exci-
tation described below. Figure 9 shows the character-
istics of a fundamental quasi-TM00 microstrip mode
calculated by the rigorous FIT algorithm and by the

Fig. 8. Comparison of the mode parameters calculated by the
MWS and by an analytical model for the TM0 mode supported by
a plane waveguide structure with a 10 nm thick dielectric-core
layer ��1 � 4� and a 4.5 nm thick silver coating layer at � �

650 nm: (a) electric field component Ey (arbitrary units), (b) power
flow Py (arbitrary units) calculated by the MWS; (c) electric field
component Ey (arbitrary units), (d) power flow Py (arbitrary units)
calculated by the analytical model.

Fig. 9. Slow-wave factor (solid curve) and attenuation coefficient
(dashed curve) of the quasi-TM00 mode as a function of microstrip
width. The microstrip has a core layer ��1 � 2.25� and 20 nm thick
silver metal strips with a length of b � 40 nm operating at �

� 790 nm.
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simplified MMM in which the waveguide sidewalls
are replaced by magnetic walls �	 � 0, n � 0�. The
simplified MMM with magnetic sidewalls measures
any dependence of the slow-wave factor and the at-
tenuation coefficient on microstrip width (TEM mode
approximation), whereas a rigorous FIT model gives
a sharp increase in the slow-wave factor for a narrow
(a � b) microstrip line. The difference between mode
characteristics calculated by the two methods de-
creases quickly with increasing microstrip width and
approaches zero. For a wide microstrip line �a � b�
the characteristics of quasi-TM00 modes (a slow-wave
factor and an attenuation coefficient) obtained by
both methods agree well. Note that the slow-wave
factor and the attenuation calculated by the FIT are
always larger than those obtained by the MMM.
Figure 10 shows the electric field amplitude and the
energy density distribution of the quasi-TM00 mode of
the microstrip line. One can see that the cross-
sectional size of the quasi-TM00 field is approximately
equal to the size of a microstrip’s cross section. From
the electric field distribution in Fig. 10 one can see
that it has large peaks at the metal strip ends, with
large field penetration into the metal. It is these field
intensity peaks in the areas of the metal edges that
make the slow-wave factor and the attenuation coef-
ficient of the TM00 mode of the microstrip line larger
than those of the TM0 mode of a planar structure.
Therefore the simplified MMM of microstrip lines can
be applied only for a qualitative analysis of the char-

acteristics of a TM00 mode of an optical microstrip,
and a more rigorous model is needed for accurate
calculation. It should also be noted that the electric
field of the fundamental mode of an optical microstrip
has a loop of an electric field near the microstrip end,
similar to that for the conventional microstrip line
[Fig. 10(a)].

As the width of the fundamental mode of an optical
microstrip is approximately equal to the microstrip
line’s transverse structure size, one can expect that it
will be possible to obtain a beam of a few nanometers’
size for a tiny microstrip. In Fig. 11 a field pattern
with a beam size smaller than 10 nm propagating in
a dielectric rod covered with two golden strips is
shown. This tiny-sized wave has a slow-wave factor
as large as 31.1 and a large power loss that is due to
strong field penetration in metal.

We use the TM10 mode of a microstrip line with
perfectly conducting strips (the magnetic plane at y
� 0) to obtain field patterns of the quasi-TM10 mode
of an optical microstrip line and that of a rectangular
waveguide. The rectangular waveguide consists of a
rectangular dielectric rod coated with a metal film, as
shown in Fig. 7(b). Figure 11(a) shows a comparison
of slow-wave factors for quasi-TM10 modes of a rect-
angular waveguide and a microstrip line calculated
by the FIT (solid curves) and by the MMM (dashed
curves). Phase � of a reflection coefficient for the
MMM was obtained from Eq. (2) by use of kz calcu-
lated by the FIT. This phase was calculated only for
one microstrip width, and then this value was used
for calculation of the dependence of the mode’s slow-
wave factor and attenuation coefficient on the micro-
strip’s width. One can see from Fig. 12 that even this
simple implementation of the MMM (with a constant
�) gives a correct dependence of the slow-wave factor

Fig. 10. (a) Electric field amplitude of the quasi-TM00 mode along
the microstrip line (at X � 0) and (b) electric field energy density
at the cross section (at z � 30 nm) in a microstrip line with length
s � 160 nm covered with silver metal strips: a � b � 10 nm, t
� 4.5 nm, �1 � 4, � � 650 nm ���k � 14.0 and kP � 0.565
calculated by the FIT and ��k � 12.4 and 
 � 0.503 for a rigorous
two-dimensional algorithm).

Fig. 11. (a) Magnetic field amplitude of the quasi-TM00 mode
along the microstrip �at Y � 0�. (b) Power flow (z components) at
the microstrip cross section �at z � 20 nm� in an optical microstrip
line with length s � 60 nm covered with gold metal strips: a � b
� 5 nm, t � 1.5 nm, �1 � 4, � � 1520 nm.
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on the waveguide’s width for calculation of the TM10
parameters of an optical microstrip line and a rect-
angular waveguide.

We used the quasi-TM01 mode of a microstrip line
with a perfectly conducting metal strip (magnetic
plane at y � 0) with the same transverse sizes for the
excitation of the quasi-TM01 mode in an optical mi-
crostrip line and a rectangular waveguide. Figure
13(a) shows the electric field pattern of a quasi-TM01
mode for a tiny optical microstrip line. Similarly to
the TM1 field of a plane structure, the peak of the field
intensity of this mode for a small dielectric thickness
is located outside the dielectric layer. However, this
mode has a significantly larger slow-wave factor than

the TM1 mode of the plane structure, as shown in
Fig. 13(b), a fact that can be explained as follows: The
field of the TM1 mode of the plane structure has a
small-field penetration in the metal of a waveguide of
small dielectric thickness. The electric field has a
large intensity at sharp metal ridges. As a result of
these two effects the field of a quasi-TM01 mode is
concentrated at the edges of the metal strips (with a
strong penetration into the metal), and therefore for
narrow metal strips the quasi-TM10 mode is a ridge
mode whose field intensity decreases exponentially
with the distance to the edges of the metal strips
[Fig. 13(c)]. Rectangular waveguides with field con-
centration at outer corners of the waveguide ex-
hibit similar TM01 behavior. The result is that the
quasi-TM01 mode has a field structure and other pa-
rameters that are significantly different from those of
a TM1 wave of plane structure. However, for signifi-
cantly large metal strips the edge effect becomes
small, and a TM01 mode has the same parameters as
the TM1 mode of a plane structure.

We used a complex nanostructure (see Fig. 14) to
obtain the field pattern of the quasi-TM02 mode,
where 1 is a microstrip line with perfectly conducting
strips excited by a quasi-TEM wave, 2 is a perfectly
conducting plate to reflect the quasi-TM00 mode, and
3 marks two plates that have large losses to absorb
the rest of the quasi-TM00 energy. Despite this large
effort to exclude the quasi-TM00 mode, the TM00 is
not completely suppressed, such that the resultant
field, as shown in Fig. 14 (where 4 marks the loops of
the electric field for the TM00 mode and 5, that for the
TM02 mode), is shown to be a superposition of the
TM02 and TM00 fields. The field pattern of the
quasi-TM02 mode is similar to that of the two-
dimensional TM02 mode. Much of this field is distrib-
uted in the air rather than in the dielectric and metal
layers. The slow-wave factor of the quasi-TM02 mode
is close to 1. The field structure for a relatively large
microstrip line �a � b � 100 nm� is shown in Fig. 14.

Fig. 12. Dependence of the slow-wave factor of a quasi-TM10 mode
microstrip line and a rectangular waveguide on the waveguide’s
width. The structures have a core layer with �1 � 2.25 and b
� 40 nm and silver metal strips with t � 20 nm and operating at
� � 790 nm. Dashed curves, FIT; solid curves, MMM.

Fig. 13. (a) Electric field distribution Ey of the quasi-TM01 mode
at a microstrip cross section. The microstrip parameters are a
� b � 10 nm, t � 5 nm (silver), �1 � 2.25, and � � 780 nm �ksw

� 6.0�. (b) Dependence of the slow-wave factor on the TM01 mode
of the microstrip linewidth: b � 40 nm, t � 20 nm �silver�, �1

� 2.25, and � � 770 nm. (c) Electric field amplitude |E| of the
quasi-TM01 mode at a microstrip cross section: b � 40 nm, a
� 850 nm, t � 20 nm �silver�, � � 770 nm.

Fig. 14. Ey field distribution of the quasi-TM02 mode along the
microstrip line with silver metal strips at the x � 0 plane. The
microstrip parameters are a � b � 100 nm, t � 30 nm, �1

� 2.25, and � � 780 nm: 1, microstrip with perfectly conducting
metal strips; 2, perfectly conducting rectangular plate; 3, slabs
with large absorption; 4, loops of the electrical field of the
quasi-TM00 wave; 5, loops of the electrical field of the quasi-TM02

wave.
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For smaller microstrip sizes �a � b � 60 nm, for
example), however, we could not see (despite signifi-
cant efforts to choose the proper structure) the field of
the TM02 mode in the field pattern, and thus we as-
sume that this wave becomes cut off.

The fundamental quasi-TM00 mode of an optical
microstrip can propagate between any two homoge-
neous metal films stretched along the same axes, as
does for microwave frequency. For example, the field
structure of the fundamental mode propagating in a
microstrip line formed by a circular glass rod covered
with two chord-shaped silver strips placed symmet-
rically at the upper and lower rod surfaces is shown
in Fig. 15.

The rectangular waveguide in the microwave re-
gime usually has one side whose length [in Fig. 15(a),
for example] is approximately two times that of other
side. The TE10 mode is the fundamental mode for this
waveguide structure, with the electric field polarized
along the narrow sidewalls. The cutoff condition for
the TE10 mode in the microwave band (under a per-
fectly conducting wall approximation) can be written
as

�0
2 � k2n2 � �
�a�2 � 0, (3)

where �0 is a wavenumber of the fundamental mode
and n is the refractive index of a dielectric medium of
the waveguide. The rectangular waveguide in the
optical region is an open structure, and in an open
waveguide only a slow wave can propagate without
radiation. Therefore the equation

�0
2 � k2ksw

2 � �
�a�2 � k2 (4)

can be used for approximate (small-loss approxima-
tion) calculation of the transformation of the rectan-
gular waveguide mode from propagation into a leaky
mode. Equation (4) can be applied for approximate
calculation of the propagation condition for the fun-
damental mode of an optical rectangular waveguide
by use of the slow-wave factor ksw of the quasi-TM0
mode of a two-dimensional waveguide. As was found
above, the slow-wave factor in an optical wave band
can be increased infinitely with a decrease in the
thicknesses of the dielectric and metal layers. There-
fore one may expect that it will be possible to obtain
a propagation condition for a tiny rectangular
waveguide (owing to a large slow-wave factor) by
proper choice of the waveguide’s height and the metal
film’s thickness. A numerical simulation by MWS
showed that this propagation condition is indeed
achievable. Examples of field patterns of quasi-TM10
modes of a rectangular waveguide are shown in
Fig. 16, from which one can see that, even for very
thin metal films, the sidewalls are not transparent
and can be replaced, with good accuracy, by electric
walls. It should be noted that, for providing propaga-
tion conditions for a fundamental mode in a tiny
optical waveguide, one side of the waveguide should
be significantly larger than the other. That is, the
waveguide shape should be stretched in a direction
orthogonal to the polarization of the electric field.

An elliptical nanowaveguide [a dielectric rod with
an elliptical cross-sectional shape whose sidewall is
coated with a metal film, as shown in Fig. 17(a)] may
be considered a modification of a rectangular nano-
waveguide with a smoothly varying height. Therefore
one may expect that an elliptical nanowaveguide that
has a large eccentricity in its cross-sectional shape
will support a propagation mode. From the field pat-
tern of the elliptical waveguide (simulated by the
MWS) shown in Fig. 17, one may be able to see that

Fig. 15. Field distributions in a microstrip line formed by a cir-
cular glass rod with two chord-shaped silver strips placed symmet-
rically on the upper and lower rod surfaces. (a) Magnetic energy
density along the microstrip at x � 0. (b) Magnetic field amplitude
across the microstrip at z � 21 nm. The microstrip parameters are
r (rod diameter) 10 nm, t � 7 nm, �1 � 2.25, s � 200 nm, and
h � 1.28r.

Fig. 16. (a) Electric field energy density at z � 100 nm and (b)
amplitude of magnetic field Hx at z � 100 nm of the fundamental
HE01 mode for a rectangular waveguide with a silver film coating.
The parameters are �1 � 4, b � 36 nm, a � 8 nm, t � 4 nm, and
� � 780 nm.
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this simple model works quite well and that several
HE0m modes (with different field dependences on x)
can propagate in this tiny elliptical nanowaveguide.

4. Conclusions

A simplified mode-matching method and a rigorous
finite-integral technique were used to analyze
mode-propagation characteristics in optical nano-
waveguides. Numerical simulation by both methods
has shown the strong correlation between the char-
acteristics of modes of an infinite plane dielectric–
metal-layer structure and the characteristics of a
nanowaveguide made on the basis of that structure.
It was found that the simplified MMM gives correct
numerical results for calculation of the dispersion
characteristics of a quasi-TM01 mode with an error
smaller than 10% for microstrip and rectangular
nanowaveguides. It was shown that the MMM can be
useful for qualitative analyses of the field structure of
a quasi-TM00 mode of a microstrip and the TM10 mode
of a microstrip and a rectangular waveguide for a
narrow waveguide �a � b�. It was found that a sim-
plified MMM can be applied for qualitative analyses
of the characteristics of the TM00 mode of a microstrip
line and of the TM10 mode of a microstrip and a rect-
angular waveguide for a wide waveguide �a � b�.

The application of the MMM is useful in a micro-
wave band, and we hope that it will also be useful in
nano-optics. Without any doubt the simplified MMM
proposed in this paper needs significant improvement
for application in nanowaveguide engineering.

The authors are grateful to Computer Simulation
Technology for allowing a trial use of a fully working
version of its Microwave Studio software for numer-
ical simulations of three-dimensional nanowaveguide
structures.
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