

Mode S Surveillance Principle

MICA Workshop for ICAO MID States Agenda Item #1

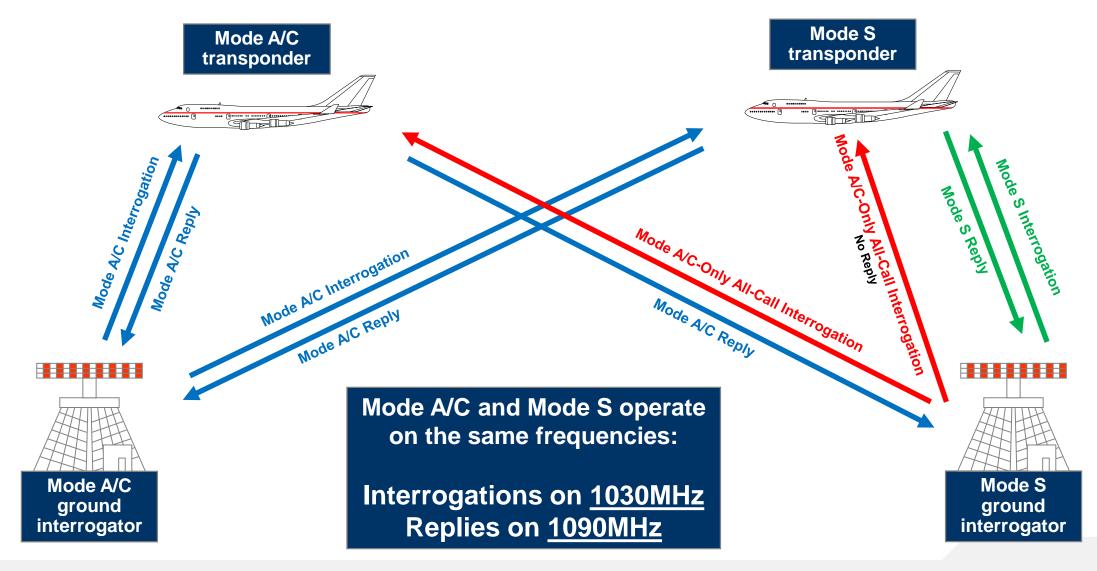
Jérôme BODART

EUROCONTROL MICA Cell

19-20 October 2021

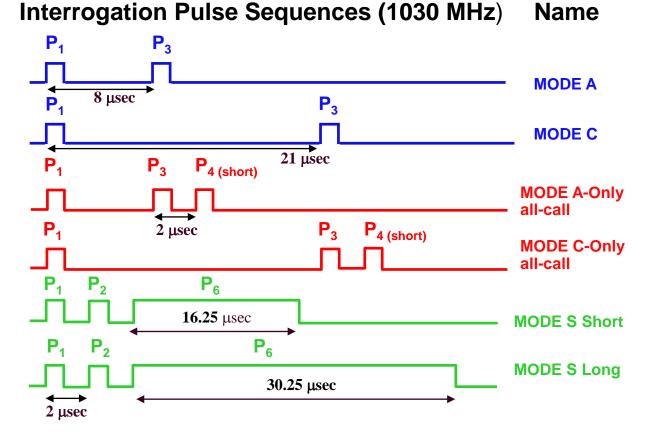
Content

- Description of the key technical principles of Mode S radar
 - Interrogator Code (IC)
 - more details in "Operation on II and SI Code, II/SI Code Operation"
 - Coverage Maps
 - Lockout
 - Clusters
- Description of Mode S radar operation, interrogations and replies
- Overview of other surveillance systems:
 - ADS-B
 - Multilateration (WAM)
 - Airborne Collision Avoidance System (ACAS)



S = Selective

- Selectively communicate with individual aircraft
- Unique Mode S address for each aircraft (ICAO 24-bit aircraft address)
 - Allocated by the State at registration
- An 'address' for Mode S radar (IC = Interrogator Code)
 - > Provided by the EUROCONTROL MICA (Mode S Interrogator Code Allocation) Cell
- Backward compatible with old systems (Mode A/C)



Mode S and Mode A/C interoperability

MODE A/C

Mode A/C-Only all-call (Intermode)

MODES

Mode-S transponder
MODE A
MODE C
No Reply

Transponder Replies (1090 MHz)

Mode A/C/S all-call interrogations ($P_1 P_3 P_{4 \, (long)}$) shall not be used on or after 1 January 2020 (See Section 3.1.2.1.5.1.1.1 of ICAO Annex 10 Vol. IV Fifth Edition)

Mode S Radar Interrogations

1. ACQUISITION → AII-Call

A Mode S radar sends All-Call interrogations to detect and acquire incoming aircraft:

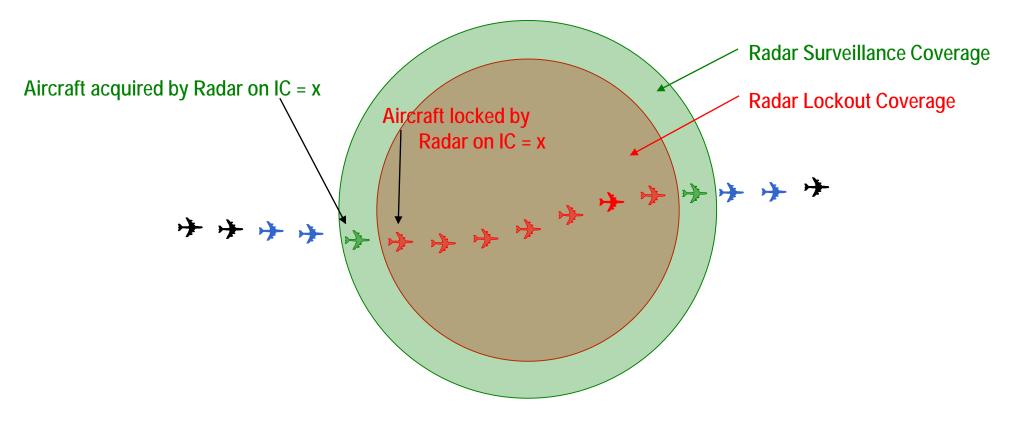
- Broadcast interrogations → addressed to all aircraft
- Aircraft reply with its ICAO 24-bit Mode S address

2. <u>SELECTIVE INTERROGATIONS → Roll-Call</u>

Once acquired, the Mode S radar sends selective interrogations to the aircraft using the 24bit Mode S address received during the acquisition

→ Selective interrogations in Surveillance coverage

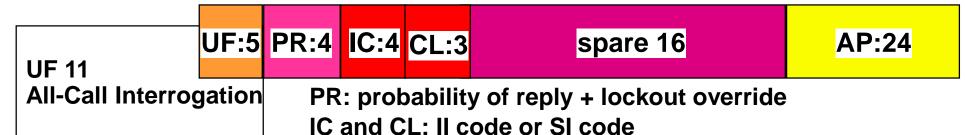
3. LOCKOUT


Once acquired, the Mode S radar locks the aircraft to prevent it to reply to All-Call interrogations (lockout request in selective interrogations)

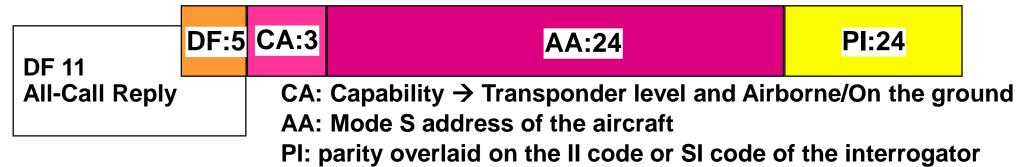
All-Call replies are useless once the radar has acquired the aircraft.

→ Lockout in Lockout coverage

Aircraft acquisition, selective interrogations and lock-out


- → Aircraft not in line of sight of radar and/or not in power budget → does not receive All-Call interrogations
- → Aircraft outside surveillance coverage → receives All-Call interrogations and replies, but replies not processed by radar
- → Aircraft acquired by radar in surveillance coverage using All-Call replies → selective interrogations (Roll-Call)
 - → not locked: receive All-Call interrogations and replies

→ Aircraft locked by radar <u>in lockout coverage</u> → does not reply to All-Call interrogations



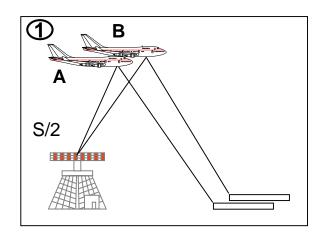
Mode S Only All-Call Interrogation (UF 11) – 56 bits

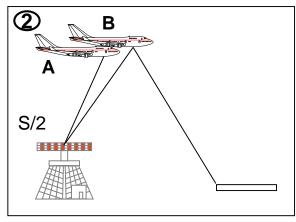
AP: address, Mode S only all-call is 24 * '1' or FFFFFF

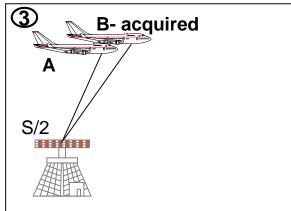
Mode S Only All-Call Reply (DF 11) – Short: 56 bits

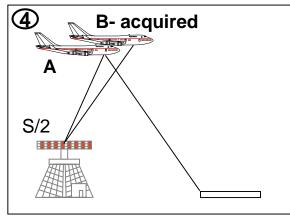
Aircraft Acquisition using All-Call

- 1. Mode S radar sends All-Call interrogations (UF11) to all aircraft (broadcast).
 - UF11 contains the IC (II or SI code) allocated to the Mode S radar
- 2. Mode S aircraft receives the All-Call interrogation (UF 11) and decodes the IC.
 - If it is not locked on this IC (or if lockout override is requested), the aircraft replies to the All-Call interrogation (All-Call reply – DF11) with the requested probability.
 - IC of Mode S radar and ICAO 24-bit Mode S address of the aircraft are in the All-Call replies.
- 3. Mode S radar receives All-Call reply (DF 11) containing its own allocated IC
 - Decodes the ICAO 24-bit Mode S address of the aircraft
 - Computes the aircraft position (range, azimuth)
 - If the aircraft is inside the Surveillance coverage, it is acquired and interrogated selectively






- Stochastic Acquisition
 - Probability of reply in All-Call interrogation
 - Used for acquiring targets close in range
- Lockout Override
 - Disregard aircraft lockout on IC in All-Call interrogation
 - Can be stochastic
 - Can be applied by sector
 - Sectorised lockout override by azimuth sector
 - Should not be used except for fall-back (e.g. in case of IC conflict) or temporary IC allocation


Stochastic Acquisition

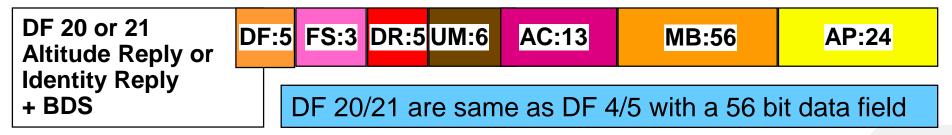
Stochastic S/2 Interrogations with 50% set as PR

- A and B both reply
 Replies overlap in time
 Both are garbled and lost
- A decides No Reply (50%)
 B replies
 B acquired and locked out
- B is locked out
 A decides No Reply (50%)
- B is locked out
 A replies
 A acquired and locked out

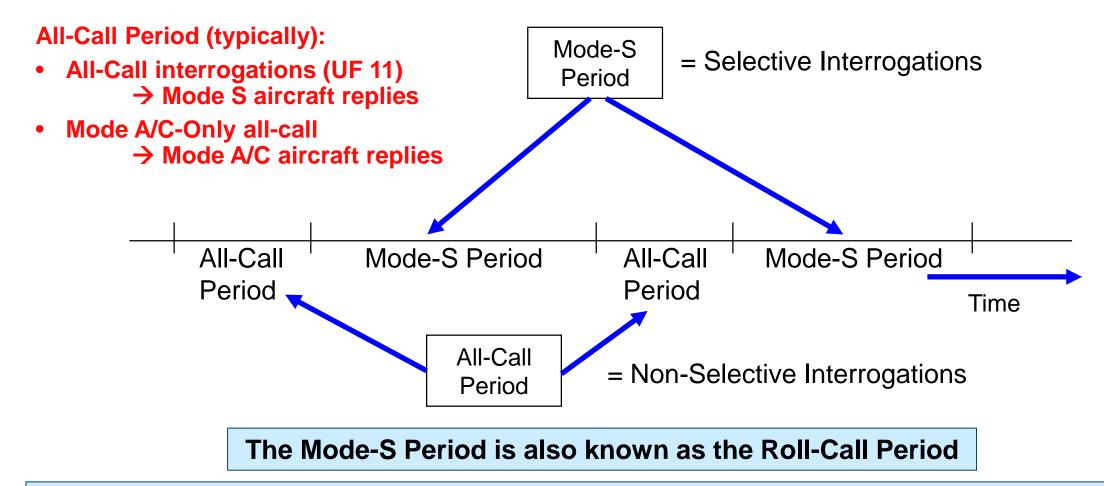
Selective Interrogations and Lockout

- Once an Mode S aircraft is acquired, the Mode S radar knows:
 - ICAO 24-bit Mode S address of the aircraft
 - Position of the aircraft
- → Mode S radar sends selective interrogations to the aircraft using the ICAO 24-bit Mode S address in the Surveillance coverage (UF 4 or UF 5):
 - Only the aircraft having the correct ICAO 24-bit Mode S address replies
 - Request Altitude (Mode C) (UF 4) or Mode A Code (UF 5)
 - Lockout request in Lockout coverage to prevent the aircraft to reply to All-Call interrogations from the same radar (on the IC of the radar)
 - All-Call replies are useless once the radar has acquired the aircraft.
 - The Mode S radars with a fixed position should use permanent lockout.
 - May request the transfer of aircraft registers
 - BDS (Comm-B Data Selector)

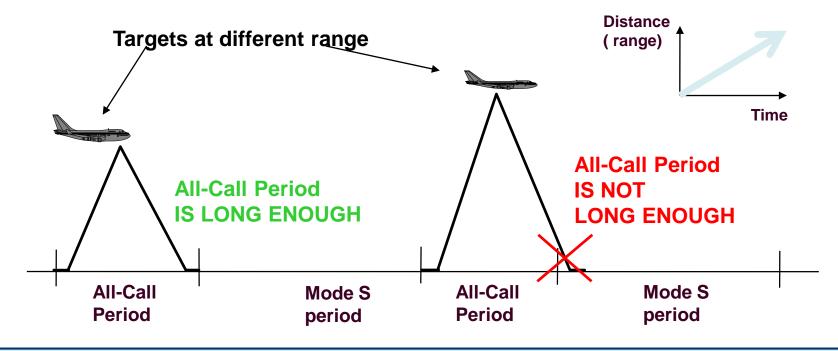
Selective Interrogation and Reply Format


Surveillance Interrogation (UF 4 or 5) - 56 bits

Surveillance Reply (DF 4 or 5) – Short: 56 Bits (no BDS extraction)



Comm-B Reply (DF 20 or 21) – Long: 112 Bits (content of BDS – MB:56)


All-Call Period vs. Mode-S Period (1)

The mode interlace pattern (MIP) of an interrogator is the sequence of Interrogation periods (All-Call and Roll-Call Periods) that an interrogator is repeating.

The length of the All-Call period must be AT LEAST long enough to allow an All-Call interrogation and reply sequence to complete (radar range).

Mode S All-Call and Mode A/C (-Only all-calls) interrogations can be sent in the same All-Call period or in different All-Call periods.

Requirements and Recommendations

- Mode S radar shall trigger, in average, less than 6 All-Call replies in the beam per aircraft
 - → ICAO Annex 10 Vol. IV

3.1.2.11.1.1.2 Maximum number of Mode S all-call replies triggered by an interrogator. For aircraft that are not locked out, a Mode S interrogator shall not trigger, on average, more than 6 all-call replies per period of 200 ms and no more than 26 all-call replies counted over a period of 18 seconds.

- Mixed Mode MIP (i.e. MIP including Mode A/C interrogations no short P4) should not be used.
- Mode S all call MIP should contain some interrogations with PR=1/2 or lower to facilitate the acquisition of aircraft in garbling situation and to reduce the number of triggered all call replies.

Elementary Surveillance (ELS)

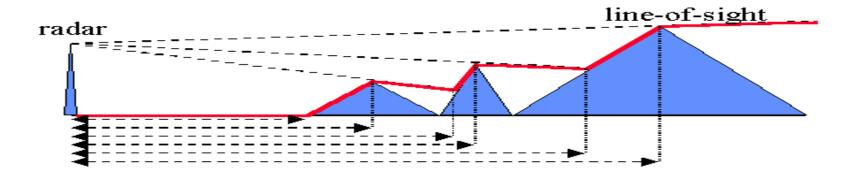
- Basic Surveillance functionality
 - ICAO 24-bit technical identification
 - Mode A code and Mode C (Altitude reporting to 25ft)
 - Transponder capability reports
 - Datalink capability report (BDS 1,0)
 - Common usage GICB report (BDS 1,7)
 - Aircraft Identification call sign (BDS 2,0)
 - Flight status (airborne / on the ground)
 - SI-Code functionality
- The provision of registers BDS 1,0, BDS 1,7 and BDS 2,0 is mandated for all aircraft
- These registers are requested in the first selective interrogations
- The content of these registers should not change under normal flight conditions

If it does, it should be broadcasted

Enhanced Surveillance (EHS)

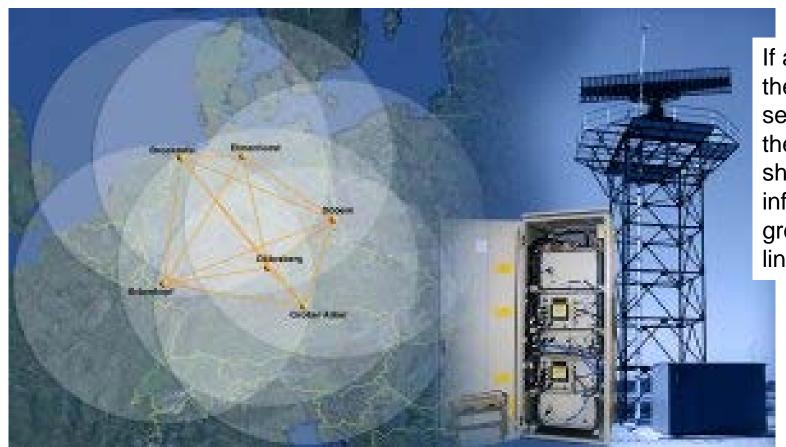
- EHS register availability known from BDS 1,7
- 3 BDS registers are in general regularly extracted.
- BDS 4,0 Selected Vertical Intention
 - Selected Altitude / Barometric Pressure Settings
- BDS 5,0 Track and Turn
 - Roll Angle / True Track Angle / Ground Speed / Track Angle Rate / True Airspeed
- BDS 6,0 Heading and Speed
 - Magnetic Heading / Indicated Airspeed / Mach / Barometric Altitude Rate / Inertial Vertical Rate

Mode S Radar Coverage



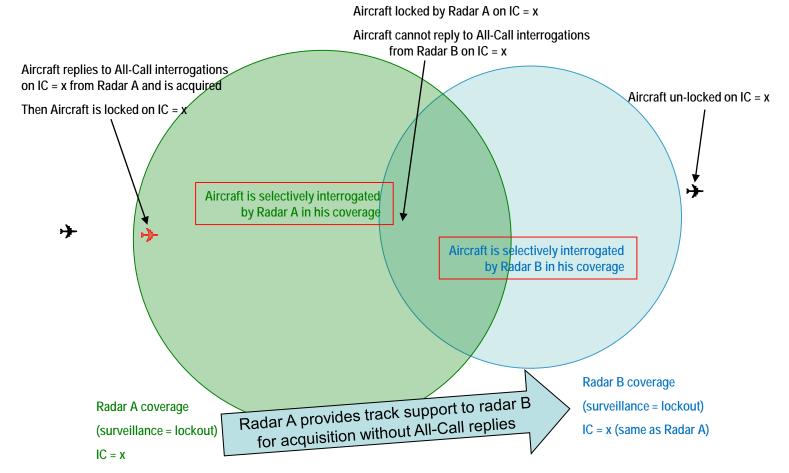
- 3 formats of to define surveillance and lockout coverage
 - European Mode S (EMS) Coverage Map
 - Maps in Latitude/Longitude with same common origin (Latitude 33° North and Longitude 15° West) and same cell size (ΔLatitude: 0.0833° and ΔLongitude: 0.1253°)
 - EMS Coverage maps allocated by the MICA Cell when supported by Mode S radar
 - Lockout coverage is 1 cell smaller than the Surveillance coverage in IC allocations
 - Surveillance and Lockout range per sector
 - Surveillance and Lockout coverage divided into sectors (e.g. 32 sectors of 11.25°)
 - Surveillance and Lockout ranges provided by sector
 - Lockout range is 5NM smaller than the Surveillance range in IC allocations
 - Surveillance and Lockout unique range (circular coverage)
 - One unique surveillance range and one unique lockout range (circular coverage)
 - Not flexible for IC allocation

Line of Sight

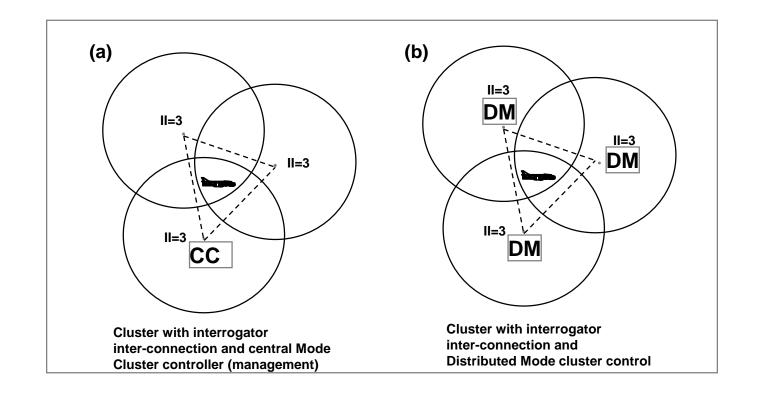


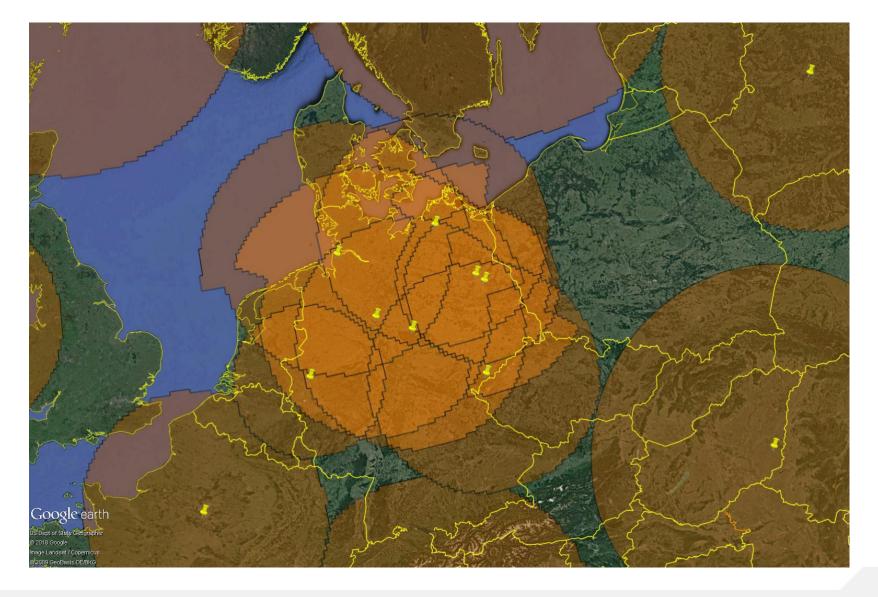
- Radar coverage is limited by <u>Line of Sight</u>
 - Cone of Silence (or 'Overhead Gap')
 - Min & Max Elevations (e.g. 0 to 60 degrees)
 - Depends on antenna design and configuration
 - Obstacles

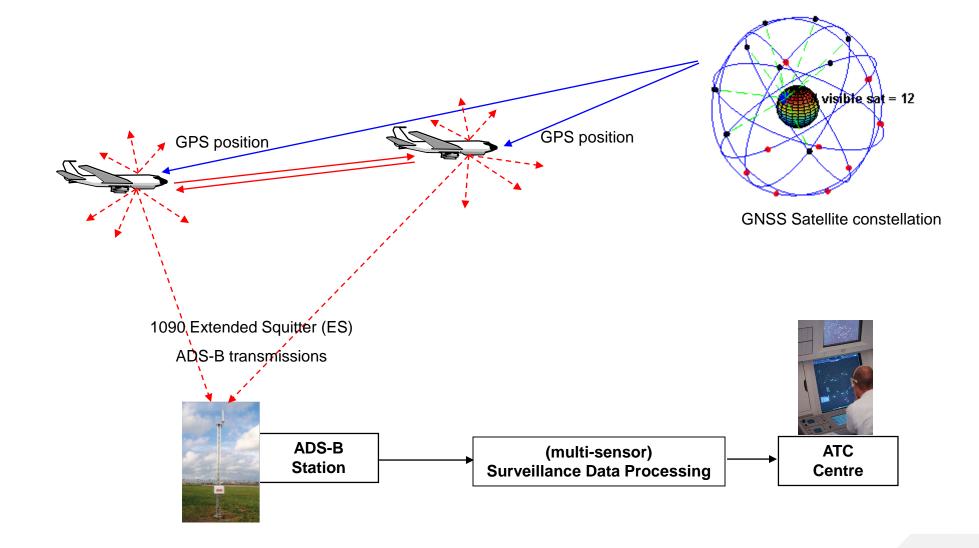
Cluster – operating stations together



If an aircraft is in the cover of several radars, then they could share that information via ground data links.




Cluster Management


Example of Cluster

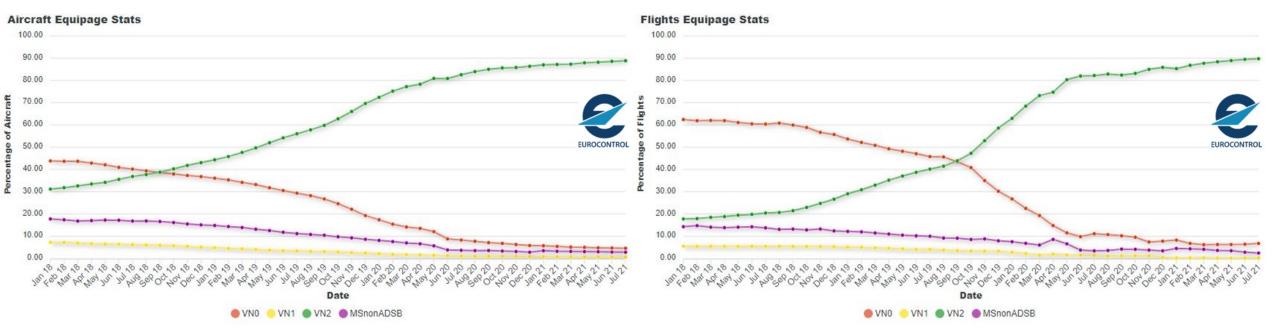
ADS-B: Automatic Dependent Surveillance-Broadcast

ADS-B Extended Squitters

- DF17 Extended Squitters (long Mode S message) broadcasted on 1090MHz by aircraft
- When aircraft is airborne, typically
 - Airborne position 2 per second
 - Airborne Velocity 2 per second
 - ACID 1 every 5 seconds
 - Max 6.2 extended squitters per second
- For vehicles without transponder
 - DF18 Extended Squitter is used to broadcast parameters

ADS-B Equipage

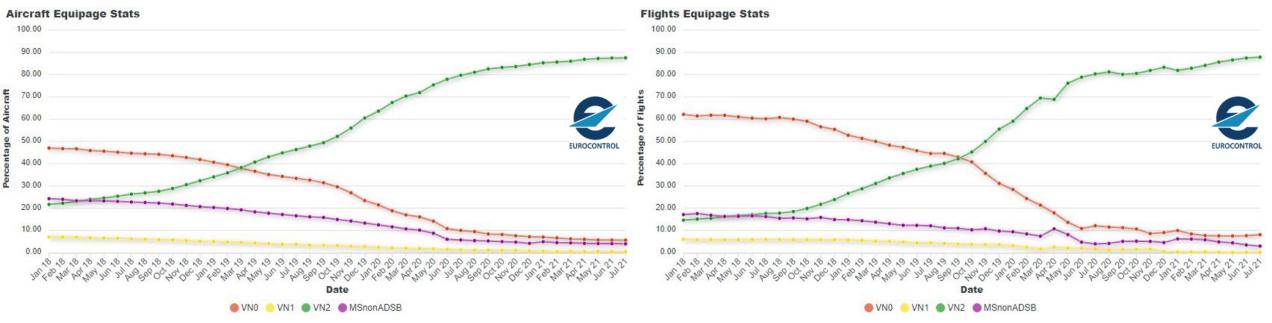
- Not all aircraft are equipped with ADS-B
- Different versions of ADS-B
 - v0 and v1 have very few quality indicators
 - The position may not be reliable
 - v2 provides good position indicators
- Supported by EU regulation SPI-IR ((EU) 1207/2011 amended by (EU) 2017/386)
 - Mandate ADS-B v2 by 7 December 2020 for IFR >5700kg or Max Speed > 250 knots
 - Smooth retrofitting of the existing fleet
 - ADS-B ground receiver as surveillance layer


ADS-B Airborne Equipage

(b) aircraft with a maximum certified take-off mass exceeding 5 700 kg or having a maximum cruising true airspeed capability greater than 250 knots, operating flights referred to in Article 2(2), with an individual certificate of airworthiness first issued on or after 7 June 1995, are equipped with serviceable secondary surveillance radar transponders that comply with the following conditions:

Current Aircraft Equipage: TOTAL FLEET, under SPI IR

- 1st August 2021 update:
 - Increase to around 88.8% of aircraft equipped with ADS-B v2, representing around 89.7% of all NM flights
 - Clear growth deceleration after SPI IR deadline



Monthly ADS-B Equipage updates: https://www.eurocontrol.int/service/adsb-equipage

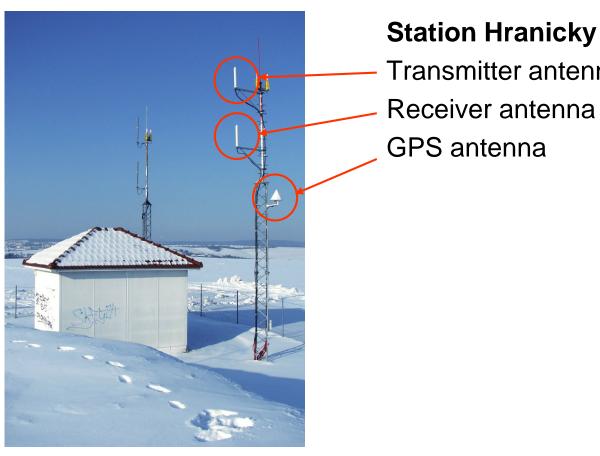
- Current Aircraft Equipage: EU27+4 FLEET, under SPI IR
- 1st August 2021 update:
 - Increase to around 87.5% of aircraft equipped with ADS-B v2, representing around 87.9% of all NM flights by aircraft registered in EU27+4 countries
 - Growth is flattening

Monthly ADS-B Equipage updates: https://www.eurocontrol.int/service/adsb-equipage

ADS-B Airborne Equipage

- Current Aircraft Equipage: Other fleets, under SPI IR
- 1st August 2021 update:
 - ADS-B v2 equipped fleet
 - ECTL members (≈88%), Asia (≈ 91%), Africa (≈ 83%) and North America (≈ 93%)
 - Non-NM aircraft includes only long-haul flights

Monthly ADS-B Equipage updates: https://www.eurocontrol.int/service/adsb-equipage


Multilateration

- Signal transmitted by aircraft transponder and received at several sensors (Passive)
 - Time Difference of Arrival (TDOA) measurements by ground sensors
 - Central processor calculates aircraft position
- Multilateration is common in Europe
 - Mainly uses squitters for deriving position
 - Short range systems at airport
 - Wide area multilateration systems (WAM), sometimes covering the entire country
- Active interrogation is used by most systems:
 - To extract missing information (e.g. BDS registers)
 - Improved detection of Mode A/C only aircraft
 - Care must be taken
 - not to generate excess 1030/1090MHz FRUIT
 - not to over occupy the Transponder (due to selective interrogations)

MLAT Brno

Station Hranicky

Transmitter antenna

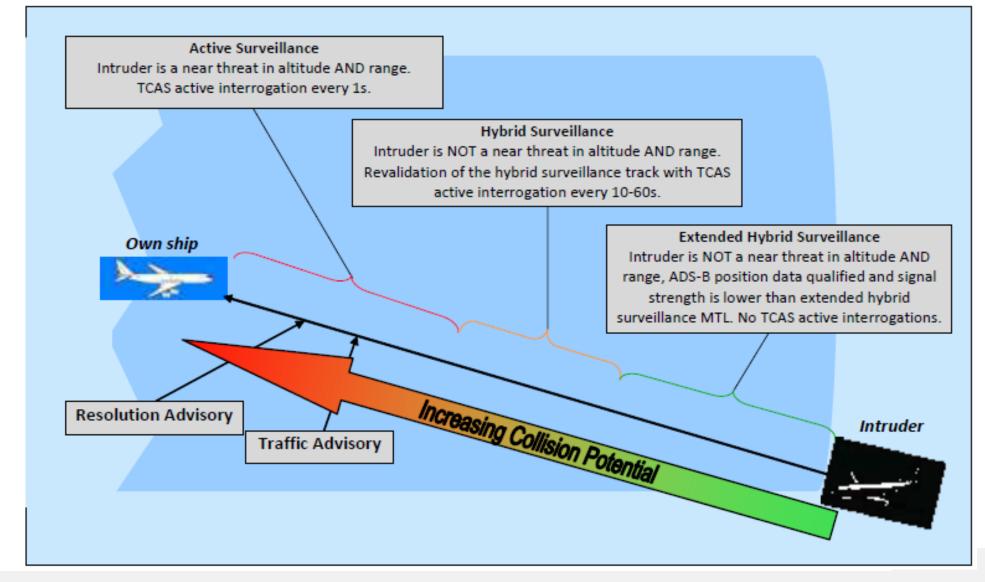
GPS antenna

ACAS / TCAS

- Airborne Collision Avoidance System (ACAS)
- Traffic alert and Collision Avoidance System (TCAS)
 - TCAS is an airborne device
 - Requires a Mode S transponder on-board
- TCAS provides collision avoidance protection
 - Traffic Advisories visual acquisition of intruder aircraft
 - Resolution Advisory recommended escape manoeuvres in the vertical dimension

TCAS relies on Acquisition Squitters to acquire aircrafts in vicinity

- TCAS sends Mode S interrogations (UF 0) to the acquired aircraft (intruder) to get the range, bearing and altitude
- The transponder of the acquired aircraft replies with a DF 0, containing its altitude
- The rate of TCAS interrogations to a Mode S aircraft depends on the range and the closure rate (Time to closest point of approach)
 - Between 1 interrogation every 5 seconds and 1 interrogation per second



- TCAS use DF17 Extended Squitters (ADS-B) to acquire and monitor the aircraft
 - Use valid barometric altitude and position received in DF17 Extended Squitters to acquire and monitor the aircraft
 - Decrease the number of interrogations (UF 0) and replies (DF 0)
 - Depends on data quality and ADS-B Version Number
 - Extended Hybrid Surveillance if ADS-B Version Number ≥ 2
- Extended Hybrid Surveillance (passive)
 - No interrogations when the intruder is far away
- Hybrid Surveillance (low rate of interrogation)
 - Selective interrogations every 10-60s to track intruders when the aircraft get closer (not in nearterm collision)
- Once the intruder come close to being a collision threat, it is tracked with active surveillance

Aircraft not broadcasting DF17 Extended Squitters are tracked actively

DO-300A – Extended Hybrid Surveillance

