

Model 200 Series

Operation \& Set-up Manual

Revision 2.0
July, 2004

Contents subject to change without notice.
Salter Brecknell Weighing Products
1000 Armstrong Drive
Fairmont, MN 56031
Tel (800) 637-0529
Tel (507) 238-8702
Fax (507) 238-8271
E-mail: sales@salterbrecknell.com
Web: www.salterbrecknell.com.

NOTE

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his/her own expense.

TABLE OF CONTENTS

Page
Chapter 1: Introduction to the $\mathbf{2 0 0}$ Series Indicator 1-1
Chapter 2: Installation 2-1
2.1 ABS Enclosure 2-1
2.1.1 Connecting the weigh platform 2-1
2.1.2 Connecting the serial printer, remote display or computer 2-2
2.1.3 Connecting the power supply 2-2
2.2 Stainless Steel Enclosure 2-3
2.2.1 Connecting the weigh platform 2-4
2.2.2 Connecting the serial printer, remote display or computer 2-4
2.2.3 Connecting the power supply 2-4
Chapter 3: Configuration 3-1
3.1 Configuration Overview 3-1
3.2 Setup ("F") Menu 3-1
3.2.1 Entering the Setup Menu - ABS Enclosure. 3-1
3.2.2 Entering the Setup Menu - Stainless Steel Enclosure 3-1
3.2.3 Navigating in the Setup Menu 3-2
3.2.4 Notes on the Setup Menu 3-3
3.2.5 Exiting the Setup Menu - ABS Enclosure 3-3
3.2.6 Exiting the Setup Menu - Stainless Steel Enclosure 3-4
3.3 User ("A") Menu 3-4
3.3.1 Entering the User Menu 3-4
3.3.2 Navigating in the User Menu 3-4
3.3.3 Notes on the User Menu 3-7
3.3.4 Exiting the User Menu 3-7
Chapter 4: Setup Menu Descriptions and Procedures 4-1
4.1 Setup Menu Descriptions 4-1
Chapter 5: User Menu Descriptions and Procedures 5-1
5.1 User Menu Descriptions 5-1
5.2 User Menu Procedures 5-4
5.2.1 ID Number Entry (A8) 5-4
5.2.2 Line Feeds Entry (A9) 5-4
Chapter 6: Calibration 6-1
6.1 Calibration Overview 6-1
6.2 Zero Calibration (F16) 6-1
6.3 Span Calibration (F17) 6-1
6.4 View Calibration Values (F18) 6-2
6.5 Key-in Zero Calibration Value (F19) 6-2
6.6 Key-in Span Calibration Value (F20) 6-3
Chapter 7: Operation 7-1
7.1 Display 7-1
7.1.1 Liquid Crystal Display (LCD) 7-1
7.1.2 Light Emitting Diode (LED) Display 7-1
7.2 Keyboard 7-2
7.2.1 Function Keys 7-2
7.3 General Scale Operation 7-3
7.3.1 Weighing an item 7-3
7.3.2 Taring an item 7-3
7.3.3 Piece Counting 7-4
7.3.4 Peak Hold Option 7-4
Chapter 8: Legal for Trade Sealing 8-1
8.1 ABS Enclosure 8-1
8.2 Stainless Steel Enclosure 8-1
Appendix A: Specifications A-1
Appendix B: Serial Port Information B-1
B. 1 Serial Port Modes B-1
B.1.1 Full Duplex Mode B-1
B.1.1.1 Recognized Host Commands B-2
B.1.2 Print Ticket Mode B-2
B.1.3 Simplex Mode B-3
Appendix C: Determining Proper Span Gain (F2) C-1
C. 1 Span Gain Overview C-1
C. 2 Setting the initial value for span gain C-1
C. 3 Viewing the internal counts C-1
Appendix D: Displayed Error Codes D-1
Appendix E: Addendum for 4-20 mA Option E-1

LIST OF FIGURES

1-1 200 Front Panel 1-2
1-2 200E Front Panel 1-2
1-3 200ES Front Panel 1-3
1-4 200BW Front Pane 1-4
1-6 200SL Front Panel 1-4
2-1 200/200E ABS Enclosure Rear Panel 2-1
2-1a 200BW ABS Enclosure Rear Panel 2-1
2-2 Color Codes for Shielded Load Cell Cable 2-1
2-3 Pin Assignments for the Load Cell Port 2-2
2-4 Pin Assignments for the D-SUB9 Serial Port Connector 2-2
2-5 200ES Main Circuit Board Overview 2-3
2-5b 200SL Main Circuit Board Overview 2-3
2-6 Connection Assignments for the Load Cell Terminal (J8) 2-4
2-7 Connection Assignments for the Serial Communication Terminal 2-4
3-1 Setup Menu Key Assignments 3-2
3-2 Setup Menu Chart 3-3
3-3 User Menu Key Assignments 3-5
3-4 User Menu Chart 3-6
5-1 User Menu Key Assignments 5-4
6-1 Setup Menu Key Assignments 6-1
7-1 200 Series LCD Detail 7-1
7-2 200 Series LED Display Detail 7-1
7-3 Function Keys Layout - non-battery powered units 7-2
7-3a Function Keys Layout - battery powered units 7-2
8-1 200 and 200E ABS Rear Panel 8-1
8-1a 200BW ABS Rear Panel 8-1
B-1 Cable Diagram for Indicator to IBM PC B-1
B-2 Consolidated Controls Demand Mode B-1
B-3 Print Ticket B-2
B-4 Cable Diagram for Indicator to Printer B-2
B-5 Consolidated Controls Continuous Mode B-3
P-1 200E Parts List P-1
LIST OF TABLES
1-1 200 Series Product Matrix 1-1
4-1 Invalid Setup Selections for Commercial Applications 4-3
6-1 Calibration Value Table 6-2
7-1 200 Series Annunciator Definitions 7-2
C-1 Minimum Recommended Span Gain Table C-2
C-1a Minimum Recommended Span Gain Table C-2

CHAPTER 1: INTRODUCTION TO THE 200 SERIES DIGITAL INDICATORS

The 200 Series Digital Indicator is a general purpose, industrial grade weight indicator. Five models are currently available, distinguishable by display type, enclosure type and power supply. Table 1-1 shows the 200 Series product matrix.

All models operate identically, can readout up to 50,000 display divisions and can supply enough current for up to $4-350 \Omega$ load cells. All setup parameters may be entered via the front panel keys, including calibration.

For certain models, an internal 6 V rechargeable battery is available as the primary power source. The external power supply with these units functions as a charger for the rechargeable battery. The power supply may also be used as the main power supply.

If your Model 200 Series Digital Indicator is part of a complete floor scale or has been installed for you, you may skip to Chapter 7 for operating instructions. Prior to using the indicator, please read this chapter carefully and completely. Store the manual in a safe and convenient place so it will be available if you have questions concerning the operation of the scale.

If you are an installer, the indicator's installation and wiring instructions are found in Chapter 2. The indicator contains two main setup menus: The Setup ("F") menu, which configures the indicator to your weigh platform and the User ("A") menu, which configures the serial communication port and enables some user options. Chapter 3 gives an overview and explains how to use the five front panel keys to maneuver and save settings in both menus. Chapters 4 and 5 explain the Setup and User Menu options, respectively. Chapter 6 covers system calibration. Prior to installing the indicator, please read this manual carefully and completely. Store the manual in a safe and convenient place so it will be available if you have questions concerning the setup and operation of the scale.

MODEL	DISPLAY TYPE ${ }^{1}$	$\underset{\text { TYPE }^{2}}{\text { ENCLOSURE }}$	POWER SOURCE
200	LCD	ABS	AC adapter - $12 \mathrm{VDC}, 500 \mathrm{~mA}$
200E	LED	ABS	AC adapter - $12 \mathrm{VDC}, 500 \mathrm{~mA}$
200ES	LED	Stainless Steel	110/220 VAC, $50 / 60 \mathrm{~Hz}^{3}$
200BW	LCD	ABS	$6 \times$ "C" (UM-2) batteries
200SL	LCD	Stainless Steel	Internal 6V battery

TABLE 1-1: 200 Series Product Matrix

[^0]

FIGURE 1-1: 200 Front Panel

FIGURE 1-2: 200E Front Panel

FIGURE 1-3: 200ES Front Panel

FIGURE 1-4: 200BW Front Panel

FIGURE 1-6: 200SL Front Panel

CHAPTER 2: INSTALLATION

2.1 ABS ENCLOSURE

For indicators contained in the standard ABS enclosure, the rear panel contains all connectors necessary to make the appropriate connections to the weigh platform, printer, remote display and power supply.

Figure 2-1: 200/200E ABS Enclosure Rear Panel

Figure 2-1a: 200BW ABS Enclosure Rear Panel

2.1. CONNECTING THE WEIGH PLATFORM

NOTE: Make connections only with indicator turned off or unplugged.

The indicators mounted in an ABS enclosure ship with a 15 ft shielded load cell cable for connection to a weigh platform's load cell(s) or junction box.

1. Plug the cable's 14-pin Centronics-type connector into the load cell port on the rear panel of the indicator.
2. Wire the bare wires and shield to the weigh platform's load cell(s) or junction box using the color codes shown in Figure 2-2.

Color	Wire Name
RED	+Excitation
BLK	-Excitation
GRN	+Signal
WHT	-Signal

Figure 2-2: Color Codes for Shielded Load Cell Cable
3. If you do not wish to use the shielded load cell cable, you may use own, following the pin assignments shown in Figure 2-3. (A 14-pin Male Centronics-type connector is required).

Pin Nos.	
$1 / 8$	Pin Name
$3 / 10$	-Excitation
$5 / 12$	- Sxignalal
$7 / 14$	- Signal

Figure 2-3: Pin assignments for the Load Cell Port

2.1.2 CONNECTING THE SERIAL PRINTER, REMOTE DISPLAY OR COMPUTER

The 200 Series indicator comes standard with one full duplex RS-232 serial port, designed for connection to either a PC or a serial printer. The same port may be also used as a simplex, RS-232 port designed for connection to a remote display.

Figure 2-4 shows the serial port pin out. Refer to Appendix B for some suggested cable diagrams. (A 9-pin Male D-type connector is required).

1. Plug the serial printer, remote display or computer communication cable (not included) directly into the D-SUB9 serial port connector.

Figure 2-4: Pin assignments for the D-SUB9 serial port connector

2.1.3 CONNECTING THE POWER SUPPLY

The 200 and 200E indicators ship standard with an external AC adapter.

1. Simply plug the AC adapter into the indicator's DC Power Jack first, and then plug into a standard wall outlet. Make sure that the AC voltage appearing at the wall outlet matches the input voltage marked on the AC adapter.

The 200BW alkaline battery indicator ships as a "batteries not included" unit.

1. Obtain six (6) alkaline "C" cell (UM-2) batteries and install them in the battery compartment located at the rear of the unit. Be sure to observe the polarity indicated inside the battery holder.

2.2 STAINLESS STEEL ENCLOSURE

For indicators contained in a stainless steel enclosure, the rear cover must first be removed to make the appropriate connections to the weigh platform, printer, remote display and power supply. To remove the rear cover, simply remove the screws that secure it to the enclosure and set aside.

NOTE: On earlier units, the rear cover must remain off to access the Setup Menu and calibration procedures.

Figure 2-5: 200ES Main Circuit Board Overview

Figure 2-5b: 200SL Main Circuit Board Overview

2.2.1 CONNECTING THE WEIGH PLATFORM

NOTE: Make connections only with indicator turned off or unplugged.

1. Connect your shielded load cell cable (not included) to the appropriate terminal on the main board. Connection assignments for the Load Cell Terminals are shown in Figure 2-6.

Figure 2-6: Connection assignments for the Load Cell Terminal

2.2.2 CONNECTING THE SERIAL PRINTER, REMOTE DISPLAY OR COMPUTER

The 200 Series indicator comes standard with one full duplex RS-232 serial port, designed for connection to either a PC or a serial printer. The same port may be also used as a simplex, RS-232 port designed for connection to a remote display.

Connection assignments for all serial communication terminals are shown in Figure 2-7.

NOTE: Do not connect any RS-232 equipment to the " +5 V " terminal (not shown).

1. Connect your serial printer, remote display or computer communication cable (not included) to the appropriate terminal on the main board.

Figure 2-7: Connection assignments for the serial communication terminal

2.2.3 CONNECTING THE POWER SUPPLY

The 200ES indicator ships with an AC line cord attached to the indicator. Simply plug the unit into a standard wall outlet.

The 200SL indicators ship with the rechargeable battery pre-installed. The external power supply (included) can also be used to power the indicator. The adapter acts as the battery charger. Because of this, the rechargeable indicator must use a 12 VDC, 800 mA adapter.

1. Simply plug the AC adapter into the indicator's DC Power Jack first, and then plug into a standard wall outlet. Make sure that the AC voltage appearing at the wall outlet matches the input voltage marked on the AC adapter.

CHAPTER 3: CONFIGURATION

3.1 CONFIGURATION OVERVIEW

The indicator contains two main setup menus: The Setup ("F") menu, which configures the indicator to your weigh platform and the User ("A") menu, which configures the serial communication port and enables some user options. The Setup and User menus consist of several menu selections, each with its own sub-menu of choices.

To set up the indicator, you must first enter the appropriate menu mode. Once there, four of the front panel keys become directional navigators to move around in the menus, and one key is used to save or SET the selections.

3.2 SETUP ("F") MENU

3.2.1 ENTERING THE SETUP MENU - ABS ENCLOSURE

4. Power off the indicator.
5. On the rear panel move the Setup/Calibration Switch to the opposite position. See Chapter 2 for location of the Setup/Calibration Switch.
6. Power on the indicator. The indicator shows " F 1" to indicate that you are in Setup Menu mode.

Note: Access to the Setup/Calibration Switch is inhibited if the indicator has been sealed for commercial use. For more information, please refer to Chapter 8.

3.2.1.1 ENTERING THE SETUP MENU - STAINLESS STEEL ENCLOSURE

1. Power off the indicator.
2. Locate the slide switch on the rear cover and move it to the right.

NOTE: A metal plate held on by two drilled-head screws may conceal the slide switch.
3. Power on the indicator. The indicator shows " F 1" to indicate that you are in Setup Menu mode.
Note 1: Access to the back cover is inhibited if the indicator has been sealed for commercial use. For more information, please refer to Chapter 8.

Note 2: If your indicator is an older model and does not have the slide switch on the rear cover, follow these instructions instead:

200ES

1. Remove the rear cover and locate jumper JP2.
2. Position the shunt block as shown at right.

Note: On certain units, the shunt block position will be exactly the opposite.
3. Power on the indicator. The indicator shows " F 1" to indicate that you are in Setup Menu mode.

3.2.3 NAVIGATING IN THE SETUP MENU

Use the directional keys shown in Figure 3-1 to move around in the Setup Menu Chart shown in Figure 3-2 on the following page.

1. To move to a new "F" heading, use the TARE (left) or PRINT (right) key to move right or left in the Setup Menu Chart.
2. To move to the selection level, press the ZERO (down) key once. The current saved selection is shown.
3. To view the available selections for the current " F " heading, use the TARE (left) or PRINT (right) key to move through the selection field.
4. To save a new selection, press the NET/GROSS (Set) key .To exit without saving, press the UNITS (up) key to return to the current " F " heading.
5. Repeat Steps 1 through 4 until the Setup Menu is programmed.

Figure 3-1: Setup Menu Key Assignments

Figure 3-2: Setup Menu Chart

3.2.4 NOTES ON THE SETUP MENU

1. There is an F21 sub-menu present that is for FACTORY USE ONLY!
2. Detailed descriptions of the setup menu parameters can be found in Chapter 4 of this manual.
3. The User ("A") menu sub-menus appear when scrolling left or right from the "F" menu.
4. Some selections shown are not available on all models in the series. Likewise, additional selections may be available on other models in the series. See Chapter 4 for more information.

3.2.5 EXITING THE SETUP MENU - ABS ENCLOSURE

1. Power off the indicator.
2. On the rear panel, move the Setup/Calibration Switch back to its original position.
3. Power on the indicator. The display will go through a digit check, then settle into Normal Operating mode. All front panel keys will now return to their normal mode of operation.

3.2.6 EXITING THE SETUP MENU - STAINLESS STEEL ENCLOSURE

1. Power off the indicator.
2. Move the slide switch on the rear cover back to the left.
3. Power on the indicator. The display will go through a digit check, then settle into Normal Operating mode. All front panel keys will now return to their normal mode of operation.

Note: If your indicator is an older model and does not have the slide switch on the rear cover, follow these instructions instead:

200ES

1. Remove the rear cover and locate jumper JP2.
2. Position the shunt block as shown at right.

Note: On certain units, the shunt block position will be exactly the opposite.
3. Power on the indicator. The display will go through a digit check, then settle into Normal Operating mode. All front panel keys will now return to their normal mode of operation.

3.3 USER ("A") MENU

3.3.1 ENTERING THE USER MENU

1. Enter the Setup ("F") menu by following the directions in Section 3.2.1 or 3.2.2.
2. Use the right or left directional keys shown in Figure 3-3 to move right or left in the Setup ("F") menu until the indicator shows "A 1".

Note: On certain older units, the User ("A") Menu is independent from the Setup ("F") Menu. To enter the User Menu on these units, first exit the Setup Menu Mode. Turn the unit off, then press and hold the LB/KG key while powering the unit back on. When the screen shows " A 1" you may release the LB/KG key.

3.3.2 NAVIGATING IN THE USER MENU

Use the directional keys shown in Figure 3-3 to move around in the User Menu Chart shown in Figure 3-4 on the following page.

1. To move to a new "A" heading, use the TARE (left) or PRINT (right) key to move right or left in the User Menu Chart.
2. To move to the selection level, press the ZERO (down) key once. The current saved selection is shown.
3. To view the available selections for the current " A " heading, use the TARE (left) or PRINT (right) key to move through the selection field.
4. To save a new selection, press the NET/GROSS (Set) key .To exit without saving, press the UNITS (up) key to return to the current " A " heading.
5. Repeat Steps 2 through 5 until the User Menu is programmed.

Figure 3-3: User Menu Key Assignments

200E and 200ES only

200 only

200SL only

Figure 3-4: User Menu Chart

3.3.3 NOTES ON THE USER MENU

1. Detailed descriptions of the user menu parameters can be found in Chapter 5 of this manual.
2. Some selections shown are not available on all models in the series. Likewise, additional selections may be available on other models in the series. See Chapter 5 for more information.

3.3.4 EXITING THE USER MENU

1. Exit the User ("A") menu by following the directions in Section 3.2.5 or 3.2.6. The display will go through a digit check, then settle into Normal Operating mode. All front panel keys will now return to their normal mode of operation.

CHAPTER 4: SETUP MENU DESCRIPTIONS AND PROCEDURES

4.1 SETUP MENU DESCRIPTIONS

This section provides more detailed descriptions of the selections found in the Setup Menu Chart. Factory-set defaults are shown in bold with a checkmark $(\sqrt{ })$.

Table 4-1 shows the selections that are not allowed for "Legal-for-Trade" applications:

NAME/CODE	DESCRIPTION	CODE/VALUE
F1 Graduations	Specifies number of full-scale graduations. Value should be consistent with legal requirements and environmental limits on the useful system resolution.	500 1,000 1,500 2,000 2,500 3,000 4,000 $5,000 \sqrt{ }$ 6,000 8,000 10,000 12,000 20,000 30,000 40,000 50,000
F2 Span Gain	Span Gain is related to A/D integration time. The larger the span gain, the higher the internal resolution, but the slower the update speed. Note that the scale must be re-calibrated whenever this parameter is altered. See Appendix C for more information.	25 50 $75 \sqrt{ }$ 100 150 200
F3 Zero Track Band	Selects the range within which the scale will automatically zero. Note that the scale must be in standstill to automatically zero. Selections are in Display Divisions.	Od $0.5 \mathrm{~d} V$ 1d 3d 5d
F4 Zero Range	Selects the range within which the scale may be zeroed. Note that the indicator must be in standstill to zero the scale.	$\begin{aligned} & 100 \% \sqrt{ } \\ & 1.9 \% \\ & \\ & \frac{200 S L \text { only }}{2 \%} \\ & 20 \% \end{aligned}$
F5 Motion Band	Sets the level at which motion is detected by comparing the present display update with the previous one. If motion is not detected for two seconds or more, scale is in standstill and can process a Print or Zero command. Maximum value varies depending on local regulations.	0.25d (200SL) 1d V 3d 5d 10d 200BW and $\frac{200 S L}{}$ $15 d$ $20 d$ $30 d$ $40 d$ $50 d$
F6 Digital Filter	Averages weight readings to produce higher stability. The higher the filter setting, the greater the stability but the slower the indicator's response time. Choose 8 unless a very fast response is needed.	1 2 4 $8 \sqrt{ }$ 200BW and 200SL: 16 32 64 128

F7 Overload Limit	Selects the desired formula which determines the point at which the indicator shows overload. All selections are based on the primary unit selected in F8. "FS" = Full scale in primary units.	$\begin{aligned} & F S \\ & F S+2 \% V \\ & F S+1 d \\ & F S+9 d \end{aligned}$
F8 Calib. Unit	Selects the primary base unit to be used in the calibration process. Also the default unit for normal operation. " 1 " = primary unit is lb . " 2 " = primary unit is in kg.	$\begin{aligned} & 1 \sqrt{ } \\ & 2 \end{aligned}$
F9 Display Divisions	Determines the desired weight increments. Value should be consistent with legal requirements.	$\begin{aligned} & \mathbf{1} \sqrt{ } \\ & 2 \\ & 5 \end{aligned}$
F10 Decimal Pt.	Determines location of the decimal point.	$\begin{array}{lr} 0 \sqrt{ } & 0.0 \\ 0.00 & 0.000 \\ 0.0000 & 00 \end{array}$
F16 Zero Calibration	Places indicator into the zero calibration routine. Scrolling down with the ZERO key one level begins the procedure.	Press ZERO key to begin sequence
F17 Span Calibration	Places indicator into the span calibration routine. Scrolling down with the ZERO key one level begins the procedure.	Press ZERO key to begin sequence
F18 View Calibration	Actuates the function that allows you to view both the zero and span calibration value. The values displayed in this function are valid only after Calibration (F16 \& F17) has been successfully completed. Scrolling down with the ZERO key one level begins the procedure.	Press ZERO key to begin sequence
F19 Key-in Zero	Allows you to key-in known zero calibration value in case of memory loss in the field. Scrolling down with the ZERO key one level begins the procedure.	Press ZERO key to begin sequence
F20 Key-in Span	Allows you to key-in a known span calibration value in case of memory loss in the field. Scrolling down with the ZERO key one level begins the procedure.	Press ZERO key to begin sequence
F21 Factory Reset	This sub-menu will reset all parameters in the " F " and " A " menu to the default settings. USE WITH CAUTION!	Press the ZERO key twice to execute.

200E and 200ES only ${ }^{4}$

NAME/CODE	DESCRIPTION	CODE/VALUE
F24 Piece Count Enable	Used to enable or disable the piece count feature. This feature must be disabled for commercial applications. "0" = Disable piece count	$0 \sqrt{ }$
10 Enable piece count		

[^1]| SUB-MENU | TITLE | SELECTIONS | |
| :---: | :---: | :---: | :---: |
| F1 | Graduations | $\begin{aligned} & 6,000 \\ & 10,000 \\ & 20,000 \\ & 40,000 \\ & \hline \end{aligned}$ | $\begin{gathered} 8,000 \\ 12,000 \\ 30,000 \\ 50,000 \end{gathered}$ |
| F3 | Zero Tracking Band (SAZSM) | $\begin{aligned} & \text { Od } \\ & 5 d \end{aligned}$ | |
| F5 | Motion Band | $\begin{aligned} & 3 \mathrm{~d} \\ & 10 \mathrm{~d} \\ & 20 \mathrm{~d} \\ & 40 \mathrm{~d} \end{aligned}$ | 5d
 15 d
 30d
 50d |
| F6 | Digital Filter | $\begin{aligned} & 1 \\ & 2 \\ & 4 \\ & \hline \end{aligned}$ | |

Table 4-1: Invalid Setup Menu selections for commercial applications

CHAPTER 5: USER MENU DESCRIPTIONS AND PROCEDURES

5.1 USER MENU DESCRIPTIONS

This section provides more detailed descriptions of the selections found in the User Menu Chart. Factory-set defaults are shown in bold with a checkmark ($\sqrt{ }$).

NAME/CODE	DESCRIPTION	CODE/VALUE
A1 Baud Rate	Selects the baud rate for data transmission through the serial port.	$\begin{array}{ll} 1200 \ldots . .2400 \\ 4800 & 9600 V \\ 19200 & \end{array}$
A2 Data Bits and Parity	Selects the number of data bits and parity of serial transmission. " 8 n " = 8 data bits with no parity bit and one stop bit "70" = 7 data bits with odd parity bit and one stop bit "7E" = 7 data bits with even parity bit and one stop bit " 7 n " $=7$ data bits with no parity bit and two stop bits	$\begin{aligned} & 8 \mathrm{n} \sqrt{ } \\ & 7 \mathrm{O} \\ & 7 \mathrm{E} \\ & 7 \mathrm{n} \end{aligned}$
A3 Mode of Serial Transmission	Selects when data will be sent out of the serial port to a printer or computer: "C" = Continuous mode; send data continuously " $\mathrm{d} "$ = Demand mode; send data when a PRINT command is issued from the printer, computer, or indicator.	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~d} \sqrt{ } \end{aligned}$
A4 Display Check	Actuates the function that illuminates all digit segments, decimal points, and LCD annunciators in a test sequence. Pressing the ZERO key to scroll down one level begins the test sequence.	Press ZERO key to begin sequence
A5 Disable the lb/kg Key	Allows the $\mathrm{lb} / \mathrm{kg}$ key to be disabled so that an operator cannot accidentally press the key and change the displayed units. " 0 " = Disable the $\mathrm{lb} / \mathrm{kg}$ key $\quad " 1 "=$ Enable the $\mathrm{lb} / \mathrm{kg}$ key	$\begin{aligned} & 0 \\ & 1 \sqrt{ } \end{aligned}$
A6 Serial Port Mode	Selects the mode of the RS-232 serial port: Refer to Appendix B for more information. $\begin{aligned} & \text { " } 0 \text { " }=\text { Full Duplex Mode } \\ & " 1 "=\text { Print Ticket Mode } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \sqrt{ } \end{aligned}$
A7 ID No. Enable	Allows the ID number to be disabled in the Print Ticket mode. Valid only when A6 is set to " 1 ". " 0 " = Disable the ID No. $\quad 1 "$ = Enable the ID No.	$\begin{aligned} & 0 \sqrt{ } \\ & 1 \end{aligned}$
A8 ID No. Entry	Actuates the function that allows entry of a new ID No. Valid only when A6 is set to "1". Pressing the ZERO key to scroll down one level begins the sequence.	$\begin{aligned} & \hline 200 \text { Only- } \\ & 0-199999 \\ & \text { All Others - } \\ & \hline 0-999999 \\ & 123456 \mathrm{~V} \end{aligned}$
A9 No. of Line Feeds	Actuates the function that allows entry of the desired number of line feeds to be printed in Print Ticket Mode. Valid only when A6 is set to "1". Pressing the ZERO key to scroll down one level begins the sequence.	$\begin{aligned} & 0-99 \\ & 8 \sqrt{ } \end{aligned}$

200E and 200ES only

NAME/CODE	DESCRIPTION	CODE/VALUE
A10 Handshaking Enable	Enables hardware handshaking for Print Ticket Mode. Valid only when A6 is set to " 1 ". "0" = Disable Handshaking \quad "1" = Enable Handshaking	$\begin{aligned} & 0 \sqrt{ } \\ & 1 \end{aligned}$
A11 Print Header	Tells MP-20 printer to print the header information. Valid only when A6 is set to " 1 ". " 0 " = Do NOT Print Header \quad "1" = Print Header	$0 \sqrt{ }$

200 only ${ }^{5}$

NAME/CODE	DESCRIPTION	CODE/VALUE
A10 Backlight Enable	Allows you to permanently disable the backlight feature for outdoor use. Factory default setting is " 1 " (Enabled). $\text { "0" = Disabled } \quad " 1 "=\text { Enabled }$	0 1 $\sqrt{ }$
A11 Handshaking Enable	Enables hardware handshaking for Print Ticket Mode. Valid only when A6 is set to " 1 ". "0" = Disable Handshaking \quad "1" = Enable Handshaking	$\begin{aligned} & 0 V \\ & 1 \end{aligned}$
A12 Print Header	Tells MP-20 printer to print the header information. Valid only when A6 is set to " 1 ". " 0 " = Do NOT Print Header \quad "1" = Print Header	$\begin{aligned} & 0 \sqrt{ } \\ & 1 \end{aligned}$

200BW only

NAME/CODE	DESCRIPTION	CODE/VALUE
A10 Auto Power Off Period	Selects the auto off time period in minutes: "Off" = Disabled (Always ON)	$\begin{array}{lc} \text { Off } \sqrt{ } & \\ 3 & 5 \\ 10 & 20 \\ 30 & \end{array}$
A11 Hold Model Enable	Activates the "Hold" mode where weight of the object on the platform is frozen on the display until the applied weight is decreased to onehalf of the memorized weight. This is used in conjunction with the Motion Band setting (F5) to capture an unstable load, such as livestock. $" 0 "=\text { Disabled, "1" = Enabled }$	$0 \sqrt{1}$
A12 ${ }^{4}$ Backlight Enable	Allows you to permanently disable the backlight feature for outdoor use. Factory default setting is " 1 " (Enabled). $\text { "0" = Disabled } \quad " 1 "=\text { Enabled }$	0 1V
A13 Handshaking Enable	Enables hardware handshaking for Print Ticket Mode. Valid only when A6 is set to " 1 ". "0" = Disable Handshaking "1" = Enable Handshaking	$\begin{aligned} & 0 \sqrt{ } \\ & 1 \end{aligned}$
A14 Print Header	Tells MP-20 printer to print the header information. Valid only when A6 is set to " 1 ". " 0 " = Do NOT Print Header \quad "1" = Print Header	$\begin{aligned} & 0 \sqrt{ } \\ & 1 \end{aligned}$

[^2]200SL only

NAME/CODE	DESCRIPTION	code/value
A10 Auto Power Off Period	Selects the auto off time period in minutes: "Off" = Disabled (Always ON)	$\begin{aligned} & \text { Off } \\ & 1,2,3,5 \sqrt{ }, 8, \\ & 10,15,20,30 \end{aligned}$
A11 Hold Model Enable	Activates the "Hold" mode where weight of the object on the platform is frozen on the display until the applied weight is decreased to onehalf of the memorized weight. This is used in conjunction with the Motion Band setting (F5) to capture an unstable load, such as livestock. $\text { " } 0 \text { " = Disabled, " } 1 \text { " = Enabled }$	OV
A12 Handshaking Enable	Enables hardware handshaking for Print Ticket Mode. Valid only when A6 is set to " 1 ". "0" = Disable Handshaking "1" = Enable Handshaking	$0 \sqrt{1}$
A13 Print Header	Tells MP-20 printer to print the header information. Valid only when A6 is set to " 1 ". "0" = Do NOT Print Header "1" = Print Header	$0 \sqrt{ }$

5.2 USER MENU PROCEDURES

This section provides instructions for all of the User Menu procedures.

5.2.1 ID Number Entry (A8)

1. While in the User Menu mode, scroll to "A 8", then scroll down once using the ZERO key to enter the ID Number menu.
2. The display will momentarily show "ID NO", followed by a value with one flashing digit. This value will be the current ID number value.
3. Use the four directional keys (shown in Figure 5-1 below) to adjust the displayed value to the actual ID Number value. Increase the flashing digit by pressing the UNITS key. Decrease the flashing digit by pressing the ZERO key. Pressing the PRINT key or the TARE key will change the position of the flashing digit.

Figure 5-1: User Menu Key Assignments
4. After setting the exact value, press the NET/GROSS key to save the ID Number value. The display will show "SET" momentarily, then revert back up to A8.

5.2.2 LF (Line Feeds) Number Entry (A9)

1. While in the User Menu mode, scroll to "A 9", then scroll down once using the ZERO key to enter the Line Feeds menu.
2. The display will momentarily show "LF", followed by the current line feeds value.
3. Use the four directional keys (shown in Figure 5-1 above) to adjust the displayed value to the actual line feeds value. Increase the flashing digit by pressing the UNITS key. Decrease the flashing digit by pressing the ZERO key. Pressing the PRINT key or the TARE key will change the position of the flashing digit.
4. After setting the exact value, press the NET/GROSS key to save the line feeds value. The display will show "SET" momentarily, then revert back up to A9.

CHAPTER 6: CALIBRATION

6.1 CALIBRATION OVERVIEW

The indicator is calibrated by following the procedures embedded in F16 (Zero) and F17 (Span) of the Setup Menu. Each procedure enters a value into the indicator's non-volatile memory - F16 the zero value (deadweight) and F17 the span value (test weight). The minimum test weight that can be used is 1% of full-scale capacity. After the two calibration procedures are executed successfully, you should record both calibration values in Table 6-1 using the F18 View procedure.

In the unlikely event that either value is lost while in the field, the setup menu makes provisions for re-entering these values via F19 and F20, thus eliminating the need for re-calibration with test weights.

NOTE: This chapter assumes that the indicator is in Setup ("F") Menu mode. If the indicator is not in Setup Menu mode, refer to Chapter 3 for instructions.

6.2 ZERO CALIBRATION (F16)

1. While in the Setup mode, scroll to "F 16", then scroll down once using the ZERO key to enter zero calibration menu. The display will momentarily show "C 0 " followed by a value. This value is the internal A / D count and can prove useful when trying to troubleshoot setup problems.
2. After making sure that there are no test weights on the platform, press the ZERO key again to zero out the displayed value.
3. Press the NET/GROSS key to save the zero point value. The display will show "EndCO" momentarily, then revert back up to F16. At this time, proceed to the F17 span calibration to complete indicator calibration.

6.3 SPAN CALIBRATION (F17)

1. While in the Setup mode, scroll to "F 17", then scroll down once using the ZERO key to enter span calibration menu.
2. The display will momentarily show "C $\mathbf{1 "}$ for the span calibration, followed by a value with one flashing digit. This value will be zero with the Decimal Point parameter selected in F10. Place the test weight on the weighing mechanism.
3. Use the four directional keys (shown in Figure 6-1 below) to adjust the displayed value to the actual test weight value. Increase the flashing digit by pressing the UNITS key. Decrease the flashing digit by pressing the ZERO key. Pressing the PRINT key or the TARE key will change the position of the flashing digit.

Figure 6-1: Setup Menu Key Assignments
4. After setting the exact value, press the NET/GROSS key to save the value.
5. If the calibration was successful, the display will show "EndC1" momentarily, then revert back up to F17. At this time it is suggested that the calibration values be recorded for future use (see Section 6.4).
6. If the calibration was not successful, one of the error messages below will appear. Take the indicated action to correct the problem, then perform a new calibration.
"Err0" - The calibration test weight or the adjusted keyed-in weight is larger than the full capacity of the scale. Change the calibration test weight or check the input data.
"Err1" - The calibration test weight or the adjusted keyed-in weight is smaller than 1% of the full capacity of the scale. Change the calibration test weight or check the input data.
"Err2" - The internal resolution of the scale is not high enough to accept the calibration value. Select a larger parameter for the Span Gain (F2). SEE APPENDIX C FOR MORE INFORMATION.

6.4 VIEW CALIBRATION VALUES (F18)

Note: The values displayed in this procedure are valid only after a successful calibration has been performed using F16 and F17.

1. While in the Setup mode, scroll to "F 18", then scroll down once using the ZERO key to enter View calibration menu.
2. The display will momentarily show "CAL $\mathbf{0}$ " followed by a value. This value is the zero calibration value and should be recorded in the table below. Press any key to continue.
3.The display will momentarily show "CAL $\mathbf{1 " ~ f o l l o w e d ~ b y ~ a n o t h e r ~ v a l u e . ~ T h i s ~ v a l u e ~ i s ~ t h e ~ s p a n ~}^{\text {f }}$ calibration value and should also be recorded in the table below. Press any key to return to upper level (F18).

INDICATOR	ZERO CALIBRATION VALUE	SPAN CALIBRATION VALUE
$\mathrm{S} / \mathrm{N}:$		

Table 6-1: Calibration Value Table

6.5 KEY-IN ZERO CALIBRATION VALUE (F19)

Note: This procedure is intended for emergency use only in the case of non-volatile memory loss. A valid zero calibration value, obtained from a successful F16 calibration procedure, must be used.

1. While in the Setup mode, scroll to "F 19", then scroll down once using the ZERO key.
2. The display will momentarily show "CAL $\mathbf{0}$ ", followed by a flashing zero. Use the four directional keys (shown in Figure 6-1) to adjust the displayed value to the zero calibration value.
3. After setting the exact value, press the NET/GROSS key to save the value.
4. The display will show "E CAL 0" momentarily, then revert back up to F19.

6.6 KEY-IN SPAN CALIBRATION VALUE (F20)

Note: This procedure is intended for emergency use only in the case of non-volatile memory loss. A valid span calibration value, obtained from a successful F17 calibration procedure, must be used.

1. While in the Setup mode, scroll to "F 20", then scroll down once using the ZERO key.
2. The display will momentarily show "CAL 1", followed by a flashing zero. Use the four directional keys (shown in Figure 6-1) to adjust the displayed value to the span calibration value.
3. After setting the exact value, press the NET/GROSS key to save the value.
4. If the entered value is greater than zero, the display will show "E CAL 1" momentarily, then revert back up to F20. If a value of zero is entered, the indicator will briefly show "Err 5", then revert back to the screen described above in Step \# 2.

CHAPTER 7: OPERATION

7.1 DISPLAY

As mentioned in Chapter 1, some models utilize a 6 digit LCD (Liquid Crystal Display) while others utilize a 6-digit LED (Light Emitting Diode) display. Typically, LCD's are used for outdoor applications while LED's are used indoors where brightness is needed. Table 7-1 summarizes both types of display annunciators.

7.1.1 LIQUID CRYSTAL DISPLAY (LCD)

Figure 7-1 shows the display detail of the LCD indicators.

FIGURE 7-1: 200 Series LCD Detail

7.1.2 LIGHT EMITTING DIODE (LED) DISPLAY

Figure 7-2 shows the display detail of the LED display indicators.

FIGURE 7-2: 200 Series LED Display Detail

NOTE: On earlier units, the PCS annunciator is not present. This may mean your unit does not support piece counting.

LCD Annunciator	LED Annunciator	MEANING
$\rightarrow 0 \leftarrow$	ZERO	Better known as the "Center of Zero" annunciator, this light is active whenever the displayed weight is within ± 0.25 divisions of true zero.
N	NET	Indicates that the indicator is displaying net weight.
G	GROSS	Indicates that the indicator is displaying gross weight.
T	TARE	Indicates that a tare weight has been established in the system.
lb, kg	$\mathrm{lb}, \mathrm{kg}, \mathrm{PCS}$	Indicates the unit of the displayed weight. PCS stands for "pieces".
$\mathbf{S T}$	STABLE	This light is on whenever the scale is stable.

TABLE 7-1: 200 Series Annunciator Definitions

7.2 KEYBOARD

The keyboard is composed of five function keys. Refer to Figures 7-3 and 7-3a for the overall layout and key locations.

FIGURE 7-3: Function Keys Layout - non-battery powered units

FIGURE 7-3a: Function Keys Layout - battery powered units
NOTE: On earlier units, the UNITS key is labeled as LB/KG.

7.2.1 FUNCTION KEYS

Units - This key toggles the indicator among the available weight units if enabled in the User ("A") menu. Available weight units include lb, kg and pieces ${ }^{6}$. See Chapter 5 for more information.

[^3]Zero - This key sets the indicator to display zero provided the following conditions are met:

1. The indicator is displaying Gross weight.
2. The displayed weight is within the zero reset range that is programmed in F4 of the Setup ("F") Menu.
3. The scale is not in motion.
4. The scale is not in overload (see Appendix D for error codes).

Zero/Off - Same as ZERO key except when held for five seconds, shuts the unit off (battery powered indicators only).
Net/Gross - This key toggles the indicator between Gross weight and Net weight only if a Tare has been established.
Tare - This key is used to establish a Tare provided the following conditions are met:

1. The indicator is not at or below Gross zero.
2. The scale is not in motion.
3. The scale is not in overload (see Appendix D for error codes).

Print - This key is used to send weight information out to the serial port provided the following conditions are met:

1. The scale is not in motion.
2. The scale is not in overload (see Appendix D for error codes).

ON/Print - Same as PRINT key except when the unit if off, turns the unit on (battery powered indicators only).

7.3 GENERAL SCALE OPERATION

7.3.1 WEIGHING AN ITEM

1. Select the desired weighing unit by pressing the $\mathrm{lb} / \mathrm{kg}$ key until that unit is indicated on the display.
2. If necessary, press the ZERO key to obtain a weight reading of zero.
3. Place the object to be weighed on the scale's platter and allow the weight indication to

4. Read the weight shown on the display.

7.3.2 TARING AN ITEM

To weigh an item in a container, the weight of that container must first be subtracted from the overall weight to obtain an accurate weight reading. This is known as taring.

1. Select the desired weighing unit by pressing the lb/kg key until that unit is indicated on the display.
2. If necessary, press the ZERO key to obtain a weight reading of zero.
3. Place the empty container on the scale's platter and allow the weight indication to stabilize.
4. Press the TARE key. The display shows zero weight and turns the NET annunciator on.
5. Place the material to be weighed in the container and allow the weight indication to stabilize.
6. Read the weight shown on the display.
7. You may toggle between the gross weight and the net weight by pressing the NET/GROSS key.

7.3.3 PIECE COUNTING ${ }^{7}$

IMPORTANT NOTE: The piece counting function cannot be used in commercial (NTEP) applications.

This mode is used to indicate the number of pieces of an item you have placed on the scale's platform and is accessed by pressing the UNITS key. To ensure accuracy, the parts you are counting must be consistent in weight.

The indicator uses the sampling method to determine the average piece weight (APW) of the items you wish to count. When sampling items, always count the parts in your hand and place them on the platform all at once. If the APW of the items is too light or the total weight of the sample is too light, accuracy cannot be guaranteed. You will get an error message, but piece counting will still be allowed.

1. If the items you will be counting require a container, you must first tare the container off by pressing the TARE key.

NOTE: The TARE key is inoperative when in sampling mode.
2. Press the UNITS key until " 50 " is indicated on the display. If the screen does not show " 50 ", press the ZERO key once. The indicator is prompting you to place five identical items on the platform.

NOTE: If you wish to change the sample number, simply press the UNITS key repeatedly until the desired sample number appears. Available choices are 5, 10, 20, 50 and 100 . If you continue to push the UNITS key, the indicator will resort back to weighing mode and you must start again from Step 2.
3. Place the sample items on the platform all at once and allow the weight indication to stabilize. Once this is done, the zero indicated after the sample number will change to a "". For example, "5 -".
4. Press the NET/GROSS key to take the sample. If the sample size is large enough, the indicator now displays the number of pieces on the platform and the "PCS" annunciator is lit. If not, the indicator briefly displays "Lo" and automatically increments the sample size. Repeat Step \#4 with the new sample size.

NOTE: If the indicator continues to display "Lo" even after sampling 100 pieces, the unit weight of the items you wish to count is too light for your scale to process accurately.
5. To exit the piece count mode, press the UNITS key.

NOTE: The APW will NOT remain in scale memory when you exit piece counting mode.

7.3.4 PEAK HOLD OPTION - Offered only on the 200E and 200ES

Overview

1. The indicator has two modes of operation: NORMAL OPERATING mode and PEAK-HOLD mode.
2. Press the $\mathbf{l b} / \mathbf{k g}$ key to toggle the indicator back and forth between NORMAL OPERATING mode and PEAK-HOLD mode.
[^4]
Normal Operating Mode

1. All keys perform as described in the manual while in this mode.

Peak-Hold Mode

1. In this mode, the display updates as the load increases, but not as the load decreases. The value on the screen is the peak value.
2. The ZERO key clears the previously stored peak value.
3. The NET/GROSS and TARE keys are locked out in this mode.
4. The PRINT key operates as it does in the NORMAL OPERATING mode.

CHAPTER 8: LEGAL FOR TRADE SEALING

8.1 ABS ENCLOSURE

Indicators in the ABS enclosure can be sealed for commercial (Legal for Trade) applications as follows.

1. Power off the indicator.
2. On the back of the indicator, locate the setup/calibration switch cover (see illustrations below).
3. Thread a wire security seal through both drilled head screws securing the calibration switch cover as well as the single drilled head screw holding on the rear panel.

Figure 8-1: 200 and 200E ABS Rear Panel

Figure 8-1a: 200BW ABS Rear Panel

8.2 STAINLESS STEEL ENCLOSURE

Indicators in the stainless steel enclosure can be sealed for commercial (Legal for Trade) applications as follows.

1. Power off the indicator.
2. On the rear cover of the indicator, locate the calibration switch cover.
3. Thread a wire security seal through both drilled head screws securing the calibration switch cover as well as the two drilled head screws holding on the rear panel.

Older units

1. Power off the indicator.
2. Locate the two adjacent drilled head screws securing the rear cover.
3. Thread a wire security seal through two drilled head screws securing the rear cover.

APPENDIX A: SPECIFICATIONS

ANALOG SPECIFICATIONS

Full Scale Input Signal
30 mV , including dead load
Minimum Sensitivity - Non H-44
Minimum Sensitivity - H-44
Input Impedance
Internal Resolution - 200,
200E, 200ES
Internal Resolution - 200SL
Internal Resolution - 200BW,
Display Resolution
Measurement Rate
System Linearity
$0.4 \mu \mathrm{~V} / \mathrm{grad}$
$1.0 \mu \mathrm{~V} / \mathrm{grad}$
$30 \mathrm{M} \Omega$, typical
Approximately 260,000 counts
Approximately 150,000 counts
Approximately 130,000 counts
50,000 display division max
10 Meas/sec, nominal
Within 0.02% of FS
Calibration Method
Software Calibration, with long term storage in EEPROM
Excitation Voltage - 200,
200E, 200ES +10 VDC, $4 \times 350 \Omega$ load cells
Excitation Voltage - 200BW, 200SL
$+5 \mathrm{VDC}, 4 \times 350 \Omega$ load cells

DIGITAL SPECIFICATIONS

Microcontroller - All except
200SL
Microcontroller - 200SL
Intel 80C32
Winbond W78E58
Program Memory - All except 200SL: $\quad 64 \mathrm{~K} x 8$, external to $\mu \mathrm{C}$
Program Memory - 200SL: $\quad 32 \mathrm{~K} \times 8$, internal to $\mu \mathrm{C}$
SRAM - 200, 200E, 200ES:
SRAM - 200BW:
SRAM - 200SL:
EEPROM:
Digital Filtering

SERIAL COMMUNICATIONS

Serial Port
Full Duplex, 1200, 2400, 4800, 9600 Baud
8 data bits, no parity, 1 stop bit
7 data bits, odd parity, 1 stop bit
7 data bits, even parity, 1 stop bit
7 data bits, no parity, 2 stop bits

OPERATOR INTERFACE

Display - LED Indicators	$0.56 "(14 \mathrm{~mm})$ 7-segment, LED, 6 Digit
Display - LCD Indicators	$0.8 "(20 \mathrm{~mm}) 7$-segment, Liquid Crystal, 6 Digit
Additional Symbols	Net, Gross, Stable, Tare, Ib, kg, Zero, PCS
Keyboard	5-key flat membrane panel

POWER

Alkaline Batteries
Rechargeable Battery
AC Adapter - 200, 200E
AC Adapter - 200BW
DC Power Consumption - 200
DC Power Consumption-200BW
DC Power Consumption - 200E, 200ES
DC Power Consumption - 200SL

6 x "C" Size (UM-2) Cells
6 VDC, 3.0 Ah lead acid
12 VDC, 500 mA Female 12 VDC, 800 mA Female $80 \mathrm{~mA}+30 \mathrm{~mA} / 350 \Omega$ Load Cell $80 \mathrm{~mA}+15 \mathrm{~mA} / 350 \Omega$ Load Cell $200 \mathrm{~mA}+30 \mathrm{~mA} / 350 \Omega$ Load Cell $55 \mathrm{~mA}+15 \mathrm{~mA} / 350 \Omega$ Load Cell

ENVIRONMENTAL

Operating Temperature
Storage Temperature

MECHANICAL

Overall Dimensions (L x W x H) 200, 200E
Overall Dimensions ($\mathrm{L} \times \mathrm{W} \times \mathrm{H}$) 200ES
Overall Dimensions ($\mathrm{L} \times \mathrm{W} \times \mathrm{H}$) 200BW
Overall Dimensions ($\mathrm{L} \times \mathrm{W} \times \mathrm{H}$) 200SL

APPROVALS

```
-10}\mp@subsup{}{}{\circ}\mathrm{ to +40}\mp@subsup{}{}{\circ}\textrm{C
```

-25° to $+70^{\circ} \mathrm{C}$
$8.5^{\prime \prime} \times 3.0^{\prime \prime} \times 4.6^{\prime \prime}(215 \mathrm{~mm} \times 75 \mathrm{~mm} \times 117 \mathrm{~mm})$
$10.4^{\prime \prime} \times 3.1^{\prime \prime} \times 7.7^{\prime \prime}(265 \mathrm{~mm} \times 80 \mathrm{~mm} \times 195 \mathrm{~mm})$
$12.2^{\prime \prime} \times 3.9^{\prime \prime} \times 8.1^{\prime \prime}(310 \mathrm{~mm} \times 100 \mathrm{~mm} \times 205 \mathrm{~mm})$
$10.4 " \times 3.1 " \times 7.7^{\prime \prime}(265 \mathrm{~mm} \times 80 \mathrm{~mm} \times 195 \mathrm{~mm})$

COC \# 00-065

APPENDIX B: SERIAL PORT INFORMATION

B. 1 SERIAL PORT MODES

B.1.1 FULL DUPLEX MODE

The Full Duplex Mode provides a Demand serial transmission mode and is selected by setting A3 to "d" and A6 to "0". The Demand mode allows control from a host device, usually a PC, and can be activated by pressing the PRINT key on the indicator's front panel. Figure B-1 shows a suggested cable diagram for interface to a PC. Figure B-2 shows the serial data format for the Demand Mode.

FIGURE B-1. Cable Diagram for Indicator to IBM PC

FIGURE B-2. Consolidated Controls Demand Mode

B.1.1.1 RECOGNIZED HOST COMMANDS

" P " - This command is sent to the indicator to print the indicated display. The indicator will not respond if the scale is in motion, positive overload or negative overload.
"Z" - This command is sent to the indicator to zero the scale. The indicator will not respond if the scale is in motion, positive overload or negative overload. The indicator will also not respond if it is not in gross mode or within the zero range specified in F4 of the Setup Menu.
" T " - This command is sent to the indicator to tare the scale. The indicator will not respond if the scale is in motion, positive overload or negative overload. The indicator will also not respond if it displaying a negative gross value.
"G" - This command is sent to the indicator to revert to gross mode. The indicator will not respond if the scale is in motion, positive overload or negative overload. The indicator will also not respond if it is not in net mode.
" N " - This command is sent to the indicator to revert to net. The indicator will not respond if the scale is in motion, positive overload or negative overload. The indicator will also not respond if it is not in gross mode or a tare has yet to be established.
"C" - This command is sent to the indicator to toggle among the configured units.

B.1.2 PRINT TICKET MODE

The Print Ticket Mode is designed specifically for a serial printer and is selected by setting A6 to " 1 ". Figure B-3 shows the fixed format of the print ticket.

For printers with limited buffers, this mode supports DTR pin handshaking. The DTR pin from the serial printer is wired to the indicator's RXD pin which then functions as a CTS pin. Figure B-4 shows a suggested cable diagram for interfacing to a serial printer. Refer to the printer's user manual to confirm which pin is the DTR pin.

NOTES:

1. The TARE and NET fields are not printed unless a tare has been established in the system.
2. The ID number field is not printed if it is disabled in A7 of the User Menu.

FIGURE B-3. Print Ticket

FIGURE B-4.
Cable Diagram for Indicator to Printer

B.1.3 SIMPLEX MODE

The Simplex Mode provides a continuous serial transmission mode and is selected by setting A3 to "C" and A6 to " 0 ". The Continuous mode is used to interface to computers, scoreboards, and other remote devices requiring constant data updating. The transmission occurs at the end of each display update. Figure B-5 shows the serial data format for Continuous Mode.

FIGURE B-5. Consolidated Controls Continuous Mode

APPENDIX C: DETERMINING PROPER SPAN GAIN (F2)

C. 1 SPAN GAIN OVERVIEW

The Span Gain parameter found in F2 of the Setup Menu is directly related to the ADC (Analog to Digital Converter) integration time. This means that the lower the setting, the higher the number of measurements per second. A span gain setting of 25 produces about 25 to 30 measurements per second, while a span gain of $\mathbf{2 0 0}$ produces only about 3 or 4 measurements per second.

There is really no wrong setting for span gain - except in two cases. Using a low setting for a high resolution, low output system could yield instability. Using a high setting in a high output system could yield non-linearity.

C. 2 SETTING THE INITIAL VALUE FOR SPAN GAIN

1. Determine the number of desired external graduations and choose the corresponding value listed in Table C-1 or Table C-1a under the number closest to your full-scale input range in millivolts.
2. Enter the Setup Menu and save this number for the Span Gain parameter in F2.
3. Perform a system calibration. If the calibration proves unsuccessful, or you wish to view the internal counts, proceed to the next set of instructions.

C. 3 VIEWING THE INTERNAL COUNTS

1. Enter the zero calibration menu (F16) and follow steps 1 to 3 , but do not save the zero point.
2. After pressing ZERO to zero the offset, place the test weight(s) on the platform. The displayed count is the internal count. If the count remains on zero, check your load cell connections.
3. At full scale, the displayed count should be a minimum of 2 times the desired external graduations. However, for maximum stability, a ratio of 6:1 or higher is recommended.
4. If the displayed count is large enough, remove the test weight(s), re-zero the indicator if necessary, and proceed with the calibration. If the displayed number is not large enough, increase the Span Gain to the next highest choice in the Setup Menu and re-calibrate.

200, 200E, 200ES

\# of External Grads	Full Scale Input Range (mV/V)														
	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0	2.2	2.4	2.6	2.8	3.0
500	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
1,000	50	25	25	25	25	25	25	25	25	25	25	25	25	25	25
1,500	75	50	25	25	25	25	25	25	25	25	25	25	25	25	25
2,000	100	50	50	25	25	25	25	25	25	25	25	25	25	25	25
2,500	150	75	50	50	25	25	25	25	25	25	25	25	25	25	25
3,000	150	75	50	50	50	25	25	25	25	25	25	25	25	25	25
4,000	200	100	75	50	50	50	50	25	25	25	25	25	25	25	25
5,000	-	150	100	75	50	50	50	50	50	25	25	25	25	25	25
6,000	-	150	100	75	75	50	50	50	50	50	25	25	25	25	25
8,000	-	200	150	100	75	75	75	50	50	50	50	50	50	50	25
10,000	-	-	200	150	100	100	75	75	75	50	50	50	50	50	50
12,000	-	-	200	150	150	100	100	75	75	75	50	50	50	50	50
15,000	-	-	-	200	150	150	100	100	100	75	75	75	75	50	50
20,000	-	-	-	-	200	200	150	150	150	100	100	100	75	75	75
30,000	-	-	-	-	-	-	200	200	200	150	150	150	150	100	100
40,000	-	-	-	-	-	-	-	-	-	200	-	-	150	150	-

Table C-1: Minimum Recommended (6:1) Span Gain Table

200BW, 200SL

\# of External Grads	Full Scale Input Range (mV/V)														
	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0	2.2	2.4	2.6	2.8	3.0
500	75	50	25	25	25	25	25	25	25	25	25	25	25	25	25
1,000	150	75	50	50	25	25	25	25	25	25	25	25	25	25	25
1,500	200	100	75	50	50	50	25	25	25	25	25	25	25	25	25
2,000	-	150	75	75	50	50	50	50	25	25	25	25	25	25	25
2,500	-	200	100	75	75	50	50	50	50	50	50	25	25	25	25
3,000	-	200	150	100	75	75	50	50	50	50	50	50	50	25	25
4,000	-	-	150	150	100	75	75	75	50	50	50	50	50	50	50
5,000	-	-	200	150	150	100	100	75	75	75	75	50	50	50	50
6,000	-	-	-	200	150	150	100	100	75	75	75	75	75	50	50
8,000	-	-	-	-	200	150	150	150	100	100	100	75	75	75	75
10,000	-	-	-	-	-	200	200	150	150	150	150	100	100	100	75
12,000	-	-	-	-	-	-	200	200	150	150	150	150	150	100	100
15,000	-	-	-	-	-	-	-	-	200	200	200	150	150	150	150
20,000	-	-	-	-	-	-	-	-	-	-	-	200	200	200	150
30,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
40,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Table C-1a: Minimum Recommended (6:1) Span Gain Table

APPENDIX D: DISPLAYED ERROR CODES

CODE	MODE	MEANING / POSSIBLE SOLUTION
ㅁำロロ	Normal Operating Mode	Gross Overload. A weight greater than the rated capacity has been applied to the scale. Remove the weight from the platter or try re calibrating the scale. Otherwise, check for a bad load cell connection or possible load cell damage due to overloading.
Err 0	Span Calibration Mode (F17)	Keyed-in weight value is larger than full-scale capacity. Use a smaller test weight or check keyed-in value.
Err 1	Span Calibration Mode (F17)	Keyed-in weight value is less than 1% of full-scale capacity. Use a larger test weight or check keyed-in value.
Err 2	Span Calibration Mode (F17)	There is not enough load cell signal to produce the internal counts necessary to properly calibrate the scale. First check all load connections. Use F16 mode to view internal counts. See Appendix C for more information.
Err 3	All Modes	Non-volatile memory read error. One or more setup parameters have been lost.
Err 4	All Modes	Non-volatile memory write error. Indicator needs service.
Err 5	Key-in Span Calibration Mode (F20)	You have attempted to enter a zero value for C1. Enter a known calibration value greater than zero.
Err 7	Initialization	No reading from the ADC. Make sure there is a load cell(s) connected to the indicator at start-up.
Err 9	Normal Operating Mode	Span calibration value has been lost. Re-calibrate the scale.
	Normal Operating Mode	Indicates that the battery voltage is too low for normal operation. For alkaline battery units, replace the batteries. For rechargeable battery units, re-charge the battery.
Flashes "bAtt"	Normal Operating Mode	Indicates that the battery voltage is too low for normal operation. For alkaline battery units, replace the batteries. For rechargeable battery units, re-charge the battery.

APPENDIX E: Addendum for 4-20 mA Option

GENERAL INFORMATION

Some models provide a passive analog 4-20 mA output on two terminals. These terminals are covered in Chapter 2

The output tracks the weight displayed on the indicator, so you must first have the indicator configured and calibrated correctly in order for it to work properly.

Here is a working connection diagram used at the factory to test:

NOTE 1: In your application, substitute the actual input device for R_{L}. If your input device is polarized, connect the common lead to the negative lead of the 24 VDC power supply and the positive lead to the $B B(4-20 B)$ wire.

NOTE 2: The $A A(4-20 A)$ and $B B(4-20 B)$ wires are not polarized. You may connect them in any manner you wish.

Here is a suggested connection diagram for a PLC:

NOTE 1: Do NOT connect the indicator ground to the PLC ground.

Here is how to test to see if it is working correctly:

1. Configure and calibrate the indicator to your load device. Ensure the weighing function is working properly.
2. Connect the AA (4-20A) and BB (4-20B) output wires to an external 24 VDC power supply and 250Ω resistor as shown in the above test diagram.
3. When the indicator is displaying zero, the output should be 4 mA . Since $\mathrm{V}=\mathrm{IR}$, you should measure 1 VDC across R_{L}.
4. When the indicator is displaying the full-scale load, the output should be 20 mA . Again, since $\mathrm{V}=\mathrm{IR}$, you should measure 5 VDC across R_{L}.

Here is how you fine-tune the output using F23:

1. Enter the Setup Menu and scroll to F23. For directions on entering the Setup Menu, see Chapter 3 of the manual.
2. Push the down (ZERO) key once. The indicator outputs 4 mA and displays a number.
3. While monitoring the voltage across R_{L}, use the right (PRINT) or left (TARE) keys to change the displayed value until the measured voltage is exactly 1 VDC.
4. Press the SET (Net/Gross) key to save. The indicator outputs 20 mA and displays another number.
5. While monitoring the voltage across R_{L}, use the right (PRINT) or left (TARE) keys to change the displayed value until the measured voltage is exactly 5 VDC.
6. Press the SET (Net/Gross) key to save and revert back to F23.

200E Part List

$\frac{\text { Item }}{1}$		
		Part Number
2		$60064-1815$
3		$60064-1146$
4		$60064-1293$
5		$60064-2581$
6		$60064-0411$

Description
Main Board
Display Bracket
AC Adapter (not shown)
L/C Cable (not shown)
Knob
Overlay

[^0]: ${ }^{1}$ LCD stands for Liquid Crystal Display. LED stands for Light Emitting Diode.
 ${ }^{2}$ All ABS enclosures are NEMA 12 rated. All stainless steel enclosures are NEMA 4X rated.
 ${ }^{3}$ Earlier models shipped with a 12 VDC, 500 mA AC adapter.

[^1]: ${ }^{4}$ Won't appear on older units.

[^2]: ${ }^{5}$ Won't appear on older units.

[^3]: ${ }^{6}$ Newer units only.

[^4]: ${ }^{7}$ Available only on newer 200E and 200ES indicators at this time.

