

Tutorial:

Model-Based Design Using Model
Composer

UG1259 (v2018.3) December 5, 2018

See all versions of this document

https://www.xilinx.com/bin/public/docSeeAllVersions?productType=DesignTools&documentId=UG1259

Model-Based Design Using Model Composer www.xilinx.com 2
UG1259 (v2018.3) December 5, 2018

Revision History
The following table shows the revision history for this document.

Section Revision Summary

 12/05/2018 Version 2018.3

Design files Updates to design files.

Lab 3: Automatic Code Generation Revisions to Lab 3

06/06/2018 Version 2018.2

General updates Editorial updates and corrections.

Changed all instances of xmcCreateLibrary
command to xmcImportFunction command.
Command has been renamed to better indicate its
function.

Step 2: Custom Blocks with Function Templates (Lab
2)

Added a Step 2 to Lab 2 to create a custom block using
function templates.

 04/04/2018 Version 2018.1

General updates Editorial updates and corrections.

Updated dialog box displays throughout manual to
reflect appearance in 2018.1 release.

Step 1: Set up the Import Function Example (Lab 2) Added this Note:

IMPORTANT: You can use the const qualifier in the
function signature to identify the inputs to the block or
use the pragma INPORT.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1259&Title=Model-Based%20Design%20Using%20Model%20Composer&releaseVersion=2018.3&docPage=2

Model-Based Design Using Model Composer www.xilinx.com 3
UG1259 (v2018.3) December 5, 2018

Table of Contents
Revision History .. 2

Model Composer Lab Overview .. 4

Introduction ... 4

Software Requirements ... 5

Launching Model Composer ... 5

Locating and Preparing the Tutorial Files ... 6

Lab 1: Introduction to Model Composer ... 7

Introduction ... 7

Step 1: Review the Model Composer Library .. 8

Step 2: Build Designs with Model Composer Blocks .. 9

Step 3: Work with Data Types .. 11

Conclusion ... 19

Lab 2: Importing Code into Model Composer ... 20

Introduction .. 20

Step 1: Set up the Import Function Example .. 20

Step 2: Custom Blocks with Function Templates .. 23

Conclusion ... 29

Lab 3: Automatic Code Generation .. 30

Introduction .. 30

Step 1: Review Requirements for Generating Code .. 30

Step 2: Mapping Interfaces ... 32

Step 3: Generate IP from Model Composer Design .. 35

Step 4: Generate HLS Synthesizable Code .. 39

Step 5: Port a Model Composer Design to System Generator .. 42

Conclusion ... 48

Legal Notices ... 49

Please Read: Important Legal Notices .. 49

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1259&Title=Model-Based%20Design%20Using%20Model%20Composer&releaseVersion=2018.3&docPage=3

Model-Based Design Using Model Composer www.xilinx.com 4
UG1259 (v2018.3) December 5, 2018

Model Composer Lab Overview

Introduction
Xilinx® Model Composer is a model-based design tool that enables rapid design exploration within the
Simulink® environment and accelerates the path to production on Xilinx programmable devices
through automatic code generation.

Model Composer is designed as an add-on to Simulink and provides a library of performance-
optimized blocks for design and implementation of algorithms on Xilinx FPGAs. The Model Composer
library offers over 80 predefined blocks, including application-specific blocks for Computer Vision and
Image Processing and functional blocks for Math, Linear Algebra, Logic, and Bit-wise operations, among
others.

You can focus on expressing algorithms using blocks from the Xilinx Model Composer library as well as
custom user-imported blocks, without worrying about implementation specifics, and leverage all the
capabilities of Simulink’s graphical environment for algorithm design, simulation, and functional
verification. Model Composer then transforms your algorithmic specifications to production-quality
implementation using automatic optimizations that extend the Xilinx High Level Synthesis technology.

This tutorial introduces the end-to-end workflow for using Model Composer.

The included labs are as follows:

• Lab 1: Introduction to Model Composer

o Introduction to Model Composer Library Blocks for design

o Integration with native Simulink and Support for vectors and matrices

o Working with data types

• Lab 2: Create Custom Blocks in Model Composer

• Using the xmcImportFunction command to specify functions defined in source and
header files to import into Model Composer and create Model Composer blocks or a block
library.

• Creating custom blocks with Function templates

• Lab 3: Automatic Code Generation

o Requirements for Code Generation

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1259&Title=Model-Based%20Design%20Using%20Model%20Composer&releaseVersion=2018.3&docPage=4

 Model Composer Lab Overview

Model-Based Design Using Model Composer www.xilinx.com 5
UG1259 (v2018.3) December 5, 2018

o Mapping Interfaces

o Generate an IP for use in the Vivado® IP Integrator

o Generate Vivado HLS Synthesizable Code

o Port a Model Composer Synthesized Design into System Generator for DSP

Software Requirements
The lab exercises in this tutorial require that you have installed the following software:

• MATLAB™: The MATLAB releases and simulation tools supported in this release of Model
Composer are described in the Compatible Third-Party Tools section of the Vivado Design Suite
User Guide: Release Notes, Installation, and Licensing (UG973).

• Vivado Design Suite release: 2018.2 (Includes Vivado HLS)

• Model Composer: 2018.2

See the Vivado Design Suite User Guide: Release Notes, Installation, and Licensing (UG973) for a
complete list and description of the system and software requirements

Launching Model Composer
To launch Model Composer:

• On Windows systems:

o Select Start > All Programs > Xilinx Design Tools > Model Composer 2018.x > Model
Composer 2018.x.

OR

o Double-click the Model Composer icon which was placed on your desktop after installation.

• On Linux systems:

You launch Model Composer under Linux using a shell script called model_composer located
in the <Model_composer_install_dir>/2018.x/bin directory. Before launching this
script, you must make sure the MATLAB executable can be found in your Linux system’s $PATH
environment variable for your Linux system. When you execute the model_composer script, it
will launch the first MATLAB executable found in $PATH and attach Model Composer to that
session of MATLAB. Also, the model_composer shell script supports all the options that

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.3;d=ug973-vivado-release-notes-install-license.pdf;a=CompatibleThirdPartyTools
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.3;d=ug973-vivado-release-notes-install-license.pdf
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1259&Title=Model-Based%20Design%20Using%20Model%20Composer&releaseVersion=2018.3&docPage=5

 Model Composer Lab Overview

Model-Based Design Using Model Composer www.xilinx.com 6
UG1259 (v2018.3) December 5, 2018

MATLAB supports and all options can be passed as command line arguments to the
model_composer script.

When Model Composer opens, you can confirm the version of MATLAB to which Model Composer is
attached by entering the version command in the MATLAB Command Window.

>> version

ans =

'9.2.0.538062 (R2017a)'

Locating and Preparing the Tutorial Files
There are separate project files and sources for each of the labs in this tutorial. You can find the design
files for this tutorial on the www.xilinx.com website.

1. Download the Reference Design Files from the Xilinx website.

2. Extract the zip file contents into any write-accessible location on your hard drive or network
location.

RECOMMENDED: You will modify the tutorial design data while working through this tutorial.
You should use a new copy of the ModelComposer_Tutorial directory extracted from
ug1259-model-composer-tutorial.zip each time you start this tutorial.

TIP: This document assumes the tutorial files are stored at C:\ModelComposer_Tutorial. All
pathnames and figures in this document refer to this pathname. If you choose to store the tutorial
in another location, adjust the pathnames accordingly.

TIP: Make sure to save the tutorial files in a folder structure with no spaces in them. There is a
known limitation that does not support spaces in the directory structure for code generation.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=fcf69c69-5d39-4e28-b89f-89931d8a2fb6;d=ug1259-model-composer-tutorial.zip
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1259&Title=Model-Based%20Design%20Using%20Model%20Composer&releaseVersion=2018.3&docPage=6

Model-Based Design Using Model Composer www.xilinx.com 7
UG1259 (v2018.3) December 5, 2018

Lab 1: Introduction to Model Composer

Introduction
This tutorial shows how you can use Model Composer for rapid algorithm design and simulation in the
Simulink® environment.

Procedure
This lab has the following steps:

• In Step 1, you examine the Model Composer Simulink library.

• In Step 2, you build a simple design using Model Composer blocks to see how Model Composer
blocks integrate with native Simulink blocks and supported Signal Dimensions.

• In Step 3, you look at data types supported by Model Composer and the conversion between
data types.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1259&Title=Model-Based%20Design%20Using%20Model%20Composer&releaseVersion=2018.3&docPage=7

 Lab 1: Introduction to Model Composer

Model-Based Design Using Model Composer www.xilinx.com 8
UG1259 (v2018.3) December 5, 2018

Step 1: Review the Model Composer Library
In this step you see how Model Composer fits into the Simulink environment, and then review the
categories of blocks available in the Model Composer library.

Access Model Composer Library
Model Composer provides 80+ blocks for use within the Simulink environment that you can access
them from within the Simulink Library Browser:

1. Use any of these techniques to open the Simulink Library Browser:

a. On the Home tab, click Simulink, and choose a model template. In the new model, click the

Library Browser button.

b. At the command prompt, type:
slLibraryBrowser

2. In the browser, navigate to the Xilinx Model Composer library.

Figure 1: Xilinx Model Composer Library

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1259&Title=Model-Based%20Design%20Using%20Model%20Composer&releaseVersion=2018.3&docPage=8

 Lab 1: Introduction to Model Composer

Model-Based Design Using Model Composer www.xilinx.com 9
UG1259 (v2018.3) December 5, 2018

The Model Composer blocks are organized into subcategories based on functionality. Spend a few
minutes navigating through the sub-libraries and familiarizing yourself with the available blocks.

Step 2: Build Designs with Model Composer Blocks
In this step, you build a simple design using the existing Model Composer blocks.

Sobel Edge Detection: Algorithm Overview
Sobel edge detection is a classical algorithm in the field of image and video processing for the
extraction of object edges. Edge detection using Sobel operators works on the premise of computing
an estimate of the first derivative of an image to extract edge information.

Figure 2: Sobel Edge Detection

Implementing Algorithm in Model Composer
1. In the MATLAB Current Folder, navigate to ModelComposer_Tutorial\Lab1\Section1.

2. Double-click the Sobel_EdgeDetection_start.slx model.

This model already contains source and sink blocks (from Simulink’s Computer Vision System
Toolbox), to stream video files as input directly into your algorithm and view the results. The model
also contains some of the needed Model Composer blocks required for this section. Note the
difference in appearance for the Model Composer blocks in the design versus the Simulink blocks.

3. From the Library Browser, select the Sobel Filter block from the Computer Vision sub-library of the
Xilinx Model Composer library. Drag the block into the area labeled Convolve Image Frame with
Sobel Kernel and Compute Gradient as shown in Figure 4 and connect the input of this block to
the output of the From Multimedia File block.

Note: You can also add Model Composer blocks directly into your model by typing the block name
onto the canvas (same as Simulink blocks).

Figure 3: Searching for Sobel Filter Block

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1259&Title=Model-Based%20Design%20Using%20Model%20Composer&releaseVersion=2018.3&docPage=9

 Lab 1: Introduction to Model Composer

Model-Based Design Using Model Composer www.xilinx.com 10
UG1259 (v2018.3) December 5, 2018

4. From the Library Browser, select the Gradient Magnitude block from the Xilinx Model Composer
library (also found in the Computer Vision sub-library), drag it into the model, and connect the X
and Y outputs of the Sobel Filter block to the input of this block.

5. Connect the rest of the blocks to complete the algorithm as shown in the following figure:

Figure 4: Algorithm with Sobel Filter and Gradient Magnitude

6. Select the Simulation > Run command or click the button to simulate the model and view the
results of the Sobel Edge Detection algorithm.

Note: The Model Composer blocks can operate on matrices (image frames in the following figure).

Figure 5: Input and Output Videos

One way to assess the simulation performance of the algorithm is to check the video frame rate of the
simulation. To do this:

7. Add the Frame Rate Display block from the Simulink Computer Vision System Toolbox (under
the Sinks category) and connect it to the output of the algorithm as shown in Figure 6.

8. Simulate the model again to see the number of video frames processed per second.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1259&Title=Model-Based%20Design%20Using%20Model%20Composer&releaseVersion=2018.3&docPage=10

 Lab 1: Introduction to Model Composer

Model-Based Design Using Model Composer www.xilinx.com 11
UG1259 (v2018.3) December 5, 2018

Figure 6: Frames Processed Per Second

9. Try these things:

• Change the input video through the From Multimedia File block by double-clicking the block
and changing the File Name field to select a different video. Notice that changing the video
resolution in the Source block does not require any structural modifications to the algorithm itself.

Note: You must stop simulation before you can change the input file. Also, the .mp4 files in the
MATLAB vision data tool box directory are not supported.

• Build any variations using other available blocks in the Computer Vision sub-library in Model
Composer.

Note: You can find other smaller examples for reference in the folder
ModelComposer_Tutorial\Lab1\Section1\Examples

Step 3: Work with Data Types
In this step, you become familiar with the supported Data Types for Model Composer and conversion
from floating to fixed-point types.

This exercise has two primary parts, and one optional part:

• Review a simple floating-point algorithm using Model Composer.

• Look at Data Type Conversions in Model Composer designs.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1259&Title=Model-Based%20Design%20Using%20Model%20Composer&releaseVersion=2018.3&docPage=11

 Lab 1: Introduction to Model Composer

Model-Based Design Using Model Composer www.xilinx.com 12
UG1259 (v2018.3) December 5, 2018

Work with Native Simulink Data Types
1. In the MATLAB Current Folder, navigate to the ModelComposer_Tutorial\Lab1\Section2

folder.

2. Double-click ColorSpace_Conversion.slx to open the design.

This is a Color Space conversion design, built with basic Model Composer blocks, that performs a RGB
to YCbCr conversion.

3. Update the model (Ctrl+D) and observe that the Data Types, Signal Dimensions and Sample Times
from the Source blocks in Simulink all propagate through the Model Composer blocks. Note that the
design uses single precision floating point data types.

4. Simulate the model and observe the results from simulation.

Convert Data Types
To convert the previous design to use Xilinx Fixed Point types:

 Note: Fixed point representation helps to achieve optimal resource usage and performance for a
usually acceptable trade-off in precision, depending on the dataset/algorithm.

1. Double-click ColorSpace_Conversion_fixed_start.slx in the Current Folder to open the
design.

2. Open the Xilinx Model Composer library in the Simulink Library Browser.

3. Navigate to the Signal Attributes sub-library, select the Data Type Conversion block, and drag it
into the empty slots in the designs, before and after the RGB to YCbCr subsystem.

Figure 7: Model Composer Data Type Conversion Block

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1259&Title=Model-Based%20Design%20Using%20Model%20Composer&releaseVersion=2018.3&docPage=12

 Lab 1: Introduction to Model Composer

Model-Based Design Using Model Composer www.xilinx.com 13
UG1259 (v2018.3) December 5, 2018

Figure 8: RGB to YCbCr Subsystem with DTC Blocks Connected

4. Open the Data Type Conversion blocks at the inputs of the RGB to YCbCr Subsystem, and do the
following:

o Change the Output data type parameter to fixed.

o Set the Signedness to Unsigned.

o Set the Word length to 8.

o Set Fractional length to 7.

o Click Apply, and close the dialog box.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1259&Title=Model-Based%20Design%20Using%20Model%20Composer&releaseVersion=2018.3&docPage=13

 Lab 1: Introduction to Model Composer

Model-Based Design Using Model Composer www.xilinx.com 14
UG1259 (v2018.3) December 5, 2018

Figure 9: Data Type Conversion Block Parameters

5. Add the Data Type Conversion blocks at the output of the RGB to YCbCr Subsystem and set the
Output data type parameter to single. This will enable connecting the output signals to the Video
Viewer blocks for visualization.

Figure 10: Setting Output Data Type

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1259&Title=Model-Based%20Design%20Using%20Model%20Composer&releaseVersion=2018.3&docPage=14

 Lab 1: Introduction to Model Composer

Model-Based Design Using Model Composer www.xilinx.com 15
UG1259 (v2018.3) December 5, 2018

6. Double-click the RGB to YCbCr subsystem to descend the hierarchy and open the model. Within
the RGB to YCbCr subsystem, there are subsystems to calculate Y, Cb, and Cr components using
Gain and Constant blocks.

You can control the fixed point types for the gain parameter in the Gain blocks and the value in the
Constant blocks. You can do this by opening up the Calculate_Y, Calculate_Cb, and Calculate_Cr
blocks and setting the data types as follows.

For Gain blocks, set the Gain data type to fixed and the following options appear:

o Signedness to Signed

o Gain data type to fixed

o Word length to 8

o Fractional length to 7

For Constant blocks, on the Data Types tab set the Output data type to fixed and the following
options appear:

o Signedness to Signed

o Output data type to fixed

o Word Length to 8

o Fractional Length to 7

TIP: You can use the View > Property Inspector command to open the Property
Inspector window. When you select the different Gain or Constant blocks, you can see
and modify the properties on the selected block.

Make sure you do this for all the Constant and Gain blocks in the design. Update the model
(Ctrl+D) and observe the fixed point data types being propagated along with automatic bit growth
in gain blocks and adder trees in the design as shown below:

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1259&Title=Model-Based%20Design%20Using%20Model%20Composer&releaseVersion=2018.3&docPage=15

 Lab 1: Introduction to Model Composer

Model-Based Design Using Model Composer www.xilinx.com 16
UG1259 (v2018.3) December 5, 2018

Figure 11: Propagated Xilinx Fixed-Point Data Types

The general format used to display the Xilinx fixed point data types is as follows:

x_[u/s]fix[wl]_En[fl]

u: Unsigned

s: Signed

wl: Word Length

fl: Fractional Length

For example, x_sfix16_En8 represents a signed fixed point number with Word Length=16 and
Fractional Length=8.

You can view a completed version of the design here:

ModelComposer_Tutorial\Lab1\Section2\solution\Colorspace_Conversion_fixed
.slx

Convert Data Types (Alternative)
Model Composer supports Data Type Expressions that make it easier to change data types and
quickly explore the results from your design.

1. Double-click ColorSpace_Conversion_Expression.slx in the Current Folder to open the
design.

2. Notice that the Data Type Conversion blocks at the Input of the RGB to YCbCr Subsystem, the
Gain blocks and Constant blocks within the Subsystem have corresponding Output data type and
Gain data type set to data type expression.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1259&Title=Model-Based%20Design%20Using%20Model%20Composer&releaseVersion=2018.3&docPage=16

 Lab 1: Introduction to Model Composer

Model-Based Design Using Model Composer www.xilinx.com 17
UG1259 (v2018.3) December 5, 2018

Figure 12: Controlling Data Types with Workspace Variables

This enables Model Composer blocks to control the data types in the design using workspace
variables, in this case InputDataType and FDataType that you can easily change from the
MATLAB command prompt.

3. Update the model (Ctrl+D) and observe the fixed-point data types propagated through the blocks.

The other Model Composer blocks in the design will automatically take care of the bit-growth in the
design. If you want more control over the fixed point data types at other intermediate portions of
the design, you can insert Data Type Conversion blocks wherever necessary.

4. To change the fixed point types in the Gain and Constant blocks, type the following at the MATLAB
command prompt:
>> FDataType = 'x_sfix8_En6'
>> InputDataType = 'x_ufix8_En6'

'x_sfix8_En6' represents a signed fixed point number with Word Length 8 and Fractional Length 6.

Now update the model (Ctrl+D) and observe how the fixed-point data types have changed in the
design.

5. Simulate the model and observe the results from the design. Try further changing InpuDataType
and FDataType variables through command line and iterate through multiple word lengths and
fractional lengths. See the Additional Details section below for information on specifying rounding
and overflow modes.

Additional Details:

In the example above, we only specified the Word Length and Fractional Length of the fixed point data
types using data type expressions. However, for greater control over the fixed point types in your

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1259&Title=Model-Based%20Design%20Using%20Model%20Composer&releaseVersion=2018.3&docPage=17

 Lab 1: Introduction to Model Composer

Model-Based Design Using Model Composer www.xilinx.com 18
UG1259 (v2018.3) December 5, 2018

design, you can also specify the Signedness, Rounding, and Overflow. In general the format used for
specifying fixed point data types using the data type expression is

x_[u/s]fix[wl]_En[fl]_[r<round>w<overflow>]

u: Unsigned

s: Signed

wl: word length

fl: Fractional length

<round>: Specify the corresponding index from table below. It's optional. If not specified, default value
is 6 (Truncation to minus infinity). Note that for the rounding cases (1 to 5), the data is rounded to the
nearest value that can be represented in the format. When there is a need for tie breaker, these
particular roundings behave as specified in the Meaning column.

Index Meaning

1 Round to Plus Infinity

2 Round to Zero

3 Round to Minus Infinity

4 Round to Infinity

5 Convergent Rounding

6 Truncation to Minus Infinity

7 Truncation to Zero

<overflow>: Specify the corresponding index from table below. It's optional. If not specified, default
value is 4 (Wrap around)

Index Meaning

1 Saturation

2 Saturation to Zero

3 Symmetrical Saturation

4 Wrap Around

5 Sign-Magnitude Wrap Around

Example. x_ufix8_En6_r6w4 represents a fixed point data type with

Signedness: Unsigned

Word Length: 8

Fractional Length: 6

Rounding Mode: Truncation to Minus Infinity

Overflow Mode: Wrap Around

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1259&Title=Model-Based%20Design%20Using%20Model%20Composer&releaseVersion=2018.3&docPage=18

 Lab 1: Introduction to Model Composer

Model-Based Design Using Model Composer www.xilinx.com 19
UG1259 (v2018.3) December 5, 2018

Conclusion
In this lab, you learned:

• How to connect Model Composer blocks directly to native Simulink blocks.

• How the Model Composer blocks support Vectors and Matrices, allowing you to process an
entire frame of an image at a time without converting it from a frame to a stream of pixels at the
input.

• How to work with different data types.

• How to use the Data Type Conversion block to control the conversion between data types,
including floating-point to fixed-point data types.

Note: Model Composer Supports the same floating and integer data types as Simulink blocks.
Model Composer also supports Xilinx fixed point data types.

The following solution directories contain the final Model Composer files for this lab:

C:\ModelComposer_Tutorial\Lab1\Section1\solution

C:\ModelComposer_Tutorial\Lab1\Section2\solution

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1259&Title=Model-Based%20Design%20Using%20Model%20Composer&releaseVersion=2018.3&docPage=19

Model-Based Design Using Model Composer www.xilinx.com 20
UG1259 (v2018.3) December 5, 2018

Lab 2: Importing Code into Model Composer

Introduction
Model Composer lets you import Vivado HLS library functions and user C/C++ code as custom blocks
to use in your algorithm for both simulation and code generation.

The Library Import feature is a MATLAB function, xmcImportFunction, which lets you specify the
required source files and automatically creates an associated block that can be added into a model in
Simulink.

This lab primarily have two parts

• In Step 1, you are introduced to the xmcImportFunction function, and walk through an
example.

• In Step 2, you will learn about the Model Composer feature that enables you to create custom
blocks with function templates

For more details and information about other Model Composer features, see the Model Composer User
Guide (UG1262).

Step 1: Set up the Import Function Example
In the MATLAB Current Folder panel, navigate to Lab2\Section1 folder.

7. Double-click the basic_array.cpp and basic_array.h files to view the source code in the
MATLAB Editor.

These are the source files for a simple basic_array function in C++, which calculates the sum of
two arrays of size 4. You will import this function as a Model Composer block using the
xmcImportFunction function.

The input and output ports for the generated block are determined by the signature of the source
function. Model Composer identifies arguments specified with the const qualifier as inputs to the
block, and all other arguments as outputs.

Note: For more details and other options for specifying the direction of the arguments, see the
Model Composer User Guide (UG1262).

IMPORTANT: You can use the const qualifier in the function signature to identify the
inputs to the block or use the pragma INPORT.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.3;d=ug1262-model-composer-user-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.3;d=ug1262-model-composer-user-guide.pdf
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1259&Title=Model-Based%20Design%20Using%20Model%20Composer&releaseVersion=2018.3&docPage=20

 Lab 2: Importing Code into Model Composer

Model-Based Design Using Model Composer www.xilinx.com 21
UG1259 (v2018.3) December 5, 2018

In the case of the basic_array function, the in1 and in2 arguments are identified as inputs.
void basic_array(
 uint8_t out1[4],
 const uint8_t in1[4],
 const uint8_t in2[4])

8. To learn how to use the xmcImportFunction function, type help xmcImportFunction at the
MATLAB command prompt to view the help text and understand the function signature.

9. Open the import_function.m MATLAB script, and fill in the required fields for the
xmcImportFunction function in this way:

xmcImportFunction('basic_array_library', {'basic_array'}, 'basic_array.h',
{'basic_array.cpp'}, {});

The information is defined as follows:

• Library Name: basic_array_library. This is the name of the Simulink library that is created
with the new block.

• Function Names: basic_array. This is the name of the function that you want to import as a
block.

• Header File: basic_array.h. This is the header file for the function.

• Source Files: basic_array.cpp. This is the source file for the imported function.

• Search Paths: This argument is used to specify the search path(s) for header files. In this
example, there are no additional search paths to specify and hence you can leave it as { } which
indicates none.

Note: Look at create_libary_solution.m in the solution folder for the completed version.

10. Run the import_function.m script from the MATLAB command line:
>>run('import_function.m')

Notice that a Simulink library model opens up with the generated block basic_array.

Save this Simulink library model.

11. Double-click the basic_array block, and look at the generated interface.

The following figure shows the Block Parameters dialog box for basic_array:

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1259&Title=Model-Based%20Design%20Using%20Model%20Composer&releaseVersion=2018.3&docPage=21

 Lab 2: Importing Code into Model Composer

Model-Based Design Using Model Composer www.xilinx.com 22
UG1259 (v2018.3) December 5, 2018

Figure 13: Block Parameters: basic_array Block

12. Open the test_array.slx model, which is just a skeleton to test the generated block.

13. Add the generated basic_array block into this model, then connect the source and sink blocks.

14. Simulate this model and observe the results in the display block.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1259&Title=Model-Based%20Design%20Using%20Model%20Composer&releaseVersion=2018.3&docPage=22

 Lab 2: Importing Code into Model Composer

Model-Based Design Using Model Composer www.xilinx.com 23
UG1259 (v2018.3) December 5, 2018

Step 2: Custom Blocks with Function Templates
In this step we will walk through an example to do the following:

• To create a custom block that supports inputs of different sizes.
• To create a custom block that accepts signals with different fixed-point lengths and fractional

lengths.
• To perform simple arithmetic operations using template variables.

1. Navigate to the Lab2/section2 folder

2. Double click the template_design.h file to view the source code in the MATLAB Editor. There
are two functions: Demux and Mux. These two functions are a multiplexing and demultiplexing of
inputs as shown below.

Figure 14: Demux Function

3. In the piece of code, note the #pragma XMC INPORT vector_in. This is a way to manually
specify port directions using pragmas. Here, we are specifying the function argument vector_in
as the InputPort. Similarly, we can define XMC OUTPORT also.

Note: For additional information about specifying ports, see Importing C/C++ Code as Custom Blocks
in the Model Composer User Guide (UG1262).

4. Notice the use of template before the function declaration. To support the inputs of different
sizes, NUMOFELEMENTS is declared as a parameter and used the same while defining an array
vector_in as shown below. This allows you to connect signals of different sizes to the input port
of the block.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.3;d=ug1262-model-composer-user-guide.pdf
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1259&Title=Model-Based%20Design%20Using%20Model%20Composer&releaseVersion=2018.3&docPage=23

 Lab 2: Importing Code into Model Composer

Model-Based Design Using Model Composer www.xilinx.com 24
UG1259 (v2018.3) December 5, 2018

5. Notice the template parameters W and I which are declared to accept signals with different word
lengths and integer lengths.

Note: The same library is specified for both the functions.

6. Observe the arithmetic operations performed using template variables as shown below, indicating
the output signal length is half of the input signal length.

7. Similar explanation follows for Mux function.

Figure 15: Mux Function

Now create the library blocks for Mux and Demux functions using the xmcImportFunction
command and complete the design below with custom blocks.

Figure 16: Initial Design

8. Double-click the import_function.m script file in the MATLAB command window and observe
the following commands that generate library blocks to embed into your actual design.

>>xmcImportFunction('design_lib',{'Demux'},'template_design.h',{},{'$XILINX_VIVADO_
HLS/include'},'ov erride','unlock')
>>xmcImportFunction('design_lib',{'Mux'},'template_design.h',{},{'$XILINX_VIVADO_HL
S/include'},'over ide','unlock')

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1259&Title=Model-Based%20Design%20Using%20Model%20Composer&releaseVersion=2018.3&docPage=24

 Lab 2: Importing Code into Model Composer

Model-Based Design Using Model Composer www.xilinx.com 25
UG1259 (v2018.3) December 5, 2018

9. Run the import_function.m script from the MATLAB command line:
>>run('import_function.m')

10. Observe the generated library blocks in the design_lib.slx library model file and save it to
working directory.

Figure 17: Generated Library blocks

11. Copy the Demux and Mux blocks and paste them in the design.slx file and connect them as
shown below.

Figure 18: Completed Design

12. Note the following after embedding the custom blocks:

a. Double-click the Constant block and observe the vector input of type double. SSR is a
workspace variable, initially set to 8 from the initFcn model callback.

b. Using the Data Type Conversion (DTC) block, double type is converted to fixed type with 16-
bit word length and 8-bit fractional length.

Input is configurable to any word length since the design is templatized.

c. Double-click the Demux block and observe the Template parameters section and Dimension
column in the Interface section of the function tab.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1259&Title=Model-Based%20Design%20Using%20Model%20Composer&releaseVersion=2018.3&docPage=25

 Lab 2: Importing Code into Model Composer

Model-Based Design Using Model Composer www.xilinx.com 26
UG1259 (v2018.3) December 5, 2018

Figure 19: Library Function Block Parameters

d. Next, double-click the Mux block and observe the Template parameters and Dimension.

13. Add a Display block at the input and output as shown below and simulate the model to observe the
results.

Figure 20: Output after Simulation

14. To understand how templatized inputs add advantage and flexibility to your design, perform the
following:

a. Double-click the DTC block.

b. In the Block Parameters dialog box, change the Word length from 16 to 32.

c. Change the Fractional length from 8 to 16.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1259&Title=Model-Based%20Design%20Using%20Model%20Composer&releaseVersion=2018.3&docPage=26

 Lab 2: Importing Code into Model Composer

Model-Based Design Using Model Composer www.xilinx.com 27
UG1259 (v2018.3) December 5, 2018

Figure 21: DTC Block Parameters

d. Click OK and press Ctrl+D. Observe the signal dimensions in the design.

Figure 22: Signal Dimensions in Design

To make sure the output is correct, run the simulation and observe that the same block can still be
used in a generic way for different values of Word length and Fractional length. This is possible only
because we have templatized the W and I values in our C design.

15. For an additional understanding of template parameters, perform the following:

a. Click the arrow mark beside the Model configuration Parameters icon and select the Model
Properties option.

b. In the Model Properties window, go to the Callbacks tab and select initFcn and edit the SSR

value from 8 to 16 as shown below.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1259&Title=Model-Based%20Design%20Using%20Model%20Composer&releaseVersion=2018.3&docPage=27

 Lab 2: Importing Code into Model Composer

Model-Based Design Using Model Composer www.xilinx.com 28
UG1259 (v2018.3) December 5, 2018

Figure 23: Model Properties

c. Click OK and press Ctrl+D to observe the change in the number of elements in the Constant
block output vector. The bitwidth changes when we change the datatype on the input DTC. This
is possible only because of the template parameter NUMOFELEMENTS.

d. Run the simulation and validate the output according to the input values.

Note: For information about features such as function templates for data types and pragmas to
specify which data type a template variable supports, see Defining Blocks Using Function
Templates in the Model Composer User Guide (UG1262).

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.3;d=ug1262-model-composer-user-guide.pdf
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1259&Title=Model-Based%20Design%20Using%20Model%20Composer&releaseVersion=2018.3&docPage=28

 Lab 2: Importing Code into Model Composer

Model-Based Design Using Model Composer www.xilinx.com 29
UG1259 (v2018.3) December 5, 2018

Conclusion
In this lab, you learned:

• How to create a custom block using the xmcImportFunction in Model Composer.

• How to create a block that accepts signals with different fixed-point lengths and fractional
lengths.

• How to use the syntax for using a function template that lets you create a block that accepts a
variable signal size or data dimensions.

• How to perform simple arithmetic operations using template variables.

Note: Current feature support enables you to import code that uses:

o Vectors and 2D matrices

o Floating, integer, and Vivado HLS fixed-point data types

The following solution directory contains the final Model Composer (*.slx) files for this lab.

C:\ModelComposer_Tutorial\Lab2\section1\solution

C:\ModelComposer_Tutorial\Lab2\section2\solution

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1259&Title=Model-Based%20Design%20Using%20Model%20Composer&releaseVersion=2018.3&docPage=29

Model-Based Design Using Model Composer www.xilinx.com 30
UG1259 (v2018.3) December 5, 2018

Lab 3: Automatic Code Generation

Introduction
In this lab, you look at the flow for generating output from your Model Composer model and moving it
into downstream tools like Vivado HLS for RTL synthesis, or into System Generator, or the Vivado
Design Suite for implementation into a Xilinx device.

Procedure
This lab has five steps:

In Step 1, you will review the requirements for automatic code generation.

In Step 2, you will look at how to map Interfaces in your design.

In Step 3, you will look at the flow for generating an IP from your Model Composer design.

In Step 4, you will look at the flow for generating HLS Synthesizable C++ code from the Model
Composer design.

In Step 5, you will look at the flow to port a Model Composer design back into System Generator for
DSP as a block.

Step 1: Review Requirements for Generating Code
In this step, you review the three requirements to move from your algorithm in Simulink to an
implementation through automatic code generation.

1. In the MATLAB Current Folder, navigate to the ModelComposer_Tutorial\Lab3 directory.

2. Double-click CodeGen_start.slx to open the model.

To prepare for code generation, you will enclose your Model Composer design in a subsystem.

3. Right-click the Edge Detection area, and select Create Subsystem from Area.

Note: For code generation to work, all the blocks within the enclosed subsystem should only be
from the Xilinx Model Composer library, with the exception of the Simulink blocks noted below.
Subsystems with unsupported blocks will generate errors during code generation. The Simulink
diagnostic viewer will contain error messages and links to the unsupported blocks in the
subsystem.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1259&Title=Model-Based%20Design%20Using%20Model%20Composer&releaseVersion=2018.3&docPage=30

 Lab 3: Automatic Code Generation

Model-Based Design Using Model Composer www.xilinx.com 31
UG1259 (v2018.3) December 5, 2018

Note: In addition to the base Model Composer blocks, a subset of native Simulink blocks such as
From, Goto, Bus Creator, Bus Selector, If, and others, are supported. The supported Simulink blocks
appear within the Xilinx Model Composer libraries as well.

Next, you add the Model Composer Hub block at the top level of your design.

4. Open the Simulink Library Browser and navigate to Xilinx Model Composer Tools sub-library.

5. Find the Model Composer Hub block, and add it into the design as shown in the following figure:

Figure 24: Edge Detection with Model Composer Hub Block

Next, you use the Model Composer Hub block to select the code generation options for the design.

6. Double-click the block to open the block interface and set up as shown in the following figure:

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1259&Title=Model-Based%20Design%20Using%20Model%20Composer&releaseVersion=2018.3&docPage=31

 Lab 3: Automatic Code Generation

Model-Based Design Using Model Composer www.xilinx.com 32
UG1259 (v2018.3) December 5, 2018

Figure 25: Block Parameters Dialog Box

7. On the Compilation tab, you can set the following options as shown in above figure:

• Target directory: In this case, use ./codegen_edge_detection for the generating code.

• Subsystem name: In this case, use the Edge Detection subsystem. You can have multiple
subsystems at the top-level and use the Model Composer Hub block to select and
individually compile the subsystem you want.

• Export Type: This option determines what you want to convert your design into. In this case
IP Catalog (default). You can select other compilation targets from drop down.

o Vivado HLS Synthesizable C++ code

o System Generator for DSP

8. On the Hardware tab, you can specify the target FPGA clock frequency in MHz. The default value is
200MHz..

Step 2: Mapping Interfaces
1. Double-click the CodeGen_Interface.slx model in your Current Folder to open the design for

this lab section.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1259&Title=Model-Based%20Design%20Using%20Model%20Composer&releaseVersion=2018.3&docPage=32

 Lab 3: Automatic Code Generation

Model-Based Design Using Model Composer www.xilinx.com 33
UG1259 (v2018.3) December 5, 2018

This is a slightly modified version of the Edge Detection algorithm that uses the YCbCr video format
at the input and output.

2. Simulate the model to see the results in the Video Viewer blocks.

3. Open the Simulink Library browser, navigate to the Xilinx Model Composer > Tools sub-library and
add the Interface Spec block inside the Edge Detection subsystem as shown in the following
figure:

Figure 26: Interface Spec Block

4. Double-click the Interface Spec block to open the block interface.

The Interface Spec block allows you to control what RTL interfaces should be synthesized for the
ports of the subsystem in which the block is instantiated. This affects only code generation; it has no
effect on Simulink simulation of your design.

The information gathered by the Interface Spec block consists of three parts (represented as three
Tabs on the block):

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1259&Title=Model-Based%20Design%20Using%20Model%20Composer&releaseVersion=2018.3&docPage=33

 Lab 3: Automatic Code Generation

Model-Based Design Using Model Composer www.xilinx.com 34
UG1259 (v2018.3) December 5, 2018

Figure 27: Interface Spec Block Parameter

• Function Protocol: This is the block-level Interface Protocol which tells the IP when to start
processing data. It is also used by the IP to indicate whether it accepts new data, or whether it has
completed an operation, or whether it is idle.

• Input Ports: Detects the Input ports in your subsystem automatically and allows specifying the
port-level Interface Protocol for each input port of the subsystem.

• Output Ports: Similar to the Input Ports tab, this tab detects the Output ports in the subsystem,
and allows specifying the port-level Interface Protocol for each output port of the subsystem.

5. For this design, leave the Function Protocol mode at the default AXI4-Lite and configure the Input
ports and Output ports tabs as shown in the following figures:

Figure 28: Input Port Settings

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1259&Title=Model-Based%20Design%20Using%20Model%20Composer&releaseVersion=2018.3&docPage=34

 Lab 3: Automatic Code Generation

Model-Based Design Using Model Composer www.xilinx.com 35
UG1259 (v2018.3) December 5, 2018

Figure 29: Output Port Settings

• The Bundle parameter is used in conjunction with the AXI4-Lite or AXI4-Stream (video) interfaces
to indicate that multiple ports should be grouped into the same interface. It lets you bundle
multiple input/output signals with the same specified bundle name into a single interface port
and assigns the corresponding name to the RTL port.

For example in this case, the specified settings on the Input ports tab result in the YCbCr inputs
being mapped to AXI4-Stream (video) interfaces and bundled together as an image_in port in
the generated IP while the YCbCr outputs are bundled together as an image_out port.

• The Video Format drop-down menu lets you select between the following formats:

o YUV 4:2:2

o YUV 4:4:4

o RGB

o Mono/Sensor

• The Video Component drop-down menu is used to subsequently select the right component:
R,G,B,Y,U,V.

Step 3: Generate IP from Model Composer Design
Using the same example, you will generate an IP from the Edge Detection algorithm.

1. Double-click the CodeGen_IP.slx model in the Current Folder.

2. Double-click into the Edge Detection subsystem and review the settings on the Interface Spec
block. Based on the previous lab, this block has already been set up to map the input and output
ports to AXI4-Stream Video interface, and to use the YUV 4:2:2 video format.

3. Double-click the Model Composer Hub block, and set the following in the Block dialog box:

• Export Type: IP Catalog (default)

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1259&Title=Model-Based%20Design%20Using%20Model%20Composer&releaseVersion=2018.3&docPage=35

 Lab 3: Automatic Code Generation

Model-Based Design Using Model Composer www.xilinx.com 36
UG1259 (v2018.3) December 5, 2018

• Target Directory: codegen_IP

• Subsystem name: Edge Detection

4. To generate an IP from this design, click the Apply button in the Model Composer Hub block
dialog box to save the settings. Then click the Generate button to start the code generation
process.

Model Composer opens a progress window to show you the status. After completion, click OK and
you will see the new codegen_IP folder in the current folder, which contains the generated IP
solution folder.

Figure 30: Generation Progress

At the end of the IP generation process, Model Composer opens the Performance Estimates and
Utilization Estimates (from Vivado HLS Synthesis report) in the MATLAB Editor, as shown in the
following figures:

Note: The Performance and Utilization Numbers here may vary slightly depending on software
release.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1259&Title=Model-Based%20Design%20Using%20Model%20Composer&releaseVersion=2018.3&docPage=36

 Lab 3: Automatic Code Generation

Model-Based Design Using Model Composer www.xilinx.com 37
UG1259 (v2018.3) December 5, 2018

Figure 31: Performance Estimates

Figure 32: Utilization Estimates

You can also see a summary of the generated RTL ports and their associated protocols at the bottom of
the report.

Note : The actual timing and resource utilization estimates may deviate from above mentioned
values, based on the Vivado HLS build you choose.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1259&Title=Model-Based%20Design%20Using%20Model%20Composer&releaseVersion=2018.3&docPage=37

 Lab 3: Automatic Code Generation

Model-Based Design Using Model Composer www.xilinx.com 38
UG1259 (v2018.3) December 5, 2018

Figure 33: Interface Summary

BK

5. Launch Vivado and perform the following steps to add the generated IP to the IP Catalog.

6. Create a Vivado RTL project.

When you create the Vivado RTL project, specify the Board as Kintex-7 KC705 Evaluation
Platform (which is the same as the default Board in the Model Composer Hub block).

7. In the Vivado Flow Navigator, click IP Catalog.

8. Select the codegen_IP\Edge_Detection_prj\solution1\impl\ip folder.

9. To view the generated Edge_detection IP in the IP catalog, search for “Edge_detection”. The
generated Edge_detection IP, now appears in the IP catalog under Vivado HLS IP as shown in the
following figure.

Figure 34: Edge_detection IP in IP Catalog

You can now add this IP into an IP integrator block diagram, as shown in the following figure:

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1259&Title=Model-Based%20Design%20Using%20Model%20Composer&releaseVersion=2018.3&docPage=38

 Lab 3: Automatic Code Generation

Model-Based Design Using Model Composer www.xilinx.com 39
UG1259 (v2018.3) December 5, 2018

Figure 35: Edge_Detection in IP Integrator

Step 4: Generate HLS Synthesizable Code
In this section you will generate HLS Synthesizable code from the original Edge Detection design. Use the
CodeGen_Cplus.slx design for this lab. Simulate the model and ensure that algorithm is functionally
correct and gives you the results you would expect.

1. Open the Model Composer Hub block dialog box, and set the following:

o Export Type: C++ code

o Target Directory: ./codegen_edge_detection

o Subsystem name: Edge Detection

2. Click the Apply button on the Model Composer Hub block dialog box to save the settings and
then click the Generate button to start the code generation process.

Figure 36: Code Generation Dialog Box

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1259&Title=Model-Based%20Design%20Using%20Model%20Composer&releaseVersion=2018.3&docPage=39

 Lab 3: Automatic Code Generation

Model-Based Design Using Model Composer www.xilinx.com 40
UG1259 (v2018.3) December 5, 2018

3. At the end of code generation, observe the Current Folder in MATLAB.

You should now see a new folder: codegen_edge_detection in your Current Folder.

When you click Generate on the Model Composer Hub block, Model Composer first simulates the
model, then generates the code and places the generated code files in the Target Directory folder.
At the end of the code generation process, the window showing the progress of the code
generation process tells you where to look for your generated code.

4. Open the codegen_edge_detection folder and explore the generated code files highlighted in
the following figure:

Figure 37: Two Files to Explore in Current Folder

Note:

o Edge_Detection.cpp is the main file generated for the subsystem.

o run_hls.tcl is the Tcl file needed to create the Vivado HLS project and synthesize the
design.

5. In the design, open the Model Composer Hub block dialog box, and modify the block settings,
shown in the following figure, as follows:

• Check the Create and execute testbench checkbox.

• Modify the Target Directory folder.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1259&Title=Model-Based%20Design%20Using%20Model%20Composer&releaseVersion=2018.3&docPage=40

 Lab 3: Automatic Code Generation

Model-Based Design Using Model Composer www.xilinx.com 41
UG1259 (v2018.3) December 5, 2018

Figure 38: Modify Parameters

6. Click Apply and regenerate the code by clicking the Generate button. Click OK after you see Done
Verification in the status bar.

You should now see a new folder, codegen_edge_detection2, in your current folder.

7. Open the codegen_edge_detection2 folder and explore the generated code files.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1259&Title=Model-Based%20Design%20Using%20Model%20Composer&releaseVersion=2018.3&docPage=41

 Lab 3: Automatic Code Generation

Model-Based Design Using Model Composer www.xilinx.com 42
UG1259 (v2018.3) December 5, 2018

Figure 39: codegen_edge_detection2 Folder

With the Create and execute testbench option selected on the Model Composer Hub block,
Model Composer logs the inputs and outputs at the boundary of the Edge Detection subsystem and
saves the logged stimulus signals in the signals.stim file. The tb.cpp file is the automatically-
generated test bench that you can use for verification in Vivado HLS. At the end of the code
generation process, Model Composer automatically verifies that the output from the generated
code matches the output logged from the simulation and reports any errors.

Step 5: Port a Model Composer Design to System Generator
Using Model Composer, you can package a model for integration into a System Generator model, which
is especially useful if you are an existing System Generator for DSP user. This allows you to take advantage
of both the high level of abstraction and simulation speed provided by Model Composer for portions of
your design, and the more architecture-aware environment provided by System Generator.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1259&Title=Model-Based%20Design%20Using%20Model%20Composer&releaseVersion=2018.3&docPage=42

 Lab 3: Automatic Code Generation

Model-Based Design Using Model Composer www.xilinx.com 43
UG1259 (v2018.3) December 5, 2018

Figure 40: System Generator Export Type

Choosing System Generator as the Export type, and clicking Generate, creates a synthesized RTL block
that you can directly add to a System Generator design using the Vivado HLS block in System Generator.

In this lab, you create an IP using Model Composer and then use the synthesized RTL as a block in a
System Generator design.

1. In the ModelComposer_Tutorial/Lab3/ModelComposer_to_SysGen folder, double-click
MoC_design.slx to see the Model Composer design. The design is configured to have AXI4
streaming interfaces at both the input and output. This is done through the Interface Spec block
within the ModelComposerDesign subsystem. Note that there are no structural changes required
at the Simulink level to change interfaces for the IP.

Figure 41: Interface Spec block

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1259&Title=Model-Based%20Design%20Using%20Model%20Composer&releaseVersion=2018.3&docPage=43

 Lab 3: Automatic Code Generation

Model-Based Design Using Model Composer www.xilinx.com 44
UG1259 (v2018.3) December 5, 2018

Figure 42: Interface Spec block Input Port Settings

Figure 43: Interface Spec block Output Port Settings

2. Open the followme_script.m in MATLAB. This script will guide you through all the steps to
import the Model Composer generated solution as a block in System Generator.

3. Read the comments at the start of each section (labeled Section 1 to Section 8) in the
MATLAB script and execute each section one at a time (the start of each section is marked by a %%
sign).You can click on Run and Advance to step through each section in the script. The sections
are as follows:

a. Section 1: Set up

Open MATLAB for Model Composer and choose a video file as an input.
video_filename = 'vipmen.avi';

v = VideoReader(video_filename);
frame_height = v.Height;
frame_width = v.Width;
save video_handle v

b. Section 2: Creating a System Generator solution from a Model Composer design.

Model Composer allows you to export a design as a block into System Generator. The result of
exporting a design from Model Composer to System Generator is a solution folder that you
will import into the System Generator design using Vivado HLS block in System Generator.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1259&Title=Model-Based%20Design%20Using%20Model%20Composer&releaseVersion=2018.3&docPage=44

 Lab 3: Automatic Code Generation

Model-Based Design Using Model Composer www.xilinx.com 45
UG1259 (v2018.3) December 5, 2018

open_system('MoC_design');
xmcGenerate('MoC_design');

c. Section 3: Serializing the input video

Serialize the input video which is required for use with the System Generator design which will
do pixel-based processing.
stream_in = zeros(ceil(v.FrameRate*v.Duration*v.Height*v.Width),1);

i = 1;
while hasFrame(v)
 frame = rgb2gray(readFrame(v));
 a = reshape(frame',[],1);
 stream_in(i:i+length(a)-1) = a;
 i = i + length(a);
end

save stream_in stream_in

d. Section 4: Launch System Generator

Using System Generator currently requires launching a separate MATLAB session using the
System Generator Launcher.

Note : Use a Windows or Linux command accordingly, and change the path to point to your
local version of sysgen to launch System generator properly.

Windows:
system('C:\Xilinx\Vivado\2018.x\bin\sysgen.bat')

Linux:
system('<install directory>/Vivado/2018.x/bin/sysgen')

Note: Where ‘x’ in 2018.x denotes the latest release.

e. Section 5: Import the generated solution into System Generator

Set up the Vivado HLS block in the System Generator design to point to the correct solution
folder generated in Section 2.
open_system('sys_gen_AXI');

f. Section 6: Simulate the System Generator Design

Simulate the System Generator design and save the outputs into a MAT file. Note that the
simulation will be slower than the Model Composer design since we are simulating the
generated RTL and are doing an element-by-element based processing.
sim('sys_gen_AXI');

g. Section 7: De-serializing the output of the System Generator design.

This is a post-processing step that creates a frame-based video for playback using the outputs
logged from the System Generator simulation.
load stream_out
load video_handle

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1259&Title=Model-Based%20Design%20Using%20Model%20Composer&releaseVersion=2018.3&docPage=45

 Lab 3: Automatic Code Generation

Model-Based Design Using Model Composer www.xilinx.com 46
UG1259 (v2018.3) December 5, 2018

disp(['Length of input stream is ',num2str(length(stream_in))])
disp(['Lenght of output stream is ',num2str(length(stream_out))])

outputVideo = VideoWriter('stream_out.avi');
outputVideo.FrameRate = v.FrameRate;
open(outputVideo)

The output is boolean. This is why we multiply the img by 255 so that implay shows the image.
for i = 1:length(stream_out)/v.Height/v.Width
 img = reshape(stream_out((i-
1)*v.Height*v.Width+1:i*v.Height*v.Width),v.Width,v.Height);
 writeVideo(outputVideo,255*img')
end

close(outputVideo);

h. Section 8: Play the de-serialized output using implay.
implay('stream_out.avi')

4. The AXI4 stream uses three signals, DATA, READY, and VALID. The READY signal is a back pressure
signal from the slave side to the master side indicating whether the slave side can accept new data.

As you examine the System Generator model in Section 5, pay attention to the labels on blocks
for each signal to help you understand how the model is designed. For example, whenever the IP
can no longer accept input, the READY signal (top right of the Vivado HLS block) puts pressure on
the master side of the input AXI FIFO by resetting the READY signal. Likewise, the input AXI FIFO
pressures the input stream by resetting its READY signal.

Note that in Simulink all the inputs to a block are to one side of the block, and all the outputs are
on the opposite side. As such, all the slave or master signals are not bundled together on one side
of the block as you might expect.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1259&Title=Model-Based%20Design%20Using%20Model%20Composer&releaseVersion=2018.3&docPage=46

 Lab 3: Automatic Code Generation

Model-Based Design Using Model Composer www.xilinx.com 47
UG1259 (v2018.3) December 5, 2018

Figure 44: Corresponding System Generator Design

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1259&Title=Model-Based%20Design%20Using%20Model%20Composer&releaseVersion=2018.3&docPage=47

 Lab 3: Automatic Code Generation

Model-Based Design Using Model Composer www.xilinx.com 48
UG1259 (v2018.3) December 5, 2018

Conclusion
In this lab, you learned:

• About the Interface Spec block terminology and parameter names.

• How to specify interfaces and to map them directly from the Simulink environment using the
Interface Spec block.

• How Model Composer enables push button IP creation from your design in Simulink with the
necessary interfaces.

• How the Model Composer Hub block in Model Composer helps move from algorithm to
implementation.

• How to generate code files from the Model Composer Hub block and read them.

• How to set compilation targets to C++ code, IP Catalog and System Generator.

Some additional notes about Model Composer:

• Model Composer takes care of mapping interfaces as part of the code generation process and
you don’t have to take care of interleaving and de-interleaving color channels and interface
connections at the design level.

• An Interface Spec block must be placed within the subsystem for which you intend to generate
code.

• For the C++ code compilation target, Model Composer generates everything you would need
to further optimize and synthesize the design using Vivado HLS.

• Model Composer automatically generates the test vectors and test benches for C/RTL
cosimulation in Vivado HLS.

• Model Composer provides an option to export a design back into System Generator through the
Vivado HLS block.

• When moving from a Model Composer design to System Generator, you move from an untimed
C-based bit-true design to an RTL-based bit-true and cycle-accurate design.

The following solution directory contains the final Model Composer (*.slx) files for this lab.

C:\ModelComposer_Tutorial\Lab3\solution

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1259&Title=Model-Based%20Design%20Using%20Model%20Composer&releaseVersion=2018.3&docPage=48

Model-Based Design Using Model Composer www.xilinx.com 49
UG1259 (v2018.3) December 5, 2018

Legal Notices

Please Read: Important Legal Notices
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the maximum
extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES
AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort,
including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in
connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss
or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party)
even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no
obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not
reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and
conditions of Xilinx’s limited warranty, please refer to Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP
cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or
intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products
in such critical applications, please refer to Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA” IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE (“SAFETY APPLICATION”) UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD (“SAFETY
DESIGN”). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS,
THOROUGHLY TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A
SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING
LIMITATIONS ON PRODUCT LIABILITY.

© Copyright 2017-2018 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Zynq, UltraScale, and other designated brands
included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective
owners.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1259&Title=Model-Based%20Design%20Using%20Model%20Composer&releaseVersion=2018.3&docPage=49

	Model-Based Design Using Model Composer
	Revision History
	Table of Contents
	Model Composer Lab Overview
	Introduction
	Software Requirements
	Launching Model Composer
	Locating and Preparing the Tutorial Files

	Lab 1: Introduction to Model Composer
	Introduction
	Procedure

	Step 1: Review the Model Composer Library
	Access Model Composer Library

	Step 2: Build Designs with Model Composer Blocks
	Sobel Edge Detection: Algorithm Overview
	Implementing Algorithm in Model Composer

	Step 3: Work with Data Types
	Work with Native Simulink Data Types
	Convert Data Types
	Convert Data Types (Alternative)

	Conclusion

	Lab 2: Importing Code into Model Composer
	Introduction
	Step 1: Set up the Import Function Example
	Step 2: Custom Blocks with Function Templates
	Conclusion

	Lab 3: Automatic Code Generation
	Introduction
	Procedure

	Step 1: Review Requirements for Generating Code
	Step 2: Mapping Interfaces
	Step 3: Generate IP from Model Composer Design
	Step 4: Generate HLS Synthesizable Code
	Step 5: Port a Model Composer Design to System Generator
	Conclusion

	Legal Notices
	Please Read: Important Legal Notices

