
Acta Polytechnica Hungarica Vol. 17, No. 8, 2020

 – 15 –

Model-based Stochastic Error Propagation

Analysis for Cyber-Physical Systems

Tagir Fabarisov1, Nafisa Yusupova2, Kai Ding3,

Andrey Morozov4, Klaus Janschek1

1Institute of Automation, Technische Universität Dresden, Georg-Schumann-Str.

11, 01187 Dresden, Germany, {tagir.fabarisov, klaus.janschek}@tu-dresden.de

2Faculty of Computer Science and Robotics, Ufa State Aviation Technical

University, ul. K. Marx 12, 450000 Ufa, Russia, yussupova@ugatu.ac.ru

3Bosch (China) Investment Ltd., Corporate Research, Shanghai, China,

kai.ding@cn.bosch.com

4Institute of Industrial Automation and Software Engineering, University of

Stuttgart, Germany, andrey.morozov@ias.uni-stuttgart.de

Abstract: Industry 4.0 is the current trend of automation and data exchange in

manufacturing technologies that is focusing on the creation of smart factories with the

modular structured Cyber-Physical Systems (CPS), in tight cooperation with humans. This

trend also implies that the systems become more complex, heterogeneous, and distributed

especially their network and software parts. This makes the CPS highly critical subject to

failures at different levels, including software, hardware, and human operators.

Consequently, ensuring reliable and safe operation under the presence of non-avoidable

threats also becomes a more complicated task. The proper analysis of the CPS requires

thorough comprehension of both the dependability properties of system components and

their interactions as well as structural and behavioral aspects of the complete system. Such

an analysis of complex and mutually interlinked system properties puts considerable

challenges on appropriate methods for modeling and analysis, as well as, on the related

applied software tools. The Dual-graph Error Propagation Model (DEPM), developed in

our lab, is a mathematical abstraction of the main future system’s properties, which are

vital for the determination of the error propagation processes. It is a useful analytical

instrument for the evaluation of the influence of particular faults and errors to the overall

system behavior. OpenErrorPro is our analytical software tool for stochastic error

propagation analysis that supports the DEPM framework. Using OpenErrorPro, a DTMC

model could be automatically generated from a DEPM, and the reliability metrics, in

addition to, error propagation path, can be computed. This could be implemented for the

analysis of the heterogeneous CPS components. The necessary steps for the DEPM

framework extension, required for such an implementation, are discussed in this paper.

T. Fabarisov et al. Model-based Stochastic Error Propagation Analysis for Cyber-Physical Systems

 – 16 –

Keywords: Cyber-Physical System; Industry 4.0; Markov chain model; Probabilistic Model

Checking; Error propagation model; reliability; safety; dependability; model-based

system; model-based analysis; control flow; data flow; optimization

1 Introduction

Industry 4.0 is the current trend of automation and data exchange in

manufacturing technologies that is focused on the creation of smart factories with

the modular structured Cyber-Physical Systems (CPS) in tight cooperation with

humans. This trend also implies that the systems become more and more complex,

heterogeneous, and distributed, especially their network and software parts. This

makes the CPS highly critical subject to failures at different levels including

software, hardware, and human operators. Consequently, ensuring reliable and

safe operation under the presence of non-avoidable threats also becomes more and

more complicated task. The proper analysis of the CPS requires thorough

comprehension of both dependability properties of system components and their

interactions as well as structural and behavioral aspects of the complete system.

Such an analysis of complex and mutually interlinked system properties puts

considerable challenges on appropriate methods for modeling and analysis and on

applied software tools.

Model-based System Engineering (MBSE) [1] approaches help both to simplify

and speed up system development and provide semi-formal information for earlier

system analysis. However, reliability and safety evaluation methods like Fault

Tree Analysis and Failure Mode and Effect Analysis that are recommended in

nowadays industrial standards fail to describe system behavioral aspects in a

sufficiently deep manner. Additional sophisticated and highly specialized methods

for the analysis of the effects of faults are required, such as the method for error

propagation analysis which is discussed in this paper. Model-based analysis is

MBSE-oriented analysis for the earlier design phases. One of such is the error

propagation analysis (EPA). Employing EPA allows a design engineer to find and

fix, or at least mitigate, the errors and flaws of the system design on its earlier

design phase.

EPA can be based either on formal methods, e.g. probabilistic model checking

techniques [2], or fault injection approaches. The formal analysis can be

performed in early system design phases and strongly depends on the system

model quality. Fault injections require either an already implemented system or its

executable model. Analytical methods suffer from the state space explosion. The

time required for the analysis can grow exponentially with the system model

complexity. Usually, there is a kind of system model complexity threshold. After

this threshold is exceeded, the required time grows so fast that the analytical

approach becomes practically inapplicable. Conducting simulation-based analysis

Acta Polytechnica Hungarica Vol. 17, No. 8, 2020

 – 17 –

with fault injections allows extending the number of experiments for reaching a

wanted confidence level. However, fault injection methods have problems with

the simulation of rare events, especially when we want to model faults that have

extremely low activation probabilities.

2 State of the Art

2.1 Reliability and Safety Analysis

Classical methods, such as Fault Tree Analysis (FTA, IEC 61025), Markov

Analysis (IEC 61165) [3], Failure Mode and Effect Analysis (FMEA, IEC 60812),

and Hazard and Operability Analysis (HAZOP, IEC 61882) [4] are recommended

in current safety standards. However, due to the increasing system complexity,

these methods fail to describe aspects of modern mechatronic systems and CPS in

sufficiently deep manner. FMEA, FMECA, and HAZOP are top-level qualitative

methods that require numerical input from quantitative methods like FTA or

Markov Analysis. For instance, the methods like FTA are not suitable for the

reliability analysis of the systems with complex interactions between components

and enhanced software parts. Markov methods can cover these aspects, but in

most cases, the described solutions are either simple and high-level or prone to the

state space explosion.

Model checking proposes advanced methods that allow a system designer, given a

formal model of a system, exhaustively and automatically, check whether this

model meets a given specification. Available model checking tools are based on

state-based models such as state machines, discrete and continuous Markov

chains, and Markov Decision Process models (e.g. PRISM, MRMC, STORM,

SHAREP, SPIN, NuSMV) [5], Petri Net models (e.g. TAPAAL, ROMEO, ORIS,

TimedNet) [6], or more high-level formal descriptions like AADL-based SLIM

language (COMPASS) [7] or AltaRica language (OpenAltarica, ARC Studio) [8].

These powerful methods require specific and rather deep knowledge of the model

checking such as discussed formal models and the formalization of the required

system properties using temporal logic. Most of these methods are oriented to the

manual and top-level analysis.

2.2 System Modeling

Several examples of widely used system modeling paradigms can be employed for

the Industry 4.0 CPS systems. Structured Analysis [9] is rather old, relatively

simple and straightforward design method that fits well for high-level functional

design, small projects, and fast prototypes. In comparison with the modern

T. Fabarisov et al. Model-based Stochastic Error Propagation Analysis for Cyber-Physical Systems

 – 18 –

modeling methods, such as UML/SysML, the structured analysis doesn’t provide

enough design capabilities for complex system aspects. UML [10] with its

extension SysML (Unified and Systems Modeling Languages) [11] is a popular

and universal design approach. UML models can cover all phases of the system

development life cycle. A great many UML/SysML design tools are available and

integrated into industrial processes, including, MagicDraw, IBM Rational family,

and UML Enterprise Architect. Another tools support automated UML-based

MBSE including the “executable UML” and auto code.

Simulink and Stateflow [12] is the dominating modeling paradigm for dynamic

systems, embedded control systems, and digital signal processing. Simulink

provides a “native” interface for control engineers in the form of combined block

diagrams (Simulink) and state charts (Stateflow) [13]. This Mathworks toolset

includes built-in code generation and deployment mechanisms. This is also a

perfect method for fast prototyping and software and hardware in the loop. The

Mathworks tools do not support well early phases of the development such as

functional design, or top-level composition. Therefore, Simulink/Stateflow is

often used in together with other composition models like general UML or AADL.

AADL (Architecture Analysis & Design Language) [14] is a united framework for

the model-based engineering of embedded real-time systems. AADL is strongly

oriented to software and hardware co-design of real-time systems. One of the key

features of this method is the inherited analytical capabilities. AADL has

interfaces with analytical tools including COMPASS [7] for reach dependability

and performance analysis, PRISM [5] for stochastic model checking, and

OpenFTA [15] for fault tree analysis. AADL, like the Simulink/Stateflow, is also

very specific and has relatively poor tool support (OSATE [16]) in comparison

with Simulink/Stateflow or UML.

Human-in-the-Loop, Human-in-the-Loop Cyber-Physical Systems, Cyber-

Physical-Human Systems, and “Internet of All” concepts share the common idea

to consider the human as a part of a larger Cyber-Physical System (CPS). This

idea has drawn considerable interest in recent years, as it is comprehensively

surveyed in [17].

2.3 Dual-Graph Error Propagation Model

The analytical methods for model-based system reliability and safety analysis is

required in order to ensure the reliable and safe operation under the presence of

non-avoidable in the numerous applications in Industry 4.0. The proper analysis of

the CPS requires thorough comprehension of both dependability properties of

system components and their interactions as well as structural and behavioral

aspects of the complete system. Such a method will find its usage in safety critical

industrial domains including aerospace, automotive, transportation, medical and

robotics applications, where a failure or malfunction may result in environmental

Acta Polytechnica Hungarica Vol. 17, No. 8, 2020

 – 19 –

harm, severe equipment damage or even serious injuries of the personal. Industry

4.0, which is the current trend of automation and data exchange in manufacturing

technologies, creates what is called a Smart Factory that consists of the modular

structured Cyber-Physical Systems in tight cooperation with humans. With a

robust increasing of these trends, aforementioned will find its implementation in

the context of smart factory’s reliability and safety and, therefore, will benefit to

the environmentally friendly manufacturing technologies.

Therefore, the analysis of fault activation, error propagation, and timing properties

of a given CPS is viable in order to ensure the safe operation. The error

propagation analysis can be based either on formal methods, e.g., probabilistic

model checking techniques, or fault injection approaches. The formal analysis can

be performed in early system design phases and strongly depends on the system

model quality, and subsequently be used when using the fault injection

approaches.

The Dual-graph Error Propagation Model (DEPM) [18], developed in our lab, is a

mathematical abstraction of the main future system’s properties, which are vital

for the determination of the error propagation processes. It is a useful analytical

instrument for the evaluation of the influence of particular faults and errors to the

overall system behavior.

DEPM framework describes the process-oriented model that allows the reliability

modeling of heterogeneous CPS components, their interaction, nontrivial failure

scenarios, multiple failure modes, hierarchical compositions, data errors

propagation, timing aspects, and sophisticated control and data flow structures

with branching, loops, and guarded stochastic transitions. The DEPM allows the

computation of the reliability metrics using underlying Discrete-time Markov

chain (DTMC) models. DEPMs can be automatically generated from common

CPS models including the Simulink/Stateflow models [19], UML models [20],

SysML models [21], AADL [22] models, as well as software source code using

LLVM [23]. This allows not only the automated application of our method, but

also the analysis of systems developed with a combination of modeling

paradigms. For example, Simulink/Stateflow is often used together with other

composition models developed using UML or AADL. The DEPM is a

mathematical model that captures system control and data flow structures and

reliability properties of system components.

An example of a Dual-graph Error Propagation Model, that describe a reference

Cyber-Physical System is presented in Figure 1. This system consists of two

autonomous and connected cars, and a navigation system connected via a network.

Two cars are equipped with controllers and a set of sensors. Controllers collect the

data from sensors regarding the obstacles on the course, as well as the latitude and

longitude coordinates of a car. These data are being transmitted between two cars

in order to ensure the safety. The critical failure of the system is defined as

“sensor does not provide necessary data.” Another failure of the system could be

T. Fabarisov et al. Model-based Stochastic Error Propagation Analysis for Cyber-Physical Systems

 – 20 –

described as “network is down.” Assume that the sensor system is prone both to

transient, bounded in time, and permanent, continuous in time, faults. Our system

is tolerant to transient faults since the coordinates from the navigation system

allows the system to survive during short sensor downtime. The permanent sensor

fault leads to the system failure in case that the network is down unless an

operator detects the failure and fixes it.

The DEPM combines two directed graph models: A Control Flow Graph (CFG)

and a Data Flow Graph (DFG). The nodes of the graphs represent executable

system elements and (generic) data storages. The rounded rectangles with black

borders represent the elements aController, aCar, aSensors, Network, NavSystem,

bCar, bSensors, bController, and one special element RepairMode that models the

corrective actions. The CFG arcs model the control flow transitions (black lines)

between the elements. The DFG arcs model the data flow transitions (blue lines)

between the elements and data storages (rectangles with blue borders). The data

storages are specified with finite sets of string or integer values. For example, data

Ping takes values in a range [0, 300] that represent the network latency and

aNetState takes values between {OK, FAIL}, representing the operational and fail

states of the network. The DEPM also supports hierarchical systems. Elements

aSensors and bSensors of a top-level DEPM contain an internal DEPMs with a set

of Sensor elements. These elements are sub-systems, that contains a DEPM

models itself. While the reliability metrics are being compute, these models should

be calculated first in order to compute the high-level model.

The cyclic process starts with the execution of the initial element Network and in a

nominal case continues with the execution of either aCar, bCar or NavSystem.

The control flow transition from Network to RepairMode represents the network

failure detection. This is a guarded stochastic transition specified by control flow

commands of the element Network shown in the gray rectangle expressed in

PRISM input language.

The command “0.01:(cf'=RepairMode)&(NetState'=FAIL)” specifies that the

process jumps from Network to RepairMode with the probability 0.01 only if Ping

less than 200. Similar to the control flow commands, the elements can have data

flow commands that specify the fault activations during the element execution and

the propagation of the errors from data inputs to outputs. For example, the data

flow commands of the element aController manage the data aObstacles. The

commands of the element aController model transient and permanent generator

faults. The transient fault “(aNetState'=FAIL)&(aSenState'=OK)” occurs with the

probability 0.04 and the permanent fault “(aNetState'=FAIL)&

(aSenState'=FAIL)” with the probability 0.02. As we can see, in case of the

permanent fault, the value of aSenState is changed to FAIL and stays FAIL unless

we jump to the element RepairMode. The red arrow-shaped nodes such as

SensorFailure and PackageDrop specify system failures using expressions that

contain the values of data storages and the special variable cf that models the

current control flow state. A fixed execution time is defined for each element in

Acta Polytechnica Hungarica Vol. 17, No. 8, 2020

 – 21 –

order to compute time-related reliability metrics such as MTTF or mean

downtime. In this example, the execution of the element RepairMode takes much

longer (300s) than the execution of the Network elements (1s).

Figure 1

An example of a Dual-graph Error Propagation Model for Cyber-Physical System

T. Fabarisov et al. Model-based Stochastic Error Propagation Analysis for Cyber-Physical Systems

 – 22 –

3 Analytical Toolset for Error Propagation Analysis

3.1 Analytical Toolset for Model-based Stochastic EPA

Using the DEPM framework described in the previous chapter allow a designer to

calculate the dependability metrics, e.g. a mean number of errors, mean time to

failure etc., using discrete-time Markov chain (DTMC) models. A DTMC model

describes system dynamics as a stochastic process in terms of errors occurrence

and propagation. OpenErrorPro [24] is our analytical software tool for stochastic

error propagation analysis, that support DEPM framework. Using OpenErrorPro a

DTMC model could be automatically generated from a DEPM and the reliability

matrices cold be calculated, for instance, the MTTF metric for “SensorFailure”

failure (Figure 1).

OpenErrorPro is implemented in Python and consists of three main parts: error

propagation library, graphic user interface (GUI), and model transformation

algorithms. For efficient computation of the generated DTMC models, that can be

formally analyzed, the OpenErrorPro uses a built-in interface with PRISM

software [5]. The tool also integrates optimization methods against state space

explosion of DTMC models such as the automatic nesting algorithm and data flow

slicing [25]. The model transformation algorithms allow automatic generation of

DEPMs from the baseline system models UML/SysML [21], Simulink/Stateflow

[19], AADL [22]. After that OpenErrorPro automatically creates discrete time

Markov chain models using the DEPM representation and computes required

numerical reliability properties using PRISM software. The most relevant and

close methods and tools are high-level model checkers COMPASS,

OpenAltaRica, and Figaro, which are discussed and compared with OpenErrorPro

in [24]. OpenErrorPro enables the reliability-related features analysis of CPS that

cannot be modelled by other methods for quantitative system-level reliability

analysis. In Figure 2 a GUI of the toolset with an open DEPM model of the CPS

presented in previous chapter is shown.

3.2 Model-based Stochastic EPA for Cyber-Physical Systems

The DEPM framework as well as OpenErrorPro tool have been applied for several

case studies during the last years [26]. Different types of mechatronic systems

have been analyzed, including the moving and flying robots, and specific model-

based software systems from the space and automotive industrial domains. The

DEPM is a powerful analytical instrument for the modeling of a broad set of

dependability-related features that influence error propagation processes. The

feasibility of the DEPM approach has been witnessed by a number of case studies

including navigation system of a mobile robot [27], automated medical patient

Acta Polytechnica Hungarica Vol. 17, No. 8, 2020

 – 23 –

table motion control [22], robotic software for space-to ground haptic feedback

control [18], and embedded flight control software of a UAV [21]. DEPM

framework could be applied for CPS in the analysis of the propagation of typical

CPS errors from potentially faulty components to technically accessible system

variables, e.g. network, sensor outputs, the software of the controllers, embedded

boards, and other computing units. As it was presented in [24], the DEPM

framework could be applied for the complex model design. OpenErrorPro helped

to perform the sensitivity analysis of system reliability to identify the places where

it makes sense to apply system redundancy. In the work, authors have encountered

state space explosion issues of the underlying Markov chain models. Nevertheless,

they resolved them with the optimization trick using the fact, that on the DEPM-

level OpenErrorPro provides a fully automated access to the control and data flow

structures.

Figure 2

A GUI of the OpenErrorPro toolset with DEPM of a Cyber-Physical System. Note how in “Properties

of RepairMode window” the data flow commands represents a repairing after the failure.

For the implementation of DEPM in CPS reliability analysis, there is required a

generic approach for the automated creation of a formal hierarchical DEPM from

semi-formal heterogeneous CPS models. It can be divided in the following steps.

First, the given CPS is being decomposed into individual components and mapped

into the DEPM elements. While performing this step, there must be a persistent

conceptual separation between hardware and software parts, as it’s done

T. Fabarisov et al. Model-based Stochastic Error Propagation Analysis for Cyber-Physical Systems

 – 24 –

previously in [28] for hardware and in [19] for software. The hardware-level

DEPMs will model sensors, actuators, network, and computing units. The

software of the computing units will be modelled as sub-DEPMs of the

corresponding hardware components. For the model-based software, e.g.

implemented in Simulink, the block functions will play the role of the DEPM

elements [18]. For the manually implemented software LLVM-based method [29]

will be used that decomposes the code into single instructions. Second step is to

map the CPS data flow structure into DEPM data storages and data flows. This

information is commonly available in some specific format, e.g. SysML Internal

Block Diagrams, UML Component Diagrams, AADL models for hardware or

Simulink block diagrams for model-based software. The key challenge is the

integration of the DEPMs generated from several types of baseline models in such

a way that the final hierarchical DEPM will capture comprehensively the

propagation of the common CPS errors and their combinations. For that the design

of a generic approach to extend the DEPM with the CPS error types and define

corresponding error propagation rules is needed. After that, the next step is to

mark the DEPM data storages that model technically accessible variables and

critical variables, e.g. actuator commands.

The propagation of an error to a critical DEPM part will cause a system failure.

The DEPM, generated following the discussed steps, will contain no probabilistic

parameters. The further extension of the DEPM with the probabilistic parameters

will enable the quantitative estimation of the probability that errors will be

detected before they propagate to the critical system parts. First, the information

about the system operational profile will be added, such as sensor rates, network

transmission times, sample times and the control flow structure of the software

components. This information will be mapped into the DEPM control flows either

from available behavioral models, e.g. UML/SysML Activity Diagrams, State

Machines, or AADL models with timing properties, or via the extension of the

system with logging, execution, and evaluation of the gathered statistical

information about the execution patterns of the CPS components. One of the

challenges is to distinguish between stochastic and deterministic control flow

events taking into account the imperfect synchronization of the CPS components.

Finally, the DEPM must be extended with the probabilities of the error

propagation through the components and fault activation. The error propagation

from inputs to outputs of hardware components can be described either

deterministically from the known component specification or using local fault

injections. The error propagation through the software parts can be computed with

the corresponding sub-DEPMs, as it shown in [24]. Fault activation probabilities

can be evaluated using the available sources of the failure data such as FIDES

[30], the Electronic Parts Reliability Data (ERPD) [31], or the Non-Electronic

Parts Reliability Data (NRPD) [32]. However, these sources address the

“complete” component failures. The probabilities for different error types are

extremely hard to find. Thus, all the available probabilistic information will be

added into the DEPM and cover unknown probabilities with local

Acta Polytechnica Hungarica Vol. 17, No. 8, 2020

 – 25 –

nondeterminism. OpenErrorPro, discussed in previous chapter, supports automatic

generation of DTMC (Discrete-time Markov Chain) models from a DEPM and

analyzing them using the interface with modern probabilistic model checkers such

as PRISM [5] and Storm [33]. These model checkers support local

nondeterminism, however, in the future we will need to switch from DTMCs to

(Markov Decision Process) models. The more information we feed to DEPM the

more precise the estimation will be. The nondeterminism will result in several

equally suitable sets, that have to be considered, in the subsequent processing

steps of DEPM approach.

Conclusion

The Dual-graph Error Propagation Model has been discussed in this paper. DEPM

is a process-oriented model that allows the reliability modeling of heterogeneous

components, their interaction, nontrivial failure scenarios, multiple failure modes,

hierarchical compositions, data errors propagation, timing aspects, and

sophisticated control and data flow structures with branching, loops and guarded

stochastic transitions. The DEPM allows the computation of the reliability metrics

using underlying Discrete-time Markov chain models. DEPMs can be

automatically generated from common CPS models, including the

Simulink/Stateflow, UML/SysML, AADL models, as well as, software source

code using LLVM software for stochastic error propagation analysis.

OpenErrorPro error propagation tool, based on the described DEPM, has also been

discussed in this article. This tool plays the role of an intermediate analytical

model between the baseline system model and the formal mathematical model that

can be formally analyzed. It can automatically create discrete-time Markov chain

models using the DEPM representation and calculate the required numerical

reliability properties. In addition to traditional reliability metrics, OpenErrorPro

enables the evaluation of customizable reliability metrics and the application of

effective optimizations, against the state space explosion of underlying Markov

chain models already on the DEPM level. This toolset has been proven to have

functionality and capability, for implementation in the analysis of the

heterogeneous components of a Cyber-Physical System. As it was discussed

herein, OpenErrorPro could be applied for the analysis of CPS. In order to be able

to generate a formal DEPM from the CPS representation, future efforts will

expand the DEPM approach, including such capabilities as discussed in this paper.

Acknowledgment

This work has been supported by DAAD “Michail Lomonosov” program jointly

with Russian Ministry of Science and Higher Education funds.

References

[1] Gianni, Daniele; D'Ambrogio, Andrea; Tolk, Andreas, eds. Modeling and

Simulation-Based Systems Engineering Handbook (1 ed.) USA: CRC

Press, 2014, ISBN 9781466571457

T. Fabarisov et al. Model-based Stochastic Error Propagation Analysis for Cyber-Physical Systems

 – 26 –

[2] C. Baier and J.-P. Katoen. Principles of model checking. MIT press, 2008

[3] N. B. Fuqua, “The applicability of markov analysis methods to reliability,

maintainability, and safety,” Selected Topic in Assurance Related

Technologies (START), Vol. 2, No. 10, pp. 1-8, 2003

[4] E. Ruijters and M. Stoelinga, “Fault tree analysis: A survey of the stateof-

the-art in modeling, analysis and tools,” Computer science review, Vol. 15,

pp. 29-62, 2015

[5] Marta Kwiatkowska, Gethin Norman and David Parker. PRISM 4.0:

Verification of Probabilistic Real-time Systems. In Proc. 23rd International

Conference on Computer Aided Verification (CAV’11), volume 6806 of

LNCS, pp. 585-591, Springer, 2011

[6] Katoen J P, Zapreev I S, Hahn E M, et al. The ins and outs of the

probabilistic model checker MRMC [J]. Performance evaluation, 2011,

68(2): 90-104

[7] Bozzano M, Cimatti A, Katoen J P, et al. The COMPASS Approach:

Correctness, Modeling and Performability of Aerospace

Systems[C]//SAFECOMP. 2009, 5775: 173-186

[8] Arnold A, Point G, Griffault A, et al. The AltaRica formalism for

describing concurrent systems [J]. Fundamenta Informaticae, 1999, 40(2,

3): 109-124

[9] E. Yourdon, Modern Structured Analysis. Yourdon Press, 1989

[10] OMG. OMG Unified Modeling Language (OMG UML), 2019

[11] Delligatti, Lenny. SysML Distilled: A Brief Guide to the Systems Modeling

Language, Addison-Wesley Professional, 2013, ISBN 978-0-321-92786-6

[12] Mathworks, Matlab & Simulink: Simulink User’s Guide R2019b. Retrieved

2020

[13] Mathworks, Matlab & Simulink: Stateflow User’s Guide R2019b,

Retrieved 2020

[14] P. Feiler, D. Gluch, “Model-based Engineering with AADL: An

Introduction to the SAE Architecture Analysis & Design Language,”

Addison-Wesley Professional, 2012

[15] Formal Software Construction Limited, OpenFTA, Version 1.0, User

Manual

[16] Carnegie Mellon University, “Welcome to OSATE,” Online:

http://www.osate.org

[17] D. S. Nunes, P. Zhang, J. Sá Silva, “A survey on Human-in-the-Loop

applications towards an Internet of All”, IEEE Communications Surveys &

Tutorials, Vol. 17, No. 2, 2015

Acta Polytechnica Hungarica Vol. 17, No. 8, 2020

 – 27 –

[18] Morozov, Andrey & Janschek, Klaus & Krüger, Thomas & Schiele, André.

(2016) Stochastic Error Propagation Analysis of Model-driven Space

Robotic Software Implemented in Simulink. MORSE '16, Proceedings of

the 3rd Workshop on Model-Driven Robot Software Engineering: 24-31

[19] K. Ding, A. Morozov, and K. Janschek. Reliability evaluation of

functionally equivalent simulink implementations of a pid controller under

silent data corruption. In 2018 IEEE 29th International Symposium on

Software Reliability Engineering (ISSRE), pp. 47-57, IEEE, 2018

[20] K. Ding, T. Mutzke, A. Morozov, and K. Janschek. Automatic

transformation of uml system models for model-based error propagation

analysis of mechatronic systems. IFAC-PapersOnLine, 49(21):439-446,

2016, 7th IFAC Symposium on Mechatronic Systems MECHATRONICS

2016

[21] M. Steurer, A. Morozov, K. Janschek, and K.-P. Neitzke. Sysml-based

profile for dependable uav design. In 10th IFAC Symposium on Fault

Detection, Supervision and Safety for Technical Processes

(SAFEPROCESS), 2018

[22] A. Morozov, T. Mutzke, B. Ren, and K. Janschek. Aadl-based stochastic

error propagation analysis for reliable system design of a medical patient

table. In IEEE Annual Reliability & Maintainability Symposium (RAMS),

2018

[23] A. Morozov, Y. Zhou, and K. Janschek. Llvm-based stochastic error

propagation analysis of manually developed software components. In

Proceedings of the European Safety and Reliability Conference

(ESREL18), 2018

[24] Morozov, A., Ding, K., Steurer, M., & Janschek, K. (2019, October)

OpenErrorPro: A New Tool for Stochastic Model-Based Reliability and

Resilience Analysis. In 2019 IEEE 30th International Symposium on

Software Reliability Engineering (ISSRE) (pp. 303-312) IEEE

[25] Zhao F, Morozov A, Yusupova N I, et al. Nesting algorithm for dual-graph

error propagation models[C]//CSIT'2016. 2016: 106-110

[26] Fabarisov, T., et al. "The efficiency comparison of the prism and storm

probabilistic model checkers for error propagation analysis tasks." Industry

4.0 3.5 (2018): 229-231

[27] A. Morozov and K. Janschek. Probabilistic error propagation model for

mechatronic systems. Mechatronics, 24(8):1189-1202, 2014

[28] A. Morozov, K. Janschek. Flight Control Software Failure Mitigation:

Design Optimization for Software-implemented Fault Detectors. In

Proceedings of 20th IFAC Symposium on Automatic Control in Aerospace

ACA 2016, Sherbrooke, Quebec, Canada, 21-25 August 2016

T. Fabarisov et al. Model-based Stochastic Error Propagation Analysis for Cyber-Physical Systems

 – 28 –

[29] Vidineev, Viacheslav, et al. "LLVM-based C to DEPM transformation tool:

New functionality and performance improvements." Информационные

технологии интеллектуальной поддержки принятия решений. 2019

[30] F. Guide et al. Reliability methodology for electronic systems. FIDES

group, 2009

[31] W. Denson, P. Jaworski, W. Crowell, and D. Mahar. Electronic parts

reliability data 1997. 1996

[32] W. Denson, G. Chandler, W. Crowell, A. Clark, and P. Jaworski.

Nonelectronic parts reliability data 1995, Technical report, RELIABILITY

ANALYSIS CENTER GRIFFISS AFB NY, 1994

[33] C. Dehnert, S. Junges, J.-P. Katoen, and M. Volk. A storm is coming: A

modern probabilistic model checker. In International Conference on

Computer Aided Verification, pp. 592-600, Springer, 2017

