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Abstract: Industry 4.0 is the current trend of automation and data exchange in 

manufacturing technologies that is focusing on the creation of smart factories with the 

modular structured Cyber-Physical Systems (CPS), in tight cooperation with humans. This 

trend also implies that the systems become more complex, heterogeneous, and distributed 

especially their network and software parts. This makes the CPS highly critical subject to 

failures at different levels, including software, hardware, and human operators. 

Consequently, ensuring reliable and safe operation under the presence of non-avoidable 

threats also becomes a more complicated task. The proper analysis of the CPS requires 

thorough comprehension of both the dependability properties of system components and 

their interactions as well as structural and behavioral aspects of the complete system. Such 

an analysis of complex and mutually interlinked system properties puts considerable 

challenges on appropriate methods for modeling and analysis, as well as, on the related 

applied software tools. The Dual-graph Error Propagation Model (DEPM), developed in 

our lab, is a mathematical abstraction of the main future system’s properties, which are 

vital for the determination of the error propagation processes. It is a useful analytical 

instrument for the evaluation of the influence of particular faults and errors to the overall 

system behavior. OpenErrorPro is our analytical software tool for stochastic error 

propagation analysis that supports the DEPM framework. Using OpenErrorPro, a DTMC 

model could be automatically generated from a DEPM, and the reliability metrics, in 

addition to, error propagation path, can be computed. This could be implemented for the 

analysis of the heterogeneous CPS components. The necessary steps for the DEPM 

framework extension, required for such an implementation, are discussed in this paper. 
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1 Introduction 

Industry 4.0 is the current trend of automation and data exchange in 

manufacturing technologies that is focused on the creation of smart factories with 

the modular structured Cyber-Physical Systems (CPS) in tight cooperation with 

humans. This trend also implies that the systems become more and more complex, 

heterogeneous, and distributed, especially their network and software parts. This 

makes the CPS highly critical subject to failures at different levels including 

software, hardware, and human operators. Consequently, ensuring reliable and 

safe operation under the presence of non-avoidable threats also becomes more and 

more complicated task. The proper analysis of the CPS requires thorough 

comprehension of both dependability properties of system components and their 

interactions as well as structural and behavioral aspects of the complete system. 

Such an analysis of complex and mutually interlinked system properties puts 

considerable challenges on appropriate methods for modeling and analysis and on 

applied software tools. 

Model-based System Engineering (MBSE) [1] approaches help both to simplify 

and speed up system development and provide semi-formal information for earlier 

system analysis. However, reliability and safety evaluation methods like Fault 

Tree Analysis and Failure Mode and Effect Analysis that are recommended in 

nowadays industrial standards fail to describe system behavioral aspects in a 

sufficiently deep manner. Additional sophisticated and highly specialized methods 

for the analysis of the effects of faults are required, such as the method for error 

propagation analysis which is discussed in this paper. Model-based analysis is 

MBSE-oriented analysis for the earlier design phases. One of such is the error 

propagation analysis (EPA). Employing EPA allows a design engineer to find and 

fix, or at least mitigate, the errors and flaws of the system design on its earlier 

design phase. 

EPA can be based either on formal methods, e.g. probabilistic model checking 

techniques [2], or fault injection approaches. The formal analysis can be 

performed in early system design phases and strongly depends on the system 

model quality. Fault injections require either an already implemented system or its 

executable model. Analytical methods suffer from the state space explosion. The 

time required for the analysis can grow exponentially with the system model 

complexity. Usually, there is a kind of system model complexity threshold. After 

this threshold is exceeded, the required time grows so fast that the analytical 

approach becomes practically inapplicable. Conducting simulation-based analysis 
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with fault injections allows extending the number of experiments for reaching a 

wanted confidence level. However, fault injection methods have problems with 

the simulation of rare events, especially when we want to model faults that have 

extremely low activation probabilities. 

2 State of the Art 

2.1 Reliability and Safety Analysis 

Classical methods, such as Fault Tree Analysis (FTA, IEC 61025), Markov 

Analysis (IEC 61165) [3], Failure Mode and Effect Analysis (FMEA, IEC 60812), 

and Hazard and Operability Analysis (HAZOP, IEC 61882) [4] are recommended 

in current safety standards. However, due to the increasing system complexity, 

these methods fail to describe aspects of modern mechatronic systems and CPS in 

sufficiently deep manner. FMEA, FMECA, and HAZOP are top-level qualitative 

methods that require numerical input from quantitative methods like FTA or 

Markov Analysis. For instance, the methods like FTA are not suitable for the 

reliability analysis of the systems with complex interactions between components 

and enhanced software parts. Markov methods can cover these aspects, but in 

most cases, the described solutions are either simple and high-level or prone to the 

state space explosion. 

Model checking proposes advanced methods that allow a system designer, given a 

formal model of a system, exhaustively and automatically, check whether this 

model meets a given specification. Available model checking tools are based on 

state-based models such as state machines, discrete and continuous Markov 

chains, and Markov Decision Process models (e.g. PRISM, MRMC, STORM, 

SHAREP, SPIN, NuSMV) [5], Petri Net models (e.g. TAPAAL, ROMEO, ORIS, 

TimedNet) [6], or more high-level formal descriptions like AADL-based SLIM 

language (COMPASS) [7] or AltaRica language (OpenAltarica, ARC Studio) [8]. 

These powerful methods require specific and rather deep knowledge of the model 

checking such as discussed formal models and the formalization of the required 

system properties using temporal logic. Most of these methods are oriented to the 

manual and top-level analysis. 

2.2 System Modeling 

Several examples of widely used system modeling paradigms can be employed for 

the Industry 4.0 CPS systems. Structured Analysis [9] is rather old, relatively 

simple and straightforward design method that fits well for high-level functional 

design, small projects, and fast prototypes. In comparison with the modern 
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modeling methods, such as UML/SysML, the structured analysis doesn’t provide 

enough design capabilities for complex system aspects. UML [10] with its 

extension SysML (Unified and Systems Modeling Languages) [11] is a popular 

and universal design approach. UML models can cover all phases of the system 

development life cycle. A great many UML/SysML design tools are available and 

integrated into industrial processes, including, MagicDraw, IBM Rational family, 

and UML Enterprise Architect. Another tools support automated UML-based 

MBSE including the “executable UML” and auto code. 

Simulink and Stateflow [12] is the dominating modeling paradigm for dynamic 

systems, embedded control systems, and digital signal processing. Simulink 

provides a “native” interface for control engineers in the form of combined block 

diagrams (Simulink) and state charts (Stateflow) [13]. This Mathworks toolset 

includes built-in code generation and deployment mechanisms. This is also a 

perfect method for fast prototyping and software and hardware in the loop. The 

Mathworks tools do not support well early phases of the development such as 

functional design, or top-level composition. Therefore, Simulink/Stateflow is 

often used in together with other composition models like general UML or AADL. 

AADL (Architecture Analysis & Design Language) [14] is a united framework for 

the model-based engineering of embedded real-time systems. AADL is strongly 

oriented to software and hardware co-design of real-time systems. One of the key 

features of this method is the inherited analytical capabilities. AADL has 

interfaces with analytical tools including COMPASS [7] for reach dependability 

and performance analysis, PRISM [5] for stochastic model checking, and 

OpenFTA [15] for fault tree analysis. AADL, like the Simulink/Stateflow, is also 

very specific and has relatively poor tool support (OSATE [16]) in comparison 

with Simulink/Stateflow or UML. 

Human-in-the-Loop, Human-in-the-Loop Cyber-Physical Systems, Cyber-

Physical-Human Systems, and “Internet of All” concepts share the common idea 

to consider the human as a part of a larger Cyber-Physical System (CPS). This 

idea has drawn considerable interest in recent years, as it is comprehensively 

surveyed in [17]. 

2.3 Dual-Graph Error Propagation Model 

The analytical methods for model-based system reliability and safety analysis is 

required in order to ensure the reliable and safe operation under the presence of 

non-avoidable in the numerous applications in Industry 4.0. The proper analysis of 

the CPS requires thorough comprehension of both dependability properties of 

system components and their interactions as well as structural and behavioral 

aspects of the complete system. Such a method will find its usage in safety critical 

industrial domains including aerospace, automotive, transportation, medical and 

robotics applications, where a failure or malfunction may result in environmental 
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harm, severe equipment damage or even serious injuries of the personal. Industry 

4.0, which is the current trend of automation and data exchange in manufacturing 

technologies, creates what is called a Smart Factory that consists of the modular 

structured Cyber-Physical Systems in tight cooperation with humans. With a 

robust increasing of these trends, aforementioned will find its implementation in 

the context of smart factory’s reliability and safety and, therefore, will benefit to 

the environmentally friendly manufacturing technologies. 

Therefore, the analysis of fault activation, error propagation, and timing properties 

of a given CPS is viable in order to ensure the safe operation. The error 

propagation analysis can be based either on formal methods, e.g., probabilistic 

model checking techniques, or fault injection approaches. The formal analysis can 

be performed in early system design phases and strongly depends on the system 

model quality, and subsequently be used when using the fault injection 

approaches. 

The Dual-graph Error Propagation Model (DEPM) [18], developed in our lab, is a 

mathematical abstraction of the main future system’s properties, which are vital 

for the determination of the error propagation processes. It is a useful analytical 

instrument for the evaluation of the influence of particular faults and errors to the 

overall system behavior. 

DEPM framework describes the process-oriented model that allows the reliability 

modeling of heterogeneous CPS components, their interaction, nontrivial failure 

scenarios, multiple failure modes, hierarchical compositions, data errors 

propagation, timing aspects, and sophisticated control and data flow structures 

with branching, loops, and guarded stochastic transitions. The DEPM allows the 

computation of the reliability metrics using underlying Discrete-time Markov 

chain (DTMC) models. DEPMs can be automatically generated from common 

CPS models including the Simulink/Stateflow models [19], UML models [20], 

SysML models [21], AADL [22] models, as well as software source code using 

LLVM [23]. This allows not only the automated application of our method, but 

also the analysis of systems developed with a combination of modeling 

paradigms. For example, Simulink/Stateflow is often used together with other 

composition models developed using UML or AADL. The DEPM is a 

mathematical model that captures system control and data flow structures and 

reliability properties of system components. 

An example of a Dual-graph Error Propagation Model, that describe a reference 

Cyber-Physical System is presented in Figure 1. This system consists of two 

autonomous and connected cars, and a navigation system connected via a network. 

Two cars are equipped with controllers and a set of sensors. Controllers collect the 

data from sensors regarding the obstacles on the course, as well as the latitude and 

longitude coordinates of a car. These data are being transmitted between two cars 

in order to ensure the safety. The critical failure of the system is defined as 

“sensor does not provide necessary data.” Another failure of the system could be 
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described as “network is down.” Assume that the sensor system is prone both to 

transient, bounded in time, and permanent, continuous in time, faults. Our system 

is tolerant to transient faults since the coordinates from the navigation system 

allows the system to survive during short sensor downtime. The permanent sensor 

fault leads to the system failure in case that the network is down unless an 

operator detects the failure and fixes it. 

The DEPM combines two directed graph models: A Control Flow Graph (CFG) 

and a Data Flow Graph (DFG). The nodes of the graphs represent executable 

system elements and (generic) data storages. The rounded rectangles with black 

borders represent the elements aController, aCar, aSensors, Network, NavSystem, 

bCar, bSensors, bController, and one special element RepairMode that models the 

corrective actions. The CFG arcs model the control flow transitions (black lines) 

between the elements. The DFG arcs model the data flow transitions (blue lines) 

between the elements and data storages (rectangles with blue borders). The data 

storages are specified with finite sets of string or integer values. For example, data 

Ping takes values in a range [0, 300] that represent the network latency and 

aNetState takes values between {OK, FAIL}, representing the operational and fail 

states of the network. The DEPM also supports hierarchical systems. Elements 

aSensors and bSensors of a top-level DEPM contain an internal DEPMs with a set 

of Sensor elements. These elements are sub-systems, that contains a DEPM 

models itself. While the reliability metrics are being compute, these models should 

be calculated first in order to compute the high-level model. 

The cyclic process starts with the execution of the initial element Network and in a 

nominal case continues with the execution of either aCar, bCar or NavSystem. 

The control flow transition from Network to RepairMode represents the network 

failure detection. This is a guarded stochastic transition specified by control flow 

commands of the element Network shown in the gray rectangle expressed in 

PRISM input language. 

The command “0.01:(cf'=RepairMode)&(NetState'=FAIL)” specifies that the 

process jumps from Network to RepairMode with the probability 0.01 only if Ping 

less than 200. Similar to the control flow commands, the elements can have data 

flow commands that specify the fault activations during the element execution and 

the propagation of the errors from data inputs to outputs. For example, the data 

flow commands of the element aController manage the data aObstacles. The 

commands of the element aController model transient and permanent generator 

faults. The transient fault “(aNetState'=FAIL)&(aSenState'=OK)” occurs with the 

probability 0.04 and the permanent fault “(aNetState'=FAIL)& 

(aSenState'=FAIL)” with the probability 0.02. As we can see, in case of the 

permanent fault, the value of aSenState is changed to FAIL and stays FAIL unless 

we jump to the element RepairMode. The red arrow-shaped nodes such as 

SensorFailure and PackageDrop specify system failures using expressions that 

contain the values of data storages and the special variable cf that models the 

current control flow state. A fixed execution time is defined for each element in 
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order to compute time-related reliability metrics such as MTTF or mean 

downtime. In this example, the execution of the element RepairMode takes much 

longer (300s) than the execution of the Network elements (1s). 

 

Figure 1 

An example of a Dual-graph Error Propagation Model for Cyber-Physical System 
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3 Analytical Toolset for Error Propagation Analysis 

3.1 Analytical Toolset for Model-based Stochastic EPA 

Using the DEPM framework described in the previous chapter allow a designer to 

calculate the dependability metrics, e.g. a mean number of errors, mean time to 

failure etc., using discrete-time Markov chain (DTMC) models. A DTMC model 

describes system dynamics as a stochastic process in terms of errors occurrence 

and propagation. OpenErrorPro [24] is our analytical software tool for stochastic 

error propagation analysis, that support DEPM framework. Using OpenErrorPro a 

DTMC model could be automatically generated from a DEPM and the reliability 

matrices cold be calculated, for instance, the MTTF metric for “SensorFailure” 

failure (Figure 1). 

OpenErrorPro is implemented in Python and consists of three main parts: error 

propagation library, graphic user interface (GUI), and model transformation 

algorithms. For efficient computation of the generated DTMC models, that can be 

formally analyzed, the OpenErrorPro uses a built-in interface with PRISM 

software [5]. The tool also integrates optimization methods against state space 

explosion of DTMC models such as the automatic nesting algorithm and data flow 

slicing [25]. The model transformation algorithms allow automatic generation of 

DEPMs from the baseline system models UML/SysML [21], Simulink/Stateflow 

[19], AADL [22]. After that OpenErrorPro automatically creates discrete time 

Markov chain models using the DEPM representation and computes required 

numerical reliability properties using PRISM software. The most relevant and 

close methods and tools are high-level model checkers COMPASS, 

OpenAltaRica, and Figaro, which are discussed and compared with OpenErrorPro 

in [24]. OpenErrorPro enables the reliability-related features analysis of CPS that 

cannot be modelled by other methods for quantitative system-level reliability 

analysis. In Figure 2 a GUI of the toolset with an open DEPM model of the CPS 

presented in previous chapter is shown. 

3.2 Model-based Stochastic EPA for Cyber-Physical Systems 

The DEPM framework as well as OpenErrorPro tool have been applied for several 

case studies during the last years [26]. Different types of mechatronic systems 

have been analyzed, including the moving and flying robots, and specific model-

based software systems from the space and automotive industrial domains. The 

DEPM is a powerful analytical instrument for the modeling of a broad set of 

dependability-related features that influence error propagation processes. The 

feasibility of the DEPM approach has been witnessed by a number of case studies 

including navigation system of a mobile robot [27], automated medical patient 
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table motion control [22], robotic software for space-to ground haptic feedback 

control [18], and embedded flight control software of a UAV [21]. DEPM 

framework could be applied for CPS in the analysis of the propagation of typical 

CPS errors from potentially faulty components to technically accessible system 

variables, e.g. network, sensor outputs, the software of the controllers, embedded 

boards, and other computing units. As it was presented in [24], the DEPM 

framework could be applied for the complex model design. OpenErrorPro helped 

to perform the sensitivity analysis of system reliability to identify the places where 

it makes sense to apply system redundancy. In the work, authors have encountered 

state space explosion issues of the underlying Markov chain models. Nevertheless, 

they resolved them with the optimization trick using the fact, that on the DEPM-

level OpenErrorPro provides a fully automated access to the control and data flow 

structures. 

 

Figure 2 

A GUI of the OpenErrorPro toolset with DEPM of a Cyber-Physical System. Note how in “Properties 

of RepairMode window” the data flow commands represents a repairing after the failure. 

For the implementation of DEPM in CPS reliability analysis, there is required a 

generic approach for the automated creation of a formal hierarchical DEPM from 

semi-formal heterogeneous CPS models. It can be divided in the following steps. 

First, the given CPS is being decomposed into individual components and mapped 

into the DEPM elements. While performing this step, there must be a persistent 

conceptual separation between hardware and software parts, as it’s done 
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previously in [28] for hardware and in [19] for software. The hardware-level 

DEPMs will model sensors, actuators, network, and computing units. The 

software of the computing units will be modelled as sub-DEPMs of the 

corresponding hardware components. For the model-based software, e.g. 

implemented in Simulink, the block functions will play the role of the DEPM 

elements [18]. For the manually implemented software LLVM-based method [29] 

will be used that decomposes the code into single instructions. Second step is to 

map the CPS data flow structure into DEPM data storages and data flows. This 

information is commonly available in some specific format, e.g. SysML Internal 

Block Diagrams, UML Component Diagrams, AADL models for hardware or 

Simulink block diagrams for model-based software. The key challenge is the 

integration of the DEPMs generated from several types of baseline models in such 

a way that the final hierarchical DEPM will capture comprehensively the 

propagation of the common CPS errors and their combinations. For that the design 

of a generic approach to extend the DEPM with the CPS error types and define 

corresponding error propagation rules is needed. After that, the next step is to 

mark the DEPM data storages that model technically accessible variables and 

critical variables, e.g. actuator commands. 

The propagation of an error to a critical DEPM part will cause a system failure. 

The DEPM, generated following the discussed steps, will contain no probabilistic 

parameters. The further extension of the DEPM with the probabilistic parameters 

will enable the quantitative estimation of the probability that errors will be 

detected before they propagate to the critical system parts. First, the information 

about the system operational profile will be added, such as sensor rates, network 

transmission times, sample times and the control flow structure of the software 

components. This information will be mapped into the DEPM control flows either 

from available behavioral models, e.g. UML/SysML Activity Diagrams, State 

Machines, or AADL models with timing properties, or via the extension of the 

system with logging, execution, and evaluation of the gathered statistical 

information about the execution patterns of the CPS components. One of the 

challenges is to distinguish between stochastic and deterministic control flow 

events taking into account the imperfect synchronization of the CPS components. 

Finally, the DEPM must be extended with the probabilities of the error 

propagation through the components and fault activation. The error propagation 

from inputs to outputs of hardware components can be described either 

deterministically from the known component specification or using local fault 

injections. The error propagation through the software parts can be computed with 

the corresponding sub-DEPMs, as it shown in [24]. Fault activation probabilities 

can be evaluated using the available sources of the failure data such as FIDES 

[30], the Electronic Parts Reliability Data (ERPD) [31], or the Non-Electronic 

Parts Reliability Data (NRPD) [32]. However, these sources address the 

“complete” component failures. The probabilities for different error types are 

extremely hard to find. Thus, all the available probabilistic information will be 

added into the DEPM and cover unknown probabilities with local 
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nondeterminism. OpenErrorPro, discussed in previous chapter, supports automatic 

generation of DTMC (Discrete-time Markov Chain) models from a DEPM and 

analyzing them using the interface with modern probabilistic model checkers such 

as PRISM [5] and Storm [33]. These model checkers support local 

nondeterminism, however, in the future we will need to switch from DTMCs to 

(Markov Decision Process) models. The more information we feed to DEPM the 

more precise the estimation will be. The nondeterminism will result in several 

equally suitable sets, that have to be considered, in the subsequent processing 

steps of DEPM approach. 

Conclusion 

The Dual-graph Error Propagation Model has been discussed in this paper. DEPM 

is a process-oriented model that allows the reliability modeling of heterogeneous 

components, their interaction, nontrivial failure scenarios, multiple failure modes, 

hierarchical compositions, data errors propagation, timing aspects, and 

sophisticated control and data flow structures with branching, loops and guarded 

stochastic transitions. The DEPM allows the computation of the reliability metrics 

using underlying Discrete-time Markov chain models. DEPMs can be 

automatically generated from common CPS models, including the 

Simulink/Stateflow, UML/SysML, AADL models, as well as, software source 

code using LLVM software for stochastic error propagation analysis. 

OpenErrorPro error propagation tool, based on the described DEPM, has also been 

discussed in this article. This tool plays the role of an intermediate analytical 

model between the baseline system model and the formal mathematical model that 

can be formally analyzed. It can automatically create discrete-time Markov chain 

models using the DEPM representation and calculate the required numerical 

reliability properties. In addition to traditional reliability metrics, OpenErrorPro 

enables the evaluation of customizable reliability metrics and the application of 

effective optimizations, against the state space explosion of underlying Markov 

chain models already on the DEPM level. This toolset has been proven to have 

functionality and capability, for implementation in the analysis of the 

heterogeneous components of a Cyber-Physical System. As it was discussed 

herein, OpenErrorPro could be applied for the analysis of CPS. In order to be able 

to generate a formal DEPM from the CPS representation, future efforts will 

expand the DEPM approach, including such capabilities as discussed in this paper. 
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