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The important thing is not to stop questioning; curiosity has its own reason
for existing. One cannot help but be in awe when contemplating the mys-
teries of eternity, of life, of the marvelous structure of reality. It is enough
if one tries merely to comprehend a little of the mystery every day.

– Albert Einstein





Summary

Reuse is at the heart of major improvements in productivity and quality in
Software Engineering. Both Model Driven Engineering (MDE) and Soft-

ware Product Line Engineering (SPLE) are software development paradigms
that promote reuse. Specifically, they promote systematic reuse and a de-
parture from craftsmanship towards an industrialization of the software
development process. MDE and SPLE have established their benefits sep-
arately. Their combination, here called Model Driven Product Line Engi-

neering (MDPLE), gathers together the advantages of both.
Nevertheless, this blending requires MDE to be recasted in SPLE terms.

This has implications on both the core assets and the software development
process. The challenges are twofold: (i) models become central core as-
sets from which products are obtained and (ii) the software development
process needs to cater for the changes that SPLE and MDE introduce. This
dissertation proposes a solution to the first challenge following a feature
oriented approach, with an emphasis on reuse and early detection of in-
consistencies. The second part is dedicated to assembly processes, a clear
example of the complexity MDPLE introduces in software development
processes. This work advocates for a new discipline inside the general
software development process, i.e., the Assembly Plan Management, which
raises the abstraction level and increases reuse in such processes. Different
case studies illustrate the presented ideas.
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Chapter 1

Introduction

“Wayfarer, there is no path; you create the path as you keep on walking.”

– Antonio Machado.

1.1 Overview

The software industry remains reliant on the craftsmanship of skilled indi-
viduals engaged in labor intensive manual tasks. However, growing pres-
sure to reduce cost and time to market and to improve software quality
may catalyze a transition to more automated methods. In this context,
advanced software development paradigms such as Model Driven Engi-

neering (MDE) and Software Product Line Engineering (SPLE) represent
forward steps on the path to the industrialization of software development.
Model Driven Product Line Engineering (MDPLE) gathers together the
advantages of both. This dissertation contributes to realize this vision by
proposing a solution to two fundamental challenges that appear when com-
bining these paradigms.
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MDPLE: Core Asset and Process Implications

1.2 Context

Over the years, the software industry has met the demands of their clients
by mostly relying on the skills of individual developers, just as artisans
met the demands of an increasingly industrialized society by relying on
the skills of individual craftsmen. Nevertheless, this is effective only up
to a point. Beyond such point, the means of production are overwhelmed.
If we consider the evolution of other industries when faced with similar
challenges many years ago, they moved from craftsmanship to industri-
alization by learning to customize and assemble standard components to
produce similar but distinct products, by standardizing, integrating and au-
tomating their production processes, by developing product lines and so
on. These changes enabled the cost effective production of a wider variety
of products to satisfy a broader range of customer demands [GS03]. This
experience has provided insights on possible paths for software develop-
ment industrialization.

MDE and SPLE are two increasingly popular paradigms that promote
the industrialization of software development and increase software reuse.
The former achieves reuse through abstractions (i.e., models) and model
transformations. Models capture the essence of the software at hand while
transformations are the means for reuse, as they encode reusable mappings
of models to lower abstraction levels. As for SPLE, the goal is to build
a set of related software products (i.e., a product family) out of a com-
mon and previously built set of core assets. Unlike MDE, now the stress
is not so much on the abstraction level at which software is specified, but
on conceiving software as preplanned variations obtained from core assets.
The set of software products that can be derived from them forms the pro-
duct family and the preplanned usage of core assets is the means to achieve
reuse.

These differences also impact the way software is developed. In MDE,
coding is substituted by modeling and transforming. Hence, the software
development process becomes a pipeline of model transformations that

2



Chapter 1. Introduction

eventually leads to an end product. By contrast, in SPLE programs are
built, step-by-step, by incrementally adding or removing features (i.e., in-
crements in program functionality that customers use to distinguish one
application from another [KCH+90]). Not only does this alleviate soft-
ware complexity and improve program understandability, it also permits
the reuse of features, as multiple products of a product line can share the
same feature.

Therefore, MDE and SPLE differ in both the reuse strategy and their
respective development processes. The benefits of these paradigms have
been reported in academia and industry [BLW05, Béz05, CN01, OMG,
PBvdL06]. More to the point, being both paradigms orthogonal, they can
be synergistically combined leading to Model Driven Product Line Engi-

neering.

1.3 General Problem

In order to achieve the blending of MDE and SPLE, MDE needs to incor-
porate SPLE principles. The implications are twofold: (i) models are de-
veloped from core assets instead of from scratch and (ii) the development
process needs to accomodate both MDE and SPLE principles.

Regarding the first point, in SPLE reuse is planned, enabled and en-
forced, the opposite of opportunistic [CN01]. This implies that two com-
plete development cycles exist. The first one builds artifacts for reuse,
i.e., the core assets that will be reused at a later stage. In the second one,
products are built with reuse, leveraging on the core assets built previously
[CE00]. Being models the primary focus in MDE, the same two cycles
should be applied to them. Although there is work on developing mod-
els with reuse [MKBJ08, MBJ08, VG07], less effort has been dedicated to
developing models for reuse. If models are core assets that will later be
reused to form products, there are certain issues that need to be explored.
The metamodel such core assets conform to and its relation with the meta-
model of the resulting products is only one example, along with the way

3



MDPLE: Core Asset and Process Implications

in which products are obtained from core assets and how core assets are
transformed. Benefits in a product line are derived from the reuse of core
assets in a strategic and prescribed way [CN01]. Consequently, a clear def-
inition of model core assets is required if the benefits of MDPLE are to be
obtained.

The second point refers to the changes MDPLE brings to the software
development process. An explicit process prevents errors from being in-
troduced in the product and provides means for controlling the quality of
what is being produced [CG98]. Hence, an explicit process for MDPLE is
desirable. Nevertheless, MDE does not make any assumptions on the soft-
ware development process or the design methodology [MD08]. This may
lead to adoption problems, particularly in industry [BLW05]. Regarding
SPLE, several methodologies to build product lines have been established
during the past few years [BFK+99, CN01, KKL+98, PBvdL06, WL99].
Nonetheless, these methodologies do not explicitly cater for the changes
MDE introduces. Both SPLE and MDE introduce changes in the tradi-
tional software development process, which MDPLE needs to accomo-
date. Compared to traditional development processes, new activities and
artifacts emerge. Among other reasons, defining an explicit process for
MDPLE permits to reuse such process in different settings and improves
communication among managers, workers and customers [CG98, Ost87].

Assembly processes, i.e., processes that assemble a product from the
product line core assets, illustrate the process implications of MDPLE.
Being assembly processes in both SPLE and MDE complex in their own
right [DSB04, RRGLR+09, VAB+07], their combined use in MDPLE puts
even more stringent demands on the assembly process [TBD07].

1.4 This Dissertation

This dissertation proposes a solution to the problems posed above. First, it
describes the development of models for reuse (i.e., as core assets) follow-
ing a feature oriented paradigm. Second, it advocates for a new discipline

4



Chapter 1. Introduction

inside the general software development process, i.e., the Assembly Plan

Management, that permits to face the assembly process complexity that
exists in MDPLE. The following paragraphs delve into the details.

Feature Oriented Software Development (FOSD) is a general paradigm
for product synthesis in SPLE [BSR04]. It advocates for the incremental
development of the products, a technique to handle design complexity and
improve design understandability [Wir83]. Here, features are not only in-
crements in program functionality that customers use to distinguish one
application from another, but are the actual building blocks of the artifact
at hand (i.e., features are the actual core assets). We can define features
as arrows that map one artifact to another with enhanced functionality
[BAS08]. Hence, the final artifact with the desired features is obtained
by successively applying the corresponding arrows. The challenge rests on
applying this paradigm to model development. Traditionally, MDE works
with models that stand for a complete representation of the software to
be built. This dissertation describes incremental development of models
following the feature oriented paradigm, where arrows are realized as mo-
del deltas and domain specific composition of such deltas is presented. A
metamodel definition for model deltas and the application of incremental
consistency checking to delta composition results in earlier error detection.
Moreover, automatic generation of delta composition implementation in-
creases reuse and facilitates the usage for domain experts.

In the second part, this dissertation presents the Assembly Plan Mana-

gement as a new discipline inside MDPLE. Three are the main benefits.
First, it reduces the complexity of assembly processes by separating them
in different phases and by applying MDE to assembly processes them-
selves. Second, the specification of such processes at a higher level of
abstraction, as a result of using MDE, permits developers to concentrate
on the essential information and to ponder the advantages and trade-offs
of each design decision. Last, it increases reuse by applying MDE and by
dividing the assembly process in different phases, were the output of each
phase can be reused in different instances of the successive ones.

5
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The following section provides a summary of the main contributions of
this dissertation.

1.5 Contributions

From Complete Models to Model Deltas

• Problem Statement. In FOSD software artifacts are developed by
incrementally adding features. In MDE, software development re-
volves around models. When models are the artifact to be developed
using a feature oriented approach, we need to define how features
are realized.

• Contribution. Features are realized as model deltas (i.e., models that
encompass the additions a feature makes). The main advantage rests
on the fact that such model deltas conform to a metamodel, which
is derived from the metamodel complete models conform to. In this
way, complete models and model deltas are described using the same
constructs, which permits to check certain constraints at the model
delta building time and makes deltas easier to understand and ana-
lyze.

Domain Specific Composition of Model Deltas

• Problem Statement. Defining model features as models implies that
such models need to be composed together to yield the final product,
which contains all the features requested by the user. Consequently,
an algorithm that composes deltas together is required. This algo-
rithm is domain independent in most cases but it also needs to cater
for some specificities of each domain at hand.

• Contribution. Although a generic and metamodel agnostic compo-
sition algorithm is sufficient in the majority of cases, some domains
have composition specific semantics. Our approach permits domain

6



Chapter 1. Introduction

experts to specify such semantics so that they are taken care of while
composing.

Annotations to Automate Model Delta Compositon

• Problem Statement. As stated above, delta composition can be do-
main specific. Such specificity can be captured through code written
in a model composition language (e.g., Epsilon Merging Language

[KPP06a]). However, even though such code is generally not as ver-
bose as general purpose programming languages, it still imposes an
important entry barrier for domain experts. Moreover, certain do-
main specific compositions are liable to be reused in different do-
mains and manual implementation often leads to work repetition.

• Contribution. We introduce an annotation-based mechanism for meta-
models that hides the composition implementation and eases the
specification of domain-specific composition semantics, hence low-
ering the entry barrier for domain experts. Taken an annotated meta-
model as input, the composition algorithm implementation is auto-
matically generated. This approach leads to the automation of repeti-
tive work, better understandability of the composition semantics and
better maintenance of the generated implementation.

Assembly Plan Management

• Problem Statement. Greenfield and Short venture that one of the
consequences of the industrialization of software development, of
which MDPLE is an example, will be that development becomes
mainly component assembly [GS03]. At the same time, both SPLE-
based and MDE-based assembly processes are complex in their own
right [RRGLR+09, VAB+07] and MDPLE puts even more stringent
demands on the assembly process.

• Contribution. Based on the previous insights, this work advocates

7
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for a new discipline inside the general software development pro-
cess, i.e., the Assembly Plan Management, that permits to face com-
plexity in assembly processes. For this discipline, new phases, roles,
tasks and workproducts are introduced. Such plan is divided into
phases, which increases reuse as the result of each phase is the input
to different instances of the successive ones.

Model Driven Engineering for Assembly Processes

• Problem Statement. Previous experience showed us that assembly
process implementation in MDPLE is complex, requires design and
becomes repetitive, as it lacks reuse mechanisms.

• Contribution. By applying MDE, assembly processes are specified at
a higher abstraction level. This reduces the complexity of assembly
processes by increasing reuse and allows developers to make design
decisions more accurately since they can concentrate on the essen-
tials of the problem. The repetitive parts of code become part of
the transformation that yields code from the abstract specification,
which increases reuse.

1.6 Outline

This section summarizes briefly the content of each chapter of this disser-
tation. Figure 1.1 presents a chapter map to help to put each of them in
context.

Chapter 2

This chapter provides background on Model Driven Engineering, Software

Product Line Engineering and their combination in Model Driven Product

Line Engineering together with a brief introduction to software develop-
ment processes. These are the main concepts on top of which this work is

8
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Figure 1.1: Chapter Map

built.

Chapter 3

A general overview is given and the two fundamental challenges which
are the topic of this dissertation are motivated, namely the development
of model core assets following a feature oriented approach and process
implications in Model Driven Product Line Engineering.

Chapter 4

This chapter presents incremental development of models following a fea-
ture oriented development approach where features are realized as deltas.
How these deltas can be composed to yield the end product is also de-
scribed. Moreover, domain specific composition of deltas is motivated.

9



MDPLE: Core Asset and Process Implications

Two case studies are presented: a questionnaire family, and the incremen-
tal specification of UML interaction diagrams.

Chapter 5

In this chapter, metamodel annotations are presented as the means to spec-
ify domain-specific composition. In this way, the composition implemen-
tation is automatically generated from the metamodel. This not only per-
mits the composition implementation to be reused in different domains, but
also shields the implementation details from domain experts.

Chapter 6

This chapter describes the Assembly Plan Management, a new discipline
inside the general software development process that permits to face the
complexity in assembly processes introduced by MDPLE. A case study of
flight booking portlets illustrates the presented ideas.

Chapter 7

This chapter concludes the dissertation. It summarizes the obtained results,
makes an assessment and also identifies future research topics that this
work raised.

1.7 Conclusions

The intention of this chapter was to give an overview of the contents of
this dissertation. The topic was introduced and what, in our opinion, are
its contributions were listed. The next chapter starts with a review of the
background.

10



Chapter 2

Background

“We are like dwarfs standing on the shoulders of giants.”

– Bernard of Chartres

2.1 Overview

Model Driven Engineering and Software Product Line Engineering are two
increasingly popular paradigms that represent an advance towards the in-
dustrialization of software development. Model Driven Product Line En-

gineering is their combination, which brings together the advantages of
both.

This chapter covers the background on MDE, SPLE and MDPLE, to-
gether with a brief introduction to software development processes. These
are the main topics on top of which this work is built.

2.2 Model Driven Engineering

MDE is a consolidating trend in software engineering in which abstract
models are created and systematically transformed to concrete implemen-
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tations [FR07]. Reuse is here achieved in the form of transformations,
which are built once but can be enacted for a variety of input models that
yield different results.

MDE is the result of a paradigm shift from object-orientation, where
the main principle was everything is an object, into a model driven paradigm
based on the principle that everything is a model [Béz05]. In object orienta-
tion objects and classes are the main concepts. These concepts are related
using instantiation (i.e., an object is an instance of a class) and inherits-

From (i.e., a class can inherit from another class). In the same way, the
main concepts in MDE are models, the system they represent, metamodels
and model transformations. The main relations in this case are representa-

tion of a system (i.e., a model is the representation of a particular view of a
system) and conformance to metamodel (i.e., each model is written in the
language defined by its metamodel) [Béz05].

The following subsections define and motivate MDE and describe its
main concepts.

2.2.1 Definition

Model Driven Engineering describes software development approaches
that are concerned with reducing the abstraction gap between the prob-
lem domain and the software implementation domain. This is achieved
through the use of technologies that support systematic transformation of
problem-level abstractions to software implementations. The complexity
of bridging the abstraction gap is tackled through the use of models that
describe complex systems at multiple levels of abstraction and from a va-
riety of perspectives, combined with automated support for transforming
and analyzing those models. In the MDE vision of software development,
models are the primary artifacts of development and developers rely on
computer-based technologies to transform models into running systems
[FR07].
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2.2.2 Motivation

Considering models as the primary artifacts in software development has
many benefits, aside from increasing reuse by means of automatic transfor-
mations. Some of these benefits are still being discovered and researched.
We can cite the following as examples of the motivations to apply or eval-
uate MDE in industry [MD08]:

• Increase productivity and shorten development time.

• Improve quality. Improve the quality of the generated code, improve
the quality (assurance) of system requirements and manage require-
ment volatility, improve the quality of intermediate models, and ear-
lier detection of bugs.

• Automation. Generate code and other artifacts and introduce au-
tomation into the development process. Model-based simulation and
testing.

• Standardization and formalism. Provide a common framework for
software development across the company and phases of the lifecy-
cle that formalizes and organizes software engineering knowledge at
a higher level of abstraction and a common data exchange format.

• Maintenance and evolution concerns. Maintain the architecture in-
tact from analysis to implementation, evolution of legacy systems,
concerns over software method and tool obsolescence, verification
of the system by producing models from traces and that platform
independent models have a considerable lifespan.

• Improved communication and information sharing. Between stake-
holders and within the development team. Ease of learning.

The main concepts of MDE are described next.
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2.2.3 Models

The MDE hallmark is that software development’s primary focus are mod-
els rather than traditional programs. Consequently, it is important to under-
stand what a model is. Models play an important role in different sciences
(e.g., mathematics or biology) and each one may have a specialized view
of the concept of a model. Even inside the software engineeering com-
munity different definitions of a model have been given [MFB09]. In this
work, we will adopt the following definition [Kur05]:

A model represents a part of the reality called the object sys-
tem and is expressed in a modeling language. A model pro-
vides knowledge for a certain purpose that can be interpreted
in terms of the object system.

This definition highlights three characteristics of models: (i) models are
abstractions of part of the reality, (ii) which are expressed in a language
and (iii) which provide knowledge about the reality for a certain purpose.

Models have been an essential part of engineering from antiquity. En-
gineering models aim to reduce risk by helping us better understand both
a complex problem and its potential solutions before undertaking the ex-
pense and effort of a full implementation. To be useful and effective, an
engineering model must possess, to a sufficient degree, the following five
key characteristics [Sel03]:

• Abstraction. A model is always a reduced rendering of the system
that it represents. By removing or hiding detail that is irrelevant for
a given viewpoint, it permits us understand the essence more easily.

• Understandability. It is not sufficient just to abstract away detail;
we must also present what remains in a form (e.g., a notation) that
most directly appeals to our intuition. A good model provides a
shortcut by reducing the amount of intellectual effort required for
understanding.
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• Accuracy. A model must provide a true-to-life representation of the
modeled system’s features of interest.

• Predictiveness. We should be able to use a model to correctly predict
the modeled system’s interesting but non obvious properties, either
through experimentation or through some type of formal analysis.

• Inexpensiveness. A model must be significantly cheaper to construct
and analyze than the modeled system.

2.2.4 Metamodels

The previous model definition emphasized that each model is expressed
in a modeling language. A metamodel is the model that defines such lan-
guage. It is important to note that a metamodel defines a language in an
abstract way, regardless of its specific syntax. The following definition
highlights such abstraction:

A metamodel is an “abstract language” for describing different
kinds of data; that is, a language without a concrete syntax or
notation [OMG08a].

We have already stated that in MDE everything is a model. Hence, meta-
models are also models:

A metamodel is a model of a language of models [Fav04].

A metamodel also defines constraints that every model written in that lan-
guage must satisfy. Consequently, it delimits the way in which the system
can be modeled (i.e., it constraints the set of models that can be written
in the language defined by the metamodel). The FRISCO report definition
emphasizes this point:

A metamodel gives the conception of the structure of concepts
on which a modelling language is based, and all constraints
thereupon. Thus, a metamodel determines the way one may
view, conceive or model the "world" [FHL+98].
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Metamodels facilitate separation of concerns. When dealing with a given
system, one may work with different views of the same system, each char-
acterized by a given metamodel [Béz04], which can later be composed into
an integrated application [KR03].

In summary, metamodels define the languages used to describe mod-
els. There are two main trends when choosing the metamodel to model a
system. On one hand, a general purpose modeling language, a prominent
example being the Unified Modeling Language (UML) [OMG09], can be
used. On the other hand, a Domain Specific Language (DSL) might suit
some systems better. Both approaches are briefly described next.

2.2.5 General Purpose Languages vs. Domain Specific
Languages

This section provides a concise summary on the main trends that exist
when choosing a language (i.e., a metamodel) for a particular domain.
Both are trends described and a comparison between them is made.

General Purpose Languages

The main advantage of these languages is their generality, i.e., they can be
used in a myriad of domains. The Unified Modeling Language is a promi-
nent example of such languages. UML is a modeling language whose
objective is to provide system architects, software engineers, and soft-
ware developers with tools for analysis, design, and implementation of
software based systems as well as for modeling business and similar pro-
cesses [OMG09]. It is defined by the Object Management Group (OMG),
an international, open membership, not-for-profit computer industry con-
sortium that develops enterprise integration standards. UML is a general
purpose modeling language that can be used with all major object and com-
ponent methods and can be applied to all application domains (e.g., health,
finance, telecom, aerospace) and implementation platforms (e.g., Common
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Object Request Broker Architecture (CORBA), Java 2 Enterprise Edition
(J2EE), .NET).

There are situations, however, in which a language that is so general
and of such a broad scope may not be suitable for modeling applications
of some specific domains. In this case, Domain Specific Languages tackle
this problem.

Domain Specific Languages

DSLs are focused languages for specifying systems at a high-level of ab-
straction, using a notation very close to the problem domain. Their goal
is to allow domain experts to specify and reason about their systems using
intuitive notations, closer to the language of the problem domain, and at
the right level of abstraction [Val10].

Two alternatives exist to develop such a language. The first one is to
specialize UML. In this case, some elements of the language are special-
ized, imposing new restrictions on them, while respecting the UML meta-
model and leaving the original semantics of the UML elements unchanged.
UML provides a set of extension mechanisms (stereotypes, tagged values,
and constraints) for specializing its elements, allowing customized exten-
sions of UML for particular application domains. These customisations
are grouped into UML Profiles [FV04]. The second alternative is to define
a completely new language. In this way, the syntax and semantics of the
elements of the new language are defined to fit the specific characteristics
of the domain.

Comparison

Each alternative has its advantages and disadvantages. Defining a tailor-
made language will produce a notation that will perfectly match the con-
cepts and nature of the specific application domain. However, as the new
language does not respect UML semantics, it will not allow the use of
commercial UML tools for drawing diagrams, generating code, reverse
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engineering, and so forth. Conversely, UML Profiles (which are amenable
to be handled by most commercial UML tools) may not provide such an
elegant and perfectly fitting notation as may be required for those systems.
It is not therefore always easy to decide when to create a new language
and when to define a set of extensions to the standard UML metamodel by
grouping them into a UML Profile [FV04]. The decision depends on the
specificities of the domain at hand.

Besides models and metamodels, the other main concept in MDE are
model transformations which will be described next.

2.2.6 Transformations

Model transformations define relationships between sets of models [FR07].
As a result of the everything is a model principle, model transformations
tend to operate on a more diverse set of artifacts than program transforma-
tions. Model transformation literature considers a broad range of software
development artifacts as potential transformation subjects. These include,
but are not limited to, UML models, interface specifications, data schemas,
component descriptors, and program code. Model transformations play a
key role in MDE. Their applications include the following [CH06]:

• Generating lower-level models, and eventually code, from higher-
level models.

• Mapping and synchronizing among models at the same level or dif-
ferent levels of abstraction.

• Creating query-based views of a system.

• Model evolution tasks such as model refactoring.

• Reverse engineering of higher-level models from lower-level models
or code.

Figure 2.1 presents a simplification of the model transformation pattern
[JABK08] that gives an overview of the main transformation concepts. A
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Figure 2.1: Basic Concepts of Model Transformations

transformation definition is a relationship defined between a source and a
target metamodel. Once this transformation is defined, a transformation
engine will execute the definition thus creating a model that conforms to
the target metamodel, from a model that conforms to the source meta-
model. In general, transformations may have multiple source and target
metamodels. Furthermore, the source and target metamodel can be the
same in some settings. These are known as endogenous transformations.

A classification of the different transformation approaches is given in
[CH06]. The major characteristics used to organize the vast range of exist-
ing transformation approaches are:

• Specification. A particular transformation specification may repre-
sent a function between source and target models and be executable;
however, in general, specifications describe relations and are not ex-
ecutable.

• Transformation rules. Transformation rules can be understood in a
broad sense as the smallest units of transformation. Rewrite rules
with a lefthand side (LHS) and a righthand side (RHS) are obvi-
ous examples of transformation rules; however, functions or proce-
dures implementing some transformation step can be understood as
a transformation rule. In fact, the boundary between rules and func-
tions is not so clear-cut; for example, function definitions in modern
functional languages such as Haskell resemble rules with patterns on
the left and expressions on the right.

• Rule application control. It has two aspects: location determination
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and scheduling. Location determination is the strategy for determin-
ing the model locations to which transformation rules are applied.
Scheduling determines the order in which transformation rules are
executed.

• Rule organization. This comprises general structuring issues, such
as modularization and reuse mechanisms.

• Source-target relationship. The source-target relationship is con-
cerned with issues such as whether source and target are one and
the same model or two different models.

• Incrementality. This refers to the ability to update existing target
models based on changes in the source models.

• Directionality. Directionality describes whether a transformation
can be executed in only one direction (unidirectional transformation)
or multiple directions (multidirectional transformation).

• Tracing. Tracing is concerned with the mechanisms for recording
different aspects of transformation execution, such as creating and
maintaining trace links between source and target model elements.

Transformations play a pivotal role in MDE and are one of the enablers
of reuse. Consequently, they have raised considerable interest among the
research community [ICM], several model transformation languages have
been developed [JABK08, OMG08a, CMT06] and different approaches to
ease their realization have been proposed [LWK10, WKK+10].

2.2.7 The Four Layer Architecture

The OMG defines a four layer architecture for metamodeling [OMG02].
This architecture, which has also been named as the 3+1 architecture [Béz04],
is presented in Figure 2.2. At the bottom level, the M0 layer is the real sys-
tem. Two models represent different views of such system at level M1.
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Figure 2.2: The 4 /3+1 Layer Architecture

These models conform to their respective metamodels, which are defined
at level M2. Metamodels conform to a common metametamodel defined
at level M3. An important aspect of this architecture is the fact that the M3
level conforms to itself. This means that the metametamodel at M3 pro-
vides a set of language constructs to express the whole metametamodel.
This brings an important engineering benefit: the metametamodel may be
treated in the same way as the metamodels that conform to it. This al-
lows to build tools that handle the models at different levels in the model
management system in a uniform way [BK06].

2.2.8 Technical Spaces

The definition of models given in Section 2.2.3 is general. An XML doc-
ument, a running program, a database, etc. are representations of systems
found in the real world and they are all expressed using a language. That
is, following our definition, they are models. These examples expose an
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Figure 2.3: Modeling Architecture Examples

important commonality. They provide an organizational structure usually
based on a single model that is used to create other models in the space
(e.g., programming languages, XML schemas, database schemas, etc.).
These models are related via the conforms to relationship and are organized
in the 3+1 level architecture, akin to the one presented above [BK06].

Figure 2.3 presents the modeling architecture observed in four exam-
ples: OMG/MDA, XML, EBNF (also known also as grammarware) and
Relational Databases. In every example the metametamodel at level M3
provides the foundation for defining metamodels and models that conform
to them.

Model Driven Architecture (MDA) is the MDE framework launched by
the OMG [OMG]. Its metametamodel is known as Meta Object Facility

(MOF) [OMG08a], which provides a language for defining the abstract
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syntax of modeling languages. One of such languages is UML. In XML,
XML documents conform to XML schemas, which in turn conform to the
XML Metaschema. In the grammarware example EBNF is a framework
for defining the syntax of programming languages. These definitions take
the form of context-free grammars. In Relational Databases the data con-
form to the database schema which conforms to the database metaschema.

This architecture is the cornerstone for building a model management
framework. It is mainly based on the fixed metametamodel at M3 and the
meaning of the conforms to relation between levels. It should be noted that
the conforms to relationship is defined differently in each example (e.g.,
in XML it is based on the notion of validity of XML documents and in
grammarware conforms to means that a sentence is syntactically correct
according to the grammar rules).

These examples also share another common characteristic: they have
a set of tools associated with them (e.g., tools to check the conforms to

relationship, navigation languages or transformation languages). Based on
the previous commonalities, we can define a common ground that will en-
able us to describe technologies at a more abstract level in order to allow
reasoning about their similarities and differences and possibilites for inte-
gration. Each of the four examples above can be denoted as a Technical

Space (TS) [BK06]:

A technical space is a model management framework accom-
panied by a set of tools that operate on the models definable
within the framework.

Other examples of technical spaces are the Eclipse Modeling Framework

(EMF) TS [SBPM08], the Microsoft DSL Tools TS [GS04] and the Generic

Modeling Enviroment (GME) TS [LMB+01].

Technical spaces allow reasoning about multiple technologies at a higher
level of abstraction and about possible relations among them. An impor-
tant benefit of this reasoning is the recognition of the various capabilities
offered by different technical spaces and the possibility of combining them
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together to solve a problem. This requires the ability to transfer an artifact
from one space to another space and vice versa. This is accomplished using
technical projectors [BK06].

After describing the main concepts related to MDE, the following sec-
tion describes the experiences of its application.

2.2.9 Successful Case Studies

Several companies have reported the benefits of applying MDE to soft-
ware development. With over 13.000 software engineers and an experi-
ence of over 15 years with modeling languages, Motorola is a case in point
[BLW05]. This company has gained consistent benefits from MDE and
code generation. Typical results collected over the past few years have
shown the following benefits when compared to hand written code:

• Quality. A 1.2x - 4x overall reduction in defects and a 3x improve-
ment in phase containment of defects.

• Productivity. A 2x - 8x productivity improvement when measured in
terms of equivalent source lines of code.

Moreover, OMG describes several MDA Success Stories [OMG]. The U.S.
Goverment Intelligence Agency, Siemens Transformation Systems, ABB
Research Centre, Austrian Railways and Daimler Chrysler are some of the
companies that have chosen MDA as their developing architecture. Among
the benefits they reported there are:

• Facilitates communication among different stakeholders (U.S. Gov-
erment Intelligence Agency).

• High level of reuse (Siemens Transformation Systems).

• Efficient tailoring of existing functionality (ABB Research Centre).

• Uniform and easy-to-maintain component infrastructure (Austrian
Railways).
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• ROI in less than 12 months (Daimler Chrysler).

2.2.10 Current Research Issues

France and Rumpe grouped the major challenges that researchers face
when attempting to realize the MDE vision into the following categories
[FR07]:

• Modeling language challenges. These challenges arise from con-
cerns associated with providing support for creating and using problem-
level abstractions in modeling languages, and for rigorously analyz-
ing models.

• Separation of concerns challenges. These challenges arise from
problems associated with modeling systems using multiple, overlap-
ping viewpoints that utilize possibly heterogeneous languages.

• Model manipulation and management challenges. These challenges
arise from problems associated with (i) defining, analyzing, and us-
ing model transformations, (ii) maintaining traceability links among
model elements to support model evolution and roundtrip engineer-
ing, (iii) maintaining consistency among viewpoints, (iv) tracking
versions, and (v) using models during runtime.

This thesis is linked to the first and third challenges. First, Chapter 4
defines model deltas as feature realizations in an FOSD setting. Conse-
quently, it focuses on the definition of the language to define such deltas
(i.e., the delta metamodel). Second, model management is a complex issue,
which is exacerbated when using models in SPLE. This thesis addresses
this problem in Chapter 6 in the specific case of product assembling.

2.3 Software Product Line Engineering

Software Product Line Engineering is a paradigm to develop software where
a family of related products is built out of a common set of core assets,
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thus reducing development costs for each individual product. It is impor-
tant to indicate that reuse in SPLE is managed, meaning that core assets
are developed with their reuse opportunities in mind. This is in contrast
to opportunistic reuse, where components are developed on the hope that
they will be reused at some point in the future.

2.3.1 Definition

With the aim to help the reader understand the concept, two definitions will
be analyzed next.

A Software Product Line (SPL) is a set of software-intensive
systems, sharing a common, managed set of features that sat-
isfy the specific needs of a particular market segment or mis-
sion and that are developed from a common set of core assets
in a prescribed way [CN01].

This definition can be divided into five main concepts [Tru07]:

• Products (i.e., “a set of software-intensive systems”). SPLE shifts
the focus from single product development to the development of
a family of related products. Software product families are defined
(analogously to hardware families) as sets of products whose com-
mon properties are so extensive that it is advantageous to study the
common properties of the products before analyzing individual mem-
bers [Par76].

• Features (i.e., “sharing a common, managed set of features”). Fea-
tures are increments in program functionality that stakeholders use
to distinguish one product from another [KCH+90].

• Domain (i.e., “that satisfy the needs of a particular market segment

or mission”). An SPL is created within the scope of a well defined
domain.
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• Core Assets (i.e., “are developed from a common set of core assets”).

Core assets are artifacts or resources that are used in the production
of more than one product in a software product line [CN01].

• Production Plan (i.e., “in a prescribed way”). The production plan
describes how products are produced from the core assets [CN01].
It is the guide for reuse within the product line scope.

An alternative definition is presented in [PBvdL06]:

Software product line engineering is a paradigm to develop
software applications (software-intensive systems and software
products) using platforms and mass customization.

Where:

• Platform. A software platform is a set of software subsystems and
subsystems that form a common structure from which a set of deriva-
tive products can be efficiently developed and produced [ML97].

• Mass customization. Mass customization is the large-scale produc-
tion of goods tailored to individual customers’ needs [Dav87]. In the
case of SPLE, software is the product to be obtained.

2.3.2 Motivation

The aim of SPLE is to provide customized products at reasonable costs.
The key motivations for developing software using this paradigm are the
following [PBvdL06]:

• Reduction of Development Costs. Core assets are reused in several
products, which implies a cost reduction for each product. How-
ever, it is important to note that, before core assets can be reused, an
investment has been made in creating them. Moreover, the way in
which they will be reused has to be planned beforehand to provide
managed reuse. This means that an up-front investment needs to be
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made to create the product line before it can reduce the costs per
product by reusing the core assets.

• Enhancement of Quality. The core assets are reused and tested in
many products. This implies a significantly higher chance of detect-
ing faults and correcting them, thereby increasing the quality of all
products.

• Reduction of Time-to-Market. The initial time-to-market is higher,
as the core assets need to be built first. However, after this phase has
finished, the time-to-market is considerably shortened as core assets
can be reused in each product.

• Reduction of Maintenance Effort. Whenever a core asset is changed
(e.g., for error correction), the changes are propagated to all products
in which the core asset is used. This can be exploited to reduce
maintenance effort. As changes have been made, product testing is
unavoidable but the reuse of test procedures within the product line
also reduces maintenance effort.

• Coping with Evolution. The introduction of a new core asset (or a
change of an existing one) triggers the evolution of all products that
are built using such core asset.

• Coping with Complexity. As more and more functionality is put into
software, the complexity of the products increases. Embedded sys-
tems are an example, where functionality is being moved from hard-
ware to software. The fact that core assets are reused throughout the
product line helps to cope with the complexity of each product.

• Improving Cost Estimation. The development organization can focus
its marketing efforts on those products that can be easily produced
within the product line. It can also allow extensions not covered by
the product line, but products that need such extensions can be sold
for higher prices than those built within the scope of the product line.
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After defining and motivating SPLE, how the product line approach is re-
alized is described next.

2.3.3 Engineering a Software Product Line

Engineering a software product line traditionally involves two separate
processes, namely domain engineering and application engineering. The
former is dedicated to core asset development while the latter is aimed at
yielding products. Both are briefly described next:

• Domain Engineering. Domain Engineering is the process of SPLE

in which the commonality and the variability of the product line are
defined and realized [PBvdL06]. This means that the common parts
and the ones that are different (i.e., variable) among products are
defined and realized in the form of core assets.

• Application Engineering. Application Engineering is the process of
SPLE in which the products of the product line are built by reusing
domain artifacts and exploiting the product line variability [PBvdL06].
In this case, products are obtained by reusing the previously built
core assets.

We have already mentioned that managed reuse is the main driving force
behind SPLE. How each core asset is to be reused is pre-planned. Indeed,
management in general plays a critical role in SPLE. The activities per-
formed in the two processes above must be given resources, coordinated
and supervised. This perspective is present but intertwined in the above
definitions. The Software Engineering Institute (SEI) [Pes03] brings man-
agement to the forefront when defining the three essential activities in SPL
development [CN01] (see Figure 2.4):

• Core Asset Development (i.e., Domain Engineering). Its goal is to
establish a production capability for products. It has three outputs:
(i) the SPL scope, (ii) core assets and (iii) the production plan.
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Figure 2.4: Essential Activities in SPL Development

• Product Development (i.e., Application Engineering). Its goal is to
turn out products. It depends on the three outputs described above.

• Management. Management at both technical and organizational lev-
els must be strongly commited to the SPL effort. Technical manage-
ment oversees the core asset development and product development
activities by ensuring that the groups that build core assets and the
groups that build products are engaged in the required activities, fol-
low the processes and collect data to track progress. Organizational
management must set in place the proper organizational structure
that makes sense for the enterprise and must make sure that the or-
ganizational units receive the right resources (e.g., well-trained per-
sonnel) in sufficient amounts.
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Figure 2.4 illustrates how these three activities are linked together and per-
petually in motion (indicated with arrows). Not only are core assets used to
develop products, but also product development brings revisions of exist-
ing core assets or even new ones. There is also a constant need for strong,
visionary management to invest resources in the development and sustain-
ment of the core assets. Management must also precipitate the cultural
change to view new products in the context of available assets. Either new
products must align with the existing assets or assets must be updated to
reflect new products.

2.3.4 Successful Case Studies

Cummings Engine Inc. is the world largest manufacturer of commercial
diesel engines above 50 horsepower. Among the benefits that a product line
approach has brought them since 1994 we can cite a slashed product cycle
time, high software quality, high customer satisfaction and more successful
projects [CN01].

The United States National Reconnaissance Office (NRO) decided to
take advantage of the commonality of the software associated with satel-
lites and build a product line for their ground based spacecraft command
and control software. They report, among other benefits, 50% reduction
in overall cost and schedule and nearly tenfold reductions in development
personell [CN01].

Asea Brown Bovery (ABB) is a leading global technology company
which has experience with different product lines and its associated ben-
efits. As an example, the ABB Gas Turbine Family led to shorter de-
velopment time, higher code quality and eased the exchange of modules
[PBvdL06].

Celsius Tech. built a product line for warfare control systems. The ben-
efits included reduced system cost by around 50%, delivery time slashed
from years to months, reuse ranging from 70% to over 90% and higher
product quality and customer satisfaction [CN01].
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The International Software Product Line Conferences (SPLC) are the
premier conference in the area where most recent ideas, innovations, trends,
experiences, and concerns in software product lines and software product
family engineering are presented and discussed [SPLa]. Each SPLC culmi-
nates with a session in which members of the audience nominate systems
for induction into the Software Product Line Hall of Fame, the members
of which constitute examples of successful case studies of SPLE [SPLb].

2.3.5 Current Research Issues

SPLs have generated considerable interest in the research community. The
fact that, apart from the specific conference [SPLa], more general con-
ferences [ASE, ECO] include product lines in their scope, along with the
different workshops that exist [VAM], are a sign of such interest. Regard-
ing the current research issues, as an example we can cite that the focus
of the 2010 edition of SPLC is on novel approaches to effective sharing
of software assets inside and across organizations. Some other topics of
interest in the conference are the following:

• Techniques and tools for product line engineering.

• Evolution of product line assets.

• Business issues for product lines.

• Organizational and process issues for product lines.

• Product line life-cycle issues.

• Effective software product lines across organizational boundaries.

• Software product line in new emerging application domains (e.g.,
Web services and online applications, Service oriented systems, etc.).

This thesis is linked to the first and third challenges. First, MDE is a new
paradigm that aids in the development of product lines, where models for
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reuse need to be defined. Second, the complexity of assembly processes
(i.e., process issues for product lines) are addressed.

Both MDE and SPLE represent a perspective shift in the way software
is developed. Hence, the next section provides a brief description of soft-
ware development processes, as both MDE and SPLE have an impact on
them.

2.4 Software Processes

Processes have a profound influence on the quality of products; i.e., by
controlling processes we can achieve a better control of the required qual-
ities of products. This is especially true in software due to its intrinsic
complexity [Bro87]. If an explicit process is in place, software develop-
ment proceeds in a more systematic and orderly fashion. This prevents
errors from being introduced in the product and provides the means for
controlling the quality of what is being produced [CG98].

2.4.1 Definition

A software process can be defined as the coherent set of policies, organi-
zational structures, technologies, procedures, and artifacts that are needed
to conceive, develop, deploy, and maintain a software product [Fug00].

Hence, the following factors impact on the software development pro-
cess [Fug00]:

• Software Development Technology. Technological support used dur-
ing the process. Certainly, to accomplish software development ac-
tivities we need tools, infrastructures, and environments. We need
the proper technology that makes it possible and economically fea-
sible to create the complex software products our society needs.

• Software Development Methods and Techniques. Guidelines on how
to use technology and accomplish software development activities.
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The methodological support is essential to exploit technology effec-
tively.

• Organizational Behavior. The science of organizations and people.
In general, software development is carried out by teams of people
that have to be coordinated and managed within an effective organi-
zational structure.

• Marketing and Economy. Software development is not a self-contained
endeavor. As any other product, software must address real cus-
tomers’ needs in specific market settings. Thus different stages of
software development (e.g., requirements specification and develop-
ment/deployment) must be shaped in such a way to properly take
into account the context where software is supposed to be sold and
used.

2.4.2 Motivation

The key difference between a process and a process description needs to
be highlighted at this point. While a process is a vehicle for doing a job,
a process description is a specification of how the job is to be done. Thus
cookbook recipes are process descriptions while the carrying out of the
recipes are processes. It is startling to realize that too often we develop
large software systems without the aid of visible and detailed descriptions
of how to proceed [Ost87]. Among the motivations to define explicit and
detailed process descriptions we can cite [CG98, Ost87]:

• The manager of a project can communicate to workers, customers
and other managers just what steps are to be taken in order to achieve
product development or evolution goals.

• Workers can benefit in that reading them should indicate the way in
which work is to be coordinated and the way in which each individ-
ual’s contribution is to fit with others’ contributions.
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• In materializing software process descriptions it becomes possible to
reuse them. At present key software process information is locked
in the heads of software managers. It can be reused only when these
individuals instantiate it and apply it to the execution of a specific
software process. When these individuals are promoted, resign or
die their software process knowledge disappears.

2.4.3 Successful Case Studies

As an example, we can mention the Capability Maturity Model for Soft-

ware (CMM), a process maturity framework that provides software orga-
nizations with guidance on how to gain control of their processes for de-
veloping and maintaining software and how to evolve towards a culture
of software engineering and management excellence, as advocated by the
Software Engineering Institute (SEI) [PWCC93].

In many companies CMM plays a major role in defining the software
process improvement. Data in industry shows that CMM-based process
improvement can make a difference. As successful case studies we can
cite [DS97]:

• Raytheon yielded a twofold increase in its productivity and a return
ratio of 7.7 to 1 on its improvement expenditures, for a 1990 savings
of $4.48 million from a $0.58 million investment.

• Hughes Aircraft has computed a 5-to-1 return ratio for its process
improvement initiatives, based on changes in its cost–performance
index.

• Tinker Air Force Base recently computed a 5-to-1 return on invest-
ment for its process improvement initiatives, which generated a sav-
ings of $3.8 million from a $0.64 million investment.
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2.4.4 Current Research Issues

The following were identified as software process research needs, based
on the results of USC-CSE workshops with its industry and government
affiliates [Boe05]:

• Lean, Hybrid Processes for Balancing Dependability and Agility.

The trends in simultaneous need for high dependability and high
agility dominate here. Additional concerns for special cases are the
increased need for scalability and incrementality for large, software-
intensive systems of systems involving COTS and legacy systems;
and the needs to address multi-location and multi-cultural develop-
ment.

• Integrated Technical and Acquisition Processes. Improvements in
administrative and contracting processes tend to lag behind improve-
ments in technical processes, causing the technical process to be-
come over-constrained and unstable. Again, balancing dependability
and agility is important, and the ability to administer and incentivize
collaborative efforts that are performing concurrent plan-driven in-
crements and agile next-increment preparation across multiple sup-
plier chains are important.

• Empirically-Evolved Process Languages, Methods, Metrics, Mod-

els, and Tools. The need for such capabilities to be incremental and
ambiguity tolerant, and to allow for incomplete, informal, and par-
tial specifications are important, as are techniques for bridging gaps
between less and more formal specifications and gaps or inconsis-
tencies across life cycle phases or suppliers. The use of empirical
evaluation testbeds to accelerate maturity and transition of research
results, and to support collection of baseline process data for evaluat-
ing improvement priorities is important as well. A further attractive
avenue is the development of capabilities to capitalize on computa-
tional plenty. The empirical framework could also be extended to
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monitor and evaluate progress and risk areas in the wild card auton-
omy and bio-computing areas.

• Virtual Process Collaboration Support. Shifting the GUI focus from
individual performance to distributed team, multi-stakeholder, and
multi-cultural collaboration is a significant need.

• Game Technology for Process Education and Training. Game en-
gines complemented by virtual reality modeling and simulation have
become tremendously powerful, and provide an excellent support
base for developing “acquire and develop the way you train; train
the way you acquire and develop” capabilities.

The contribution of this thesis relates to the first topic, exploring the chal-
lenges that arise when defining processes that cater for the particularities
of MDPLE development. This work adresses the specific case of asembly
processes.

Once MDE and SPLE have been introduced and the importance of ex-
plicit software processes has been emphasized, the following section is
dedicated to Model Driven Product Line Engineering, which is the main
topic of this thesis.

2.5 Model Driven Product Line Engineering

MDE and SPLE differ in both what they stress as reuse strategy (i.e.,
broadly, abstraction vs. variability) and the development processes they
follow (i.e., broadly, model transformation vs. incremental construction).
MDE and SPLE complement each other. MDE brings abstraction to the
SPLE realm which has historically focused on code artifacts. On the other
hand, SPLE moves variability, through managed reuse, to the forefront.
As both paradigms are orthogonal, they can be synergistically combined,
leading to Model Driven Product Line Engineering.

The following sections briefly describe MDPLE.
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2.5.1 Definition

Model Driven Product Line Engineering is a paradigm for software devel-
opment that combines Model Driven Engineering and Software Product

Line Engineering to build families of related models that are then trans-
formed into the desired products. Consequently, metamodels and transfor-
mations become main core assets. Moreover, models become a central in
the development process and have to cope with variability.

2.5.2 Motivation

SPLE reduces the development cost by leveraging on the commonalities
of a family of related products, thus increasing reuse. In this setting, it
is essential to maintain a relationship between requirements, architecture,
design and implementation core assets, as they have to be reusable and
evolvable over time. MDE can be used to tacke this problem, being trans-
formations the means to trace those relationships from one model to an-
other. The combination of both results in MDPLE.

MDPLE combines the benefits of Model Driven Engineering (see Sec-
tion 2.2.2) and the benefits of Software Product Line Engineering (see Sec-
tion 2.3.2). Moreover, it brings additional benefits such as verification of
the product building platform and optimization of product production times
[BAS08, TBD07].

2.5.3 Successful Case Studies

MDPLE has raised a considerable interest among researchers in the last
few years. Some examples can be found in [CA05, MKBJ08, TBD07,
VG07]. Another indication of this interest are the specific workshops on
MDPLE held at relevant conferences [MAP, MDP]. However, to the best
of our knowledge, industrial size case studies of MDPLE are still few. An
example of such can be found in [TGLH+10].
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2.5.4 Current Research Issues

The earlier sections highlighted the benefits of MDPLE. Nevertheless, for
this vision to be realized, some issues need to be resolved. SPLE poses
interesting challenges to MDE. The first is related to core assets. All mem-
bers of a product line may have models that describe them. Since the
product line members have usually significant overlaps in their functional-
ity, their models also have significant overlaps and it is desirable to factor
out such overlaps in the form of model deltas. So, model languages have
to take this into account [AJTK09]. This raises questions that need to be
answered. Among others:

• What is the best modeling language to describe such overlaps (i.e.,
model deltas) and to what extent is such language similar to the lan-
guages used to describe complete models?

• Do model management operations change when considered in an
SPLE setting?

• Is there any way to guarantee that the family of models developed
using MDPLE is correct (i.e., that they all conform to their meta-
model)?

Another fundamental issue is related to the software development process.
MDE and SPLE and moreover MDPLE require considerable changes in
an organization and in the processes that yield each product. Compared
to traditional development processes, new activities and artifacts emerge,
which need to be explicitly defined beforehand. In these sense, some of
the questions that arise are:

• We briefly described the processes to develop a product line in Sec-
tion 2.3.3. How do these processes change when applying MDE?

• What are the new roles, activities and artifacts?

• How can the MDE and SPLE processes be combined, with reuse as
the main goal?
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This dissertation will try to give answers to what the language to describe
model deltas is and how the model composition operation changes when
considered in an SPLE setting. Moreover, incremental consistency check-
ing will be used to pave the way to guaranteeing that the products conform
to their metamodel. As for the development process, the case of assembly
processes will be described and a solution will be proposed.

2.6 Conclusions

This chapter was to provided a concise introduction to the existing back-
ground on the topics of this thesis, namely:

• Model Driven Engineering

• Software Product Line Engineering

• Software Development Processes

• Model Driven Software Product Line Engineering

The goal was to prepare the ground for the contributions introduced in the
following chapters. The interested reader can find further details of the
covered topics in the references.
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Problem Statement

“The worthwhile problems are the ones you can really solve or help solve,

the ones you can really contribute something to.”

– Richard P. Feynman

3.1 Overview

Software has evolved from relatively small and simple products to ones
with a considerable size and a high degree of complexity. At the same
time, the product’s desired time-to-market is constantly decreasing. On
top of that, extensibility and customization to each customer are nowadays
more a requirement than a wish. Therefore, a paradigm shift is needed
to change the way software is produced. To this end, advanced software
paradigms have emerged, being Model Driven Product Line Engineering

an example. The benefits of such approach have already been described
in the previous chapter. Nevertheless, to fully exploit them, certain re-
search challenges need to be resolved. This chapter describes how, in or-
der to achieve the combination in MPLE, MDE needs to be adapted to
SPLE terms. The impact is twofold: (i) on the core assets (i.e., models
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for reuse need to be developed) and (ii) on the development process. Fea-
ture oriented development of models and the product assembly process are
presented as illustrative examples of such impact.

3.2 Core Asset Implications

SPLs aim at building a family of related products from a common set of
core assets. If models are the products to be obtained, how the correspond-
ing core assets are developed and how products are obtained out of them
needs to be defined. This raises different issues, which are described be-
low. Feature Oriented Software Development [BSR04] is used as the SPL
realization paradigm.

FOSD is a paradigm for product synthesis in software product lines.
Programs are built, step-by-step, by incrementally adding features. Not
only does this help control program complexity and improve program un-
derstandability, but it also allows for the reuse of features (i.e., multiple
programs in a product line can share the same feature) [BSR04]. Hence,
features in FOSD are not only increments in program functionality, they
become the actual building blocks (i.e., the core assets) that, when compo-
sed, yield the different products of the SPL.

FOSD can also handle heterogeneous artifacts in a uniform way [BSR04].
Apart from code, it has been successfully applied to build grammars [BSR04],
XML documents [ADT07] and test specifications [UGKB08] among oth-
ers. Moreover, these ideas can be abstracted to support the composition of
software artifacts written in different languages [AKL09].

FOSD ideas scale: they have been used to build customizable databases
(80K LOC each), extensible Java preprocessors (40K LOC each), and
AHEAD Tool Suite (250K LOC), a set of tools that realizes FOSD ideas
[BAS08].

In the context of MDPLE, the question that arises is how these ideas
can be combined with MDE to support feature oriented development of
models, i.e., to recast MDE to follow SPLE principles, as mentioned be-
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Figure 3.1: Cone of Instances of a Metamodel: Model Instances are the
SPL Products

fore. Figure 3.1 shows a metamodel MM and its cone of instances, i.e., the
set of models that conform to MM. For each metamodel there is typically
an infinite number of instances. An SPL, in contrast, is a finite family of n

similar products. Hence, the scope of an SPL is typically more constrained
than the domain a metamodel defines, i.e., an SPL is a subset of a meta-
model’s domain (e.g., SPL 1, SPL 2 and SPL 3 in Figure 3.1). As a
case in point, if MM is a metamodel of statecharts, one could find SPLs
for flight booking web applications, a another of embedded systems for
washing machines and many others.

As stated above, a product line in an MDE setting is a set of models.
The baseModel expresses the greatest common denominator of all SPL
members. In many product lines, the baseModel is simply the empty model
∅ [BAS08].

Figure 3.2a shows a metamodel MM and its cone of instances. A subset
of the cone is a set of models that belongs to the SPL product line (e.g.,
m2...m4 belong to SPL, m1 is not a member, and all m1...m4 conform to
MM). Note that the empty model ∅ and model mA are outside the cone of
MM, meaning that ∅ and mA do not conform to MM.
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Figure 3.2: Models, Arrows and Product Lines

Figure 3.2b shows features as arrows1 that map one model to another
with enhanced functionality. In this sense, we can define the products of
SPL as the composition of the arrows that represent their features (e.g.,
m3 is the result of composing three arrows). An important property about
arrows is that a composition of two or more arrows is yet another arrow
[BAS08]. Further, observe that a composition of arrows may produce an
intermediate model (e.g., mA) that does not conform to MM. Only the mem-
bers of SPL (e.g., m2, m3 and m4) are required to conform to MM, regard-
less of the steps needed to obtain them. The members of SPL are pro-
duced by composing arrows. The collection of arrows defines the features
of SPL.

A specification of all legal compositions of features in a product line
is defined by the Feature Model [KCH+90]. Every model in the SPL has
a derivation (i.e., a composition of arrows starting from ∅) and the feature
model defines it. Figure 3.2c illustrates the product line perspective: a
collection of arrows (i.e., features) plus a feature model that constrains
how these arrows can be composed yields the set of models of a product

1The term comes from Category Theory. Arrows are maps between objects. In this
work we are interested in arrows that build SPLs. See [BAS08] for a description of the
links between MDE, SPLE and Category Theory.
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line.

The relationships among arrows described above are very general; they
hold for all artifact types. The key questions when mapping arrows to
models are:

1. How is an arrow specified?

2. If arrows are themselves models then, what is their metamodel?

3. How are arrows composed?

These issues are addressed in Chapter 4 and Chapter 5.

This section described how model development can be tackled in MD-

PLE. This impacts on the core assets, arrows (i.e., models for reuse) need
to be specified and then composed together to yield the final product. Nev-
ertheless, MDPLE also has repercussions on the way the final product is
obtained, i.e., on the development process. Domain and application engi-
neering have to cater for the specificities of models (e.g., metamodels and
transformations have to be developed). The following section presents an
overview of the impact of MDPLE on the software development process.

3.3 Process Implications

Both MDE and SPLE depart from one-off development to provide an in-
frastructure where different (though related) products can be obtained. The
benefits of applying them separately in an industrial setting have been re-
ported in the literature [BLW05, CN01]. Their complementary nature per-
mits their combination in MDPLE, which brings benefits that were enu-
merated in the previous chapter. Different case studies support this claim
[CA05, FBL08, TBD07, TGLH+10, UGKB08, VG07, WJE+09, ZSS+09].

Nevertheless, MDE and SPLE, and also MDPLE, being the combina-
tion of both, require considerable changes in an organization and in the
processes that yield each product. Compared to traditional development
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processes, new activities and artifacts emerge, which need to be explicitly
defined. The following section introduces such changes.

3.3.1 General Overview

This section introduces the necessity to define an explicit process to deve-
lop software using MDE, SPLE and MDPLE and the changes these para-
digms introduce when compared to traditional software development.

Most tried and tested processes are not tailored for MDE, which does
not make any assumptions on the software development process or the
design methodology [MD08]. However, the lack of a well defined process
may hinder MDE adoption. As a case in point, Baker et al. report that many
teams in Motorola encountered major obstacles in adopting MDE due to
the lack of a well-defined process, lack of necessary skills and inflexibility
in changing the existing culture [BLW05]. Consequently, an explicit pro-
cess that provides new artifacts such as metamodels, transformations, etc.
is desirable. Such process should address the following questions among
others [FS04]:

1. How many levels of abstraction there are, and what platforms have
to be integrated.

2. What the modeling notations are and the abstract syntax to be used
at each level of abstraction.

3. How transformations are performed, and what platform and additio-
nal information they integrate into the lower level of abstraction.

4. How code is generated for the modeling language used at the lowest
level of abstraction, and perhaps even how to deploy that code.

5. How a model can be verified against the upper level model, how it
can be validated, and how it can generate test cases for the system
under development.
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As for SPLE, the introduction of the paradigm in an organization is not
trivial and should fulfill certain steps. The product line adoption roadmap
should include the following seven major activities according to [Nor04]:

1. Deciding and justifying what products to include in the product line
(SPL scoping).

2. Defining, documenting, and following processes for software deve-
lopment and management.

3. Preparing the organization for a software product line approach.

4. Designing and providing the common assets that will be used to
construct the products in the product line.

5. Building and using the production infrastructure (necessary plans,
processes, and tools).

6. Building products from the core assets in a prescribed way.

7. Monitoring the product line effort, keeping a pulse on the adoption
activities and the product line operations, and applying course cor-
rections as necessary to keep the organization on course.

Note how the second and fifth points emphasize the need to define ex-
plicit processes for the SPL. Moreover, the first adoption phase, namely
establishing context, involves paving the way for the product line adop-
tion by determining the scope and associated business case, ensuring the
necessary process capability, and performing the necessary organizational
management tasks [Nor04]. Once again, the importance of having explicit
processes is stated.

Several methodologies to build SPLs have been established during the
past few years [BFK+99, CN01, KKL+98, PBvdL06, WL99]. In their de-
velopment process, generally the idea is to first define the context (i.e., the
scope of the SPL). Then, Domain Engineering and Application Enginee-

ring, which were already described in the previous chapter, are conducted
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as the two main phases of the SPL development process [Mat04]. Develo-
ping an SPL also involves new artifacts (e.g., core assets, production plans,
etc) and new activities (e.g., SPL domain scoping). We refer the reader to
[CN01] for a comprehensive account.

Both SPLE and MDE introduce changes in the traditional software de-
velopment process. MDPLE needs to accomodate all of them if its benefits
are to be fully exploited. The Assembly Process (i.e., the process to assem-
ble a product) is a case in point, as it needs to cater for new tasks such as
model compositions and model transformations in order to yield a the final
product.

3.3.2 The Assembly Process in MDPLE

Greenfield and Short [GS03] venture that one of the consequences of the
industrialization of software development, of which MDPLE is an exam-
ple, will be that product developers will build about 30% of each product.
The remaining 70% will be supplied by ready-built vertical and horizontal
components. Most development will be component assembly, involving
customization, adaptation, and extension. This is the case for MDPLE,
where the reuse of core assets (i.e., metamodels, models and transforma-
tions) reduces the cost of building products. However, the counterpart is
that the cost of their assembly increases significantly.

Assembly processes in both SPLE and MDE are complex in their own
right [CN01, RRGLR+09, VAB+07]. The combined use of SPLE and
MDE puts even more stringent demands on such process. An example of
this difficulty was described in [TAD07]. Completing the assembling pro-
cess for just an individual product of the family took itself four people/day.
This case study is used in the following paragraphs to illustrate the pro-
blem.

PinkCreek is a product line of portlets (i.e., building blocks of web por-
tals) for the provision of flight reservation capabilities to travel-agency por-
tals [DTP07]. The challenges during its construction were twofold. First,
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both the diversity and instability of Web platforms advise to abstract away
from concrete implementations. This grounds the use of MDE. Second,
flight reservation is similar among companies but not exactly the same.
Companies exhibit variations in how flight reservation is conducted. Such
diversity is captured through features that are supported using SPLE tech-
niques. Hence, features stand for variations on flight reservation whereas
transformations account for mappings between the distinct levels of ab-
straction at which flight booking is captured. Next, the distinct artifacts
that arise from both the MDE and the SPLE perspectives are described (a
more comprehensive account can be found at [TBD07]).

• MDE Perspective. An MDE practitioner first strives to abstract from
the different web platforms that can realize portlets. To this end,
State Charts (SC) are introduced to model the flight-reservation con-
trol flow. The product is described as sequence of states where each
state represents an HTML fragment (i.e., a unit of delivery during
user interaction). States are connected by transitions whose han-
dlers either execute some action, render some view, or both. A State

Chart is then mapped into a model for portlet controllers: the Ctrl

metamodel. Ctrl models are in turn, mapped into Act and View mod-
els, that describe the actions to be performed and the views to be
rendered during the controller execution. Finally, technical plat-
forms include Java/Jak (i.e., a Java language for supporting features

[BSR04]) and Java Server Pages (JSPs).

Summing up, PinkCreek’s metamodels include SC, Ctrl, Act, View,

and Java/Jak and JSP as technical platforms. This requires the ex-
istence of transformations between them, namely: sc2ctrl, ctrl2act,

ctrl2view, act2jak and view2jsp. For instance, the equation app =

act2Jak • ctrl2act • sc2ctrl • baseModelSC specifies a transfor-
mation chain from a baseModel statechart down to its realization to
Jak code.

• SPLE Perspective. An SPL practitioner first identifies the common-
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ality and variability of the product family. The variability on flight
reservation includes, among others, the possibility of on-line check-
ing or the alternatives to compensate travel agencies for their co-
operation when inlaying this portlet into the agency’s portal (e.g.,
click-through fees, where the carrier will pay the agency based on
the number of users who access the portlet; bounties, where the car-
rier will pay the agency based on the number of users who actually
sign up for the carrier services through the agency portal; and trans-
action fees, where the incomes of the ticket sales are split between
the carrier and the agency). Hence, a base core can be leveraged
by consecutively applying the required features as described in Sec-
tion 3.2. PinkCreek’s features include, among others, Reservation,

ClickThroughFees, BountyFees and TransactionFees.

As described above, feature composition can be regarded as func-
tion composition. For instance, the equation app = bountyFees •
reservation • baseModelSC increments the baseModel described
as a statechart with the reservation functionality, and this in turn,
with the bountyFees functionality. Notice that both features should
be realized at the same level of abstraction as the baseModel (e.g.,
statecharts).

Transformations and features define a two-dimensional space for prod-
uct assembly (see Figure 3.3). Moving down implies adding more details
about the technical platform: from abstract (e.g., statecharts) to implemen-
tation (e.g., Java/Jak). On the other hand, moving along the horizontal axis
adds features to the final product.

Contrasting features with traditional vertical transformations introduces
the question of whether such operations are commutative. As Figure 3.3
suggests, the order (i.e., first add a feature and then transform or first trans-
form and then add the feature) may not matter in some domains. From this
perspective, ensuring commutativity can be regarded as an additional proof
of the validity of transformations and features [BAS08, FBL08, TBD07,

50



Chapter 3. Problem Statement

Figure 3.3: The Assembly Space

UGKB08].

An Assembly Process can then be described as a path along this assem-
bly space. For instance, the equation app = act2jak • ctrl2act • sc2ctrl •
bountyFees • baseModelSC takes the baseModelSC as a start, enriches
its functionality by leveraging the baseModelSC with bountyFees, and fi-
nally, moves down to code by applying transformation sc2ctrl, sc2act and
act2Jak. The outcome is a Java/Jak program that provides flight reserva-
tion with bounty fees as the payment mechanism.

At the time of PinkCreek development, there was not a clear guideline
available that allowed to declaratively describe the assembly process as a
high-level equation. As a result, intricate and compound scripts were re-
quired to achieve product assembly. The gained insights when developing
such scripts include:

1. The Assembly Process is complex. PinkCreek scripts, which realize
the assembly process, accounted on average for 500 LOC of batch
processes using 300 LOC of ANT makefiles and 2 KLOC of Java
code.
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2. The Assembly Process needs to be designed. Design facilitates to
ponder options and tradeoffs and is a way to handle complexity
by abstracting away from a large number of accidental details and
hence, focusing on the essentials [Bro87]. There is not a single way
to product production. Distinct assembly alternatives may need to
be contrasted and assembly counterpoints can arise.

3. The Assembly Process becomes repetitive. The paradox is that the as-
sembly process in MDPLE is geared towards the reuse of software,
but its realization often lacks such reuse. This occured in PinkCreek
where no reuse mechanism was initially in place. Specifically, defin-
ing alternative assembly processes involved a great deal of potential
reuse but, paradoxically in an MDPLE setting, the only technique
available for reuse was rudimentary “clone&own”. It did not take
long to realize that this technique did not scale.

Summing up, there was a need for a plan that manages how the assembly
process is defined, allowing its design and capitalizing on reuse. Chapter 6
describes such plan.

3.4 Conclusions

The benefits of MDPLE are substantial. Nevertheless, the combination of
MDE and SPLE impacts on both the core assets that are developed and on
the process followed to develop products. This chapter described this im-
pact, using feature oriented development of models and product assembly
process as illustrative examples. The questions that were raised will be the
topic of the following chapters.
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Chapter 4

Domain Specific Composition of
Model Deltas

“The most exciting phrase to hear in science, the one that heralds new

discoveries, is not ’Eureka!’ but ’That’s funny...’.”.

– Isaac Asimov.

4.1 Overview

This chapter addresses the first issue presented in the previous chapter,
namely how core assets (i.e., models for reuse) are created in MDPLE.
Arrows are here realized as model deltas that, when composed, deliver a
complete model. A relationship between a metamodel and its correspond-
ing delta metamodel will be described. We explain how model deltas can
be composed and that, while generic composition algorithms suffice for
the majority of cases, there is a need for domain-specific composition algo-
rithms. These ideas are illustrated with two running examples: the Crime

and Safety Survey SPL and the Game SPL. While the first defines a family
of Questionnaires, the second defines a family of UML Interaction Dia-

grams, as an example of a general purpose language. The chapter ends
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Figure 4.1: Feature Model for the CSSPL

with a brief introduction to incremental consistency management for the
conformance checking of model delta composition.

4.2 The Crime and Safety Survey Questionnaire
SPL

Questionnaires are a common research instrument in Social Sciences, as
the means to gather information. A set of questions is presented to respon-
dents and a research hypothesis is validated against their answers. The web
is becoming an invaluable resource in this area, as online questionnaires
provide access to groups and individuals who would be difficult, if not im-
possible, to reach through other channels. It also permits researchers to
save time by reaching thousands of people with common characteristics in
a short amount of time and helps to reduce costs, when compared to other
questionnaire methodologies [Wri05]. However, social scientists generally
lack the technical knowledge to make their questionnaires accessible on-
line1. To overcome this problem, a domain specific language for question-

1Examples of applications that target this need include LimeService
(http://www.limeservice.org), SurveyMonkey (http://www.surveymonkey.com) and
ESurveyPro (http://www.esurveyspro.com).
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naires was defined that abstracts domain experts from the technicalities of
the Web platform.

Similar questionnaires that are targeted to different population profiles
are needed on a regular basis. A one-size-fits-all questionnaire is inappro-
priate. Our example focusses on Crime and Safety Surveys, a questionnaire
family that assess citizens’ feelings on the safety of their enviroment. Fig-
ure 4.1 shows the feature model for the Crime and Safety Survey Question-

naire SPL (CSSPL)2. Its features define how questionnaires vary in this
domain. Specifically, (i) if the respondent is a female, she is given a
Sexual Victimization Block apart from the Base Questionnaire, (ii) if he
or she belongs to a minority, a Hate Crime Block is added and
(iii) regarding age, adults are given the Consumer Fraud Block while
minors receive the School Violence Block. Now questionnaire creation is
not just a “single shot”. Rather, a questionnaire is characterized in terms
of features that customize it for a target audience.

There are two basic ways to realize an arrow (i.e. a feature) in a model
driven product line. One is to use a general-purpose transformation lan-
guage. Figure 4.2a shows an example, presenting how the Minor feature
is expressed in RubyTL, a model transformation language embedded in
Ruby [CMT06]. That is, it presents the code that implements how the
Department of Youth should be added to the acknowledgments of the
Base Questionnaire, how the estimated completion time is increased in
10 minutes, and the School Violence Block that should be included when
the questionnaire is directed to minors. Another way of realizing arrows is
simply to create a model delta that defines the additions the Minor feature
makes to a model (see Figure 4.2b). Deltas are models that encompass
the additions a feature makes and that, when composed with a base model,
deliver a complete model. The latter brings the following advantages:

• Permits the checking of questionnaire constraints (e.g., option
codes have to follow a certain format).

2This Questionnaire family is inspired in the European Crime and Safety Survey
(http://www.europeansafetyobservatory.eu/euics_fiq.htm).
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Figure 4.2: Feature Implementation Options
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• Makes deltas that represent features easier to understand and analyze
[ZSS+09].

• Separates what the feature adds (i.e., new questions, options, etc.)
from how it is added (i.e., how deltas are composed together).

These advantages are revised in Section 4.7. Note that features are not
allowed to delete previously existing model elements.

Figure 4.2b presents arrows as model deltas and the advantages of such
decision have been enumerated. If we define deltas as models, as opposed
to defining them as transformations, the next natural questions are: (i)

what metamodel do model deltas conform to? and (ii) how is such delta
metamodel related to the domain metamodel (e.g., the questionnaire meta-
model)? The following section delves into these questions.

4.3 Delta Metamodels

Let M and MM be a model and its metamodel, respectively. Further, let
DM and DMM stand for a model delta and its delta metamodel. This
section presents a definition of DMM and its relationship with MM.

Figure 4.3 is a simplified Questionnaire Metamodel MM. Each ques-
tionnaire begins with its title and an introduction explaining its
purpose. It may also contain the logo of the organization doing the re-
search and the estimated time required to complete it. Questionnaires
are structured in blocks. A Scale is a previously validated instru-
ment to measure a variable. A block can be defined using a scale or
it can be specifically created for the questionnaire at hand. Each block
can have subblocks and zero or more questions, where each ques-
tion has a text that formulates it with two or more options as its an-
swers. Each option has a text that gives a possible answer for the ques-
tion and a code that is used to encode the answer. Questionnaires end
with an appreciation_text, thanking respondents and there may be
acknowledgments for the organizations that funded the research.
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Figure 4.3: Questionnaire Metamodel

Deltas do not necessarily satisfy all constraints of MM. In the Question
metaclass, for example, each question must have at least two options (there
would not be a real question otherwise). A model delta can contribute with
just one or no option at all. This is the case for the Minor feature (see
Figure 4.4), where question atq2 has but one option. Once this feature
is composed with the base, the result has four options, which is confor-
mant with the questionnaire metamodel. Hence, a DMM is similar to its
corresponding MM but without some of its constraints.

However, not every constraint in the metamodel should be removed.
Consider the Question metaclass which requires every question to have
at most seven options. If any model delta adds more than seven options,
every questionnaire created using that delta will be non-conformant. Thus,
this upper-bound constraint should be fulfilled by every delta.

Three types of constraints are encountered when defining delta meta-
models:
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Figure 4.4: Constraint Violation by the Minor Feature

• Delta Constraints. Constraints that can be validated for every delta
(e.g., upper-bounds, option codes have to follow a certain for-
mat, etc.). These constraints are kept in the DMM.

• Composition Constraints. Constraints that can be evaluated when
two deltas are composed (e.g., upper-bounds, two deltas with four
questions each would fullfil the constraint separately but their com-
position would be non-conformant).

• Deferred Constraints: Constraints that can only be evaluated after
all deltas are composed, i.e., when the entire product model has been
assembled (e.g., lower-bounds)3.

3This has a database counterpart. The database administrator defines a database
schema with constraints. Additionally, the administrator can declare a constraint to be
validated as soon as a database update happens (immediate mode) or wait till the end of
the transaction, once all updates were conducted (deferred mode). The deferred mode
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Figure 4.5: Delta Questionnaire Metamodel

Domain engineers should decide which group each constraint belongs to.
A DMM can also be automatically generated from the product metamodel
simply by removing all the constraints ot the metamodel except upper-
bounds, leaving all constraints to be evaluated at the end. However, the
first option is preferrable as it detects more inconsistencies earlier in the
process (i.e., at delta creation time or at delta composition time). We de-
rived the DMM for the Questionnaire MM by removing eight constraints
(see Figure 4.5). An example of such deleted constraints can be found in
the title attribute of the Questionnaire metaclass, which was pre-
viously required. Although once all deltas have been composed the result
should have title, this constraint was removed because it suffices if just one
of the deltas contributes with it, not all of them need to provide it. The
same holds for the rest of attributes that are marked in Figure 4.5, they are

allows for some constraints to be violated during a transaction execution, as long as the
constraints hold at the end of the transaction.

60



Chapter 4. Domain Specific Composition of Model Deltas

Figure 4.6: Delta Metamodel Cone

no longer required. Regarding references, the reason why lower-bounds
are deleted is described above.

Figure 4.6 shows the relationship between the cones of MM and DMM.
Each model mi in MM is equivalent to an arrow ∅ → mi (i.e., a model delta
that gathers the changes from the empty model to mi and that conforms to
DMM). This means that the cone of DMM not only includes every model
in the cone of MM, but other models and deltas as well (e.g., models ∅ and
mA, and deltas that realize mA → m4 and composite ∅ → mA). The close
relationship between DMM and MM means that arrows are defined using
the same constructs as models. However, to define arrows as model deltas
entails that an algorithm that composes them together to yield a product is
required. This is the topic of the next section.

4.4 Delta Composition

Model composition has been defined as the operation MAB = Compose
(MA, MB, CAB) that takes two models MA, MB and a correspondence
model CAB between them as input, and combines their elements into a
new output model MAB [BBF+06]. Delta composition is a special case,
where both MA and MB conform to the same metamodel (i.e., the delta
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Figure 4.7: Composition of Minor and Base Features

metamodel). Further, the correspondence model CAB is implicit as objects
with the same name (or rather, identifier) in models MA and MB are, in
fact, the same object (note that deltas belong to a product line and thus,
have been designed with composition in mind). Delta composition is per-
formed by pairing objects of different fragments with the same name and
composing them.

There are two distinct cases in object composition:

• Generic: This is the default composition [AKL09, BSR04]. The
composition of a pair of objects equals the composition of their cor-
responding contents. The composition of a pair of attributes is as
follows: if both have different non-null values, composition fails and
an error is raised. Otherwise, the non-null value is the result. In the
case of references, their union is the result. Note that this compo-
sition is performed in the same way independent of the domain at
hand; it is metamodel agnostic. Figure 4.7 presents different ex-
amples of this composition: title, introduction, logo and
appreciation_text attributes, where the base gathers the con-
tent for all of them which is passed to the result, as the minor feature
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has null values for those attributes.

• Domain-Specific: While in a majority of cases, generic composition
is sufficient, the remaining cases require a domain-specific compo-
sition method. Consider the acknowledgments and time at-
tributes in the Questionnaire metaclass. An organization can
fund all the study or only part of it. Figure 4.7 shows how the base

study is funded by Organization A and the part regarding minors is
funded by the Department of Youth. If objects were composed gener-
ically, an error would be raised as both objects have a different value
in the acknowledgments attribute. However, the convention for
questionnaires is to concatenate both acknowledgments as the result.

The time attribute is another example. It indicates the estimated
time needed to complete the questionnaire. The base feature takes
20 minutes and the minor feature needs 10 more. The expected be-
havior would be to add both values to the result, not to raise an error.
Therefore, the domain expert must customize the generic composi-
tion algorithm to account for domain-specific composition seman-
tics.

Domain-specific composition algorithms need not be limited to in-
dividual attributes as in the above examples; they apply to objects
as well. A revealing example on object composition comes from the
domain of software components. A software component imple-
ments or provides a set of methods, and references or requires
another set of methods. Figure 4.8a shows a simplified meta-
model. When two components are composed, the composite compo-
nent provides the union of the methods of its constituent compo-
nents, and requires the union of the references minus the refer-
ences provided by the merged components (see Figure 4.8b). A spe-
cial (i.e., non-generic) composition algorithm for Component ob-
jects is required: composed requires values are computed know-
ing provides values. There is another example, albeit less intu-
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Figure 4.8: Component Metamodel and Component Composition Example

itive, in the Questionnaire domain. Blocks can be defined using
a scale. When composing blocks with different scales, as results or
each scale are measured separately, Questionnaire semantics dictate
not to merge blocks but to keep them as separate sub-blocks.

We have described how arrows are defined and composed as model deltas
using the Crime and Safety Survey SPL and Questionnaires as the running
example. The next section describes how model deltas are defined in a
general purpose modeling language.

4.5 Defining Deltas for UML Interaction Dia-
grams

Chapter 2 described that there are two main trends when choosing a meta-
model to model a system, namely general purpose modeling languages and
domain specific languages. So far, the ideas presented in this chapter have
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Figure 4.9: UML Interactions as Sequence Diagrams

been illustrated with an example of the latter. This section presents how
the same ideas can also be applied to general purpose modeling languages.
UML Interactions are used as the running example.

Interactions are a common mechanism for describing systems that can
be understood and produced, at varying levels of detail, by both profes-
sionals of computer systems design, as well as potential end users and
stakeholders [OMG09].

Along the OMG’s metamodel for UML Interactions [OMG09], an in-
teraction is a composition of messages. A message defines a particular
communication between lifelines. A lifeline represents an individual par-
ticipant in the interaction. A message then relates two happenings in, nor-
mally distinct, lifelines. These happenings are known as OccurrenceSpec-

ifications. Note that OccurrenceSpecifications are ordered along a life-

line. A common graphical notation to depict models of this metamodel
are Sequence Diagrams. Figure 4.9 shows a UML sequence diagram with
its main constructs: a message, two OccurrenceSpecifications
and a lifeline.

A main requirement when defining a product line of interaction dia-
grams is that current UML 2.0 compliant tools should be able to support
our definition of interaction deltas. This also entails that MM (i.e., the
UML Metamodel) and DMM (i.e., the UML Delta Metamodel) need to be
the same, no constraints can be removed. The ability to use existing tools
is a main issue to ensure practitioners will embrace the approach. The
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question is twofold: (i) how interaction deltas differ from interactions and
(ii) how they are composed together.

To illustrate these issues, we will consider a playing-board game prod-
uct line, named the Game Product Line (GamePL). These kind of games
share a broad set of characteristics, such as the existence of a board, one
or more players, the possible use of dice, the presence or absence of cards,
policies related to the assignment of turns to the next player, etc.

Note that, similar to the Questionnaire example, interaction deltas use
the same constructs as full interactions. Model deltas realize arrows that
represent the features of an SPL. Hence, delta interactions are designed to
be composed together and do not exist in isolation. Delta interactions de-
fine increments to base interactions and will lead to the complete product
once they have been composed together. Message order needs to be man-
tained in interactions. Consequently, interaction deltas refer to an point on
the base interaction that indicates the place in which the feature function-
ality is added. The point is indicated with a message, a construct present
in the UML metamodel. In this way, the requirement of not changing the
UML metamodel is fulfilled.

Figure 4.10 shows two UML interactions: Move, and ThrowDice which
partially realizes the Dice optional feature, that gathers the necessary func-
tionality for games that require dice (e.g., ludo or trivial). ThrowDice

leverages Move with the ability of throwing dices. This enhancement is
constrained to occur (i) after the player consults his turn and (ii) before
moving. To denote which specific message is to be used as the extension
point, we resort to the notion of gate. It is a representative of an Occur-

renceSpecification that is not in the same scope as the gate [OMG09]. A
gate is a connection point for locating a message outside an interaction
with respect to a message inside the interaction. Figure 4.10 shows such a
gate for the ThrowDice delta. The gate indicates that the delta is to occur
just above the namesake message in the Move interaction.

The current UML 2.0 compliant tools support the use of gates. Specif-
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Figure 4.10: ThrowDice • Move Interaction Composition
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ically, IBM Rational Software Modeler4 was used to obtain the diagrams
in Figure 4.10. As a consequence of using gates, model deltas can be
realized using the same tools as complete interactions, thus meeting our
requirement.

Regarding how interaction deltas are composed, generic composition
is sufficient for most objects of interaction deltas. Deltas are composed
together by identifying the message that is linked to a gate as the extension
point, finding the message with the same name, and appending the feature
just above the namesake message.

However, a domain-specific composition is necessary in some cases.
Gates are a case in point. The generic behavior states that every object
should be copied to the result. Message occurrence specifications linked to
gates, however, should not be passed to the result (as gates are only used
as the means to indicate where should the feature functionality be added).
Hence, a domain specific behavior for gates has to be defined (more details
of the exact composition semantics can be found in Chapter 5).

Previous sections showed how arrows can be realized as model deltas,
the metamodel these deltas conform to, and how they are composed to
yield a product of the SPL. An important aspect that was already mentioned
in Chapter 3 is that one of our goals is to guarantee safe composition of
model deltas (i.e., that the resulting product of composing deltas conforms
to MM). Up to now, we only considered the constraints that are kept in the
delta metamodel. How incremental consistency management can be used
to check composition constraints (see Section 4.3) is described next.

4.6 Incremental Consistency Management
in Delta Composition

This section details how incremental consistency management can be used
for checking composition constraints in delta composition. We begin with

4http://www-01.ibm.com/software/awdtools/modeler/swmodeler/
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a brief description of incremental consistency management.

Consistency checking is based on the work on Multi-View Modeling

(MVM) [FKN+92]. An extensive body of research in consistency checking
exists [LMÁ09, UNKC08]. Different works typically have in common that
consistency is expressed via rules. A recent trend in consistency checking
is the work on incremental approaches which react to changes and evaluate
only those rules on those model elements that are affected and can poten-
tially cause an inconsistency. An advantage of these approaches is a re-
duced verification time over systems that follow a batch strategy. A leading
tool among the incremental approaches is UML/Analyzer [Egy06, Egy07].
In this tool, when a model change occurs, it automatically, correctly and
efficiently identifies what consistency rules to evaluate and on what model
elements. If inconsistencies are detected, they are highlighted for the user
to take an appropriate corrective action.

Incremental consistency in UML/Analyzer works as follows. First the
tool loads the model to analyze. Then it identifies the places where each
consistency rule can be applied. A consistency rule instance is an appli-
cation of a consistency rule, and its scope is the set of model elements
that are part of the instance. The work of UML/Analyzer has been mostly
used in the context of UML models; however, its underlying principles are
applicable to any types of models and constraints,

As an example of how incremental consistency checking with UML/An-

alyzer can be used to check the composition constraints defined in Section
4.3, recall the example we used when describing such constraints. In the
Questionnaire domain, two deltas with four questions each would conform
to the delta metamodel, as each contains less than seven options. However,
their composition would be non-conformant.

In this setting, a consistency rule instance checks if a question contains
more than seven options and returns a boolean result, true if the rule holds
or false otherwise. It evaluates to true before composition, as both deltas
fulfill the constraint. We have already mentioned that a delta can be seen
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as a model that gathers all the changes a feature makes. As composition
is performed, a rule is re-evaluated if a change in its scope elements is
detected. In this case, the second delta adding four new options causes a
re-evaluation of the rule, which detects a violation because the question
now has eight available options. It is important to notice that this viola-
tion is signaled as soon as the eighth option is added and the place where
the violation occurred is marked. This immediate notification allows the
developer to take any corrective actions deemed necessary.

4.7 Discussion

We conceive model construction as a gradual composition of model deltas
that are expressed in the same language as the final model. Each delta
realizes an increment in application functionality (i.e., a feature), and the
functionality of the final application is the added functionality of its set of
deltas. The benefits include:

• Certain domain constraints can be checked at delta building time (see
Section 4.3), allowing earlier error detection. It paves the way to safe
composition, the assurance that all products of the SPL conform to
the domain metamodel.

• It separates what a feature adds from how it is added, thus making
the composition algorithms reusable for all features that conform to
the same metamodel.

• Declarativeness. Model deltas are easier to read and write than their
transformation counterpart. Figure 4.2a shows the same Minor fea-
ture but now realized using a general-purpose transformation lan-
guage, RubyTL [CMT06]. Even to someone accustomed to reading
transformation rules, it takes some time to grasp information that the
transformation adds to the base model.
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• The Delta Metamodel (DMM) can be derived from the domain meta-
model (e.g., Questionnaire) by removing constraints.

• Existing work in incremental consistency management can be used
to check constraints at composition time.

4.8 Related Work

Arrow Realization. Two main trends to realize arrows can be identified in
MDE: transformation languages vs. model deltas. Examples of the former
include C-SAW [BGL+06], MATA [WJE+09] and VML* [ZSS+09]. A
transformation language is more versatile and it performs analysis that are
presently outside this work. For example, MATA comes with support to
automatically detect interactions between arrows. Since arrows in MATA
are graph rules, the technique of critical pair analysis can be used to de-
tect dependencies and conflicts between rules5. This versatility, however,
comes at a cost: (i) it requires developers to be familiar with a graph trans-
formation language and (ii) being arrows defined in a different language to
the one that defines models, it reduces the amount of checking with respect
to the domain metamodel (i.e., transformations conform to the transforma-
tion language metamodel, which in principle has no link with the domain
metamodel). To ease the developers burden, MATA defines transforma-
tions between UML and the underlying graph rules. Nevertheless, these
transformations must be defined for every metamodel at hand.

Traditionally SPL arrows are defined as model deltas — a set of changes
— that are superimposed on existing models. Recently, several researchers
have followed this trend, particularly using aspects as the implementation
technique [AJTK09, MKBJ08, MBJ08, VG07]. To the best of our knowl-
edge, none of these approaches defines a mechanism to check the confor-
mance of deltas to their corresponding delta metamodels. Interestingly,
SmartAdapters [MBJ08] defines pointcuts as model snippets that conform

5It may be possible to define a corresponding analysis on deltas.
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to a metamodel that is obtained by eliminating all constraints from the do-
main metamodel, in a similar fashion to the way we define arrow metamod-
els [RBJ07]. However, no mention is made about an advice metamodel.

Along with aspects, collaborations are another candidate paradigm for
realizing model deltas. Collaborations are monotonic extensions of mod-
els that encode role-based designs and are composed by superimposition
[VN96]; collaborations are a centerpiece in recent programming languages
(e.g., Scala [OAC+06]) and prior work on feature-based program develop-
ment [BSR04]. In contrast, aspects may offer a more general approach
to express model deltas, where pointcuts identify one or more targets for
rewriting (a.k.a. advising). However, the generality of aspects is by no
means free: it comes at a cost of increased complexity in specifying, main-
taining, and understanding concerns [ALS08].

Model Differences. Model deltas are closely related to the idea of mo-
del differences [CRP07, RV08]. The main difference stems from their pur-
pose, the former implement a feature in an SPL and are normally built
separately while the latter are calculated as the difference between two
models.

Model Composition. Model composition in general has been subject of
extensive research [Ber03, BK06, BCRL07, PB03] and there are numerous
tools that support this operation [AMW, Eps, Ker]. This work explores the
specificities of this operation in an SPL setting.

Incremental Consistency Checking. There is a considerable amount
of research in consistency checking. Recent literature surveys identified
over 30 approaches which rely on different formalisms to represent and
validate consistency [LMÁ09, UNKC08]. We leveraged on this work to
check consistency during model delta composition.

4.9 Conclusions

MDE conceives software development as transformation chains where mod-
els are the artifacts to be transformed. We presented an approach to the
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feature oriented development of models in an SPL setting. Models are cre-
ated incrementally by progressively applying arrows that add increments in
functionality. We implemented the arrows as model deltas. We explained
how model deltas conform to delta metamodels, and how delta metamodels
are derivable from domain metamodels. The focus of our work stressed the
need for domain-specific composition algorithms. Implementing arrows as
model deltas permitted us to use incremental consistency management to
check constraints at delta composition time, thus paving the way to safe
composition in model driven product lines.

Parts of the work described in this chapter have been previously pre-
sented:

• Maider Azanza, Don Batory, Oscar Díaz, and Salvador Trujillo. Do-
main-Specific Composition of Model Deltas. In 3rd International

Conference on Model Transformations (ICMT 2010), Malaga, Spain,
2010.

• Roberto Lopez-Herrejon, Alexander Egyed, Salvador Trujillo, Jo-
sune de Sosa, and Maider Azanza. Using Incremental Consistency
Management for Conformance Checking in Feature-Oriented Model-
Driven Engineering. In 4th International Workshop on Variability

Modelling of Software-intensive Systems (VAMOS 2010), Linz, Aus-
tria, 2010.
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Chapter 5

Increasing Reuse in Model Delta
Composition

“By endurance, we overcome.”

– Ernest Shackleton

5.1 Overview

Reuse is the main driving force behind MDE and SPLE. The previous chap-
ter described how their combination can be achieved following a feature
oriented approach. Arrows were realized using model deltas that encom-
pass the additions a features makes to a model. This chapter addresses how
model delta composition is realized. Metamodel annotations are presented
as the means to specify domain-specific composition. In this way, the com-
position implementation is automatically generated from the metamodel.
Annotations not only permit the composition implementation to be reused
in different domains (i.e., the same annotation can be reused in different
metamodels), but also shield the implementation details from developers,
thus lowering the entry barrier for domain experts. Previous test cases (i.e.,
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Figure 5.1: Example of Match Rule in ECL

Questionnaire and UML Interaction Diagram domains) are used as running
examples.

5.2 Realizing Model Composition

We begin by providing some context on general model composition. Mo-
del composition can be decomposed into four phases: matching, confor-
mance checking, merging, and reconciliation [KPP06a, PB03]. We use
Epsilon, a family of consistent and interoperable task-specific program-
ming languages that can be used to perform common MDE tasks [Eps], to
realize this operation.

• Matching. Match is an operation C = Match(M1..Mn) that takes
a set of models M1..Mn as input, searches for equivalences between
their elements and produces a correspondence model C as output
[Ber03, BBF+06]. In Epsilon, matching is performed via match-

rules. Each match-rule compares pairs of instances of two specific
metaclasses and decides if they match. Match rules are implemen-
ted using the Epsilon Comparison Language (ECL), a language that
enables users to specify comparison algorithms in a rule-based man-
ner. These rules identify pairs of matching elements between two
models of potentially different metamodels and modeling technolo-
gies [KPP06b]. Figure 5.1 presents an example. The MatchQues-

tionnaire rule takes elements l and r as input, taken from input
models Left and Right respectively, being both instances of the
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Figure 5.2: Example of Merge Rule in EML

Questionnaire metaclass. It compares the titles of both question-
naires, returning true if they are the same and false otherwise.

• Conformance Checking. In this phase, elements that have been iden-
tified as matching in the previous phase are examined for confor-
mance with each other. The purpose of this phase is to identify po-
tential conflicts that would render merging infeasible [KPP06a].

• Merging. The goal of this phase is to merge to models based on
the correspondance model [PB03]. It performs the actual composi-
tion using Epsilon Merging Language (EML), a rule-based language
with tool support for merging models of diverse metamodels and
technologies [KPP06a]. In Epsilon this phase takes two models and
the correspondence model created in the match phase as input, and
combines their elements into a new output model.

There are two activities that produce elements in the target model:
the model elements that have been identified as matching in the pre-
vious phase are merged into objects in the target model and the re-
maining model elements, for which no match has been found, are
simply copied to the target model. This merging and copying are im-
plemented using EML rules [KPP06a] and Epsilon Transformation

Language (ETL) rules [KPP08] respectively. Figure 5.2 presents an
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example of an EML rule. The MergeQuestionnaire rule takes ques-
tionnaires l and r as input and creates questionnaire t as output.
The attributes of t are created from the corresponding ones in l and
r alternatively.

• Reconciliation. After the merging phase, the target model may contain
inconsistencies that need fixing. In the final step of the process, such
inconsistencies are removed and the model is polished to acquire its
final form.

However, EML, ECL and ETL are general purpose model management
languages. As stated in Chapter 4, model delta composition is a special
case of model composition, where both MA and MB conform to the same

metamodel. Further, the correspondence model CAB is implicit as objects
with the same name (or rather, identifier) in models MA and MB are, in fact,
the same object. The following section describes how delta composition is
realized.

5.3 Realizing Generic Delta Composition

We can leverage on the particularities of delta composition to ease its
implementation. We have already established that in most cases deltas
are composed using generic composition, which is metamodel agnostic.
Hence, instead of manually implementing such composition for every do-
main at hand, its implementation can be automatically generated from the
domain metamodel, thus increasing reuse.

The Object metaclass defines the core metamodel of our implemen-
taion of ANDROMEDA (ANnotation-DRiven Oid-based coMposEr for mo-

Del deltAs) (see Figure 5.3a). It encompasses the generic behavior that
is metamodel agnostic. Object instances are singled out by an explicit
identifier that is used for object matching. Object holds the generic
methods for match, merge, and copy.

The implementation of these generic methods is provided by AN-
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Figure 5.3: Extended Questionnaire Metamodel
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Figure 5.4: Generic Composition Implementation

DROMEDA. The match method is realized through an ECL rule (see
Figure 5.4a). This rule indicates that two Objects match if they are in-
stances of the same class and have the same identifier. The merge method
is supported through an EML rule (see Figure 5.4b). The rules apply to all
Object instances. Methods that define default merge behavior for attributes
and references are also provided.

When implementing composition for model deltas of a given domain
(e.g., questionnaires), the above rules and methods can be called, thus
making it reusable. This holds whenever a metaclass can be composed
using generic composition. Figure 5.4c provides an example, where the
MergeQuestion rule extends the generic MergeObject rule for the
Question metaclass. Note that the rule simply calls defaultAttribute
Merge when composing the text attribute. The same would occur for
any other attribute or reference, if there were any. In this way, generic
rules can be automatically generated from the domain metamodel using a
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transformation that outputs the composition implementation1. This imple-
mentation only needs to call the corresponding methods for attributes and
references.

We described how generic composition can be automatically gener-
ated from the domain metamodel. However, generic composition is not
sufficient in certain cases and a domain-specific composition needs to be
defined. Next section delves into the details of how it is realized.

5.4 Realizing Domain-Specific Delta Composi-
tion

The previous chapter defined delta composition and motivated the need for
domain-specific composition in certain cases. The time attribute is a case
in point. This attribute indicates the estimated time needed to complete
the questionnaire. As example, the base feature takes 20 minutes and the
minor feature needs 10 more. The expected behavior would be to add both
values to the result, not to raise an error as the generic composition would.
Therefore, the domain expert must customize the generic composition al-
gorithm to account for this domain-specific composition semantics.

To realize such domain-specific composition semantics, the generic be-
havior can be specialized to cater for the composition peculiarities of the
domain at hand. To this end, Object specializations are created for each
domain metaclass (see Figure 5.3). Note how Questionnaire and
Block override the generic merge method to address their own specific
composition semantics.

Figure 5.5 presents the domain-specific EML rules that extend the generic
EML rules (rule extension is the counterpart of method inheritance). Fig-
ure 5.5a shows the rule that merges Questionnaires. Here, the generic
merge of acknowledgments and time attributes is overridden by string

1Actually, rules for copy and compose are generated in separate files, e.g., Do-
mainMerge.eml (which contains all the merge rules) and DomainCopy.etl (with all the
copy rules).
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Figure 5.5: Domain-Specific Composition Implementation

concatenation and integer addition respectively. Regarding Blocks, they
can be defined using a scale. As results from a each scale are measured sep-
arately, when composing blocks with different scales, they are not merged
but are kept as separate sub-blocks instead2 (see Figure 5.5b).

A first approximation would be to write this domain-specific rules man-
ually. Nevertheless, it requires domain experts to be knowledgeable with
EML. A more practical approach is to allow domain engineers to annotate
any class or attribute to indicate that a domain-specific composition algo-
rithm, rather than the generic algorithm, is to be used. Additionally, since
some algorithms are likely to be used in different domains (e.g., string
concatenation), we provide a set of keywords to denote those recurrent
algorithms as annotations on the metamodel. These annotations include:
@concat (i.e., given two values V1 and V2, the composition delivers
V1V2), @slash_concat (i.e., the composition delivers V1/V2), @sum
(i.e., the composition delivers the addition of V1 and V2), @min (mini-
mum value), and @max (maximum).

Figure 5.6 depicts the annotated Questionnaire metamodel. Note that
the acknowledgments attribute in Questionnaire and the introduc-
tion attribute in Block are annotated with @concat. This indicates that

2Note that this domain specific composition is not limited to individual attributes as in
the above examples; it applies to complete Block objects.

82



Chapter 5. Increasing Reuse in Model Delta Composition

Figure 5.6: Annotated Questionnaire Metamodel

their values are to be composed by concatenation. Moreover, the time
attribute in Questionnaire is annotated with @sum, meaning that com-
posed contents should be added. In this case, domain-specific EML rules
that override realize these semantics are automatically generated using the
same transformation that also generates the generic rules (recall Figure
5.5a).

When these built-in annotations are not sufficient, engineers must re-
sort to describing domain-specific composition algorithms procedurally
using EML. Blocks are a case in point. We specify these algorithms as
a piece of EML code inserted inside an annotation that is attached to the
block class3 (see Figure 5.6). In this case, when generating the rule, the
code embedded in the annotation is directly copied into the EML rule (see
Figure 5.5b).

3This option is debatable. Another possibility is to embed the ad-hoc algorithm di-
rectly into the generated code. We prefer to have all composition algorithms specified
in a single place: the metamodel. In our opinion, this facilitates understandability and
maintainability.
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We have described how annotations can be used in a metamodel to in-
dicate that a domain-specific composition algorithm is needed. This meta-
model is the input for a model-to-text transformation, named t_AMM2Comp,

and implemented using the Epsilon Generation Language (EGL) [RPKP08].
When this transformation is enacted, the composition implementation is
generated.

Initially, the implementation that corresponds to each annotation was
hard-coded in the transformation. The approach works but requires domain
experts to be knowledgeable with EML when the annotations above are
not sufficient. Moreover, it prevents new annotations from being created,
thus limiting reuse. Next section addresses a model for annotations that
improves the declarativeness (and reuse) of the solution and in so doing,
facilitates domain experts themselves to define the composition semantics.

5.5 A Model for Composition Annotations

A domain-specific composition algorithm can be particular to a domain
(e.g., block composition in Questionnaires) but it can also be reused in
several domains (e.g., string concatenation). Our aim is to allow devel-
opers to define their own annotations and make them reusable in differ-
ent domains. A first solution would be to hard-code the annotations in
t_AMM2Comp. However, this implies that the set of annotations is either
fixed, or the transformation implementation needs to be manually changed
every time an annotation is added.

Hence, we opted for a different path. We defined an annotation model
that contains the specification of each annotation (e.g., @concat, @sum)
and its corresponding implementation. This model is the input of another
transformation, named t_an2t. This transformation will then output the
actual t_AMM2Comp that will generate the composition implementation
from the annotated metamodel (see Figure 5.7).

Figure 5.8 presents the annotation metamodel. Each annotation model
gathers a set of Annotations, where each one has a name, a specifi-

84



Chapter 5. Increasing Reuse in Model Delta Composition

Figure 5.7: Obtaining Composition Implementation from the Annotation
Model

Figure 5.8: Annotation Metamodel
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Figure 5.9: Annotation Model Example

cation, a type and an operation. The specification gives the name
of the annotation itself (e.g., @concat, @sum...) and the type indicates
whether the annotation is for an attribute, a reference, or a complete ob-
ject (e.g., @concat is for attributes while the block composition in Ques-

tionnaires is domain-specific for the complete object). The operation
details which method (i.e., match, merge or copy) is customized by the
annotation.

Each annotation can have one or more AnnotationImplementa-
tions. They contain the implementation and the language such
implementation is written in. Although ANDROMEDA currently only
supports EML, this allows to generate distinct t_AMM2Comp transfor-
mations that output composition implementations written in different lan-
guages.

Figure 5.9 depicts an example of an annotation model. The integer
sum annotation is an instance of the annotation metaclass that is applied to
attributes and that overrides the generic merging behavior. It is specified
using @sum and the corresponding code that will lead to an implementa-
tion in EML is indicated.

As in the above @sum example, all annotations in the Questionnaire
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Figure 5.10: Match Customization Example

domain customize merge rules. We will now present examples of domain-
specific match and copy in the context of the UML Interaction example.
This example supports the need to have annotations that also those oper-
ations. As stated in Chapter 4, a main premise when composing UML
Interaction deltas is to leave the UML metamodel untouched.

• Match. Not every object in UML is required to have a unique name.
The previously mentioned MessageOcurrenceSpecifications are a case
in point. We have defined their customized matching as follows:
two message occurrence specifications are the same, if they both be-
long to the same message and are linked to the same lifeline (this
permits to distinguish between the two occurrence specifications a
message can have). Figure 5.10a presents a fragment of the UML
metamodel with the corresponding annotation attached to the Mes-
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Figure 5.11: Copy Customization Example

sageOcurrenceSpecification metaclass. Figure 5.10b, in turn, shows
the generated ECL rule. Note the new annotation (i.e., @match) that
permits customization of the match method.

• Copy. As described in Chapter 4, the generic behavior dictates that
every object for which no match is found should be copied to the re-
sult. Gates are case in point where this behavior should be overriden.
MessageOccurrenceSpecifications that are linked to gates should not
be passed to the result (as gates are only used as the means to indi-
cate where the feature functionality should be added). Figure 5.11a
pictures an excerpt of the UML metamodel, where MessageOcur-

renceSpecification is annotated with a guard that indicates when ins-
tances of the metaclass should be passed to the result. Figure 5.11b
presents the resulting ETL rule.

So far, we have been working in the MDE Technical Space. The following
section describes how this work relates to SPLs defined in other technical
spaces.
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MM DATA Jak Qst
Classes 12 5
Attributes 18 15
References 25 7
Removed Constraints 0 8
Generic Comp. 37 23
D.S. Comp. 18 4

Table 5.1: Jak and Questionnaire Metamodels

5.6 Relating to Other Technical Spaces: Jak

Among the motivations for connecting arrows and product lines in Chapter
3, one was to underscore the generality the underlying ideas. This section
describes how the FOSD paradigm is applied equally in different technical
spaces.

We believe our previous case studies, namely the Crime and Safety

Survey Questionnaire SPL (CSSPL) and the Game Product Line (GPL)

are typical examples of basic MDE product lines, and we have explained
how we handle them. But there are examples from other technical spaces
[BK06] for which these same relationships can be demonstrated to hold.

The largest examples of feature-based compositions are written in Jak,
a superset of Java that supports feature declarations, state machines, and
metaprogramming [BSR04]. Hence, they come from the EBNF technical
space [BK06]. With the aim of testing ANDROMEDA and comparing the
results obtained in both technical spaces we defined a metamodel of the
Jak language which exposes its main language constructs (e.g., feature,
package, class, field, and method).

As Jak was specifically designed to implement product lines, no constraint
had to be removed from the product metamodel to produce the delta meta-
model: all constraints defined in the product metamodel were applicable to
model deltas. Next, a composition strategy was chosen for each element in
the Jak metamodel. The annotated Jak delta metamodel is shown in Figure
5.12 (the @code annotations are omitted to improve readibility).

Table 5.1 lists statistics about the Jak Metamodel, with statistics from
the Questionnaire metamodel (Qst) for comparison purposes. The number
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Figure 5.12: Annotated Jak Delta Metamodel
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of classes, attributes and references of each metamodel and the distribution
of their composition types are listed. Note that Jak uses a large number of
domain-specific composition algorithms. It was interesting to note that
several of these algorithms worked on objects and not attributes.

The Graph Product Line (GPL) and the ATS Product Line (APL), which
are two product lines written in Jak, were used as case studies. GPL
is a family of classical graph applications [LHB01]. A graph is either
Directed or Undirected. Edges can be Weightedwith non-negative
numbers or Unweighted. Every graph application requires at most one
search algorithm (BreadthFirst or DepthFirst) and one or more
graph algorithms (e.g., VertexNumbering, CycleChecking, Mini-
mumSpanningTree).

A much larger example is the AHEAD Tool Suite (ATS), a set of tools
to support FOP [BSR04]. ATS was refactored into the ATS Product Line

(APL). That is, ATS bootstraps itself by composing features of APL [TBD06].
Over time, ATS has grown to 24 different tools comprising over 200K LOC
Java. In addition to code, there are makefiles, regression tests, documenta-
tion, and program specifications, all of which are fragmented into features.
In our case study, we focused only on the model representations of the code
that realizes the features.

We created a tool that translates the APL or GPL features written in
Jak (i.e., the EBNF technical space) into model deltas that conform to the
Jak delta metamodel (i.e., to the Ecore technical space). Finally, we wrote
a model-to-text transformation from Jak models back to code to verify the
result after a composition was performed.

For illustrative purposes, Table 5.2 lists the features of GPL, their size
in objects (a.k.a Objs), their references (a.k.a Refs), and these statistics for
particular GPL programs that we composed.

In the same way, Table 5.3 compares the average size of CSSPL and
APL features with their size in objects and references. The reason to
present average values is that APL contains 96 features. It also presents the
average size for particular products we composed. Note that APL model
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GPL Objs Refs GPL Objs Refs
base 25 53 MSTPrimPrepGR 31 88
Benchmark 24 60 Number 18 42
BFS 31 83 Prog 9 18
Connected 22 54 StronglyConnected 31 88
Cycle 34 90 Transpose 9 21
DFS 28 72 UndirectedGENR 78 221
DirectedGenR 70 197 UndirectedGNR 70 196
DirectedGnR 64 179 UndirectedGR 64 178
DirectedGR 59 164 WeightedGENR 20 47
MSTKruskal 16 43 WeightedGNR 35 91
MSTKruskalPrepGnR 27 70 WeightedGR 29 75
MSTKruskalPrepGR 37 100 Product 1 135 382
MSTPrim 21 55 Product 2 147 418
MSTPrimPrepGnR 32 88 AVG 43,2 117,5

Table 5.2: GPL Statistics

Objs Refs
CSSPL Features 22 21
APL Features 109 332
CSSPL Products 63 62
APL Products 3035 9394

Table 5.3: CSSPL and APL Statistics

deltas are on average four times larger than the arrows of CSSPL, and APL
products are over fifty times larger than CSSPL products.

Again, one of the advantages of the Jak case studies was to demonstrate
our composition principles hold across different technical spaces. Another
advantage was that we could verify the correctness of our compositions.
Model deltas were composed to yield a certain product and then trans-
formed into code. The same product was obtained by directly composing
its code features and both results were compared using source equivalence
to test for equality4.

5.7 Discussion

This chapter describes how the generic composition that was defined in
Chapter 4 is realized. Additionally, domain-specific composition seman-

4Source equivalence is syntactic equivalence with two relaxations: it allows permuta-
tions of members when member ordering is not significant and it allows white space to
differ when white space is unimportant.
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tics are captured through annotations in the domain metamodel. This im-
proves declaractiveness. The benefits include:

• Automatization. The composition algorithm can be automatically
generated. As a proof of concept, we showed the implementation
that generates EML rules.

• Understandability: Anchoring composition annotations on the meta-
model, permits designers to focus on the what rather than on how the
composition is achieved.

• Maintenance: Additional composition algorithms can be added or
removed with minimal effort. This could be of interest in the con-
text of metamodel evolution where new metaclasses/attributes can
be added that require customized composition algorithms [Wac07].

5.8 Related Work

There are a number of model delta composition tools, some using As-

pect Oriented Modeling (AOM), that are now available. Examples of such
are XWeave [VG07] and Kompose [FBFG07]. However, they support
only generic composition, although the latter has some limited support
for domain specificities in the form of pre-merge and post-merge direc-
tives. Other approaches, e.g., SmartAdapters [MBJ08], VML* [ZSS+09]
and FeatureHouse [AJTK09], provide support for domain-specific com-
position. The first two require engineers to explicitly indicate how deltas
are to be composed, while we strive to promote reuse by automatically
generating as much as possible from the metamodel using metamodel an-
notations. FeatureHouse also accounts for domain specificities. However,
it is restricted to tree composition, and domain-specific composition is lim-
ited to tree leaves. By contrast, our approach considers graphs rather than
trees and composition can be simultaneously specified at different points
within models.

93



MDPLE: Core Asset and Process Implications

5.9 Conclusions

Realizing arrows (i.e., features) as model deltas entails that a composi-
tion algorithm for model deltas needs to be specified. In this chapter, we
explained how the composition implementation can be automatically gen-
erated from the domain metamodel. Additionally, we described how the
domain metamodel can be annotated to indicate composition semantics.
Moreover, we presented a generalization of the annotation mechanism that
permits developers to write their own annotations that can be reused in
other domains. In this way, composition implementation details are almost
shielded from developers, thus increasing reuse and lowering the entry bar-
rier for domain experts.

Parts of this chapter have been previously presented:

• Maider Azanza, Don Batory, Oscar Díaz, and Salvador Trujillo. Do-
main-Specific Composition of Model Deltas. In 3rd International

Conference on Model Transformations (ICMT 2010), Malaga, Spain,
2010.
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Chapter 6

The Assembly Process in MDPLE

“You do not really understand something unless you can explain it to your

grandmother.”

– Albert Einstein

6.1 Overview

As presented in previous chapters, Model Driven Product Line Enginee-

ring promises to decrease the cost of software development through sys-
tematic reuse. MDPLE, nevertheless, reduces the cost of coding software
at the expense of increasing assembling complexity, i.e., the process of
coming up with the final end product. To alleviate this problem, this chap-
ter advocates for a new discipline inside the general software development
process, i.e., Assembly Plan Management, that permits to face complexity
in assembly processes. A non-trivial case study is used for illustrative pur-
poses.
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6.2 Assembly Plan Management Overview

A main premise of SPLE is that the expense required to develop reusable
artifacts during domain engineering is outweighted by the benefits ob-
tained when deriving the individual products during application engineer-
ing [DSB04]. Consequently, most of the efforts are geared towards vari-
ability management whereby an infrastructure of core assets and variability
mechanisms are prepared during domain engineering so that application
engineers can come up with the right product in a cost-effective way.

The claim of this chapter is that the combined use of MDE and SPLE

increases the burden of software development in general, and software as-
sembly in particular (see Chapter 3). Therefore, additional effort should be
dedicated to create an infrastructure (i.e., core assets) that facilitates assem-
bly during application engineering. The effort to build such infrastructure
will payoff by streamlining the assembly process.

Our aim is to automate the process of realizing the assembly process.
Such automation is achieved through the so-called Assembly Machine Tool.
In product manufacturing a machine tool is a powered mechanical device,
typically used to fabricate metal components of machines. Machine tools
that operate under automatic control are also known as computerized nu-
merical control machines where the machine tool is fed with a program
that dictates the process that constructs the desired item.

This notion of numerical control machine tool is here used to describe
the assembly infrastructure. Such machine tool is realized through a li-
brary. The numerical control program is supported through an Assembly

Program. This assembly program can, in turn, be specified using an As-

sembly Equation, which is a declarative specification that embodies a par-
tially ordered set of transformations and model delta compositions. Given
an assembly equation, the assembly program will be automatically gen-
erated. Enacting this assembly program will deliver the product (i.e., the
set of code artifacts) that exhibit the desired features. This process is sup-
ported by the GROVE Tool Suite (GROVE TS), which we implemented to
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Figure 6.1: SPEM Diagram of the Assembly Plan Management Discipline
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assist in the assembly plan management. To describe this process, we re-
sort to the Software Process Engineering Metamodel (SPEM) [OMG08b],
an initiative of the Object Management Group (OMG) for software pro-
cess modeling. It is a methodology-independent language based on UML.
Hereafter, SPEM terminology is used to specify the tasks, artifacts and
roles that produce software.

According to SPEM a software development process is defined as a col-
laboration between abstract active entities called process roles that perform
operations called tasks on concrete, tangible entities called work prod-

ucts. A discipline partitions tasks within a process according to a com-
mon theme. This work introduces a new discipline in the development
of a model driven product line: the Assembly Plan Management, which
splits along four phases: Megamodel Engineering, Family Assembly Engi-

neering, Assembly Program Engineering and Product Assembling. Figure
6.1 outlines the different roles, work products and tasks supporting this
endeavour.

Next sections delve into the details of each phase. For each of them the
process is explained, the models that take part are described and the trans-
formations that are used are specified. Each section ends with a description
of how the phase is applied for the PinkCreek flight booking portlet case
study (see Chapter 3 for a description).

6.3 Megamodel Engineering Phase

This phase sets the conceptual framework to support the model driven
product line: which metamodels to use (e.g., statecharts vs. state-transition
diagrams), how variability is supported (e.g., collaboration vs. aspects),
which transformation language is to be used (e.g., QVT vs. ATL), which
are the exogenous transformations that map between different metamodels
and so on.

Starting from a megamodel, the goal of this phase is to generate the
Assembly Machine Tool, i.e., a reusable library that provides operations

98



Chapter 6. The Assembly Process in MDPLE

Figure 6.2: Megamodel Engineering Phase

for model transformations within the scope set by the megamodel. This
assembly machine tool will be used later by assembly programs when a
product is specified. Figure 6.2 depicts the SPEM diagram of this phase.
Next, the process, models and transformations that take part in the phase
are detailed.

6.3.1 Process

The Megamodel Engineering Phase is divided into two activities. First,
the Megamodel Engineer defines the megamodel, which contains the set
of metamodels and transformations defined for a certain domain [BJV04].
We denoted this activity as Megamodel Definition. The megamodel
groups the set of transformations needed to obtain a product from its ab-
stract specification, that is, it contains the set of steps needed to assemble

a product from an input model.

Second, the GROVE TS performs the Assembly Machine Tool

Generation. Taking the previously defined megamodel as input, our
tool generates a reusable machine tool. Realized as a library, the ma-
chine tool contains the implementation able to enact the transformations
that were defined in the megamodel. More to the point, it can be used by
several product lines, as long as they are defined in the same domain (i.e.,
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Figure 6.3: Assembly Megamodel Metamodel

they use the same metamodels and transformations). So, reuse is fostered
by grouping together the code the transformations of a particular domain
and making it available for all the product families defined in one particular
domain.

6.3.2 Models

Two are the models introduced in this phase: the Megamodel, defined by
the Megamodel Engineer and presented in Figure 6.2, and the Assembly

Machine Tool Model, and intermediate model generated by the GROVE
TS during the transformation process. The former is an abstract representa-
tion that gathers together the metamodels and the transformations between
them defined in the domain. We transform this model into the Assembly
Machine Tool Model, which acts as an intermediate model that is
later transformed into the library code.

Figure 6.3 shows the Assembly Megamodel Metamodel. Megamodel-
ing is the activity of modeling in the large, that is, of taking a global view
on the considered artifacts (i.e., how models are related to each other, how
they can be transformed into other models and so on), related to other pos-
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Figure 6.4: Assembly Machine Tool Metamodel

sible local views handled in various other contexts [BJV04]. In our case,
the megamodel gives a global view on the metamodels and transformations
defined for the domain, which will allow to perform program assembly
later on.

Each Megamodel has two attributes, its name and the domain at
hand. It contains a set of Models, as can be seen in Figure 6.3. For each
model, its name and the path to its file are specified. This way, the
assembly program will later be able to locate them. These models can be
Metamodels or Exogenous Transformations (i.e., transforma-
tions where the input and the result models conform to different metamod-
els). These metamodels and transformations operate with complete model
instances, model deltas are dealt with separately1.

As described in Chapter 4, model deltas do not conform to the do-
main metamodel. Model deltas conform to Delta Metamodels. In the
same way, Delta Exogenous Transformations are defined be-
tween two different delta metamodels. Therefore, delta exogenous trans-
formations are transformations where the source and target metamodels
are delta metamodels (see Figure 6.3).

The second model involved in this phase is the Assembly Machine

Tool Model (Figure 6.4 presents the metamodel it conforms to). It
aims at modeling the concepts that will permit to automatically gener-

1In order to simplify the prototype implementation, endogenous transformations do
not appear in the megamodel. The premise is that AHEAD Tool Suite will be the trans-
formation engine for such transformations [Bat]. This brings no lack of generality as other
tools can be easily integrated with it.
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ate the repetitive code that previously had to be written by hand. It de-
fines a set of containers, where a Container is an element that encapsu-
lates models of a certain type and is able to perform operations on them.
For that purpose, each container defines its name, the metamodelFile
that defines which type of instances it can store and the (exogenous)
transformation from which models of that type are created, if ap-
plicable. That is, for every metamodel in the megamodel, a container is
created, with the ability to transform models into instances of that meta-
model.

As mentioned above, we are dealing with two types of models: com-
plete models and model deltas. For each of them a separate Machine
Tool Class is created, which will be a Model Machine Tool Class or a
Delta Model Machine Tool Class depending on the type of models at hand.
It contains its name and the domain it is defined on. A Machine Tool

Class groups together the transformation sequence defined in the meta-
model that, when performed, will obtain the corresponding implementa-
tion from a model or from a delta model.

6.3.3 Transformations

The second activity in this phase is the Assembly Machine Tool Genera-

tion. This activity, performed by the GROVE TS, consists of the execution
of two consecutive transformations whose result will be the assembly ma-
chine tool implementation.

The first of the transformations is the Megamodel2AssemblyMachineTo

olModel transformation. It is a model-to-model transformation that allows
us to move from the megamodels to the assembly machine tools.

Table 6.1 shows the mapping from the Megamodel to the Machine

Tool Model. The first row shows how two machine tool classes are cre-
ated from the original megamodel: one is the model machine tool class
(modelMTC), which deals with transformations between complete mod-
els, and the second one is the delta model machine tool class (deltaModel
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Megamodel Machine Tool Model
megamodel:Megamamodel modelMTC:ModelMachineToolClass

deltaModelMTC:DeltaModelMachineToolClass
metamodel.name modelMTC.name

deltaModelMTC.name
megamodel.domain modelMTC.domain

deltaModelMTC.domain
metamodel.composedOf for every elem in megamodel.composedOf

if elem.type = DeltaModel then
add to deltaModelMTC.elements
else
add to modelMTC.elements

mm:Metamodel c:Container
mm.name c.name
mm.targetOf.name c.transformation
mm.targetOf.from c.sourceElemContainers

Table 6.1: Megamodel2AssemblyMachineToolModel Mapping

MTC), which works with delta models. Their names and domains will
be created from the megamodel’s name and domain. Each megamodel
is composedOf a set of models that can be metamodels or exogenous
transformations. For each metamodel a container will be generated,
where deltaModelMTC will group the containers generated from the
delta metamodels and modelMTC will group the rest. The name of the
container will be the name of the metamodel it was created from, to indi-
cate that the container will hold instances of that metamodel. Moreover, the
container will also store the transformation of which that metamodel is the
target and what the source of such transformation is (mm.targetOf.name
and mm.targetOf.from).

Being the assembly machine tool metamodel close to the code, the sec-
ond transformation, AssemblyMachineTool2JavaCode is a model-to-text
transformation.

For every machine tool class a Java class is created. The class will
have an attribute for every container that belongs to it and it will have a
set of methods that encapsulate the transformations defined in the domain.
This way, these methods will be called by the assembly program when
performing a transformation.

Another Java class is created from every container in the metamodel.
These classes encapsulate the management of the instances of the meta-
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model from which they are created. They only contain a default construc-
tor. If the metamodel is the target of a transformation, the constructor calls
the transformation that will create the instance. Otherwise, the file that
contains the model is passed as a parameter.

It is important to note that the generated code extends a set of classes
that are provided with the GROVE TS. These classes contain the code
that is common to every domain, such as the feature composition method,
which is implemented as a call to the AHEAD Tool Suite [Bat].

These transformations fulfill the goal of automating the creation of
repetitive code. Moreover, this code is defined generically for the domain,
so it will be reusable for every product family defined in such domain.

6.3.4 Case Study

Figure 6.5: Portlet MDD Assembly Megamodel

The model driven domain of PinkCreek was modeled using Portlet

MDD, which is a model driven approach that automates portlet implemen-
tation by defining a set of metamodels and transformations [Tru07]. Figure
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6.5 presents the megamodel that accounts for those metamodels and trans-
formations.

Recall from Chapter 3 that when applying MDE to portlets, the chosen
most abstract metamodel is a State Chart (SC), which provides a
platform independent model for representing the flow of computations in a
portlet. Each portlet consists of a sequence of states where each state rep-
resents a portlet page. States are connected by transitions whose handlers
either execute some action, render some view, or both.

This State Chart is transformed into a Ctrl that defines a controller
for a portlet. This in turn is transformed into Act and View, that define
the actions to be performed and the views to be rendered during the con-
troller execution respectively. Finally, more platform specific implemen-
tation details are to be given. The action model is transformed into Jak

code. Jak(arta) is a superset of the Java language, where class and method
refinements can be declared [BSR04]. Views, in turn, are transformed into
Java Server Pages (JSPs).

Then, the same is done for Delta Metamodels and Delta Exogenous

Transformations. The right half of Figure 6.5 sketches the delta metamod-
els and delta exogenous transformations defined in Portlet MDD. In this
case the figure is symmetrical, i.e., an delta metamodel and an delta ex-
ogenous transformation exist for every metamodel and every exogenous
transformation. It defines the transformations that will permit to obtain a
4Jak and a4Jsp from a4SC instances.

This megamodel is then transformed into the assembly machine tool
model shown in Figure 6.6. For each metamodel in the megamodel a
container is generated (e.g., the scContainer is created from the SC).
Moreover, for both complete models and delta models an assembly class
is generated that gathers together the transformations needed to obtain
the implementation (Jak and JSP) from the platform independent model
(SC).

On the last step, this machine tool model is transformed into Java code.
Figure 6.7 shows snippets of the code generated for Portlet MDD. Figure
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Figure 6.6: Portlet MDD Assembly Machine Tool Model

6.7a shows the assembly class for models. Note that it contains one method
for every exogenous transformation defined in the megamodel. Figure 6.7b
and 6.7c show examples of the code generated for containers. The first is
the code generated for SC. Being the State Chart the topmost meta-
model, from which all the rest are generated, the class takes the file that
contains the model as input, as there is no transformation that has the SC
as output. The second shows the code generated for Ctrl. The construc-
tor calls the transformation that, with a SC as a parameter, generates the
corresponding Ctrl.

Note that the generated code extends other classes (e.g., FeatureImp in
Figure 6.7a). These classes are part of the GROVE TS and provide the
functionality that is common for any given domain. In this way, transfor-
mations only have to generate the domain specific code.

It is important to highlight that there is nothing in this generated code
that links it to a certain family of portlets. The methods defined in Figure
6.7a can be called by any family of portlets developed using Portlet MDD,
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Figure 6.7: Portlet Assembly Machine Tool (Class Examples)
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Figure 6.8: Family Assembly Engineering Phase

thus fostering reuse.

6.4 Family Assembly Engineering Phase

The previous phase generates the Assembly Machine Tool, realized as a
library to be reused when assembling specific products. It defines the set
of model transformations needed to obtain the desired product from an
abstract specification (i.e., the MDE perspective). The next step is Family

Assembly Engineering, where the focus of the development shifts from a
single product to a family of them. The aim of this phase is to model
features (i.e., the SPLE perspective), rather than code generation. As a
consequence, note that this phase does not include transformations since
its goal is only to model the assets that belong to the product family. Figure
6.8 depicts the SPEM diagram of this phase.

6.4.1 Process

There is a only one activity in this phase: the Family Assembly Definition.

This activity models the features available in a family and the correspond-
ing deltas that implement them, which will later be needed when assem-
bling any member of the family. The SPL Domain Engineer is in charge
of this activity.
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Figure 6.9: Family Assembly Metamodel

6.4.2 Models

The Family Assembly Model results from the family assembly definition
activity. This model is intended to represent the realization in terms of
features of the family.

Figure 6.9 shows its corresponding metamodel. A ProductFamily

is characterized by a set of Features. These are implemented by Core-
Assets of different types. These assets can be code artifacts, documen-
tation, production plans and so on. Core assets also have two attributes:
their name and file, i.e., the path where the core asset can be found.

The cause to specialize CoreA
ssets into Models is that these particular assets are relevant from an
MDE perspective. The model also distinguishes between base and delta
features. Remember that the former represents entire assets and the latter
represents deltas. Features are modeled with two attributes to represent
previous distinction: their name and isBase.

Overall, when assembling any product of the family, this model en-
ables to locate each of its constituent core assets. This avoids the need
to manually specify the path of every core asset every time a product is
assembled.
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Figure 6.10: PinkCreek Family Assembly Model (simplified)

6.4.3 Case Study

The Family Assembly Engineering Phase is conducted once the traditional

Domain Engineering has already been carried out [BSR04, CN01]. In the
case of PinkCreek, this means that both the feature model of the flight-
booking portlet family and their implementing model deltas were defined
beforehand. Hence, the Domain Engineer instantiates the PinkCreek Fam-

ily Assembly Model, that gathers together information about the core assets
that realize the product family. It also includes where they can be located.
Figure 6.10 shows a simplification of such model for PinkCreek, which
conforms to the metamodel defined above. It sketches the PinkCreek
Product Family, defined by four features, namely base, seat, che
ckin and assistance. Each of the features is implemented by a SC
model (recall Figure 6.5, where SC models are the only ones that cannot
be obtained from transformations). Each model contains the path to the
file where it is stored. In this way, when assembling a certain portlet, the
assembly program will be able to locate its constituent features.

As a result, the information about the core assets that belong to PinkCre-
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Figure 6.11: Assembly Program Engineering Phase

ek’s features is centralized. Therefore, it can be accessed by any assem-
bly program that requires it. This prevents the need to manually repeat this
information every time a certain portlet is to be built.

6.5 Assembly Program Engineering Phase

During this phase the Application Engineer declaratively describes the as-
sembly process as an Assembly Equation. For instance, she decides to
add the bountyFees feature to the baseModel and then, to move down
to code by applying transformation sc2ctrl, ctrl2act and act2Jak. The
app = act2jak•ctrl2act•sc2ctrl•bountyFees•baseModelSC equation
reflects this decision.

The goal of this phase is to create the actual Assembly Program from
the previous Assembly Equation. This phase is the core of the GROVE
approach and the two previous phases provide the grounds for it. More
precisely, they are used to build the reusable infrastructure needed to gen-
erate the assembly program. Figure 6.11 presents the SPEM diagram of
this phase.
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Figure 6.12: Assembly Equation Metamodel

6.5.1 Process

The Assembly Engineering Phase is divided into two activities. First, the
Application Engineer performs the Assembly Equation Definiti-

on, producing the assembly equation as a result. This equation is a model
that contains the operations needed to assemble the final product.

Second, the GROVE TS performs the Assembly Program Gene

ration. Taking the previously defined equation as input, the tool gener-
ates the assembly program implementation.

6.5.2 Models

The result of the first activity is an equation model, where model transfor-
mation and composition operations are intertwined. Such model conforms
to the metamodel presented in Figure 6.12.

An Assembly Equation contains a sequence of operations which
accomplish the steps that need to be performed to obtain the final product.
Each equation has two attributes, its name and the product it will lead
to. In previous work (e.g., AHEAD Tool Suite), an equation only specifies
the set of features that distinguishes the program [BSR04]. In our case
these equations had to be enriched with model transformations, making
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our equations a sequence of both compositions and model transformations.
Figure 6.12 shows the metamodel for these assembly equations.

The transformation from this metamodel into code is detailed in the
next subsection.

6.5.3 Transformations

The assembly machine tool created during the Megamodel Engineering

Phase makes the transformation from the previous metamodel into Java
code straightforward. Each operation is already realized as a method of
a machine tool class. Therefore, this transformation involves creating a
Java code that invokes the methods that already exist in the assembly line
library.

This transformation has two input models: the Assembly Equation and
the Family Assembly Model. The former defines the sequence of operations
defined by the application engineer and the latter specifies the location of
the models on which the operations will be performed. In order to gener-
ate the assembly program, a model-to-text transformation first creates an
instance of the corresponding assembly class for each composition oper-
ation defined in the equation. The input files for each assembly class are
located using the Family Assembly Model defined in the previous phase.
Then, the sequence of operations is implemented by writing calls to the
corresponding methods defined in the assembly classes.

6.5.4 Case Study

To build a certain portlet, the Application Engineer, when performing the
Assembly Equation Definition activity, decides to add the seat, checkin and
assistance features to the base. Apart from that, she decides that the best
way to build the product is to first perform the composition of all features
and then to transform the result to obtain the final code. Figure 6.13 shows
the textual representation of such equation. Taking it as input, the GROVE
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Figure 6.13: Assembly Equation Example for PinkCreek

Figure 6.14: Assembly Program Example for PinkCreek

TS performs the transformation defined in the previous subsection to ob-
tain the assembly program (see Figure 6.14).

For every composition operation in the assembly equation, an instance
of an assembly class, which was generated in the Megamodel Engineering
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Phase, needs to be created. First, the files where the models are stored are
located using the the Family Assembly Model. Line 8 of Figure 6.14 shows
how the SC model for the base feature is located. Then, an instance of
the machine tool class is created. Line 9 in Figure 6.14 show this for the
same feature. Notice that the machine tool class is different depending on
the feature type. If it is the base feature, a PMDD_Model class is created.
This class contains the transformations defined for complete models, while
the PMDD_DeltaModel class, which is instantiated for the rest of the
features, contains the transformations defined for delta models.

Next, the methods that were previously generated are called for every
operation defined in the Assembly Equation. Lines 16 and 17 of Figure
6.14 show the implementation of the compositions. The rest of the pro-
gram implements the sequence of model transformations. Note that trans-
formations are applied to every machine tool class instance (e.g., lines 18
to 23 of Figure 6.14 present the calls to the sc2ctrl transformation). The
reason for this behavior comes from the fact that when performing a com-
position, both machine tool classes need to be at the same abstraction level

i.e., if one class has already generated a Ctrl model but the other only has
the SC model, the composition cannot be performed. This ends in line 32,
where after executing all the transformations, the result will be obtained.

6.6 Product Assembling Phase

The last task of the Application Engineer is the Assembly Program

Enactment. Figure 6.1 depicts the SPEM diagram of this phase, which
builds upon the results from the previous phases. Specifically, it reuses
the code infrastructure generated from the megamodel and the assembly
program generated from the equation to assemble a certain product. The
Application Engineer will just execute the assembly program to obtain a
family member.

The aim of PinkCreek product line is to yield individual portlets. Ba-
sically, the application engineer only needs to enact the assembly program
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Figure 6.15: Product Assembling Phase

in order to get the end-product. In the example shown in Figure 6.14, this
product would implement the seat, checkin and assistance features.

6.7 Discussion

This work is based on some perceived liabilities in product assembly in the
context of MDPLE, namely: complexity (i.e., assembly programs become
larger), design choices (i.e., there can be more than one possible assembly
programs), and reuse opportunities (i.e., some assembly tasks are repetitive
which leads to code snippets being repeated). The expected benefit of our
approach is the improvement of this situation. Next, we evaluate to which
extent this aim is achieved.

Handling Complexity. Before this work, an average assembly program
to create a single portlet in PinkCreek accounted for 500 LOC of batch pro-
cesses using 300 LOC of ANT makefiles and 2 KLOC of Java code. More
important, it took around 4 people/day to complete. Now, an assembly
program to build a portlet with 5 features is specified with an equation of
12 LOC. This is providing that the Megamodel Engineering Phase and the
Family Assembly Engineering Phase have already been performed, where
each one took around one hour and were only carried out once for all pro-
ducts. This is an improvement of at least one order of magnitude in the
effort needed to develop the assembly program.

Handling Design Choices. Assembly programs are now specified at
a higher abstraction level instead of being directly implemented. This al-
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lows the application engineer to concentrate on the design of the assembly
process, pondering the advantages and trade-offs of each decision, without
worrying about implementation details. Currently the only decision avail-
able is the order of the operations when assembling a product (in domains
where the order is unimportant). However, the equation could be enriched
with more decisions related to the assembly process (e.g., whether to use
other composition mechanisms apart from AHEAD, whether to execute
certain tests and so on). These choices in the Assembly Process can be
captured as part of the variability of the production plan [DTA05].

Handling Reuse Opportunities. As assembly gets more complex, an
increase in the number of clones, i.e., chunks of code that are repeated in
distinct parts of the program, is observed. This was the reason for stating
that assembly programs have reuse opportunities. These opportunities call
for a reuse mechanism that departs from traditional “clone&own” prac-
tices. This is precisely what we achieved by abstracting away from code
and moving to a higher level where clones are generated through trans-
formations from the abstract model and where reuse is accomplished in a
systematic manner using model driven techniques. Model transformations
were only the first mechanism provided to foster reuse. We also introduced
the notion of the Assembly Machine Tool, a reusable library that provides
operations for model transformation within the scope set by a megamodel,
and which is reusable by every product family defined in such domain.

6.8 Related Work

Software Factories bring a perspective change in how software is devel-
oped where one of the changes is the importance of application assembly.
Greenfield and Short state that in the near future most development will
be component assembly, involving customization, adaptation and exten-
sion [GS03]. Having experienced this ourselves, we motivated the need
for assembly processes to be designed and described the Assembly Plan

Management as the means to fulfill that need.
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Model management, of which application assembly is part, has been
identified as one of the challenges that need to be addressed if MDE is to
succeed [FR07]. In this line, megamodels establish and use global rela-
tionships on models, metamodels and transformations, ignoring the inter-
nal details of these global entities [Béz04]. Megamodels, however, only re-
flect structural relationships. We believe this should be complemented with
the corresponding processes in order to achieve the MDE vision. Lately,
different tools have aimed at this problem [RRGLR+09, VAB+07].

As an example, UniTI is a model-based approach to reuse and compose
transformations in a technology-independent fashion [VAB+07]. UniTI fo-
cuses on transformation execution to yield a single product, but it does not
consider product families. Our work faces the complexity that arises when
MDE and SPLE are combined. This shows up the increasing complexity
of program assembling, and raises some issues that do not appear when
MDE transformation are considered in isolation.

Production planning defines how programs are built. It provides the
strategical vision of the production process [CM02]. GROVE specifically
concentrates on the assembling process part of this managerial plan.

6.9 Conclusions

Although its benefits are substantial, MDPLE also brings disadvantages,
being increased product assembling complexity one of them. Along these
lines, this chapter motivated the need for a new discipline in software de-
velopment: the Assembly Plan Management. This discipline promotes the
assembly process as a first-class citizen inside the software development
process. Essentially, the Assembly Plan Management introduces a model
driven approach to the generation of assembly programs in MDPLE.

The main contribution of this chapter is that assembly processes are
no longer implemented, but are modeled and thus designed, raising the
abstraction level. This makes the reuse of assembly processes possible.
We evaluated our ideas with a case study.
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Parts of this chapter have been previously presented:

• Maider Azanza, Oscar Díaz and Salvador Trujillo. Software Facto-
ries: Describing the Assembly Process. In 4th International Confer-

ence on Software Process (ICSP 2010), Paderborn, Germany, 2010.

• Salvador Trujillo, Maider Azanza and Oscar Díaz. Generative Metapro-
gramming. In 6th International Conference on Generative Program-

ming and Component Engineering (GPCE 2007), Salzburg, Austria,
2007.
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Chapter 7

Conclusions

“All I know is that I know nothing”

– Socrates

7.1 Overview

Model Driven Engineering and Software Product Line Engineering are
two powerful paradigms for software development. Their combination in
Model Driven Product Line Engineering brings together the advantages
of both. Nevertheless, MPLE has implications on both core assets, where
models become the primary focus, and processes, which need to blend the
requirements of SPLE and MDE. This dissertation addressed these chal-
lenges by following the Feature Oriented Software Development paradigm
for the former and by presenting a solution for assembly processes as an
example of the latter. Different non trivial case studies were used to assess
the applicability of the presented ideas.

This chapter summarizes our central results, evaluates the limitations
of this work and proposes new areas for future research.
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7.2 Results

The first part of this dissertation was dedicated to the core asset impli-
cations of MDPLE. Here, the members of a product family of models are
developed following a FOSD approach. In FOSD the members of the prod-
uct family are created by composing the arrows that represent the features
those products exhibit. Specifically:

• Chapter 4 specified arrows as model deltas. Advantages of using
models to realize arrows include declarativeness, being able to check
certain constraints at delta building time (as model deltas conform
to their own metamodel, which is related to the domain one) and
the possibility to use existing work in incremental consistency man-
agement to check constraints at delta composition time. However,
defining arrows as model deltas entails the need to specify how such
deltas are composed. Generic composition was identified as the de-
fault, metamodel independent composition, which is sufficient in
most cases. Besides generic composition, the need for domain spe-
cific composition was motivated. Two different case studies, namely
Questionnaires and UML Interaction Diagrams, were used to evalu-
ate the approach.

• Chapter 5 defined a metamodel annotation mechanism to specify
model delta composition. This brought increased reuse and produc-
tivity gains as delta composition implementation was automatically
generated from the annotated metamodel. The benefits of such ap-
proach also include gains in automatization, understandability and
better maintenance of the delta composition algorithm. Similarities
of the presented ideas with other technical spaces were explored to
assess their generality.

The second part of this dissertation delved into the impact of MDPLE on
the assembly process. The work was aimed at increasing reuse by applying
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MDE to assembly programs and by leveraging on the previous activities at
every step of the process. More precisely:

• In Chapter 6 the Assembly Plan Management was presented as a dis-
cipline inside the general software development process that permits
to face the complexity brought by MDPLE to assembly processes.
The benefits of such plan include a reduction of the assembly pro-
cess implementation complexity, that the possibility to evaluate de-
sign choices is introduced and increased reuse. This plan specifies
assembly processes at a higher abstraction level, from which its im-
plementation is automatically generated. A non-trivial case study of
a family of flight booking portlets was presented.

7.3 Publications

Part of the work presented in this thesis has already been discussed and
presented in different peer-reviewed forums. The list of publications to
which the author has contributed are listed below:

Selected Publications

• Maider Azanza, Don Batory, Oscar Díaz, and Salvador Trujillo. Do-
main-Specific Composition of Model Deltas. In 3rd International

Conference on Model Transformations (ICMT 2010), Malaga, Spain,
2010 [ABDT10]. Rank B in the ERA Conference Ranking.

• Maider Azanza, Oscar Díaz and Salvador Trujillo. Software Facto-
ries: Describing the Assembly Process. In 4th International Confer-

ence on Software Process (ICSP 2010), Paderborn, Germany, 2010
[ADT10]. Rank A in the ERA Conference Ranking.

• Don Batory, Maider Azanza and João Saraiva. The Objects and Ar-
rows of Computational Design. In 11th International Conference

on Model Driven Engineering Languages and Systems (MoDELS
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2008), Toulouse, France, 2008 [BAS08]. Rank B in the ERA Con-

ference Ranking.

International Conferences/Workshops

• Roberto Lopez-Herrejon, Alexander Egyed, Salvador Trujillo, Jo-
sune de Sosa, and Maider Azanza. Using Incremental Consistency
Management for Conformance Checking in Feature-Oriented Model-
Driven Engineering. In 4th International Workshop on Variability

Modelling of Software-intensive Systems (VAMOS 2010), Linz, Aus-
tria, 2010 [LHET+10].

• Maider Azanza, Josune De Sosa, Salvador Trujillo and Oscar Díaz.
Towards a Process-Line for MDPLE. In 2nd International Workshop

on Model-Driven Product Line Engineering (MDPLE 2010), Paris,
France, 2010 [AdSTD10].

• Salvador Trujillo, Maider Azanza and Oscar Díaz. Generative Metapro-
gramming. In 6th International Conference on Generative Program-

ming and Component Engineering (GPCE 2007), Salzburg, Austria,
2007 [TAD07]. Rank B in the ERA Conference Ranking.

• Salvador Trujillo, Maider Azanza, Oscar Díaz and Rafael Capilla,
Exploring Extensibility of Architectural Design Decisions. In 2nd

Workshop on SHAring and Reusing architectural Knowledge - Ar-

chitecture, rationale, and Design Intent (SHARK/ADI 2007), Min-
neapolis, Minnesota, USA, 2007 [TADC07].

• Oscar Díaz, Arantza Irastorza, Maider Azanza and Felipe M. Vil-
loria: Modeling Portlet Aggregation Through Statecharts. In 7th

International Conference on Web Information Systems Engineering

(WISE 2006), Wuhan, China, 2006 [DIAV06b]. Rank A in the ERA

Conference Ranking.
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Spanish Conferences/Workshops

• Oscar Díaz, Arantza Irastorza, Maider Azanza and Felipe M. Villo-
ria. Modelado de la Agregación de Portlets por medio de Statecharts.
In XV Jornadas de Ingeniería del Software y Bases de Datos (JISBD

2006), Sitges, Spain, 2006 [DIAV06a].

Others

• Maider Azanza, Salvador Trujillo and Oscar Díaz. Towards Gen-
erative Metaprogramming. In 2nd Summer School on Generative

and Transformational Techniques in Software Engineering (GTTSE

2007), Braga, Portugal, 2007 [ATD07].

7.4 Research Stages

Any research work is enriched by the influence of different perspectives.
This statement is even more true in the case of a Ph.D, which is, in essence,
a learning process. This dissertation was enriched by the results of two
research stages. First, the author visited the Automated Software Design

Research Group at the University of Texas at Austin, USA, headed by
Prof. Dr. Don Batory from January to April 2008 and again from June
to September of the same year. Then, the author visited the Software and

Systems Modelling Team at the University of York, UK, under the supervi-
sion of Prof. Dr. Richard Paige from June to August of 2009. Both visits
fostered discussion, broadened horizons and greatly helped to improve this
work.

7.5 Assessment and Future Research

This dissertation motivated and proposed a solution for two of the chal-
lenges that Model Driven Product Line Engineering poses. A unbiased
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assessment of the work reveals some limitations and raises issues that pro-
vide an area for future research.

Core Asset Implications

• Generalization. Currently, our definition of model deltas only per-
mits additions and updates of existing model elements. In certain
cases, generalizing this definition to allow deletions might be nec-
essary [KBA09]. Studying in which cases deletion is required and
what its drawbacks are is an area for future work.

• Aspects. Model deltas are homogeneous extensions of models [ALS08].
In contrast, aspects may offer an alternative, where pointcuts identify
one or more targets for rewriting (a.k.a. advising) [KH01]. However,
the generality of aspects is by no means free: it comes at a cost of
increased complexity in specifying, maintaining, and understanding
concerns [ALS08]. An assessment of their advantages and the fre-
cuency in which they are needed compared to the cost at which their
generality comes is required.

• Safe Composition of Models. When developing a family of models
incrementally, we want to guarantee that all legal feature compo-
sitions (i.e., all feature compositions that correspond to a product)
yield models that satisfy all constraints of the metamodel, but with-

out enumeration. Our work paves the way to this goal by allowing
to check delta constraints and composition constraints. Neverthe-
less, the question of how to check deferred constraints to guarantee
that every product conforms to its metamodel still remains open. Ex-
isting work using propositional formulas and SAT-solvers suggests a
direction in which to proceed [CP06].

• Transformation of Model Deltas. In an MDE setting deltas are only
half of the picture. As described in Chapter 3, composing model
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deltas and then transforming the result product to yield the corre-
sponding implementation is only one way of assembling the product.
Deltas can also be transformed and then composed together, which
can bring benefits such as validation and optimization [BAS08, TBD07,
UGKB08]. To obtain these gains, we are interested in transforma-
tions that map a delta that is an instance of a metamodel to a delta
that is an instance of another. Being deltas and models closely re-
lated, we are also interested in how these transformations are related
to the ones that transform complete models.

• Model Delta Decomposition. When an error is detected in one prod-
uct, the corresponding core asset should be corrected so that the rest
of the products that contain such core asset can benefit. Although
manually editing the core asset is possible, being able to decompose
the product into its original (and now corrected) core assets increases
efficiency [BSR04]. Model deltas can be seen as models that gather
together the changes a feature makes to one or more models. Hence,
recent work on selective undoing of model changes [GE10] suggests
a interesting path to obtain the goal.

• Case Studies. This dissertation presented three case studies to prove
the validity of the approach: the Crime and Safety Survey Product

Line (CSSPL), the Game Product Line (GPL) and the AHEAD Prod-

uct Line (APL). However, more case studies (preferably from indus-
try) are needed.

• Tool Support. We implemented the ANDROMEDA tool as a proof
of concept of our ideas. Nevertheless, more work is needed if we
want to convert it in a tool available for others to use.

Process Implications - The Assembly Process

• Generalization: Currently, GROVE TS only supports transforma-
tions. A generalization is required to incorporate other model man-
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agement operations.

• Variability of the Assembly Process. According to previous work, the
production plan is subject to variability [DTA05]. Hence, variability
of the assembly process needs to be defined and the Assembly Plan

Management needs to be enriched to cope with such variability.

• Specification of a process for MDPLE. If MDPLE is to be spread
in industry, an explicit process that details the necessary activities,
roles, tasks and workproducts is needed [AdSTD10, MD08].

• Variability of the MDPLE Development Process. Not only is the as-
sembly process subject to variability, the same holds for the software
development process that applies MDPLE [AdSTD10].

• Tool Support. GROVE Tool Suite supports the Assembly Plan Man-

agement. Nevertheless, more work is needed to generalize it with
other paradigms. Furthermore, the assembly is only a part of the
development process. More tools are needed to support developers
following MDPLE.

7.6 Conclusions

Programs are structures that software engineers create. They use tools to
transform, manipulate, and analyze them. Object orientation uses methods,
classes, and packages to structure programs. Compilers transform source
structures into byte-code structures. Refactoring tools transform source
structures into other source structures, and metamodels of MDE define the
allowable structures of model instances: transformations map metamodel
instances to instances of other metamodels for purposes of analysis and
synthesis [BAS08].

The future of software design and development lies in automation —
the mechanization of repetitive tasks to free programmers from mundane
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activities so that they can tackle more creative problems. We are entering
the age of Computational Design (CD), where both program design and
program synthesis are computations [Win06], and MDPLE lies at the fore-
front of it, as the combination of two paradigms that promote systematic
reuse and increase automation.

Nevertheless, there are implications that need to be resolved if MD-

PLE is to reach its full potential. This dissertation presented two essential
issues in this endeavor, namely the core asset and process implications. Vi-
able solutions for the case of feature oriented development of models and
assembly processes were presented, which were validated using case stud-
ies of different sizes. We believe this work will help in making the vision
of MDPLE possible, thus providing its numerous benefits.
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