
IBM Research – Zurich

Model-Driven Software Engineering

Foundations of Model-Driven Software Engineering

Dr. Jochen Küster (jku@zurich.ibm.com)

2

IBM Research – Zurich

Dr. Jochen Küster | MDSE 2011

Contents

� Introduction to Models and Modeling

� Concepts of Model-Driven Software Engineering

� Goals and Roadmap of the Lecture

� Overview of Approaches

� Summary and Literature

3

IBM Research – Zurich

Dr. Jochen Küster | MDSE 2011

Model-Driven Software Engineering in a Nutshell

� Model-Driven Software Engineering (MDSE) is a software engineering
paradigm

� Models are considered as primary artifacts from which parts of a software
system can be automatically generated.

� Models are usually more abstract representations of the system to be built

� MDSE can improve productivity and communication

� MDSE requires technologies and tools in order to be successfully applied

� Various terms and approaches to MDSE
– Model-driven architecture, model-driven engineering, model-driven

development, …

4

IBM Research – Zurich

Dr. Jochen Küster | MDSE 2011

Introduction to Models and Modeling

5

IBM Research – Zurich

Dr. Jochen Küster | MDSE 2011

What is a Model?

� “A model is an abstraction of something for the purpose of understanding
it before building it” (J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy,
and W. Lorensen. Object-Oriented Modeling and Design. Prentice Hall,
Englewood Cliffs, New Jersey, USA, 1991)

� Models are widely used in engineering disciplines

Real
world Model

is abstracted
into

6

IBM Research – Zurich

Dr. Jochen Küster | MDSE 2011

Examples of Models in Electrical Engineering

7

IBM Research – Zurich

Dr. Jochen Küster | MDSE 2011

Important Properties of Models

� Abstraction from certain aspects of the real world

� Focus on certain aspects of the real world

� Ability to analyze properties of the system using the model

� Models are usually expressed in a modeling language with a well-defined
syntax and semantics

� Many different forms of analysis, depending on the model and the
application of modeling

8

IBM Research – Zurich

Dr. Jochen Küster | MDSE 2011

Models in Software Engineering

View of real
world

Model

program

Analyse
and design

Code

abstracts
from

� Different kinds of models are used in software engineering
– Models for requirements analysis
– Models for expressing the software architecture of a system
– …

is abstracted
into

9

IBM Research – Zurich

Dr. Jochen Küster | MDSE 2011

Usage of Models in Software Engineering

� Models as description of the domain of the system to be built
– Model focuses on relevant aspects of the domain
– Example: Class diagram of the domain

� Models as abstract representation of the system to be built
– Model focuses on aspects that are relevant, leaves other aspects open
– Example: Component diagram specifies components of a system to be built

� Models for documentation
– Abstraction of models helps to understand the system faster
– Example: Class diagram of the key entities in a system are explained in a

document

� Models as specification for testing
– Model focuses on important aspects of the system for testing

10

IBM Research – Zurich

Dr. Jochen Küster | MDSE 2011

Sample Models from Software Engineering

[Source: IBM developerworks, M. Berfeld, UML-to-Java transformation in
IBM Rational Software Architect editions and related software, 2008]

[Source: IBM developerworks, D. Sheldon et al, Exploiting use
cases to improve test quality, 2008]

[Source: IBM developerworks, P. Eeles, The benefits of
software architecting, 2006]

[Source: IBM developerworks, F. Xu et al, Reverse engineering
UML class and sequence diagrams from Java code with IBM
Rational Software Architect, 2008]

11

IBM Research – Zurich

Dr. Jochen Küster | MDSE 2011

Usage of Models in Software Engineering

� Models can be used for many different purposes in software engineering

� In different phases of the development lifecycle

Model

Static Analysis

Code Generation

Automated Testing

Refactoring/
Transformation

Domain Modeling

[Illustration by B. Rumpe]

Documentation

12

IBM Research – Zurich

Dr. Jochen Küster | MDSE 2011

Concepts of Model-Driven Software Engineering

13

IBM Research – Zurich

Dr. Jochen Küster | MDSE 2011

Concepts of Model-Driven Software Development

� How to get from requirements to running code satisfying requirements
and user expectations?

� Models are used in many development processes
–requirements for the system (e.g. use case model)
–software architecture (e.g. component model)
–behavioral description (e.g. statechart)

Code of

application
Requirements

Analyse
and design

Code

14

IBM Research – Zurich

Dr. Jochen Küster | MDSE 2011

Usages of Models and Model Transformations in MDSE - Example

� In each phase, different models are constructed

� In each phase, we reuse parts of models as input for other models
– Test scenarios are partially derived from Use Case Diagrams
– Design Class Diagram may reuse parts of Domain Class Diagram

� MDSE focuses on automatically generating parts of models or code from
other models

RequirementsRequirements
AnalysisAnalysis

TestTestAnalysis & Analysis &
DesignDesign

ImplementationImplementationPhases

Artifacts Use Case
Diagram

Domain
Class

Diagram

Component
Diagram

Java
ClassesDesign

Class
Diagram

Test
Scenarios

15

IBM Research – Zurich

Dr. Jochen Küster | MDSE 2011

Eclipse Modeling Framework as an Example

Many lines of code are
automatically generated!

16

IBM Research – Zurich

Dr. Jochen Küster | MDSE 2011

Important Aspects of MDSE

� In MDSE approaches, the use of models and model transformations is
proposed

� Models are expressed in UML, an extension of UML, or a domain-specific
language

� The syntax and semantics of models used in a MDSE approach has to be
clearly defined

� The software development process is changed when an MDSE approach
is adopted

Code of

application
Models

Model transformation

Code generation

17

IBM Research – Zurich

Dr. Jochen Küster | MDSE 2011

Questions

So many new concepts and terms…

Modeling Language?

Model Transformation?

Syntax and
Semantics?

Code generation?

Domain-specific
language?

18

IBM Research – Zurich

Dr. Jochen Küster | MDSE 2011

Goals and Roadmap of the Lecture

19

IBM Research – Zurich

Dr. Jochen Küster | MDSE 2011

Goals of the Lecture

� Understand principles and concepts of Model-Driven Software
Engineering (MDSE)

– Modeling language, meta-modeling, domain-specific language, model
transformations, code generation

– Different approaches to MDSE

� Get familiar with languages and technologies of Model-Driven Software
Engineering (MDSE)

– Eclipse Modeling Framework
– Technologies for model transformations and code generation

� Apply MDSE in practice and get to know tools
– Eclipse Modeling Framework Example, Service-Oriented Architecture Example
– Extensions of Eclipse for model transformations and code generation
– IBM Rational Software Architect

20

IBM Research – Zurich

Dr. Jochen Küster | MDSE 2011

Roadmap for Model-Driven Software Engineering

� Foundations (1 lecture)

� Metamodels and Domain Specific Languages (2 lectures)

� EMF as Architecture Centric MDSD Environment (2 lectures)

� Model transformations (Model-to-Model, Model-to-code, transformation
languages) (2 lectures)

� Code generation (1 lecture)

� MDSE of SOA Applications with IBM Rational Software Architect(2 lectures)

� Models in Software Architecture Design (1 lecture)

� Software Product Lines (1 lecture)

21

IBM Research – Zurich

Dr. Jochen Küster | MDSE 2011

Overview of Approaches

22

IBM Research – Zurich

Dr. Jochen Küster | MDSE 2011

Different Approaches to MDSE

� Model-Driven Architecture (MDA)
– OMG MDA initiative

� Model-Driven Software Development (MDSD)
– M. Voelter et al.

� Domain Specific Modeling (DSM)
– S. Kelly, J. Tolvanen

23

IBM Research – Zurich

Dr. Jochen Küster | MDSE 2011

MDA Concept Overview

� Computation Independent Model (CIM) defines
domain vocabulary

� Platform Independent Model (PIM) captures domain-
related specifications

� PIM does not contain platform details, independent
of a platform

� Platform Specific Model (PSM) captures
specifications with platform details

� For expressing PIM and PSM, domain-specific
languages are used

– UML profiles and other techniques for defining DSLs

� Model transformations transform PIMs into PSMs

PIM

PSM

Code

24

IBM Research – Zurich

Dr. Jochen Küster | MDSE 2011

MDA Example

PIM

PSM
(EJB 2.0)

Code
(Java + XML)

public interface Account extends EJBObject {…}
public interface AccountHome extends EJBHome {…}
public abstract class AccountBean implements EntityB ean
{…}
…

[Example from T. Stahl et al]

25

IBM Research – Zurich

Dr. Jochen Küster | MDSE 2011

Advantages and Disadvantages of MDA

� Advantages:
–Separation of PIM and PSM enables better reuse
–Improved interoperability due to standards (e.g. UML)

� Disadvantages:
–Code generation is only partial and requires manual completion of

code
–Semi-automatic generation of one model from another model leads to

maintenance problems if a model is changed

26

IBM Research – Zurich

Dr. Jochen Küster | MDSE 2011

Model-Driven Software Development

MDSD is based on the following observations

� Generic code is identical for all applications

� Schematic code possesses the same systematics (e.g. based on an
architectural pattern)

� Individual code is application specific

Individual

code

Schematic

code

Generic

code

Model

Code

27

IBM Research – Zurich

Dr. Jochen Küster | MDSE 2011

Approach of Model-Driven Software Development

� Generate generic code for the platform instead of writing it

� Generate schematic code using transformations based on an application
model

� Write individual code that is application specific

Application
Model

Transformation

Schematic
Repetitive

Code

Individual

code

Schematic

code

Generic

code
Individual

Code

Platform

28

IBM Research – Zurich

Dr. Jochen Küster | MDSE 2011

Architecture-Centric MDSD

Infrastructure code

Architecture-Centric
Design Model

Business
Logic Code
manually written

Generator

Generative Architecture

Domain-specific
Language

Infrastructure
Components

Generator Templates

expressed in

Application

29

IBM Research – Zurich

Dr. Jochen Küster | MDSE 2011

Example for Architecture-Centric Design Model

� Domain related meaning is expressed in the architecture-centric design
(using stereotypes), can be considered as PIM

� Depending on the platform, the PIM is translated differently to code

[Example from T. Stahl et al]

30

IBM Research – Zurich

Dr. Jochen Küster | MDSE 2011

Example Translation into Code (Sketch)

� EJB-based architecture with HTML clients
– Activity classes are stateless session beans
– Entity classes are beans
– Attributes of type key constitute the primary key classes
– For public attributes, getter and setter methods are applied
– Presentation classes specify JSP models that are used to fill JSP/HTML pages
– …

� C++/CORBA-based client-server architecture
– Activity classes are IDL interfaces, all attributes are mapped to IDL types
– Entity classes are non-distributable C++ classes
– Presentation classes are Java Swing GUIs
– …

31

IBM Research – Zurich

Dr. Jochen Küster | MDSE 2011

Comparison to MDA

� MDSD does not focus on iterative model refinement by transformations,
no intermediate models are created

� Transformations are primarily used for translating models into code

� A PIM model contains all necessary details to be translated into code
which is then platform specific

� Roundtrip engineering is avoided, design changes have to be made to the
model

� Focus on software architecture

� No 100 per cent generation, rather 60 to 80 percent

32

IBM Research – Zurich

Dr. Jochen Küster | MDSE 2011

Advantages and Disadvantages of MDSD

Advantages:

� Increased development speed

� Increased software quality

� Better maintainability

� Better reusability

� Increased manageability of complexity

� Better portability and interoperability

Disadvantages:

� MDSD has to be tailored to the domain, no off-the-shelf solution

� No platform-independence of models

33

IBM Research – Zurich

Dr. Jochen Küster | MDSE 2011

Domain Specific Modeling in a Nutshell

� Raise level of abstraction by specifying solution in
a domain specific language

� Generate final products from these high-level
specifications

� Model is expressed in the concepts of the domain

� Code is fully generated

Model

Code

34

IBM Research – Zurich

Dr. Jochen Küster | MDSE 2011

Domain Specific Modeling - Architecture

� Generator can be considered as a compiler

� Modification of the generated code is not needed

� Generated code accesses a domain framework

Generated Code

Domain-specific
Language

Domain-specific
Generator

Domain Specific
Model

Domain Framework

35

IBM Research – Zurich

Dr. Jochen Küster | MDSE 2011

Value of Domain Specific Modeling

� Productivity within software development
– Higher level of abstraction leads to higher productivity
– Common defects when coding are avoided due to generation

� Quality of the produced solution
– Early validation with the customers
– Risk reduction of code not meeting the requirements

� Improved testing approaches
– Testing of the generator vs testing of the model

36

IBM Research – Zurich

Dr. Jochen Küster | MDSE 2011

Comparison of DSM to MDSD and MDA

� DSM puts a lot of emphasis on the domain-specific modeling language

� DSM does not favor to use UML or UML extensions as a DSM (in
comparison to MDSD)

� DSM proposes to generate the solution from the model, without
intermediate models (similar to MDSD)

� Generators as well as the DSM itself are developed by domain experts

37

IBM Research – Zurich

Dr. Jochen Küster | MDSE 2011

Common Aspects of MDSE

� In MDSE approaches, the use of models and model transformations is
proposed

� Models are expressed in UML, an extension of UML, or a domain-specific
language

� The syntax and semantics of models used in a MDSE approach has to be
clearly defined

� The software development process is changed when an MDSE approach
is adopted

Code of

application
Models

Model transformation

Code generation

38

IBM Research – Zurich

Dr. Jochen Küster | MDSE 2011

Basic Conceptual Architecture of MDSE
R
e
a
li
z
a
ti
o
n

M
o
d
e
li
n
g

Model

Artifacts
(e.g. code)

Modeling
language

Platform

Meta-
modeling
language

Transformation
definition

Transformation
language

uses

defined using

defined by

Application domainApplication Meta-Level

A
u
to
m
a
ti
o
n

Transformation /
Code generation

Abstraction (bottom-up)
Reuse

Construction (top-down)

[Slide by G. Kappel]

39

IBM Research – Zurich

Dr. Jochen Küster | MDSE 2011

Advantages of MDSE

� Abstraction from specific realization technologies
– Improved portability of software to new/changing technologies – model

once, build everywhere
– Interoperability between different technologies can be automated
– Requires modeling languages, which do not hold specific concepts of

realization technologies (e.g., Java EJB)

� Automated code generation from abstract models
– e.g., generation of Java-APIs, XML Schemas, etc. from UML
– Requires expressive und precise models
– Increased productivity and efficiency (models stay up-to-date)

� Separate development of application and infrastructure
– Separation of application-code and infrastructure-code (e.g. Application

Framework) increases reusability
– Flexible development cycles as well as different development roles

possible

[Slide adapted from G. Kappel]

40

IBM Research – Zurich

Dr. Jochen Küster | MDSE 2011

General Requirements for MDSE

� Models used for generating other models have to contain all details that
are needed

– Model quality
– Models must be precise with well-defined syntax and semantics (if used for

e.g. code generation)
– Model must be appropriate to express concepts of the domain

� Technology
– For defining model transformations from model to code as well as model to

model
– For keeping models consistent if changes occur in one model
– For supporting versions of models and multi-user modeling

� Development process
– Has to take into account how to generate models

41

IBM Research – Zurich

Dr. Jochen Küster | MDSE 2011

Summary and Literature

42

IBM Research – Zurich

Dr. Jochen Küster | MDSE 2011

Summary of Lecture

� Models provide an abstraction from the real world

� Models are expressed in a modeling language

� Model-driven software engineering uses models to generate other
models or code

– Domain-specific models
– Model transformations

� MDA, AC-MDSD and DSM represent different approaches to model-
driven software engineering, however many common aspects exist

� MDSD requires skills and understanding of concepts, techniques and
tools to be successfully applied

43

IBM Research – Zurich

Dr. Jochen Küster | MDSE 2011

Literature

� D. Frankel: Model Driven Architecture,
Wiley, 2003.

� T. Stahl und M. Völter: Model-Driven
Software Development, Wiley, 2006.

� V. Gruhn, D. Pieper, und C. Röttgers:
MDA – Effektives Softwareengineering mit
UML2 und Eclipse. Springer Verlag, 2006.

� S. Kelly und J. Tolvanen: Domain-Specific
Modeling – Enabling Full Code
Generation, Wiley, 2008.

� C. Gonzaelez-Perez und B. Henderson-
Sellers: Metamodelling for Software
Engineering, Wiley, 2008.

� D. Steinberg, F. Budinsky, M. Paternostro,
und E. Merks: EMF Eclipse Modeling
Framework Second Edition, Addison-
Wesley, 2008.

