

Model for Propane Dehydrogenation

Objective: Develop a kinetic model for Propane Dehydrogenation

In this example, we propose a simplified model for the catalytic dehydrogenation of propane to propylene on a Pt-Sn/Al2O3 catalyst. Kinetic parameters are estimated using experimental data from [1]. You may <u>download</u> the zip file that contains the examples for this study.

Features Illustrated

- Enforcement of Thermodynamic Constraints on Kinetic Parameters
- LHHW Site Models
- Dealing with Outlier Measurements
- Flags and color codes for kinetic parameters at bounds.
- Use of Compare Projects tool to choose between competing models

Reaction Network

The reversible reaction for propane dehydrogenation to propylene on supported platinum catalyst is given by:

Propane Dehydrogenation: $C_3H_8 \rightleftharpoons C_3H_6 + H_2$

The side reactions also taking place on the catalyst surface are:

Propane Cracking:	C_3H_8	\rightarrow	C_2H_4	$+ CH_4$
Ethylene Hydrogenation:	$C_2H_4 + H_2$	\rightarrow	C_2H_6	
Propane Hydrogenolysis:	$C_3H_8 + H_2$	\rightarrow	C_2H_6	+ CH ₄

We will start with a kinetics model proposed in [1], where the main dehydrogenation reaction rate is modeled with LHHW kinetics as follows:

$$r_{Net} = \frac{k' \left(P_{C3H8} - \frac{P_{C3H6}P_{H2}}{K_{eq}} \right)}{\left(1 + K'P_{C3H6}P_{H2}^{0.5} + K_{C3H6}P_{C3H6} + (K''P_{H2})^{0.5} + K_{H2}P_{H2} + K_{CH4}P_{CH4} + K_{C2H4}P_{C2H4} + K_{C2H6}P_{C2H6} \right)^2}$$

On the other hand, the side reactions are modeled as Mass Action (simple power law), without any LHHW sites.

Setting up the REX Model

Partial Pressure is chosen as *concentration units* for the rates in Units Configuration node. Rate basis is catalyst mass for this fixed bed catalytic reactor. Other units chosen are shown below:

Project Explorer <	Un	its	
> 📑 Projects »		Variable	Unit
∨ 🗐 Project: Propane_Dehyd_1 »	►	Time	hour
✓ ^A _{>B} Chemistry »		Temperature	С
Munits Configuration		Pressure	Atm
> A _B Compounds »		Volume	lit
🌆 Pseudo-Compounds »		Mass	gram
> -> Reactions »		Moles	mmol
> 📥 Kinetics		Specific Energy	kJ/mol
Rate Equations		Surface Area	m^2
% Notes		Rate Basis	Catalyst Mass
> M Estimation »		Concentrations	Partial Pressure

After defining the compounds and reactions, we include the pertinent directions for the reactions in the Kinetics node:

In the Mass Action tab of Chemistry→Kinetics→Parameters node, all reactions have their orders to be same as their stoichiometric coefficients. In the LHHW Sites tab, the site is defined as described in previous section:

Project Explorer	Sit	es							
> Projects »			Site	Constant					
✓ 1 Project: Propane_Dehyd_1 x	•	SiteMainReaction 1							
✓ ^A _{>B} Chemistry »	*								
Units Configuration									
> A _B Compounds »	s	iteMainReaction =	$1 + 0.1[H2]^{0.5}[C3H6] + 0.1$	$[C3H6] + 0.1[H2]^{0.5}$					
A Pseudo-Compounds	+	0.1[H2] + 0.1[CH4] + 0.1[C2H4] + 0.1[C2H6]						
> -> Reactions »									
🗸 📥 Kinetics	Те	rms: SiteMainReactio							
Parameters »		Term	PreExponential	Energy [kJ/mol]					
Kinetics Sites	•	Term1	1.00E-01	0.00					
💊 Rate Equations		Term2	1.00E-01	0.00					
% Notes		Term3	1.00E-01	0.00					
> 📶, Estimation »		Term4	1.00E-01	0.00					
> 🔗 Reaction Traffic »		Term5	1.00E-01	0.00					
		Term6	1.00E-01	0.00					
		Term7	1.00E-01	0.00					
	*								
	Or	ders: SiteMainReacti	on - Term1						
			Component [Atm]	Order					
	•	H2		▼ 0.5					
		C3H6		1					
	*								
🔍 影 😫 🚥	k	Mass Action K HHW S	Sites						

The adsorption site is then assigned to the main reaction in the Kinetics \rightarrow Kinetics Site node, and site exponent is set to 2 in accordance with the rate expression for the main reaction:

Project Explorer	<	Ki	netics - Sites		
> .: Projects »	~	Dra	ig a column header here	to group by tha	t column
 Project: Propane_Dehyd_1 » 			Reaction	Direction	SiteMainReaction
✓ ^A _B Chemistry »		►	C3H8-Dehydrogenation	Forward	
🛃 Units Configuration			C3H8-Cracking	Forward	
A Compounds »			C2H4-Hydrogenation	Forward	
A Pseudo-Compounds »			C3H8-Hydrogenolysis	Forward	
\rightarrow Reactions »			C3H8-Dehydrogenation	Reverse	
$\checkmark \xrightarrow{k}$ Kinetics					
Parameters »					
💥 Kinetics Sites					
💊 Rate Equations					
% Notes	~				
R 🗄 😫 🚥	••	<u>k</u>	Kinetics Sites K+1 Expor	nent	

For the reversible dehydrogenation reaction, the net rate depends on the equilibrium constant (K_{eq}):

$$r_{Net} = r_{Forw} - r_{Rev} = \frac{k_{Forw} \left(P_{C3H8} - \frac{P_{C3H6} P_{H2}}{K_{eq}} \right)}{LHHW Site}$$

where:

$$K_{eq} = \frac{k_{Forw}}{k_{Rev}}$$

At the average temperature of the experimental sets (600C), the equilibrium constant value is K_{eq} =0.303, while the heat of reaction is 129.6 kJ/mol.

To relate those values to the kinetics parameters, we introduce the Van't Hoff equation:

$$K_{eq} = K_0 e^{-\left(\frac{\Delta H}{R}\right)\left(\frac{1}{T} - \frac{1}{T_0}\right)}$$

Where K_0 is the equilibrium constant at temperature of T_0 . We consider $T_0=600C$ thus $K_0=0.303$. Combining the last two equations we have:

$$K_{eq} = K_0 e^{-\left(\frac{\Delta H}{R}\right)\left(\frac{1}{T} - \frac{1}{T_0}\right)} = \frac{k_{Forw}}{k_{Rev}} = \frac{A_{Forw} e^{-\frac{E_{Forw}}{RT}}}{A_{Rev} e^{-\frac{E_{Rev}}{RT}}}$$

After rearranging some more we arrive at :

$$\left(K_0 e^{+\frac{\Delta H}{RT_0}}\right) e^{-\frac{\Delta H}{RT}} = \left(\frac{A_{Forw}}{A_{Rev}}\right) e^{-\frac{(E_{Forw} - E_{Rev})}{RT}}$$

From the last equality we can obtain the following relationships:

$$E_{Forw} - E_{Rev} = \Delta H$$
$$\frac{A_{Forw}}{A_{Rev}} = K_0 e^{+\frac{\Delta H}{RT_0}}$$

In Estimation \rightarrow Parameter Relationships node we enforce the above constraints. For the activation energies, a linear relationship is defined:

Project Explorer	Ma	ss Actio	n Relationships					
> 🦼 Projects =		Include	Relation	Kinetic Parameter	Type	Expression	Constraint Type	Right Hand Side
 Project: Propane_Dehyd_1 = Chemistry = Estimation = Perameters = 	1	1948-Del	Dehyd-Act hydrogenation	Activation Energy .F] - [C3H8-Deby	Linear Sum	[C3H8-Dehydrogenation F] - [C3H8-Dehydrogenation F[.R] = 129.6	39)/ 	129.6
Relationships =	De	hyd-Act	- Relationship 1	Terms				
> II Reactor		Re	action	Direction	Coefficient/Ex	panent		
S Experiments - > If Weights +	-	C3H8-Del C3H8-Del	hydrogen. + Forv hydrogenatio, Rev	kard erse		1		
a 8 🕸 😶	• 1 <u>4</u>	Mass Acti	en 🕹 Orders 📩	LFHHW Situs				

Another parameter relationship is entered for the pre-exponentials; in this case a non-linear expression:

Project Explorer	Ma	ss Actio	n Relationships						
> Projects >		Include	Relation	Kisetic Parameter	Туре	Ехр	reasion	Constraint Type	Fight Hand Side
Project: Propane_Dehyd_1 = Chemistry = Estimation = V Parameters =	•	C3HB-De	Dehyd-PreExp	PreExponential	Nonlinear Produ ehydrogenat L	([C3H8-Dehydrogenation.F]) on.R]) = 17200000	(@C3H8-Dehydrogenation.RJ)	=	17200000
🖍 Relationships »	De	nyd-PreE	xp - Relationsh	ip Terms		W.			
> Beector		Rn	action	Direction	Coefficient/Expo	arasirit			
> 7% Weights -		C3H8-Def	hydrogen. · Forw	bre the		1			
¢ >	-	C3H8-Def	rydrogenatio. Reve	rse		-1			
is B 😭 🥶	1.	Mass Actio	on 🕹 Orders 📩	HHW Stee					

Experimental Data

The experiments are carried out in a fixed bed reactor (PFR), where pressure and temperature are kept constant. This is defined in the Reactor node, where the gas flow is defined as *float for pressure control*, thus it is calculated automatically along the reactor:

In the experiments, the feed consist of propane and hydrogen with a 0.8 hydrogen to propane ratio. The experimental design allows the analysis of the following effects:

- Temperature Effect: {580, 600, 620C}
- Weighted Hourly Space Velocity (WHSV) Effect : {2, 5, 8, 11 hr⁻¹}

We assume that all experiments are carried out with the same amount of feed. Catalyst mass is varied to obtain the desired space velocity values. Measured outlet flows of Propane, Propylene and byproducts are entered into Experiments \rightarrow Measurements \rightarrow SetName nodes of the provided rex file.

Parameter Estimation

In the Estimation node, all reactions and the LHHW site are selected for estimation. Bounds are open for pre-exponentials and activation energies of all reactions in Estimation \rightarrow Parameters node. In the Weights node, we select the compounds to be reconciled, and hybrid weights are generated for them:

Project Explorer <	Re	conciled M	easuremer	nts
 Projects » Project: Propane Dehvd 1 » 	Dra	g a column he Item	eader here to Total	group by that
A _B Chemistry »	•	C3H8	Moles	
✓ ₩ Estimation »		H2		
> 🕐 Parameters »		C3H6		
> 💩 Reactor		C2H6		
> 🛆 Experiments »		C2H4		
> д 🛛 Weights ¬		CH4	V	
> 🍸 Yield Calculations				

Finally, we select "Kinetics Parameters = Estimate" in the Run \rightarrow Solution Options node. The kinetic parameters are estimated by minimizing the weighted least squares prediction error of the reconciled compounds.

Model 1: Results

After running the model in <u>Propane_Dehyd_1.rex</u>, we see the optimal parameter values in the Results \rightarrow Parameters node:

Project Explorer	<	Show: <u>All Paran</u>	neters Only P	reExponential And Activa	tion Energy						
> Projects »	^ E	Estimated Parameters [Rate Units: mmol/(gram - hour)]									
Project: Propane	e_Dehyd_1 »	Rea	ction	PreExponential	Activation Energy [kJ/mol]	Component [Atm]	Order				
Will Estimation »		_		Directio	on : Forward						
> Darameter		C3H8-Deh	nydrogenati	1.88E+10	129.60	C3H8	1				
	3″	C3H8-Cra	cking	7.38E+13	221.12	C3H8	1				
		C2H4-Hyd	Irogenation	0.00E+00	0.00	C2H4	1				
> Experimen	ITS »					H2	1				
> AA Weights ¬		C3H8-Hyd	frogenolysis	1.53E+16	T 250.00	C3H8	1				
> Y Yield Calci	ulations					H2	1				
> 纋 Run Estim	ation			Directio	on : Reverse						
✓ R Results		C3H8-Deh	nydrogenati	1.09E+03	0.00	C3H6	1				
(P) Param	eters					H2	1				
😡 Rate Eo	quations										
🔪 Margir	nal Values 🗸 🗸										
🔍 📑 😫	[k Mass Action	k+1 LHHW Sit	es							

Projec	t Explorer	<	Show: All Par	rameters	Only PreEx	ponential A	nd Activation Energy	1		
>	Projects »	^	Kinetics Sit	tes						
× 100 ∣ ∧ A	Project: Propane_Dehyd_1 » Chemistry »		Sit	te	Constant	Term	PreExponential	Energy [kJ/mol]	Component [Atm]	Order
~ 1	L Estimation »		SiteMainR	Reaction	1	Term1	1.24E-08	0	H2	0.5
	> Parameters »								C3H6	1
	> 🛱 Reactor					Term2	0.00E+00	0	C3H6	1
	> 八 Experiments »					Term3	0.00E+00	0	H2	0.5
	> ⊼⊼ Weights ¬					Term4	3.12E-10	0	H2	1
	Vield Calculations					Term5	3.01E-10	0	CH4	1
	Pue Estimation					Term6	6.38E-06	0	C2H4	1
	> Jo Run Estimation					Term7	1.29E+02	①	C2H6	1
	R Results Parameters Rate Equations Marginal Values									
	 warginal values 	*	Vin atian Citan	Eman						
BA	e: 😫	••••	k Mass Actio	on k+1 LH	HW Sites					

A parameter whose solution value lies at one of the bounds is indicated with a green arrow. Arrows pointing up indicate that the parameter reached its upper bound; downward arrows indicate the lower bound. The same can be seen in the Estimation \rightarrow Parameters node if a parameter is at a bound. Relaxing the bounds may improve the model. For example, the activation energy for C3H8-Dehydrogenation reaction is upper bounded and one could increase the upper bound. However, the marginal value, which is a measure of sensitivity of the objective function to the bound, for that parameter is small as seen in Results \rightarrow Marginal Values node:

The small marginal value indicates that the reduction in the weighted least square error would be small if the upper bound is increased. Thus we keep the bounds unchanged.

Now we inspect the model predictions to data in the *Model-Data Comparison* node. The compounds profiles for the reactant and products are shown below:

Strategic Solutions through Optimization Science

In the above charts, some of the experimental points (labeled) are not consistent with the experimental trends and are likely to be outliers. For example, C_2H_4 data increases with temperature, with the only exception of SV2-T600 where less C_2H_4 is produced than the SV2-T580 set.

Parity Charts are an alternative way of displaying the experimental and predicted values. Points on the 45 degree mean exact model match to data, while overpredicted values are located to the right of that line and underprediction to the left:

Comparing the pre-exponential values of the site terms, we see that inhibition from C_2H_6 is most significant. Other inhibition terms are negligible. However, on further analysis, we found that this model has multiple solutions. One way to see this is by fixing all but one of the pre-exponentials terms in the LHHW site to zero. The results of this study are summarized below:

Run Trial	Weighted LSQ
All terms estimated (Model 1)	28.055
Only C_3H_8 Term estimated - Other Terms fixed to zero	33.763
Only C_3H_6 Term estimated - Other Terms fixed to zero	33.708
Only H ₂ (Term 3) estimated - Other Terms fixed to zero	52.699
Only H2 (Term 4) estimated - Other Terms fixed to zero	52.699
Only CH ₄ Term estimated - Other Terms fixed to zero	28.080
Only C ₂ H ₄ Term estimated - Other Terms fixed to zero	28.090
Only C_2H_8 Term estimated - Other Terms fixed to zero	28.055

From these runs, it can be seeing that the solution with all the terms optimized has nearly the same prediction error (Weighted LSQ) as the last three runs. We may draw two conclusions from these runs:

- We can eliminate the inhibition effect of C₃H₈, C₃H₆ and H₂. They are zero when estimating all terms, while estimating them separately leads to higher LSQ.
- With the available data, there is no way to separate the effects of CH₄, C₂H₄ and C₂H₆ inhibition factors. The solution obtained is very similar irrespective of whether they are all estimated simultaneously or individually. Thus, we could consider a single inhibition effect for them as a whole.

In next section, we proceed with model improvements based on this analysis.

Model 2 : Simplified LHHW Inhibition for Main Reaction

First, we ignore the effect of the outlier experimental points on the parameter estimation. This can be manually done in the Weights \rightarrow Sets node, where the weights are set to zero for these outlier points. Then, we modify the LHHW Site definition in order to consider only one combined inhibition term for CH₄, C₂H₄ and C₂H₆. To do this, in the pseudo-compounds node, the *ByProducts* variable is created as the sum of the above compounds:

Project Explorer <	Pseudo-Compounds Definition									
> -: Projects »	Drag a column header here t	o group by that c	olumn							
Project: Propane_Dehyd_2 »	Pseudo-Compound	Туре	Constant Term	Specified by Data	Conserved					
✓ ^A _{YB} Chemistry »	ByProducts	Linear Sum	0							
🛃 Units Configuration	*									
> A _B Compounds »										
AB Pseudo-Compounds »	ByProducts = [CH4] + [C2H4] + [C2H6]									
>										
> 🔺 Kinetics	Terms in ByProducts									
Rate Equations	Drag a column header here t	o group by that o	olumn							
% Notes	Corr	pound		Coefficient	/Exponent					
> 📶 Estimation »	CH4		-		1					
> 🖧 Reaction Traffic »	C2H4				1					
	C2H6				1					
	*									

Then, we define a new Site, that has only one term corresponding to the ByProducts pseudocompound:

Project Explorer	<	Sit	es		
> Projects »				Site	Constant
🗸 🗐 Project: Propane_Dehyd_2	2 »		SiteMainReactio	n	1
✓ ^A _{>B} Chemistry »		•	SiteMainReactio	on2	1
Munits Configuration		*			
> A _B Compounds »					
A Pseudo-Compound	s »	S	iteMainReact	ion2 = 1 + 0.	1[ByProducts]
>		Te	man CitaMain	Desetion	
✓ ^k → Kinetics		Te	rms: Sitemair	Reactionz	
Parameters »			Term	PreExponential	Energy [kJ/mol]
Kinetics Sites		►	Term1	1.00E-01	0.00
💊 Rate Equations		*			
% Notes					
> 📶 Estimation »		Ore	ders: SiteMaii	nReaction2 - Te	rm1
> $\frac{1}{200}$ Reaction Traffic »			Compo	nent [Atm]	Order
		►	ByProducts	-	1
		*			
R 🗄 😫 🔹	••	k	Mass Action k	LHHW Sites	

We can delete the older site (SiteMainReaction), or we can keep it without assigning it to any reaction: that way the old site will not be used in the model. The new site is selected for the main reaction:

Project Explorer	<	Kinetics - Sites						
- Projects »		Drag a column header here to group by that column						
 Project: Propane_Dehyd_2 » 			Reaction	Direction	SiteMainReaction	SiteMainReaction2		
✓ ^A _{≥B} Chemistry »		►	C3H8-Dehydrogenation	Forward				
📓 Units Configuration			C3H8-Cracking	Forward				
> A _B Compounds »			C2H4-Hydrogenation	Forward				
A Pseudo-Compounds »			C3H8-Hydrogenolysis	Forward				
> -> Reactions »			C3H8-Dehydrogenation	Reverse				
✓ ^k → Kinetics								
Parameters »								
Kinetics Sites								
Rate Equations	4							
🔍 🖹 😫 🔹		. <u>.</u>	Kinetics Sites k+1 Exponen	t				

We assign an exponent of 1 for this site in the Exponent tab.

After opening bounds for the new site in the Estimation \rightarrow Parameters node, we can run this project, as shown in the <u>Propane_Dehyd_2.rex</u> file. The compound profiles are shown below. The outliers that are not reconciled are indicated by arrows:

The LSQ decreases from 28.05 in Model 1 to 8.38 in Model 2. 92.7% of the reduction is due to the zeroing of weights for the outliers. You may use the Compare Projects tool to do further analysis. The basics for using Compare Projects are described in the last section of the Methanol Synthesis <u>example</u>. In the *By Sets and Compounds* tab, by clicking on the Absolute Difference header to sort the values, we see that the outlier points have the highest reduction in the weighted least square error:

Compare Projects <	By Sets and Compounds 🕴 🕈								
Only Deviation for Variables and Sets that are reconciled in both projects are.									
Selected Projects	Drag a column header here to group by that column								
Propane_Denyd_1									
[Propane_Dehyd_2]	Set Name	Measurement	Absolute Difference	Absolute Difference					
V III Differences			/						
🌆 Pseudo-Compounds	SV8-T620	CH4	-1.21E+01						
K+1 LHHW Sites	SV2-T600	C2H6	-3.97E+00		-				
K+1 LHHW Sites-Orders	SV8-T620	C2H6	-2.20E+00						
K+1 LHHW Sites-Bounds	SV2-T620	C3H8	-5.41E-01						
Kinetics Sites	SV2-T600	C2H4	-4.37E-01						
📶, Estimation-LHHW Sites	SV2-T580	CH4	-2.68E-01						
✓ Measurements	SV5-T580	CH4	-2.53E-01						
🔨 Objective	SV2-T600	C3H8	-2.42E-01						
🚛 Weights-History	SV5-T620	C3H6	-1.92E-01						
JT Bounds-Total	SV11-T580	CH4	-1.58E-01						
R Estimation Results	SV8-T580	CH4	-1.27E-01						
$\mathcal{R}_{\mathbf{k}}$ Reaction Traffic »	SV2-T620	C3H6	-8.91E-02						
	SV5-T580	C2H6	-8.77E-02						
	SV8-T600	C2H4	-8.27E-02		~				
	<			2	*				
🔍 🗄 😫 🚥	Total By Compou	nds By Sets By Se	ts and Compounds Charts						

LSQ reductions are indicated with a green bar, while increase are in shown in red. If you scroll down, you will see a few measurements whose LSQ worsened from Model 1 to Model 2.

Model 3 & 4: Effect of Site Inhibition on Byproduct Reactions

So far we considered Site inhibition for the main reaction only, while the reactions for byproduct formation were modeled without LHHW Sites. A look at the predicted byproduct profiles shows that the increase of CH_4 and C_2H_6 is almost linear with catalyst mass. On the other hand, the data indicates a decrease in their formation rate as catalyst mass increases, suggesting an inhibition effect. That could be due to product inhibition; we will assume that the byproducts inhibit their own formation due to competitive adsorption.

We can try assigning the same site we are using for all reactions, as it models byproduct inhibition. Thus we switch the CH_4 , C_2H_4 and C_2H_6 formation reactions from Mass Action to LHHW in Chemistry \rightarrow Kinetics node. Then the LHHW site is assigned for all of these reactions in Kinetics \rightarrow Kinetics Site node. After running this modified project, weighted LSQ actually increases, as you will see by importing the <u>Propane_Dehyd_3.rex</u> file. The LSQ worsens from 8.38 to 12.5; thus we discard this model.

We can define an additional site for byproduct inhibition, to be assigned only for byproduct reactions. This new site also has only one term for the pseudo-compound that adds CH_4 , C_2H_4 and C_2H_6 . The main reaction will have the original site, as seen in the Kinetics \rightarrow Kinetics Sites node of <u>Propane_Dehyd_4.rex</u> file:

Project Explorer	<	Ki	Kinetics - Sites						
> .: Projects »		Dra	Drag a column header here to group by that column						
 Project: Propar 	ne_Dehyd_4 »		Reaction	Direction	SiteForByProducts	SiteMainReaction2			
🗸 🗛 Chemistry »		•	C3H8-Dehydrogenation	Forward					
🌌 Units Co	nfiguration		C3H8-Cracking	Forward					
> A _B Compou	unds »		C2H4-Hydrogenation	Forward					
🌆 Pseudo-	Compounds »		C3H8-Hydrogenolysis	Forward					
\rightarrow Reaction	IS »		C3H8-Dehydrogenation	Reverse		<u> </u>			
✓ ^k → Kinetics									
🕐 Para	meters »								
💥 Kine	tics Sites								
😡 Rate Equ	ations								
% Notes									
R 🖹 😫		<u>k</u>	\rightarrow Kinetics Sites $\frac{k}{k+1}$ Expon	ent					

In the Estimation \rightarrow Parameters node, we open the bounds for the pre-exponential and activation energy in the new site. We also open bounds between one and two for the order of the ByProducts in order to allow for stronger inhibition as byproducts build up:

Project Explorer	<	Sites							
> Projects »	^	Site						Constar	nt Constant Max
Project: Propane_Dehyd_4	»	SiteMain	Reaction2					1	1 1
> 🗛 Chemistry »		SiteForBy	SiteForByProducts 1						
✓ ∰, Estimation »									
> 🕐 Parameters »		Terms: Sit	eMainReaction2						
> 🤠 Reactor		Term	PreExponential Min	PreExponential	PreExponential Max	Energy Te Min	rm Energ	y [kJ/mol]	Energy Term Max
> 📥 Experiments »		Term1	1.00E-04	6.13E+02	1.00E+04	-5	0.00	0.00	0.00
> 🖄 Weights ¬									
> Y Yield Calculations		Orders: Sit	eMainReaction2 - 1	Term1					
> 纋 Run Estimation			-			0-1		Order	Orden Mars
> R Results	~		L. L	omponent [Atm]		Ord	ermin	Order	Order Max
		ByProduce	ts				1		1 1
🔍 🖹 😫	••••	k Mass Act	on k+1 LHHW Sites 🛓	Rate Bounds					

After running the project we now get a 25% reduction of LSQ, from 8.38 (Model 2) to 6.29 in this Model 4.

You can see the more curved profile for the byproduct in the chart below. (Outliers not reconciled are indicated with arrows)

Further Studies

The Reaction Traffic node shows that C_2H_6 is produced from two reactions. By enabling the carbon traffic feature, it is clear that one of these paths is very small. You may eliminate the weaker path and check the impact on the predictive ability of the model.

References

1. A. Farjoo, F. Khorasheha, S. Niknaddaf, M. Soltani "Kinetic modeling of side reactions in propane dehydrogenation over Pt-Sn/γ-Al2O3 catalyst". *Scientia Iranica C (2011) 18 (3), 458–464*

