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1. Motivation
Use cases and benefits of ROMs



Outer-loop applications

𝑓
𝑦𝑧

“Computational applications that form outer loops 

around a model – where in each iteration an input 𝑧
is received and the corresponding model output

𝑦 = 𝑓(𝑧) is computed, and an overall outer-loop result 

is obtained at the termination of the outer loop.”

Peherstorfer, W., Gunzburger, SIAM Review, 2018

Examples

• Optimization

outer-loop result = optimal design

• Uncertainty propagation

outer-loop result = estimate of statistics of interest

• Inverse problems

• Data assimilation

• Control problems

• Sensitivity analysis

forward model

outer-loop application



a revolution in the world around us

needing new data-enabled computational science and engineering

New Technologies + Data + Computational Power



Data + Models:

real-time adaptive emergency response

SENSE INFER PREDICT ACT

Lieberman, Fidkowski, W., van Bloemen Waanders, Int. J. Num. Meth. Fluids, 2013



Data + Models:
real-time adaptive teaching & learning

SENSE INFER PREDICT ACT

U.S. Department of Education First in the World Fly-by-Wire project   fbw.mit.edu
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Data + Models:

self-aware aerospace vehicles

SENSE INFER PREDICT ACT

Singh & W., AIAA J., 2017



Model reduction leverages an offline/online

decomposition of tasks

Offline

• Generate snapshots/libraries, using high-fidelity models

• Generate reduced models

Online

• Select appropriate library records and/or reduced models

• Rapid {prediction, control, optimization, UQ} using

multi-fidelity models



Reduced models enable rapid prediction, 

inversion, design, and uncertainty quantification

of large-scale scientific and engineering systems. 

1 modeling the data-to-decisions flow 2 exploiting synergies between 

physics-based models & data 3 principled approximations to reduce 

computational cost 4 explicit modeling & treatment of uncertainty



2. Projection-based model reduction
extracting the essence of complex problems to make them 
easier and faster to solve

= + = +

=

=



Start with a 
physics-based 
model

large-scale and 
expensive to solve

Arising, for example, from systems of ODEs or spatial 
discretization of PDEs describing the system of interest

− which in turn arise from governing physical 
principles (conservation laws, etc.)



Example:
CFD systems

modeling the flow over 
an aircraft wing



Example:
modeling 
combustion 
instability • 𝐱(𝑡): vector of 𝑁 reacting flow unknowns

𝑝′, 𝑢′, 𝑇′, 𝑌𝑜𝑥
′ discretized over computational domain

• 𝐩: input parameters

e.g., fuel-to-oxidizer ratio, combustion zone length, 

fuel temperature, oxidizer temperature

• 𝐮(𝑡): forcing inputs

e.g., periodic oscillation of inlet mass flow rate, 

stagnation temperature, back pressure

• 𝐲(𝑡): output quantities of interest

e.g., pressure oscillation at sensor location

P, kPa

T, K

Q, MW/m3

YCH4



Which 
states are 
important?

Is there a low-
dimensional 
structure 
underlying the 
input-output map?

Inputs State Outputs

“Controllable” modes 

(“Reachable” modes)

• easy to reach, require 

small control energy

• dominant eigenmodes

of a controllability

gramian matrix

“Observable” modes

• generate large output 

energy

• dominant eigenmodes

of an observability 

gramian matrix

u x y



Which 
states are 
important?

Is there a low-
dimensional 
structure 
underlying the 
input-output map?

• Rigorous theories and scalable algorithms

in the linear time-invariant (LTI) case

– Hankel singular values

• Strong foundations for linear

parameter-varying (LPV) systems

− handling high-dimensional parameters 

can be a challenge

• Many open questions for the nonlinear case

− linear methods are founded on the 

notion of a low-dimensional subspace

− works well for some nonlinear problems 

but certainly not all

− additional challenges related to efficient 

solution of the ROM



Reduced 
models

low-cost but accurate 

approximations of

high-fidelity models

via projection onto a 

low-dimensional 

subspace

ROM

FOM
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What is the connection between reduced order modeling and machine learning?

Machine learning

“Machine learning is a field of computer science 

that uses statistical techniques to give computer 

systems the ability to "learn" with data, without 

being explicitly programmed.” [Wikipedia]

Reduced order modeling

“Model order reduction (MOR) is a

technique for reducing the computational 

complexity of mathematical models in 

numerical simulations.” [Wikipedia]

The difference in fields is perhaps largely one of history and perspective: model 

reduction methods have grown from the scientific computing community, with a focus 

on reducing high-dimensional models that arise from physics-based modeling, 

whereas machine learning has grown from the computer science community, with a 

focus on creating low-dimensional models from black-box data streams. Yet recent 

years have seen an increased blending of the two perspectives and a recognition of 

the associated opportunities. [Swischuk et al., Computers & Fluids, 2018]



3. Computing the basis
Many different methods to identify the low-dimensional subspace



(Some)
Large-Scale 
Reduction 
Methods

Different mathematical 
foundations lead to 
different ways to 
compute the basis and 
the reduced model

Overview in Benner, Gugercin
& Willcox, SIAM Review, 2015

• Proper orthogonal decomposition (POD) (Lumley, 1967; 
Sirovich, 1981; Berkooz, 1991; Deane et al. 1991; Holmes et al. 1996)

– use data to generate empirical eigenfunctions

– time- and frequency-domain methods

• Krylov-subspace methods (Gallivan, Grimme, & van Dooren, 1994; 
Feldmann & Freund, 1995; Grimme, 1997, Gugercin et al., 2008)

– rational interpolation

• Balanced truncation (Moore, 1981; Sorensen & Antoulas, 2002; Li & 
White, 2002)

– guaranteed stability and error bound for LTI systems

– close connection between POD and balanced 
truncation

• Reduced basis methods (Noor & Peters, 1980; Patera & Rozza, 2007)

– strong focus on error estimation for specific PDEs

• Eigensystem realization algorithm (ERA) (Juang & Pappa, 

1985), Dynamic mode decomposition (DMD) (Schmid, 2010), 
Loewner model reduction (Mayo & Antoulas, 2007)

– data-driven, non-intrusive



Computing the Basis:
Proper Orthogonal 
Decomposition 
(POD)

(aka Karhunen-Loève
expansions, Principal 
Components Analysis, 
Empirical Orthogonal 
Eigenfunctions, …)

• Consider K snapshots [Sirovich, 1991]

(solutions at selected times or parameter values)

• Choose the n basis vectors

to be left singular vectors of the snapshot matrix, with

singular values

• This is the optimal projection in a least squares 

sense:

• Form the snapshot matrix



4. Nonlinear model reduction
General projection framework applies, but leads to complications



Projection-
based nonlinear 
reduced models

approximation of

high-fidelity models

via projection onto a 

low-dimensional 

subspace

𝐫 = 𝐕 ሶ𝐱𝑟 − 𝑓 𝐕𝐱𝑟 , 𝐩, 𝐮
𝐲𝐫 = 𝑔(𝐕𝐱𝑟 , 𝐩, 𝐮)

ROM
dimension is reduced, but 

evaluating nonlinear term still 

scales with large dimension 𝑁

FOM



Nonlinear 
POD ROMs

For nonlinear 
systems, standard 
POD projection 
approach leads to a 
model that is low 
order but still 
expensive to solve

• The cost of evaluating the nonlinear term

still depends on N, the dimension of the

large-scale system

• Can achieve efficient nonlinear reduced models via 

interpolation, e.g., (Discrete) Empirical Interpolation 

Method [Barrault et al., 2004; Chaturantabut & Sorensen, 2010], 

Missing Point Estimation [Astrid et al., 2008], GNAT 
[Carlberg et al., 2013]

ROMFOM



Discrete Empirical 
Interpolation 
Method (DEIM)

Additional layer of 
approximation to 
make the reduced-
order nonlinear term 
fast to evaluate

Chaturantabut & Sorensen, 
SISC, 2010

• Collect snapshots of 𝐟 𝐱, 𝐮 ; compute DEIM basis 𝐔 for the 

nonlinear term (use POD to identify a linear subspace)

• Select 𝑚 interpolation points in 𝐏 ∈ ℝ𝑚×𝑁

at which to sample 𝐟

• Approximate 𝐟𝑟 𝐱𝑟 , 𝐮 :

• Considerable success on a range of problems

• But some open challenges

– for strongly nonlinear systems, require so many DEIM 

points that ROM is inefficient (e.g., Huang et al., AIAA 2018)

– introduces additional approximation; difficult to 

analyze error convergence, stability, etc.

𝑛 × 𝑚
(precompute)

𝐕𝑇𝐟(𝐕𝐱r, 𝐮) ≈ 𝐕𝑇𝐔(𝐏𝐓𝐔)−1𝐏𝑇𝐟(𝐕𝐱𝑟, 𝐮)

evaluate just
𝑚 entries of 𝐟



Linear Model
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FOM: 

ROM: ROM: 

FOM: 

Precompute the ROM matrices: Precompute the ROM matrices and tensor:

Quadratic Model



Quadratic-
bilinear (QB) 
systems 

Advantages:

• efficient 
offline/online 
decomposition

• amenable to 
analysis (errors, 
stability, etc.)
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• Quadratic tensor

• Bilinear interaction: 

ROM: 

FOM: 



Polynomial 
systems

Could keep going to 

higher order

Model becomes more 

complex but retains 

efficient offline/online 

decomposition

2828

FOM: 

ROM: 

Possibility to pre-compute reduced tensors is major advantage 



5. Error analysis and guarantees
(or lack thereof)



• Strong theoretical foundations in the LTI 
case (error bounds, error estimators)

• Solid theoretical foundations for some 
classes of linear parametrized PDEs 
(error estimators)

• Error indicators may be available
(e.g., residual)

• Few/no guarantees available otherwise

• Nonlinear systems are a particular 
challenge

• Many important open research 
questions

Error 
analysis and 
guarantees

What rigorous 
statements can we 
make about the quality 
of the reduced-order 
models?



• POD
Hinze M. and Volkwein, S. Error estimates for abstract linear-quadratic optimal control 
problems using proper orthogonal decomposition, Comput. Optim. Appl., 39 (2008), pp. 
319–345.

• Reduced basis method has a strong focus on error estimates 
that exploit underlying structure of the PDE

Elliptic PDES: 
Patera, A. and Rozza, G. Reduced basis approximation and a posteriori error estimation 
for parametrized partial differential equations, Version 1.0, MIT, Cambridge, MA, 2006.

Prud’homme, C., Rovas, D., Veroy, K., Maday, Y., Patera, A. and Turinici, G. Reliable 
real-time solution of parameterized partial differential equations: Reduced-basis output 
bound methods, J. Fluids Engrg., 124 (2002), pp. 70–80.

Veroy, K., Prud'homme, C., Rovas, D., and Patera, A. (2003). A posteriori error bounds 
for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic 
partial differential equations. AIAA Paper 2003-3847, Proceedings of the 16th AIAA 
Computational Fluid Dynamics Conference, Orlando, FL.

Veroy, K. and Patera, A. Certified real-time solution of the parametrized steady 
incompressible Navier-Stokes equations: Rigorous reduced-basis a posteriori error 
bounds, Internat. J. Numer. Methods Fluids, 47 (2005), pp. 773–788.

Parabolic PDES:
Grepl, M. and Patera, A. A posteriori error bounds for reduced-basis approximations of 
parametrized parabolic partial differential equations, M2AN Math. Model. Numer. Anal., 
39 (2005), pp. 157–181.

Error 
analysis and 
guarantees

What rigorous 
statements can we 
make about the quality 
of the reduced-order 
models?



6. Adaptive and
Data-driven ROMs

Towards effective, efficient ROMs for a
broader class of complex systems



Model reduction leverages an offline/online

decomposition of tasks

Offline

• Generate snapshots/libraries, using high-fidelity models

• Generate reduced models

Online

• Select appropriate library records and/or reduced models

• Rapid {prediction, control, optimization, UQ} using

multi-fidelity models



Classically

Data-driven reduced models

• Reduced models are built and used in a static way:

– offline phase: sample a high-fidelity model, build a low-

dimensional basis, project to build the reduced model

– online phase: use the reduced model

• Recognize that conditions may change and/or initial 

reduced model may be inadequate

– offline phase: build an initial reduced model

– online phase: learn and adapt using dynamic data



A data-driven offline/online approach

Offline

• Generate snapshots/libraries, using high-fidelity models

• Generate reduced models

Online

• Dynamically collect data from sensors/simulations

• Classify system behavior

• Select appropriate library records and/or reduced models

• Rapid {prediction, control, optimization, UQ} using

multi-fidelity models

• Adapt reduced models

• Adapt sensing strategies

models

models
+

data



• Adaptation and learning are data-driven

• sensor data collected online

(e.g., structural sensors on board an aircraft)

• simulation data collected online

(e.g., over the path to an optimal solution)

but the physics-based model remains as an 

underpinning.

• Achieve adaptation in a variety of ways:

• adapt the basis (Cui, Marzouk, W., 2014)

• adapt the way in which nonlinear terms are approximated 

(ADEIM: Peherstorfer, W., 2015)

• adapt the reduced model itself (Peherstorfer, W., 2015)

• construct localized reduced models; adapt model choice 

(LDEIM: Peherstorfer, Butnaru, W., Bungartz, 2014)

Data-driven
reduced 
models

exploiting the 
synergies of physics-
based models and 
dynamic data



Consider a system with observable and

latent parameters



Classical approaches build the

new reduced model from scratch



A dynamic reduced model adapts in response 

to the data, without recourse to the full model



Data-driven 
reduced 
models

• adapt directly
from sensor data

• avoid
(expensive) 
inference of latent 
parameter

• avoid recourse to 
full model

• incremental SVD methods (exploit structure of a 

rank-one snapshot update)

• operator inference methods (non-intrusive)

• convergence guarantees in idealized noise-free case



Example: 
locally 
damaged plate

High-fidelity:

finite element model

Reduced model:

proper orthogonal 

decomposition

thickness, no damage thickness, damage up to 20%

deflection, no damage deflection, damage up to 20%



Data-driven 
adaptation: 
locally damaged 
plate

Adapting the 
ROM after 
damage

Speedup of 104

cf. rebuilding 
ROM



43

Localized and adaptive reduced models

• Automatic model management
based on machine learning

– Cluster set of snapshots
into
(using e.g. k-means)

– Create a separate local reduced
model for each cluster

– Derive a basis  𝑄 ∈ ℝ𝑁×𝑚 ,𝑚 ≪ 𝑁
to obtain low-dimensional indicator
𝑧𝑖 = 𝑄𝑇𝑥𝑖 that describes state 𝑥𝑖

– Learn a classifier 𝑔: 𝒵 → 1, … , 𝑘 to
map from low-dimensional
indicator 𝑧 to model index
(using e.g. nearest neighbors)

– Classify current state/indicator online
and select model

→  Localized DEIM (LDEIM): Reduced models are tailored to local system behavior

[Peherstorfer, Butnaru, W., 
Bungartz; SISC 2014]
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Localized and adaptive reduced models

• Example: Reacting flow with one-step reaction

• Governed by convection-diffusion-reaction equation

• Exponential nonlinearity (Arrhenius-type source term)

Temperature field of flame for 
different parameter configurations

POD-LDEIM: Combining 4 local 
models with machine-learning-
based model management 
achieves accuracy improvement 
by up to two orders of magnitude
compared to a single, global model

[Peherstorfer, Butnaru, W., 
Bungartz; SISC 2014]



7. Conclusions and Challenges



Conclusions

• Many engineered systems of the future will have 

abundant sensor data 

• Many systems of the future will leverage edge computing

→ an important role for reduced models, adaptive modeling,

multifidelity modeling, uncertainty quantification

→ important to leverage the relative strengths of models

and data



• Nonlinear parameter-varying systems

→ moving beyond linear subspaces

→ effective & efficient approximation of 
nonlinear terms

→ adaptive, data-driven methods

• Multiscale problems

→ effects of unresolved scales (closure)

→ ROMs across multiple scales

• Lack of rigorous error guarantees

→ especially for nonlinear problems

• Model inadequacy

• Intrusiveness of most existing model 
reduction methods has limited their impact

Challenges

Where do existing 
theories and 
methods fall short?
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