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Abstract. Frequency response analysis in structural dynamics usually requires solving large
dynamical systems of the form (−ω2M + iωD + K)u(ω) = f(ω), which result from a FE
discretization. A straightforward solution of big systems requires a high computational cost;
therefore several Model Order Reduction (MOR) techniques have been developed in the last
decades to obtain faster and efficient results. Between them interpolatory approaches have
gained importance for solving second order dynamical systems. This work presents and com-
pares ten MOR techniques which are suitable for structural dynamics problems. These are:
Guyan-Irons Reduction, Improved Reduction System, Dynamic Reduction, Real Modal Anal-
ysis, Complex Modal Analysis, Craig-Bampton Method, and Interpolatory MOR methods like
Multi-point Padé Approximation, the Krylov-based Galerkin Projection and the Derivative-
based Galerkin Projection. A brief summary of the theoretical background is presented for
each method. A first numerical example shows the applicability for damped systems and a sec-
ond example shows suitability of the Interpolatory MOR methods for industrial applications,
using data from a commercial FE software (ANSYS®).
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1 INTRODUCTION

The equation of motion resulting from a finite element discretization of a mechanical system
is given by

Mü(t) + Du̇(t) + Ku(t) = f(t) (1)

Applying a Fourier transformation to eq. (1), with u(ω) = F
(
u(t)

)
and f(ω) = F

(
f(t)

)
leads

to
(−ωj2M + iωjD + K)u(ωj) = f(ωj) j = 1, 2, 3...nω (2)

which is the equation of motion in the frequency domain, where M, D, K ∈ RN×N are the
mass, damping and stiffness matrix respectively, f ∈ RN×1 is the load vector (force vector) and
u ∈ RN×1 is the displacement vector. nω is the number of times that u(ω) is computed in eq.
(2) in the scope of frequency response analysis. If nω and N are large numbers solving eq.(2)
for u(ωj) becomes computationally expensive, in these cases one may search for a reduced-
order model which would lead to a lower computational time. Such a reduced-order model is
achieved using a suitable MOR technique. The main idea of MOR techniques is to find a vector
space spanned by the columns of V ∈ CN×nr , with nr � N , which maps a reduced set of
degrees of freedom (dofs) ur ∈ Cnr×1 into the original set of degrees of freedom u, such that

u ≈ ũ = Vur (3)

where ũ is the approximation of u. In the following the approximation will not be labeled
anymore. By substituting the approximation of u given by eq. (3) in eq. (2), there exists an
error er defined by

er = (−ω2M + iωD + K)Vur − f (4)

This error is not contained in the Ran(V), therefore it is said to be in the null space of V, i.e.
the transpose of V is orthogonal to er,

VH
(
(−ω2M + iωD + K)Vur − f

)
= 0. (5)

Where H is used for the conjugate transpose of a matrix. Eq. (5) is equivalent to performed
Galerkin projection [14] or applied the least square method to the overestimated system of
equations resulting from substituting eq. (3) in eq. (2). From eq. (5) the following reduced
order model is achieved:

(−ωj2Mr + iωjDr + Kr)ur(ωj) = fr(ωj) (6)

where Mr, Dr, Kr ∈ Cnr×nr , fr ∈ Cnr×1 are defined by

Mr = VHMV Dr = VHDV Kr = VHKV
fr = VHf

(7)

For the construction of that matrix V different approaches have been proposed in the field
of structural mechanics. A classical approach to construct V is using a modal decomposition;
this idea was in the mathematics community since the 18th century and it uses the superposition
principle, which was stated by Bernoulli in 1753 [1]. With the development of the finite element
method (FEM) the modal decomposition has been extensively used to reduce large numerical
models leading to a set of decoupled equations, whose solutions are straightforward. In 1965
Guyan and Irons presented the first condensation method, Guyan-Irons Reduction [2, 3]. A
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new paradigm was introduced in 1968 by Craig and Bampton [6], the Craig-Bampton method
which introduced the concept of sub structuring, has allowed the achievement of computing
large complex systems and is suitable for parallelization. A similar procedure to that of the
Guyan-Irons reduction but for dynamical analysis was introduced in 1978 by Leung [4], the
dynamic condensation (Dynamic Reduction) which allows to reduce a system about a frequency
of interest. In 1991 Blair et. al. [19] presented an iterative process to the already established
Improved Reduction System method presented by O’Callahan [17] in 1989. From system and
control field the moment matching method, i.e. the Krylov Subspace method was reformulated
in 1989 by Craig and Su [7] to solve second order dynamical systems, thus the reduced-order
model preserves the second order form of the original model, avoiding the structural dynamics
model be transformed into the first order formulation (state space form), which destroys the
meaning of the original model. It turns out that the Krylov subspace method results in a very
efficient method in computational cost and its parallelization could be easily achieved. In this
contribution ten MOR techniques are reviewed and classified as follows

1. Modal Decomposition Methods

• Real Modal Analysis (RMA)

• Complex Modal Analysis (CMA)

2. Condensation Methods

• Guyan-Irons Reduction (GR)

• Improved Reduction System (IRS)

• Dynamic Reduction (DR)

3. Component Mode Synthesis Methods

• Craig-Bampton Method (CB)

4. Interpolatory Methods

• Multi-point Padé Approximation (mP)

• Krylov-based Galerkin Projection (KGP)

• Derivative-based Galerkin Projection (DGP)

The general procedure of a frequency response analysis using MOR techniques is summarized
as follows:

1. Define a frequency interval ∆ω = [ωL ωR]

2. Define a set of reduced dofs or generalized coordinates ur and construct the basis for the
matrix V, see secs. 2 - 5, such that Vur approximates the physical coordinates u.

3. Compute the reduced force vector and the reduced matrices of eq. (7)

4. Compute ur(ω) in eq. (6) and use eq.(3) to get u in the interval ∆ω.

(a) Define nω frequency points in ∆ω, those frequency points are denominated ωj .
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(b) Compute ur(ωj) nω times, i.e. for each ωj

ur(ωj) =
(
− ω2

jMr + iωjDr + Kr

)−1
fr j = 1, 2, 3, ..., nω (8)

(c) Project the vector ur into the Ran(V) to get the solution u(ωj) of the original model
using (3):

u(ωj) = Vur(ωj) (9)

2 MOR: Modal Decomposition Methods

This section presents an overview of the classical modal decomposition methods

• Real Modal Analysis

• Complex Modal Analysis

2.1 Real modal analysis

Real Modal Analysis uses a set of natural vibration forms (mode shapes) of the full-model
as the vector space which contains u, i.e. the displacement vector u(ω) is approximated by the
set of nr natural modes using the expansion theorem [15]

u(ω) =
nr∑
j=1

φjηj(ω)

= [φ1 φ2 φ3 · · ·φnr ]η
= Φη (10)

where the modal matrix Φ ∈ RN×nr and the vector of modal coordinates η ∈ Rnr×1 are V and
ur in eq. (3) respectively.
The modal matrix Φ is obtained from the free vibration problem of eq. (2), which appears when
f and D are equal to zero. Then a generalized eigenvalue problem is formulated:

(K− ω2
jM)φj = 0 j = 1, 2, 3, ..., nr (11)

where the eigenvalue λj = ω2 is the jth natural frequency of the system and the eigenvector
φj ∈ RN×1 is the jth mode shape, which is normalized for convenience. The mode shapes are
mutually orthogonal to the mass and stiffness matrices, i.e.

φTj Mφi =

 = 0 for j 6= i orthogonality

= mj for j = i

 (12)

φTj Kφi =

= 0 for j 6= i orthogonality

= kj for j = i

 (13)

If the damping matrix D is defined to be proportional to the mass and stiffness matrices, the
mode shapes are also mutually orthogonal to the damping matrix D. Thus, due to the orthog-
onality property of the mode shapes of the modal matrix Φ, the reduced-order model given by
eq. (6) results in a set of nr decoupled equations of the form

(−ω2mj + iωcj + kj)ηj(ω) = φTj f(ω) j = 1, 2, 3, . . . , nr (14)
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2.2 Complex Modal Analysis

In case of non-proportional damping a reduced decoupled system is obtained using a com-
plex modal analysis, i.e. using complex eigenvectors and eigenvalues. Therefore the second
order ordinary differential equations given by eq. (1) is expressed as a 2N-dofs first order dif-
ferential equations, i. e. the state-space formulation

ż(t) = Az(t) + Bf(t) (15)

where the state vector z ∈ R2N×1, the state matrix A ∈ R2N×2N , the input matrix B ∈ R2N×N ,
and the input vector f ∈ R2N×1 are defined by

z =

[
u
u̇

]
; A =

[
0 I

−M−1K −M−1D

]
; B =

[
0

M−1

]
(16)

Considering the free vibration problem, i.e. the external force vector f equal to zero and using
a solution of the form z =

∑nr
k=1 e

λkφ̂k leads to

λkφ̂k = Aφ̂k k = 1, 2, ..., nr (17)

which is the standard eigenvalue problem. A is a real and nonsymmetric matrix, therefore the
2N eigenvalues must either be real or they must occur in complex conjugate pairs and the modal
matrix is composed by N eigenvectors and their N complex conjugates. The right eigenvectors
(eigenvectors of A) φ̂j and φ̂k are not orthogonal with respect to the matrix A. Nevertheless the
eigenvalues of A and the eigenvalues of AT are the same. Furthermore the right eigenvectors
φ̂k , with k = 1, 2, ..., nr, are biorthogonal with respect to the matrix A to the left eigenvectors
ψ̂j (eigenvectors of AT ), with j = 1, 2, ..., nr, [16]. For convenience the normalization of the
eigenvectors is done such that

ψ̂
T

j φ̂k = δkj, j, k = 1, 2, ..., nr (18)

holds true. Then nr right eigenvectors of A are used as a basis for a vector space which con-
tains z approximately, i.e. the expansion theorem permits to represent the state vector z as a
combination of the right eigenvectors of A

z =
nr∑
k=1

φ̂kξk(t) (19)

or in the frequency domain

z =
nr∑
k=1

φ̂kξ̂k(iω) (20)

where ξ̂k(iω) = F
(
ξk(t)

)
. Taking Fourier transform of eq. (15) and using eq.(20) leads to

iωξ̂k(iω) = λkξ̂k(ω) + ψ̂
T
Bf(iω) (21)

or

ξ̂k(iω) =
ψ̂
T
Bf(iω)

iω − λk
(22)

where the set of modal coordinates ξ̂ = [ξ̂1, ξ̂2, .., ξ̂nr ]
T ∈ Cnr×1, and the set of right eigenvec-

tors Φ̂ = [φ̂1, φ̂2, ..., φ̂nr ] ∈ C2N×nr are the reduced set of dofs ur and the matrix V in eq. (3)
respectively and the set of left eigenvectors Ψ̂ = [ψ̂1, ψ̂2, ..., ψ̂nr ] ∈ C2N×nr is VH in eq. (5)
and (7).
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3 MOR: Condensation Methods

This section addresses the formulation of the following condensation methods:

• Guyan-Irons Reduction

• Improved Reduction System

• Dynamic Reduction

The main approach of the condensation methods is to have a linear dependence between dofs,
i.e. if a set of dependent dofs, ud ∈ R(N−nr)×1, can be expressed as linear dependent of a set of
active dofs, ua ∈ Rnr×1, then a condensation method can be applied to the system, which leads
to a reduced-order model. Assuming the above statement is valid for a structural system, the
total displacement vector is divided in two groups:

u =

[
ud
ua

]
(23)

then the linear relation between ua and ud is created through the linear transformation matrix
T as follows:

ud = Tua (24)

Thus, the total displacement vector is defined by

u =

[
T
I

]
ua (25)

where [T I]T and the set of active dofs ua are V and the reduced vector of dofs ur in eq. (3)
respectively.

3.1 Guyan-Irons Reduction

The Guyan-Iron Reduction [2, 3] neglects the inertial and the damping contributions in eq.
(2), i.e. it considers just the static case, for this reason it is called static condensation. Then the
static equation system is divided as follows[

Kdd Kda

Kad Kaa

][
ud
ua

]
=

[
fd
fa

]
(26)

The linear relation between dofs given by eq. (24) is obtained by solving for ud in the first row
of eq. (26) and is given by

ud = Tgua + ue (27)

where Tg is the Guyan linear transformation matrix defined by

Tg = −K−1dd Kda (28)

and ue = K−1dd fd is the Guyan Reduction-error which would emerge if fd is not the zero vector.
It is also interpreted as a correction factor which guaranties that the exact solution of the full-
order model is recovered when static systems are considered. Thus the displacement vector u
can be written as a function of the active dofs ua:[

ud
ua

]
=

[
−K−1dd Kda

I

]
ua +

[
K−1dd fd

0

]
(29)
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Usually, the set of depended dofs are the force-free ones, i.e. fd = 0. From (29) the Guyan
projection matrix is given by

Vg =

[
Tg

I

]
=

[
−K−1dd Kda

I

]
(30)

Vg and ua are the matrix V and the reduced set ur in eq. (3) respectively. Therefore the
reduced-order model, eq. (6), is given by:

(−ω2Mg + iωDg + Kg)ua = fg (31)

Applying equations given by (7) the following Guyan reduced matrices are obtained:

Mg = VT
g MVg =

[
(−K−1dd Kda)

T I
] [Mdd Mda

Mad Maa

][
(−K−1dd Kda)

I

]
= Maa + (−K−1dd Kda)

TMdd(−K−1dd Kda) + Mad(−K−1dd Kda) + (−K−1dd Kda)
TMda

= Maa + TT
g MddTg + MadTg + TT

g Mda (32)

Dg = VT
g DVg =

[
(−K−1dd Kda)

T I
] [Ddd Dda

Dad Daa

][
(−K−1dd Kda)

I

]
= Daa + (−K−1dd Kda)

TDdd(−K−1dd Kda) + Dad(−K−1dd Kda) + (−K−1dd Kda)
TDda

= Daa + TTDddTg + DadTg + TT
g Dda (33)

Kg = VT
g KVg =

[
(−K−1dd Kda)

T I
] [Kdd Kda

Kad Kaa

][
(−K−1dd Kda)

I

]
= Kaa + (K−1dd Kda)

TKddK
−1
dd Kda + Kad(−K−1dd Kda)− (K−1dd Kda)

TKda

= Kaa + TT
g Kda (34)

fg = VT
g f =

[
TT
g I

] [fd
fa

]
= TT

g fd + fa = fa (35)

Usually, to save computational time only the first term of the right hand side of eqs. (32) and
(33) are considered to define Maa and Daa respectively.

3.2 Improved Reduction System (IRS)

In the derivation of Guyan-Irons transformation matrix the inertial terms of eq. (2) were
excluded, in the IRS [17] procedure they are considered to have an improved solution. Then (2)
is subdivided in blocks having the dependent set of dofs force-free, i.e. fd = 0:−ω2

[
Mdd Mda

Mad Maa

]
+

[
Kdd Kda

Kad Kaa

][ud
ua

]
=

[
0
fa

]
(36)

The first row of (36) is given by

(Kdd − ω2Mdd+)ud + (Kda − ω2Mda)ua = 0 (37)
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Therefore the linear transformation defined by eq. (24) is given by

ud = −(Kdd − ω2Mdd)
−1(Kda − ω2Mda)ua (38)

(Kdd−ω2Mdd)
−1 can be approximated by the first three terms of the Taylor series about ω0 = 0,

i.e. using the binomial series [18] until the third term

ud = −(K−1dd + ω2K−1dd MddK
−1
dd )(Kda − ω2Mda)ua

= −(K−1dd + ω2K−1dd MddK
−1
dd )(Kda − ω2Mda)ua

= −
(
K−1dd Kda − ω2K−1dd Mda + ω2K−1dd MddK

−1
dd Kda − ω4K−1dd MddK

−1
dd Mda

)
ua

=
(
−K−1dd Kda + K−1dd

(
Mda + Mdd(−K−1dd Kda)

)
ω2 +O(ω4)

)
ua (39)

The frequency dependency in eq. (39) is eliminated using the following expression which comes
from eq. (31) in case of free vibration of the reduced-Guyan model:

ω2ua = M−1
g Kgua (40)

Substituting eq. (40) in eq. (39), the set ud is given by

ud = Tirsua (41)

where Tirs is given by

Tirs = Tg + τ irs (42)

where Tg is given by eq. (28) and the inertial-corrective factor τ irs is given by

τ irs = K−1dd (Mda + MddTg)M
−1
g Kg (43)

Thus the IRS projection matrix is given by:

Virs =

[
Tirs

I

]
=

[
τ irs + Tg

I

]
(44)

A better IRS projection matrix can be achieved by an iterative procedure which was introduced
by Blair et al. [19]. The reduced system matrices that Guyan reduction provides are used in (43)
as updating matrices to produce the IRS transformation matrix. Thus, it is possible to update
again the matrices to be used in an iterative scheme. The substitution of the reduced Guyan
matrices M−1

g and Kg in (43) by the new updated IRS matrices results in

Tirs,i = K−1dd (Mda + MddTg)M
−1
irs,i−1Kirs,i−1 + Tg

= τ irs,i + Tg (45)

The ith IRS projection matrix is now given by

Virs,i =

[
Tirs,i

I

]
=

[
τ irs,i + Tg

I

]
(46)

with:

M−1
irs,0 = M−1

g (47)

Kirs,0 = Kg (48)

The reduced-order model, eq. (6), using the IRS projection matrix defined in eq. (46) is given
by

(−ω2Mirs,i + iωDirs,i + Kirs,i)ua = firs,i (49)

These reduced matrices and vector are computed analogously to eqs. (32) - (35).
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3.3 Dynamic Reduction

The dynamic reduction [4] is obtained considering the undamped version of eq. (2) which is
given by

(−ω2M + K)u(ω) = f(ω) (50)

Subdividing eq. (50) in blocks yields[
Zdd Zda

Zad Zaa

][
ud
ua

]
=

[
0d
fa

]
(51)

where
Z(ω) = −ω2M + K (52)

Solving the first row of (51) for ud yields

ud = −Zdd(ω)−1Zda(ω)ua (53)

Thus the displacement vector u can be written as a function of the active dofs ua and a chosen
frequency ω as follows:

u =

[
ud
ua

]
ua = Vdyua (54)

where

Vdy =

[
Tdy

I

]
=

[
−Z−1dd (ω)Zda(ω)

I

]
(55)

ua and Vdy are the reduced vector ur and the matrix V in eq. (3) respectively. Therefore the
reduced-order model , eq. (6), is given by

(−ω2Mdy + iωDdy + Kdy)ua = fdy (56)

The reduced matrices and reduced force vector are obtained using eq. (7) analogously to eqs.
(32)-(35).

4 MOR: Component-Mode Synthesis Methods

The component-mode synthesis approach consists in the subdivision of a mechanical model
into substructures using the following classification for the dofs [15], see fig. 1:
I: interior coordinates (i as subscript in matrix notation).
R: rigid-body coordinates (r as subscript in matrix notation).
E : excess boundary coordinates (e as subscript in matrix notation).
B = R + E : boundary coordinates (b as subscript in matrix notation) with the assumption that
dofs with external loads are assumed to be boundary dofs.

R

u1
θ1

u3
θ3

u4
θ4

u5
θ5

u6
θ6

u7
θ7

u8
θ8

u9
θ9

I E

Figure 1: FE discretization of a catiliver beam.
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The equation of motion of an undamped sub-structure, identified by the superscript α, is
given by

M(α)ü(α) + K(α)u(α) = f (α) + r(α) (57)

where Mα, Kα, uα and fα are the mass matrix, stiffness matrix, displacement vector and force
vector at the component label α respectively. rα is a force vector which contains the reaction
forces on the component due to its connection to adjacent components at the boundary dofs.

Component Modes
Eq. (57) may be written in the following partitioned form[

Mii Mib

Mbi Mbb

][
üi
üb

]
+

[
Kii Kib

Kbi Kbb

][
ui
ub

]
=

[
0i

f b + rb

]
(58)

Fixed-Interface Normal Modes
The fixed interfaced normal modes are a set of ni modes shapes resulting by solving the follow-
ing eigenvalue problem of the internal dofs of eq. (58), while the boundary dofs are fixed, see
fig. 2, [

Kii − ω2
kMii

]
φk = 0 k = 1, 2, . . . , ni (59)

The eigenvectors φk are gathered in the in-
ternal modal matrix Φii ∈ Rni×1. There-
fore the fixed interfaced normal modes for
a substructure α is given by

Φi =

[
Φii

0bi

]
(60)

where Φi ∈ RNα×1. Nα is the total number
of dofs of the structure or substructure.

Fixed− interface mode 1

Fixed− interface mode 2

Fixed− interface mode 3

Fixed− interface mode 4

Figure 2: Four component fixed-interface nor-
mal modes of a cantiliver beam.

Interface Constraint Modes
Interface constraint modes result when a unit displacement is applied in one dof in the set of

boundary dofs, while the remaining dofs of that set are restrained, and conserving the remaining
dofs force-free, see fig. 3. The constraint modes are defined by solving the following static
equation for [Ψib Ibb]

T :
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[
Kii Kib

Kbi Kbb

][
Ψib

Ibb

]
=

[
0ib
Rbb

]
(61)

Thus the interface constraint mode matrix Ψb is
given by

Ψb =

[
Ψib

Ibb

]
=

[
−K−1ii Kib

Ibb

]
(62)

w = 1
θ = 0

w = 0
θ = 1

Figure 3: Interface-constraint modes in the
boundary dofs of a cantilever beam.

Those constraint modes are stiffness-orthogonal to all of the fixed-interface normal modes
[15].

4.1 The Craig-Bampton Method

The Craig-Bampton transformation [6, 8] consists of transforming a set of physical coordi-
nates made up of internal dofs ui and dofs at the boundary ub in terms of a hybrid set which
is compound of a set of modal coordinates at the interior ηi and physical coordinates ub, at
the boundary. The Craig-Bampton hybrid coordinates ucb = [ηi ub]

T are then related to the
physical coordinates u = [ui ub]

T as follows[
ui
ub

]
=
[
Φi Ψb

] [ηi
ub

]
(63)

where Φi and Ψb are given by eqs. (60) and (62) respectively. Substituting those equations in
(63) [

ui
ub

]
= Vcbucb (64)

where

Vcb =

[
Φii −K−1ii Kib]
0bi Ibb

]
=

[
Φii Ψib

0bi Ibb

]
=
[
Φi Ψc

]
(65)

is the Craig-Bampton projection matrix. Vcb and ucb are the V matrix and the ur vector in
eq. (3) respectively. After defining the Craig-Bampton Transformation Matrix above, it follows
the transformation of the equation of motion from the set of physical coordinates to a set of
coordinates consisting of physical coordinates at the subset of the boundary dofs and modal
coordinates at interior dofs.
Using the the Craig-Bampton projection matrix eq. (65) in eq. (7) the reduced order model in
eq. (6) is obtained [8] and given by−ω2

[
m Mkb

Mbk Mbb

]
+ iω

[
c 0
0 0

]
+

[
k 0
0 Kbb

][η
ub

]
=

[
0
fb

]
(66)
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where

m = ΦT
i MΦi = ΦT

iiMiiΦii

Mib = ΦT
i MΨc = ΦT

ii

[
Mib + MiiΨib

]
Mbi = ΨT

c MΦi =
[
Mbi + ΨT

ibMii

]
Φii

Mbb = ΨT
c MΨc = Mbb + MbiΨib + ΨT

ibMbi + ΨT
ibMiiΨib

k = ΦT
i KΦi = ΦT

iiKiiΦii = mω2
E

Kib = ΦT
i KΨc = ΦT

ii

[
Kib −Kib

]
= 0

Kbi = ΨT
c KΦi =

[
Kbi −Kib

]
Φii = 0

Kbb = ΨT
c KΨc = Kbb −KbiK

−1
ii Kib

c = ΦT
i DΦi = ΦT

iiDiiΦii = 2ζmωE

The mass matrix Mbb and the stiffness matrix Kbb are reduced to the boundary nodes in the
same way as they are reduced using the Guyan-Irons reduction. m, c and k are the modal mass,
modal damping and modal stiffness matrix of the interior dofs respectively. ΨT

c DΨc, ΨT
c DΦi

and ΦT
i DΨc are considered equal to 0. Thus only the submatrix 2ζmωE has significance [8].

5 MOR: Interpolatory Methods

The standard formulation of the second order dynamical system, (2), in the frequency domain
is given by

(s2M + sD + K)u(s) = Bf f(s)
y(s) = Cu(s)

(67)

where s = iω, B and C can be considered equal to the identity matrix I and the function f(s)
equal to one in case of a response having the same form of the excitation force, i.e. the input
vector is constant. The transfer function of eq. (67) is defined by

H = C(s2M + sD + K)−1Bf (68)

The main approach of an interpolatory MOR method is to match the first νp terms of the Taylor
expansion of eq. (68) about ωp with p = 0, 1, 2, ..., P , i.e. about P frequency points in a
frequency interval ∆ω = [ωL, ωR], which is the same as to find an approximated vector uν
which matches the first ν terms of the Taylor expansion of the vector u about the same ωp
frequency points in the context of structural mechanics problems, i.e.

u(s) = uν(s) +O
( P∏
p=1

(∆sp)
νp

)
(69)

where ∆sp = s − sp and νp is the order of the Taylor series expansion at the interpolation
frequency ωp. Thus u

(k)
ν (sp) = dk

dsk

(
u(s)

)
. Therefore the main task for interpolatory MOR

methods is to find a vector space that contains the first ν moments (see, sub-sec. 5.2) of H.
In the case of the multi-point Padé approximation such an approach is simplified to find the
coefficients of the Padé approximation [L/M ] of a single dof, which implies to match the first
L + M + 1 moments of the transfer function, eq. (68). Due to the matching process and the
analogy to the Padé approximant those methods are also known as moment matching methods
or Padé type methods [9, 10]. Here a similar terminology as in [14] was adopted.
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5.1 Multi-Padé approximation

Every dof uj(s), j = 1, 2, 3, ..., N , of the displacement vector can be approximated by a Padé
approximant about a frequency point ω0. The Padé approximant of the jth dof has the form

uj(ω) = [L/M ] =
p0 + p1∆ω0 + · · ·+ pL∆ωL0
1 + q1∆ω0 + · · ·+ qM∆ωM0

+O(∆ωL+M+1
0 )

=
Pj(ω)

Qj(ω)
+O(∆ωL+M+1

0 ) (70)

where ω = ω0 + ∆ω, Pj(ω) and Qj(ω) is a polynomial of degree L and M respectively. By
Cross-multiplying eq. (70) and disregarding the error of the right hand side leads to

uj(ω)Qj(ω) = Pj(ω) (71)

Successively differentiating eq. (71) with respect to ω the following equation is obtained [13]

k∑
r=0

 k!

r(k − r)!
u
(k−r)
j

M∑
m=r

m!

(m− r)!
qm∆ωm−r

− L∑
l=k

l!

(l − k)!
pl∆ω

l−k = 0 (72)

k = 0, 1, . . . , L+M

with
ql = 0 if r > M

pk = 0 if k > L
(73)

where ukj =
(
dk

dωk

(
u(ω0)

))
j

and ∆ω = ω− ω0. Then the coefficients of the polynomials Pj and
Qj can be computed if uj and its first L + M derivatives are known, i.e. the Padé approximant
given by eq.(70) matches the first L + M + 1 terms of the corresponding Taylor series about
ω0, therefore the Padé approximant matches the first L + M + 1 terms (moments) of a power
expansion of the transfer function given by eq. (68) [9].

It is said to be a multi-point Padé Approximation [13] if P frequency points are defined and
interpolated in the frequency interval of interest, ∆ω, where each frequency is denoted by ωp
with p = 1, 2, 3, ..., P , using

k∑
r=0

 k!

r!(k − r)!
u
(k−r)
j,ωp

M∑
m=r

m!

(m− r)!
qm∆ωm−rp

− L∑
l=k

l!

(l − k)!
pl∆ω

l−k
p = 0 (74)

k = 0, 1, . . . ,

⌈
L+M + 1

P

⌉
− 1

where d e is the ceiling function and u(k)j,ωp is the k derivative of the jth dof of the displacement
vector u evaluated at ωp and is defined by

u
(k)
j,ωp

= (u(k)
ωp )j =


K−1ω f k = 0
Kω
−1((2ωpM− iD)uωp + f (1)

)
k = 1

K−1ω
(
kM(2ωpu

(k−1)
ωp + (k − 1)u

(k−2)
ωp − ikDu

(k−1)
ωp

)
k ≥ 2

(75)

where ∆ωp = ωp − ω0 and Kω = (−ω2
pM + iωD + K). Eq. (75) implies to solve P times a

generalized impedance problem with
⌈
L+M+1

P

⌉
different right hand sides.
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From eq. (75) it is possible to obtain the coefficients of the Padé polynomials for each
component uj of u, those coefficients are collected in the vector x = [p0 p1 p2 ... pL q1 q2 ... qM ]T

and are found by solving Ax = b which is formed as follows:

[
· · · A1 · · ·

]
[nν×nP ]

...[
· · · Ap · · ·

]
[nν×nP ]

...[
· · · AP · · ·

]
[nν×nP ]


[nP×nP ]

x[nP×1] =


b1
...

bp
...

bP


[nP×1]

(76)

where Ap ∈ Cd
(L+M+1)

P
e×(L+M+1), bp ∈ Cd

(L+M+1)
P

×1, p = 1, 2, . . . , P , nν = dL+M+1
P
e and

nP = L+M + 1. A is a symmetric matrix but ill-conditioned, thus this approach can be used
only when few interpolation points are considered [9].

Ap and bp are computed by expanding eq. (74) for k = 0, 1, . . . ,
⌈
L+M+1

P

⌉
− 1, i.e the row

k + 1 of Ap is an equation given by

− (k)!
0!
pk − (k+1)!

1!
(∆ωp)

1pk+1 − (k+2)!
2!

(∆ωp)
2 pk+2 − · · · − L!

(L−k)!(∆ωp)
L−k pL

+
(∑k

r=0
k!

r!(k−r)!
1!

(1−r)!(∆ω)1−ru(k−r)
)
q1

+
(∑k

r=0
k!

r!(k−r)!
2!

(2−r)!(∆ω)2−ru(k−r)
)
q2

· · ·+
(∑k

r=0
k!

r!(k−r)!
M !

(M−r)!(∆ω)M−ru(k−r)
)
qM = u

(k)
p

(77)

Then the coefficients of the left hand side of eq. (77) are placed in the row k+ 1 of Ap, and the
right hand side is placed at the k + 1 position of the vector bp. It permits to express eq. (74) in
a matrix notation of the form [Ap][nν×nP ][x][nP×1] = [bp][nP×1] as follows

−1 −(∆ωp) −(∆ωp)2 · · · −(∆ωp)L (∆ωp)up (∆ωp)2up · · · (∆ωp)Mup

0 −1 −2(∆ωp) · · · L(∆ωp)L−1
(
u
(0)
p +(∆ωp)u

(1)
p

) (
2(∆ωp)u

(0)
p +(∆ωp)2u

(1)
p

)
· · ·

(
M(∆ωp)M−1U

(0)
p +(∆ωp)Mu

(1)
p

)
...

...
...

...
...

...
...

...
...





p0
p1
p2
...
pL
q1
q2
...

qM


=

u(0)
p

u
(1)
p

...



(78)
Thus P small systems of equations, which share the same unknown vector x, of the form given
by eq.(78) are assembled, i.e they are gathered in the assembled-system of equations given by
eq.(76), which permits to compute the coefficients of the multi-point Padé approximation with
a very low computational cost.

5.2 Krylov-based Galerkin projection Method

First Order approach
The second order dynamical system in eq. (67) is reformulated in the standard first order form,
see sub-sec. 2.2, and given by

s z(s) = Az(s) + Bf(s)
y(s) = Cz(s)

(79)



Raul Rodriguez Sanchez, Martin Buchschmid and Gerhard Müller

Where z ∈ R2N×1 , A ∈ R2N×2N and B ∈ R2N×N are the state vector, the state matrix and the
input matrix respectively and are defined by

z =

[
u
u̇

]
A =

[
0 I

−M−1K −M−1D

]
B =

[
0

M−1f

]
(80)

The transfer matrix of (79) is given by

h(s) = C(sI−A)−1B (81)

If A is non singular, the transfer matrix h(s) can be approximated about s0 = 0 using the Taylor
series as follows

h(s) = C
(
(−A−1B) + (A−1)(−A−1B)s+ · · ·+ (A−1)i(−A−1B)si + · · ·

)
(82)

For convenience one may define

H = A−1 =

[
−K−1D −K−1M

I 0

]
b = A−1B =

[
K−1f

0

]
(83)

and
b0 = K−1f H11 = −K−1D H12 = −K−1M (84)

The resulting non-negative coefficients of the series (82) are said to be the system’s moments

mi = C(A−1)i(A−1B) = C(H)iB, i = 0, 1, 2, . . . (85)

where mi ∈ C2N×1 is the ith moment of eq. (81). It is clear from eq. (85) that z(s) of (80)
is contained in a vector space spanned by the columns of the Krylov subspace Kν(H, b) with
starting vector b and matrix H. A simplification of the dimension of the vectors in the Krylov
subspace can be done if one notes that

m0 = b =

[
K−1f

0

]
=

[
b0
0

]
m2 = H2b =

[
H11b1 + H12b0

b1

]
=

[
b2
b1

]

m1 = Hb =

[
H11b0
b0

]
=

[
b1
b0

]
m3 = H3b =

[
H11b2 + H12b1

b1

]
=

[
b3
b2

]
therefore the displacement part u(s) of the vector z(s) is contained in the column space spanned
by {b0,b1,b2,b3, ...}, i,e. by the Krylov subspace Kν(H11, H12; b0),

u(ω) ∈ Kν(−K−1D, −K−1M; K−1f) (86)

which holds true for low frequency range, because the interpolation point s0 was chosen equal
to zero.
It remains to show how to get the Krylov subspace for s 6= 0, such that the matrix V contains
information of many points, i.e. a interpolatory approach over the frequency interval ∆ω. It is
achieved by noting that the moments of h(s) about s0 6= 0 are equal to the moments of h(s+s0)
about zero [12], i.e the transfer function of eq. (81) is given by

h(s+ s0) = C((s+ s0)
2M + (s+ s0)D + K)−1B

= C(s2M + s(2s0M + D) + (s20M + (s0D + K))−1B (87)
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For convenience one may define

Ds = 2s0M + D and Ks = s20M + s0D + K (88)

Ds and Ks is the generalized damping and the dynamic impedance respectively. The substitu-
tion of D and K in the Krylov subspace in eq. (86) by the definitions given by eq. (88) leads to

Kν(−K−1s Ds, −K−1s M; K−1s f) (89)

which approximates the solution u for any s0. Using s = iω and defining P frequencies as
interpolation points in ∆ω a vector space V may be defined by

V[N×3P ] =
⋃P
p=1Kνp

(
− (−ω2

pM + iωpD + K)−1(2iωM + D),

−(−ω2
pM + iωpD + K)−1M; (−ω2

pM + iωpD + K)−1f
) (90)

where ωp is the interpolation frequency, with p = 1, 2, ..., P and νp is the number of matched
terms about ωp of the Taylor expansion of the transfer matrix given by eq.(81). If the dynamic
damping is neglected eq. (90) simplifies to

V[N×3P ] =
P⋃
p=1

Kν
(
− (−ω2

pM + iωpD + K)−1M, (−ω2
pM + iωpD + K)−1f

)
(91)

which is the suitable form for proportional (Rayleigh damping and modal damping) damped
systems.

Second order approach
The transfer matrix of the second order dynamical system of eq. (67) is given by eq. (68) and
rewritten here for convenience

H(s) = C(s2M + sD + K)−1Bf = CKsBf (92)

The Taylor expansion of eq. (92) is given by

H(s0 6= 0) =
∞∑
k

1

k!

d(k)

ds(k)
(
H(s0)

)
(∆s)k (93)

therefore the moments of eq. (93) are

mk =
1

k!

d(k)

ds(k)
(
H(s0)

)
k = 0, 1, 2, 3, ..., ν (94)

By solving the first ν moments, eq. (94), of the Taylor series given by eq. (93) and considering
C and B equal to the identity matrix it is possible to group together their terms such that a
Krylov subspace of the form given by (89) is obtained. It is illustrated by solving the first four
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moments, using eq. (94), of the Taylor series about s0, i.e.

m0 = K−1s f = b0 (95)
m1 = −K−2s (2s0M + D)f = (−K−1s Ds)b0 (96)
m2 = K−3s (2s0M + D)2f −K−2s (M)f

= (−K−1s Ds)(−K−1s Ds)b0 + (−K−1s M)b0 (97)

m3 = −K−4s (2s0M + D)3f +
8

6
K−3s (2s0M + D)(M)f

+
4

6
K−3s (2s0M + D)(M)f

= (−K−1s Ds)(−K−1s Ds)(−K−1s Ds)b0 + (−K−1s Ds)(−K−1s M)b0

+ (−K−1s M)(−K−1s Ds)b0 (98)

These show that the moments m0,m1,m2, ...,mν of the second order dynamical system given
by eq. (67) span the Krylov subspace defined by eq. (89) and vice versa.

5.3 Derivative-based Galerkin projection Method

The transfer function of the original second order dynamical system of eq. (67) can be
redefined as

H(s) = C(s2M + sD + K)−1B = CK−1ω B (99)

f f(s) of eq. (67) is interpreted as a constant input with f(s) = 1. Analogously the transfer
function of a reduced second order system is defined by

Hν(s) = CV(s2Mr + sDr + Kr)
−1VHB = CVK−1s,νV

HB (100)

One searches for a Hν which acting in a vector f approximates the original transfer function
acting on the same vector, i.e.

‖ H(sp + ∆s)f −Hν(sp + ∆s)f ‖ ≤ c|∆s|h (101)

where ∆s is sufficient small and h > 0. An equivalent expression to eq. (101) is given by

H(s)f = Hν(s)f +O((∆s)ν) (102)

which implies
dk

dsk
(H) =

dk

dsk
(Hν) for k = 0, 1, 2, 3, ..., ν − 1 (103)

Thus if dk

dsk
((s2pM + 2spD + K)−1f) ∈ V for k = 0, 1, 2, ..., ν − 1 then one proofs eq. (101)

as follows [11]

‖H(sp + ∆s)f −Hν(sp + ∆s)f‖ = ‖CK−1s (sp + ∆s)f −CVK−1s,ν(sp + ∆s)VHf‖
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Using the skew projection Pν = VK−1s,ν(s+ ∆s)VHKs(s+ ∆s)

‖CK−1s (sp + ∆s)f −CVK−1s,ν(sp + ∆s)VHf‖
= ‖CK−1s (sp + ∆s)f −CPνK

−1
s (sp + ∆s)f‖

= ‖C(I−Pν)
∞∑
k=0

1

k!

d(k)

ds(k)
(
K−1s (sp + ∆s)

)
∆skf‖

= ‖C
∞∑
k=ν

1

k!

d(k)

ds(k)
(
K−1s (sp + ∆s)

)
∆skf‖

= |∆s|ν ‖C
∞∑
k=0

1

(k + ν)!

d(k+ν)

ds(k+ν)
(
K−1s (sp + ∆s)

)
∆skf‖

≤ c|∆s|ν (104)

where c is chosen uniformly for all ∆s sufficient small. For the second order dynamical system
given by eq. (67) the matrix C is considered equal to the identity matrix and one is interested
in the state vector u, therefore taking the vector f of eq. (102) equal to the force vector, and the
fact that s = iω, eq. (102) holds true if

P⋃
p=1

span

{
u(ωp),

d

dω

(
u(ωp)

)
, · · · , d

ν−1

dων−1
(
u(ωp)

)}
⊂ Ran(V) (105)

u and its derivatives are found by solving eq. (75) for k = 0, 1, 2, ..., ν − 1.

6 Numerical Examples

Two numerical example are addressed in this section. In the first example a frequency re-
sponse analysis using the ten MOR techniques mentioned in section 1 are applied to a cantilever
beam in order to evaluate the quality of the approximation of those methods for proportional
and non-proportional damped systems. In the second example a medium-sized structure is in-
vestigated in order to evaluate the efficiency in computation time of the Interpolatory MOR
methods. In both examples the solutions given by the MOR methods are compared with the
solution of the full-order model (DM).

6.1 Cantilever Beam

A cantilever beam has been discretized in 10 finite elements, as illustrated in fig.4,

u1
θ1

u3
θ3

u4
θ4

u5
θ5

u6
θ6

u7
θ7

u8
θ8

u9
θ9

u2
θ2

u10
θ10

u11
θ11

Figure 4: FE discretization of a catiliver beam.

The beam has a length of 1m, cross section of 0.1m × 0.1m, modulus of elasticity of
2.068e11 N

m2 and material density of 7830 kg
m3 . It is loaded in the vertical direction with a dis-

tributed load of -100 N
m

. ∆ω = [1, 700] and nω = 700. In the Real Modal Analysis (RMA)
and the complex Modal Analysis (CMA) 20 modes shapes are considered. The condensation
methods use the vertical displacement as the active set of dofs, ua. The Dynamic Reduction
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(DR) is done about ωdy = 50 and the IRS reduction method uses 3 iterations. Craig-Bampton
method uses 5 fixed-interface normal modes. For the Interpolatory MOR methods ωp ={1, 30,
80, 110,300, 500, 700}. The response of the dof u11 will be compared for a Rayleigh-damped
and non-proportional damped beam.

6.1.1 Rayleigh Damped Cantilever Beam

The Rayleigh damping matrix is defined as C = a0M + a1K. In this example a0 = 0.0002
and a1 = 0.0001. The ten MOR methods are able to capture the exact solution in amplitude and
phase angle, see figs. 5 and 6, even the GR, and IRS which are in general only suitable for a
low frequency range.
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Figure 5: Amplitude of the response for u11 of the Rayleigh-damped cantilever beam.
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Figure 6: Phase angle of the response for u11 of the Rayleigh-damped cantilever beam.

6.1.2 Non-proportional Damped Cantilever Beam

For an arbitrary damped cantilever beam a random dense matrix was defined in MATLAB
R2015b® using the command randn with a seed value of 0.1, a mean of 0.15 and a standard
deviation of 0.1. That matrix does not have a physical meaning due to the fact that the matrix
was not derived according to the assembling of the elements, nevertheless it is important to
see how the MOR methods behave for a simple arbitrary damped system like the 10-elements
cantilever beam.

0 100 200 300 400 500 600 700
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Frequency [Hz]

A
m

pl
itu

de
 [m

]

Frequency Response Plot

 

 
DM
KGP
DGP
mP
RMA
CMA
GR
IRS
DR
CB

Figure 7: Amplitude of the response for u11 of the non-proportional damped cantilever beam.

From figs. 7 and 8 it is clear that the RMA gives a result far from the exact solution, the
condensations methods and the CB method do not capture the exact solution any more as the
Interpolatory MOR Methods (DGP, KGP and the mP) and the CMA do.
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Figure 8: Phase angle of the response for u11 of the non-proportional damped cantilever beam.

If the damping increases, the capability of the Interpolatory MOR Methods are more evident.
In figs. 9 and 10, the response of u11 is shown in the case of an arbitrary damping matrix, created
in the same way as before, but with mean value and standard deviation equal to 0.35 and 0.2
respectively. It results in a more evident lack of approximation for the RMA, Condensation
Methods and CB Method, in contrast with the Interpolatory MOR Methods and the CMA which
lead to the exact solution. Nevertheless the CMA is not suitable for large systems due to the
expensive computation of the complex modes, so the Interpolatory MOR Methods remain as
a very attractive possibility to be used as standard MOR techniques for frequency response
analysis in case of non-proportional damped systems.
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Figure 9: Amplitude of the response for u11 of the non-proportional damped cantilever beam
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Figure 10: Phase angle of the response for u11 of the arbitrary damped cantilever beam

6.2 Solar Panel - Structure

The second numerical example is a solar panel modeling with ANSYS®, see fig. 11. It
is a 4 m × 12 m structure, built out of beam and shell elements. The beam188 element was
used for the frame, with an elastic modulus of 2 × 1011 N

m2 , a Poisson’s ratio of 0.3 and mass
density of 7850 kg

m3 . For the panel the shell181 element was used, with an elastic modulus
of 0.7 × 1011 N

m2 , a Poisson’s ratio of 0.3 and mass density of 2500 kg
m3 . This structure was

loaded with a distributed load of 50N in vertical direction (Y direction of the global coordinate
system). In total, the solar panel contains 9582 dofs, 3 nodes are fixed, i.e. 18 dofs, and has 33
coupling dofs, thus the equation system to be solved contains 9531 unknowns (displacements
and rotations).

Figure 11: Solar panel modeling in ANSYS®.

For medium- and large-scale structures without going into the sub structuring approach (CB
method) the RMA is extensively used in frequency response analysis. The computation of the
set of mode shapes is the time-demanding task in the RMA but leads to a reduced-decouple
equation system. RMA can be also applied over a large frequency interval ∆ω, unlike conden-
sation methods which offer good approximation only in a narrow ∆ω near to ω = 0 or to the
chosen dynamic frequency ωdy in case of DR. For those reasons the computational time of the
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Interpolarory MOR are compared to that of the RMA and the DM solving a non-damped solar
panel - structure.

6.2.1 Interpolatory MOR Methods and RMA

For this first analysis ∆ω = [1, 100], nω = 100, P = 16, and ωp={ 5, 10, 15, 20, 25, 30, 40,
50, 55, 60, 65, 70, 85, 90, 95, 100 }. mP uses P = 10 and ωp={1, 15, 30, 40, 50, 60, 75, 85, 95,
100}. RMA number of modes is equal to 100.

The computation time required for this analysis is shown in tab. 1 and the amplitude of the
frequency response for dof UY of the node 153, marked with a circle over the upper beam in
fig. 11, is depicted in fig. 12.

Method c.t.[s] c.t.parallel[s]
DM 10.330 5.231
mP 3.650 2.153

KGP 3.840 2.560
DGP 3.900 2.249
RMA 1.820 2.316

Table 1: Computation time using DM, mP, KGP, DGP and RMA.

The comparison in computation time (c.t.) shows a faster solution for the parallel implemen-
tation of Interpolatory MOR Methods, i.e. the KGP and DGP are 4.5 times faster than the DM
runs in the conventional way. The RMA provides also a fast computation for this problem and
overlaps the exact solution as KGP and DGP. The mP computation time in tab. 12 is just for the
computation of the response of a single dof and fig. 12 shows that the mP-response is slightly
shifted from the exact one. For the mP approximation, it is recommended to used a mesh with
few interpolation points, e.g. for this example P < 10, due to the fact that the matrix A in eq.
(76) is ill-conditioned for large P [9], which yields to wrong coefficients and therefore wrong
approximation of the response.
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Figure 12: Amplitude of the response using DM, KGP, DGP and RMA.
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6.2.2 Interpolatory MOR Methods

In this second investigation ∆ω = [1, 1000], nω = 3000, P = 101, ωp={5, 10, 20, 30, 40, 50,
... , 500, 510, 520,...,1000} and RMA number of modes is equal to 500.

The computation time required for this analysis is written in tab. 2 showing that the KGP
and DGP (run in parallel) are approximately 18 times faster than the DM and 6 times faster than
the DM runs in parallel. Also the KGP and DGP are 2 time faster than the RMA when they are
run in parallel.

Method c.t.[s] c.t.parallel[s]
DM 274.732 91.884
KGP 42.267 15.522
DGP 39.731 15.507
RMA 38.236 31.439

Table 2: Computation time using DM, mP, KGP, DGP and RMA.

The amplitude of the frequency response for dof UY of the node 153 , marked with a circle
over the upper beam in fig. 11, is depicted in figs. 13, 14, 15 and 16.
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Figure 13: Amplitude of the response using DM, KGP, DGP and RMA: ∆ω = [1, 250].
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Figure 14: Amplitude of the response using DM, KGP, DGP and RMA: ∆ω = [250, 500].
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Figure 15: Amplitude of the response using DM, KGP, DGP and RMA: ∆ω = [500, 750].
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Figure 16: Amplitude of the response using DM, KGP, DGP and RMA: ∆ω = [750, 1000].

The solutions given by the KGP and DGP overlap the exact solution almost everywhere in
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the ∆ω and the RMA using 500 modes is able to capture the exact solution until the 865Hz, see
Fig. 16, using almost the same amount of time.

7 CONCLUSIONS

As shown in this work several approaches are available to have a reduced-order model for
a second order dynamical system of the form given by eq. (2). Some of them have been
extensively used in the structural dynamics fields when ∆ω is a narrow band and the damping
matrix is proportional to the stiffness and mass matrix. Those are: the GR, IRS and DR. Another
classical technique like RMA is suitable when the eigen-frequencies of the modal matrix are
the main eigen-frequencies in ∆ω which does not limit the interval ∆ω. In a similar way, the
Interpolatory MOR are applicable in a large ∆ω with all the interpolatory points contained in
that interval.

For non proportional-damped systems the CMA and the Interpolatory MOR are the best
choices, but the CMA increases the dimension of the matrices. The mP is applicable in a narrow
∆ω or when few interpolation points are needed. The KGP and DGP can be applied to any kind
of system defined by eq. (2) over a narrow or large ∆ω. Thus they are very promising methods
to obtain a reduced-order model with cheaper computational cost and good approximation to
the exact solution for proportional and non-proportional damped systems.
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