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Review of model reduction using space-based methods
New results

Summary

Review of some state-space results: controllability,
observability, balanced truncation.

Some new results

A new lower bound for balanced truncation.
H2 optimal model reduction.
“Block reduction” (work in progress).
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Input-output map

u→ x → y

Order of system = dimension of x = complexity.

Model reduction aims to produce simpler model (i.e.
lower-dimension of x) that approximates the original one.
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Input-state-output description

ẋ = Ax+Bu

y = Cx+Du (1)

x ∈ Rn, u ∈ Rm, y ∈ Rp

Order of system = n.

For compactness, (1) is denoted by

(
A B

C D

)
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Questions

Finding the lowest-order i/s/o description for given i/o map?

Finding the lower-order model aproximating the i/o map?

ACES seminars



Review of model reduction using space-based methods
New results

Controllability

Controllable subspace

C = {all states which are “controlled” by the input}

= {xf | ∃ u(t), τ > 0, xf =

∫ τ

0
Aτ−tBu(t)dt}

= Im[B AB · · · An−1B]

If C = Rn, i.e. every point in the plane can be controlled, we say
that (A,B) is controllable.
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If C  Rn we can split the system into controllable part and
non-controllable part.

Idea: Find similarity transformation

Ã = TAT−1 =

[
Ã11 Ã12

0 Ã22

]
B̃ = TB =

[
B̃1

0

]
with (Ã11, B̃1) controllable.

ẋ1 = Ã11x1 + Ã12x2 + B̃1u

ẋ2 = Ã22x2
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Dynamics involving

(
x1
0

)
: ẋ1 = Ã11x1 + B̃1u.

(Ã11, B̃1) controllable ⇒ input has influence on

(
x1
0

)
.

Dynamics involving

(
0
x2

)
: ẋ2 = Ã22x2

No input ⇒ no influence to i/o map.

u → x1

u 9 x2
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Observability

Unobservable subspace

N = {all initial states that do not influence

the output when input = 0}
= {all initial states | output = 0 when input = 0}

= Ker


C
CA

...
CAn−1


If N = {0} we say that (C,A) is observable.
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If N ! {0}, we can split the system into an observable part and a
non-observable one.

Idea: Find similarity transformation

Ã = TAT−1 =

[
Ã11 0

Ã21 Ã22

]
C̃ = CT−1 =

[
C̃1 0

]
with (C̃1, Ã11) observable.

ẋ1 = Ã11x1

ẋ2 = Ã21x1 + Ã22x2

y = C̃1x1
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Dynamics involving

(
x1
0

)
:

ẋ1 = Ã11x1

y = C̃1x1

(C̃1, Ã11) observable ⇒
(
x1
0

)
has influence on output.

Dynamics involving

(
0
x2

)
: ẋ2 = Ã22x2

No output ⇒ no influence to i/o map.

x1 → y

x2 9 y
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Kalman decomposition

Idea: Find similarity transformation

(
TAT−1 TB

CT−1 D

)
=


Ã11 0 Ã13 0 B̃1

Ã21 Ã22 Ã23 Ã24 B̃1

0 0 Ã33 0 0

0 0 Ã43 Ã44 0

C̃1 0 C̃3 0 D



with


x1
x2
0
0

 controllable states and


x1
0
x3
0

 observable states.
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Minimal realization

u → x1 → y

u → x2 9 y

u 9 x3 → y

u 9 x4 9 y

Conclusion: Only x1 has influence on i/o map, so the minimal
realization of the i/o map is(

Ã11 B̃1

C̃1 D

)
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Observability gramian

How to quantify observability? x(0) = x0, input = 0,

‖y‖2 =

∫ ∞
0

y>(t)y(t)dt = x>0

(∫ ∞
0

eA
>tC>C eAtdt

)
x0 = x>0 Qx0

⇒ ‖y‖2

‖x0‖2
=
x>0 Qx0

x>0 x0
quantifies observability of states in direction x0

Observability⇔ Q > 0

In geometric terms, Q defines an “observability ellipsoid” in the
state space.
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Controllability gramian

How to quantify controllability? There are many inputs that
bring x(−∞) = 0 to x(0) = x0. One of them, denoted by uopt, is
optimal, i.e. ‖uopt‖2 is minimal.

‖uopt‖2 = x>0

(∫ ∞
0

eAtBB>eA
>tdt

)
x0 = x>0 P

−1x0

⇒ ‖x0‖2

‖uopt‖2
=
x>0 Px0

x>0 x0
quantifies controllability of states in direction x0

Controllability⇔ P > 0

In geometric terms, P defines an “controllability ellipsoid” in the
state space.
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Balanced realization

Idea: Transformation to re-scale the ellipsoid axes as well as to
rotate them. Find similarity transformation(

Ã B̃

C̃ D

)
=

(
TAT−1 TB

CT−1 D

)
such that

P̃ = TPT> = diag(σ1, σ2, . . . , σn) = (T−1)>QT−1 = Q̃

σ1 ≥ σ2 ≥ · · · ≥ σn
Geometrically, the two ellipsoids are identical and their principal
axes concide with the coordinate axes of the state space.
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Truncation

Truncation = delete the less important states.

(
Ã B̃

C̃ D

)
=

 Ã11 Ã12 B̃1

Ã21 Ã22 B̃2

C̃1 C̃2 D

→ (
Ã11 B̃1

C̃1 D

)

Σ := diag(σ1, σ2, . . . , σn)→ diag(σ1, σ2, . . . , σk) =: Σ1

Properties preserved: Balanced truncation preserves stability,
controllability and observability.
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Error bound

Transfer matrix: G(λ) := D + C(λI −A)−1B

Size of system: If system stable,

‖G‖H∞ := sup
ω∈R

σ̄(G(jω)) = sup
u

‖y‖2

‖u‖2

Reduced system: Ĝ(λ) := D + C1(λI −A11)
−1B1

By estimating ‖G− Ĝ‖H∞ , we can know how good the
approximation is.
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Global error bound

[Glover, Enns, 1984]:

σk+1 ≤ ‖G− Ĝ‖H∞ ≤ 2(σk+1 + · · ·+ σn)

[Minh, Carles, Enric, 2014]: For SISO systems,

‖G− Ĝ‖H∞ ≥ max(σk+1, 2(sk+1σk+1 + · · ·+ snσn))
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Global error bound

‖G− Ĝ‖H∞ ≥ max(σk+1, 2(sk+1σk+1 + · · ·+ snσn))

Where do the si come from? si = 1, or si = −1 comes from
the fact that, in balanced realization of SISO systems

bi = ci, or bi = −ci.
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Consequence

In standard balanced truncation: Truncating states
corresponding to the smallest Hankel singular values.

Our claim: This does NOT ALWAYS yield the best result (for
fixed order of the approximating system).
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Example

SISO balanced realization:

b =


1
1
1
1
1

 , c =


1
1
−1

1
1


T

, σ =


5
4
3

2.5
2

 ,

A =


−0.100 −0.111 0.500 −0.133 −0.143
−0.111 −0.125 1.000 −0.154 −0.167
−0.500 −1.000 −0.167 2.000 1.000
−0.133 −0.154 −2.000 −0.200 −0.222
−0.143 −0.167 −1.000 −0.222 −0.250

 .
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If we truncate σ4 and σ5

‖G(s)−G1(s)‖H∞ = 9.000,

If we truncate σ2 and σ3

‖G(s)−G2(s)‖H∞ = 5.6287,
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Why?

By old estimation:

2.5 ≤ ‖G(s)−G1(s)‖H∞ ≤ 9

4 ≤ ‖G(s)−G2(s)‖H∞ ≤ 14

By our estimation:

9 ≤ ‖G(s)−G1(s)‖H∞ ≤ 9

4 ≤ ‖G(s)−G2(s)‖H∞ ≤ 14
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H2 optimal model reduction using cross Gramians

H2-norm of G(s) for a MIMO system

‖G‖2H2
:= trace

(
1

2π

∫ ∞
−∞

G(−jω)TG(jω)dω

)
.

It can be computed as

‖G‖2H2
= trace(BTQB) = trace(CPCT )

with P , Q the controllability and observability Gramians,
which satisfy the Lyapunov matrix equations

AP + PAT +BBT = 0, ATQ+QA+ CTC = 0,

constructed from a minimal and stable realization

(A,B,C) ∈ Rn×n × Rn×m × Rp×n.
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For square systems, i.e. m = p, one can also construct the
cross-Gramian R, which satisfies the Sylvester-type equation

AR+RA+BC = 0.

In this case one can also compute ‖G‖2H2
in terms of R

‖G‖2H2
= trace(CRB).

For SISO systems or MIMO symmetric systems (GT = G) one
can show that

R2 = PQ.
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Error system

Let
Ĝ(s) = Ĉ(sI − Â)−1B̂

be the transfer function of the reduced system, with
(Â, B̂, Ĉ) ∈ Rr×r × Rr×m × Rp×r, with p = m and r ≤ n
fixed (ideally, r � n).

The error system has transfer function

E(s) := G(s)− Ĝ(s),

with realization

{Ae, Be, Ce} =

{[
A 0

0 Â

]
,

[
B

B̂

]
,
[
C −Ĉ

]}
.

ACES seminars



Review of model reduction using space-based methods
New results

A new lower bound for balanced truncation
H2 optimal model reduction using cross Gramians
Block reduction

Let Re :=

[
R X

Y −R̂

]
be the cross Gramian associated with

E(s), which satisfies AeRe +ReAe +BeCe = 0,

In block form,[
A 0

0 Â

] [
R X

Y −R̂

]
+

[
R X

Y −R̂

] [
A 0

0 Â

]
+

[
B

B̂

] [
C −Ĉ

]
= 0.

This yields the four Sylvester-type equations

AR+RA+BC = 0, ÂR̂+ R̂Â+ B̂Ĉ = 0,

AX +XÂ−BĈ = 0, ÂY + Y A+ B̂C = 0.
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The H2-norm of the error system E(s) can be computed via
the cross Gramian Re as

‖E(s)‖2H2
= trace(CeReBe)

= trace(CRB + CXB̂ − ĈY B + ĈR̂B̂).

Let
J (Â, B̂, Ĉ) := ‖E(s)‖2H2

.

We can now consider variations Â to Â+ ∆
Â

and compute

∆X , ∆Y , ∆
R̂

so that X + ∆X , Y + ∆Y , R̂+ ∆
R̂

satisfy the
equations that define the cross-Gramian.

Using those equations one can show that, to first order,

∆J = J (Â+ ∆
Â
, B̂, Ĉ)− J (Â, B̂, Ĉ)

= 2 trace((R̂2 + Y X)∆
Â

).
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Hence
∇
Â
J = 2(R̂2 + Y X).

This is the “matrix derivative” of the H2 norm of the error
system under changes of Â.

In the same way, by considering variations of B̂ and Ĉ, one
gets, respectively,

∇
B̂
J = 2(ĈR̂+ CX), ∇

Ĉ
J = 2(R̂B̂ − Y B).

By putting all these to zero, one gets conditions, in terms of
the elements R̂, X, Y of the cross-Gramian of the error
system, for the H2 norm of the later to be stationary (and
hence minimal).

The resulting equations are called Wilson’s optimal conditions.
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Wilson’s conditions can be solved implicitly as

Â = W TAV, B̂ = W TB, Ĉ = CV, W TV = In,

where
W = Y T (R̂−1)T , V = −XR̂−1.

This defines Â, B̂, Ĉ as functions of R̂, X and Y , i.e.

(Â, B̂, Ĉ) = G(R̂,X, Y )

= (−R̂−1Y AXR̂−1, R̂−1Y B,−CXR̂−1).

However, the R̂,X, Y , in turn, depend on Â, B̂, Ĉ through
the 3 Sylvester-like matrix equations

ÂR̂+ R̂Â+ B̂Ĉ = 0

AX +XÂ−BĈ = 0

ÂY + Y A+ B̂C = 0

 i.e. (R̂,X, Y ) = F (Â, B̂, Ĉ).
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Putting all together one has

(Â, B̂, Ĉ) = G(R̂,X, Y ) = (G ◦ F )(Â, B̂, Ĉ).

Therefore, the optimal approximating systems are fixed points
of the map H = G ◦ F and, in principle, they could be
computed iteratively.

This is the same situation than the controllability and
observability Gramian approach presented in [P. van Dooren
et al., Appl. Math. Lett. 21, 1267 (2008)].

In that case, however, there are 4 Lyapunov matrix equations,
instead of 3 Sylvester-like, involved in each iteration, so the
computational advantages of our method could be important
for very large scale systems.
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Notice that, when compared with other methods such as
balanced truncation, the one considered here allows one to fix
an a priori order r of the approximation, and the error can
then be computed after the optimal point has been obtained.

One can show that Ĝ given by (Â, B̂, Ĉ) defines a tangential
interpolation of G at the mirror poles of Ĝ, i.e.

Ĝ(−λ̂i) = G(−λ̂i),
d

ds

(
G(s)− Ĝ(s)

)
s=−λ̂i

= 0

for any pole λ̂i of Ĝ.
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Block reduction

Model order reduction of network systems looks for reduction
methods that somehow preserve the topology of the network.
Work in this direction has been presented, for instance, in [T.
Ishizaki et al, Model reduction and clusterization of large-scale
bidirectional networks, IEEE Trans. on Autom. Control 59,
48 (2014)].

Inspired by that work, we ( Josep M. Olm, HBM, CB) propose
a new kind of reduction idea, which aims at lumping together
some variables which share a similar input-to-state dynamics.
Provisionally, we call this block model order reduction.

The method is based on diagonalization. Hence it is not
suitable for very large scale systems, but might be useful for
control design for systems up to a few thousand degrees of
freedom.
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Consider a linear system with a single input and with
state-output

ẋ = Āx+ B̄u,

y = Ix,

with Ā ∈ Rn×n stable and symmetric, B̄, x, y ∈ Rn, u ∈ R.

By means of an unitary (orthogonal in fact) transformation U
we can bring this to diagonal form

ż = UT ĀU︸ ︷︷ ︸
A

z + UT B̄︸ ︷︷ ︸
B

u,

y = U︸︷︷︸
C

z,

with A = diag(λ1, . . . , λn).
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Using the cyclic property of the trace, the H2 norm of this
system can be computed as

‖G(s)‖2H2
= trace(CPCT ) = trace(UPUT )

= trace(PUTU) = trace(P ).

Since A is symmetric, the controllability Gramian P obeys the
Lyapunov equation AP + PA+BBT = 0, or

P +A−1PA = −A−1BBT .

One has then, using that A is diagonal and that B is a
column vector, B = (b1 · · · bn)T ,

2 trace(P ) = −trace(A−1BBT ) = −
n∑
i,j

A−1ij BjBi

= −
n∑
i=1

b2i
λi
.
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Thus, for a AT = A < 0 system with single input and
full-state output

‖G‖2H2
= −1

2

n∑
i=1

b2i
λi
.

One can also show that, under the same restrictions,

‖G‖2H∞ ≤ −
n∑
i=1

|bi|
λi
.
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One can also compute ‖G‖2H2
using

‖G(s)‖2H2
= trace(BTQB) = trace(QBBT ).

The observability Gramian matrix Q obeys, in this case

AQ+QA = −CTC = −UTU = −I

and, for a nonsingular A, this can be solved as

Q = −1

2
A−1.

Hence

‖G(s)‖2H2
= −1

2
trace(A−1BBT ),

which coincides with the result of the first calculation.
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Assume that we select a block of m (not necessarily ordered
or contiguous) states from the diagonalized system
(A,B,C = U), so that we have the mth order, single input,
full n state output system (Â, B̂, Ĉ) with

Â = diag(λ1, . . . , λm), B̂ = (b1 · · · bm)T , Ĉ = Û ,

where Û is the n×m matrix formed by the selected m
columns of U . The λi, bi are the eigenvalues and entries of B
corresponding to the selected states.

Now we want to approximate this by another mth order
system of the form

Ã = diag(λ, . . . , λ), B̃ = (b · · · b)T , C̃ = Û ,

such that the error system has an H2 norm as small as
possible.
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Notice that ÛT Û = Im×m because the m columns of Û are
orthonormal vectors in Rn, but Û ÛT 6= In×n.

The rationale behind the system (Ã, B̃, C̃) is that a single
dynamics with eigenvalue λ and input coefficient b yields all
the states. Hence, only an integration must be performed, and
then the output is recovered from m copies of this single state.

For a given set of (λ1, . . . , λm) and (b1, . . . , bm), the scalars λ
and b must be chosen so as to make the error as small as
possible. In turn, the value of this minimal error can be made
small by carefully selecting the (λ1, . . . , λm) and (b1, . . . , bm)
that form a block.

ACES seminars



Review of model reduction using space-based methods
New results

A new lower bound for balanced truncation
H2 optimal model reduction using cross Gramians
Block reduction

Let Ĝ(s) = Û(sIm − Â)−1B̂ be the transfer function of the
block and G̃(s) = Û(sIm − Ã)−1B̃ that of the approximating
block.

The error system E(s) = Ĝ(s)− G̃(s) has a realization of
order 2m given by

AE = diag(λ1, . . . , λm, λ,
m). . ., λ)

BE = (b1, . . . , bm, b,
m). . ., b)T

CE = (Û − Û)

Then ‖E‖2H2
= trace(BT

EQEBE), with QE the solution to

AEQE +QEAE = −CTECE =

(
−Im×m Im×m
Im×m −Im×m

)
.
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It can be seen that

QE =

(
−1

2Â
−1 (Â+ λIm×m)−1

(Â+ λIm×m)−1 − 1
2λIm×m

)
.

Then

‖E‖2H2
=

m∑
i=1

(
− b2i

2λi
+ 2

bbi
λ+ λi

− b2

2λ

)
≡ F (λ, b).

Critical points of F (λ, b) are given by

b∗ =
2λ∗

m

m∑
j=1

bj
λ∗ + λj

with λ∗ a fixed point of the map

f(x) =
1

2

∑m
j=1

bj
x+λj∑m

j=1
bj

(x+λj)2

.
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Using these results, one can compute the value of ‖E‖2H2
at

the critical point as

F (λ∗, b∗) = −
m∑
j=1

b2j
2λj

+
1

m

 m∑
j=1

bj
λ∗ + λj

3 m∑
j=1

bj
(λ∗ + λj)2

−1 .
As a check, if λj = λ and bj = b for all j = 1, . . . ,m, then
b∗ = b, f(x) = 1

2(x+ λ), λ∗ = λ and F (λ∗, b∗) = 0.
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A detailed examination of F (λ∗, b∗) reveals that, in order to
make the error as small as possible, the λi and bi of a block
should be, as expected, packed as close as possible.
Additionally, however,

a block should not contain bi of different signs.
the λi should be bounded away from 0.

A bound on F (λ∗, b∗) can be computed in terms of the radii
of the sets of λi and of bi.

Presently, we are using the kmeans clustering procedure of
Matlab to form the blocks, but it is not optimal. We are
working on a in-house clustering algorithm.

This method seems quite promising. In our examples, which
certainly might not be representative of practical situations,
errors of less than 1% are obtained when approximating
systems with n = 1000 with just 10 clusters.
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