Model order reduction

Ha Binh Minh ${ }^{\dagger}$ (ha.b.minh@gmail.com) and
Carles Batlle ${ }^{\ddagger}$ (carles.batlle@upc.edu)
${ }^{\dagger}$ Hanoi University of Science and Technology
\ddagger Universitat Politècnica de Catalunya-BarcelonaTech

Institut d'Organització i Control — February 2014

Summary

- Review of some state-space results: controllability, observability, balanced truncation.
- Some new results
- A new lower bound for balanced truncation.
- \mathcal{H}_{2} optimal model reduction.
- "Block reduction" (work in progress).

Input-output map

$$
u \rightarrow \boxed{x} \rightarrow y
$$

- Order of system $=$ dimension of $x=$ complexity.
- Model reduction aims to produce simpler model (i.e. lower-dimension of x) that approximates the original one.

Input-state-output description

$$
\begin{gather*}
\dot{x}=A x+B u \\
y=C x+D u \tag{1}\\
x \in \mathbb{R}^{n}, u \in \mathbb{R}^{m}, y \in \mathbb{R}^{p}
\end{gather*}
$$

- Order of system $=n$.
- For compactness, (1) is denoted by $\left(\begin{array}{c|c}A & B \\ \hline C & D\end{array}\right)$

Questions

- Finding the lowest-order $\mathrm{i} / \mathrm{s} / \mathrm{o}$ description for given $\mathrm{i} / \mathrm{omap}$?
- Finding the lower-order model aproximating the $\mathrm{i} / \mathrm{omap}$?

Controllability

Controllable subspace

$$
\left.\left.\begin{array}{rl}
\mathcal{C} & =\{\text { all states which are "controlled" by the input }\} \\
& =\left\{x_{f} \mid \exists u(t), \tau>0, \quad x_{f}=\int_{0}^{\tau} A^{\tau-t} B u(t) d t\right\} \\
& =\operatorname{Im}[B \quad A B \cdots
\end{array}\right] A^{n-1} B\right] \$
$$

If $\mathcal{C}=\mathbb{R}^{n}$, i.e. every point in the plane can be controlled, we say that (A, B) is controllable.

If $\mathcal{C} \nsubseteq \mathbb{R}^{n}$ we can split the system into controllable part and non-controllable part.

Idea: Find similarity transformation

$$
\tilde{A}=T A T^{-1}=\left[\begin{array}{cc}
\tilde{A}_{11} & \tilde{A}_{12} \\
0 & \tilde{A}_{22}
\end{array}\right] \quad \tilde{B}=T B=\left[\begin{array}{c}
\tilde{B}_{1} \\
0
\end{array}\right]
$$

with $\left(\tilde{A}_{11}, \tilde{B}_{1}\right)$ controllable.

$$
\begin{array}{ccc}
\dot{x}_{1} & = & \tilde{A}_{11} x_{1}+\tilde{A}_{12} x_{2}+\tilde{B}_{1} u \\
\dot{x}_{2} & = & \tilde{A}_{22} x_{2}
\end{array}
$$

- Dynamics involving $\binom{x_{1}}{0}: \quad \dot{x}_{1}=\tilde{A}_{11} x_{1}+\tilde{B}_{1} u$. $\left(\tilde{A}_{11}, \tilde{B}_{1}\right)$ controllable \Rightarrow input has influence on $\binom{x_{1}}{0}$.
- Dynamics involving $\binom{0}{x_{2}}: \quad \dot{x}_{2}=\tilde{A}_{22} x_{2}$

No input \Rightarrow no influence to i/o map.

$$
\begin{array}{lll}
u & \rightarrow & x_{1} \\
u & \nrightarrow & x_{2}
\end{array}
$$

Observability

Unobservable subspace

$\mathcal{N}=\{$ all initial states that do not influence the output when input $=0\}$
$=\{$ all initial states \mid output $=0$ when input $=0\}$

$$
=\operatorname{Ker}\left[\begin{array}{c}
C \\
C A \\
\vdots \\
C A^{n-1}
\end{array}\right]
$$

If $\mathcal{N}=\{0\}$ we say that (C, A) is observable.

If $\mathcal{N} \supsetneq\{0\}$, we can split the system into an observable part and a non-observable one.

Idea: Find similarity transformation

$$
\tilde{A}=T A T^{-1}=\left[\begin{array}{cc}
\tilde{A}_{11} & 0 \\
\tilde{A}_{21} & \tilde{A}_{22}
\end{array}\right] \quad \tilde{C}=C T^{-1}=\left[\begin{array}{cc}
\tilde{C}_{1} & 0
\end{array}\right]
$$

with $\left(\tilde{C}_{1}, \tilde{A}_{11}\right)$ observable.

$$
\begin{aligned}
\dot{x}_{1} & =\tilde{A}_{11} x_{1} \\
\dot{x}_{2} & =\tilde{A}_{21} x_{1}+\tilde{A}_{22} x_{2} \\
y & =\tilde{C}_{1} x_{1}
\end{aligned}
$$

- Dynamics involving $\binom{x_{1}}{0}$:

$$
\begin{aligned}
\dot{x}_{1} & =\tilde{A}_{11} x_{1} \\
y & =\tilde{C}_{1} x_{1}
\end{aligned}
$$

$\left(\tilde{C}_{1}, \tilde{A}_{11}\right)$ observable $\Rightarrow\binom{x_{1}}{0}$ has influence on output.

- Dynamics involving $\binom{0}{x_{2}}: \quad \dot{x}_{2}=\tilde{A}_{22} x_{2}$

No output \Rightarrow no influence to i / o map.

$$
\begin{array}{lll}
x_{1} & \rightarrow y \\
x_{2} & \rightarrow y
\end{array}
$$

Kalman decomposition

Idea: Find similarity transformation

$$
\left(\begin{array}{c|c}
T A T^{-1} & T B \\
\hline C T^{-1} & D
\end{array}\right)=\left(\begin{array}{cccc|c}
\tilde{A}_{11} & 0 & \tilde{A}_{13} & 0 & \tilde{B}_{1} \\
\tilde{A}_{21} & \tilde{A}_{22} & \tilde{A}_{23} & \tilde{A}_{24} & \tilde{B}_{1} \\
0 & 0 & \tilde{A}_{33} & 0 & 0 \\
0 & 0 & \tilde{A}_{43} & \tilde{A}_{44} & 0 \\
\hline \tilde{C}_{1} & 0 & \tilde{C}_{3} & 0 & D
\end{array}\right)
$$

with $\left(\begin{array}{c}x_{1} \\ x_{2} \\ 0 \\ 0\end{array}\right)$ controllable states and $\left(\begin{array}{c}x_{1} \\ 0 \\ x_{3} \\ 0\end{array}\right)$ observable states.

Minimal realization

$$
\begin{aligned}
& u \rightarrow x_{1} \rightarrow y \\
& u \rightarrow x_{2} \rightarrow y \\
& u \rightarrow x_{3} \rightarrow y \\
& u \nrightarrow x_{4} \rightarrow y
\end{aligned}
$$

Conclusion: Only x_{1} has influence on i / o map, so the minimal realization of the i/o map is

$$
\left(\begin{array}{c|c}
\tilde{A}_{11} & \tilde{B}_{1} \\
\hline \tilde{C}_{1} & D
\end{array}\right)
$$

Observability gramian

How to quantify observability? $x(0)=x_{0}$, input $=0$,
$\|y\|^{2}=\int_{0}^{\infty} y^{\top}(t) y(t) d t=x_{0}^{\top}\left(\int_{0}^{\infty} e^{A^{\top} t} C^{\top} C e^{A t} d t\right) x_{0}=x_{0}^{\top} Q x_{0}$
$\Rightarrow \frac{\|y\|^{2}}{\left\|x_{0}\right\|^{2}}=\frac{x_{0}^{\top} Q x_{0}}{x_{0}^{\top} x_{0}}$ quantifies observability of states in direction x_{0}

$$
\text { Observability } \Leftrightarrow Q>0
$$

In geometric terms, Q defines an "observability ellipsoid" in the state space.

Controllability gramian

How to quantify controllability? There are many inputs that bring $x(-\infty)=0$ to $x(0)=x_{0}$. One of them, denoted by $u_{o p t}$, is optimal, i.e. $\left\|u_{o p t}\right\|^{2}$ is minimal.

$$
\left\|u_{o p t}\right\|^{2}=x_{0}^{\top}\left(\int_{0}^{\infty} e^{A t} B B^{\top} e^{A^{\top} t} d t\right) x_{0}=x_{0}^{\top} P^{-1} x_{0}
$$

$\Rightarrow \frac{\left\|x_{0}\right\|^{2}}{\left\|u_{o p t}\right\|^{2}}=\frac{x_{0}^{\top} P x_{0}}{x_{0}^{\top} x_{0}}$ quantifies controllability of states in direction x_{0}
Controllability $\Leftrightarrow P>0$
In geometric terms, P defines an "controllability ellipsoid" in the state space.

Balanced realization

Idea: Transformation to re-scale the ellipsoid axes as well as to rotate them. Find similarity transformation

$$
\left(\begin{array}{c|c}
\tilde{A} & \tilde{B} \\
\hline \tilde{C} & D
\end{array}\right)=\left(\begin{array}{c|c}
T A T^{-1} & T B \\
\hline C T^{-1} & D
\end{array}\right)
$$

such that

$$
\begin{gathered}
\tilde{P}=T P T^{\top}=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)=\left(T^{-1}\right)^{\top} Q T^{-1}=\tilde{Q} \\
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n}
\end{gathered}
$$

Geometrically, the two ellipsoids are identical and their principal axes concide with the coordinate axes of the state space.

Truncation

Truncation $=$ delete the less important states.

$$
\begin{gathered}
\left(\begin{array}{c|c}
\tilde{A} & \tilde{B} \\
\hline \tilde{C} & D
\end{array}\right)=\left(\begin{array}{cc|c}
\tilde{A}_{11} & \tilde{A}_{12} & \tilde{B}_{1} \\
\tilde{A}_{21} & \tilde{A}_{22} & \tilde{B}_{2} \\
\hline \tilde{C}_{1} & \tilde{C}_{2} & D
\end{array}\right) \rightarrow\left(\begin{array}{c|c}
\tilde{A}_{11} & \tilde{B}_{1} \\
\hline \tilde{C}_{1} & D
\end{array}\right) \\
\Sigma:=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right) \rightarrow \operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}\right)=: \Sigma_{1}
\end{gathered}
$$

Properties preserved: Balanced truncation preserves stability, controllability and observability.

Error bound

Transfer matrix: $\quad G(\lambda):=D+C(\lambda I-A)^{-1} B$
Size of system: If system stable,

$$
\|G\|_{\mathcal{H}}^{\infty}: ~:=\sup _{\omega \in \mathbb{R}} \bar{\sigma}(G(j \omega))=\sup _{u} \frac{\|y\|^{2}}{\|u\|^{2}}
$$

Reduced system: $\quad \hat{G}(\lambda):=D+C_{1}\left(\lambda I-A_{11}\right)^{-1} B_{1}$
By estimating $\|G-\hat{G}\|_{\mathcal{H}_{\infty}}$, we can know how good the approximation is.

Global error bound

-

\sigma_{k+1} \leq\|G-\hat{G}\|_{\mathcal{H}_{\infty}} \leq 2\left(\sigma_{k+1}+\cdots+\sigma_{n}\right)
\]

- [Minh, Carles, Enric, 2014]: For SISO systems,

$$
\|G-\hat{G}\|_{\mathcal{H}_{\infty}} \geq \max \left(\sigma_{k+1}, 2\left(s_{k+1} \sigma_{k+1}+\cdots+s_{n} \sigma_{n}\right)\right)
$$

Global error bound

$$
\|G-\hat{G}\|_{\mathcal{H}_{\infty}} \geq \max \left(\sigma_{k+1}, 2\left(s_{k+1} \sigma_{k+1}+\cdots+s_{n} \sigma_{n}\right)\right)
$$

Where do the s_{i} come from? $s_{i}=1$, or $s_{i}=-1$ comes from the fact that, in balanced realization of SISO systems

$$
b_{i}=c_{i}, \quad \text { or } \quad b_{i}=-c_{i} .
$$

Consequence

In standard balanced truncation: Truncating states corresponding to the smallest Hankel singular values.

Our claim: This does NOT ALWAYS yield the best result (for fixed order of the approximating system).

Example

SISO balanced realization:

$$
\begin{gathered}
b=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right], \quad c=\left[\begin{array}{r}
1 \\
1 \\
-1 \\
1 \\
1
\end{array}\right]^{T}, \quad \sigma=\left[\begin{array}{c}
5 \\
4 \\
3 \\
2.5 \\
2
\end{array}\right], \\
A=\left[\begin{array}{rrrcc}
-0.100 & -0.111 & 0.500 & -0.133 & -0.143 \\
-0.111 & -0.125 & 1.000 & -0.154 & -0.167 \\
-0.500 & -1.000 & -0.167 & 2.000 & 1.000 \\
-0.133 & -0.154 & -2.000 & -0.200 & -0.222 \\
-0.143 & -0.167 & -1.000 & -0.222 & -0.250
\end{array}\right] .
\end{gathered}
$$

If we truncate σ_{4} and σ_{5}

$$
\left\|G(s)-G_{1}(s)\right\|_{\mathcal{H}_{\infty}}=9.000
$$

If we truncate σ_{2} and σ_{3}

$$
\left\|G(s)-G_{2}(s)\right\|_{\mathcal{H}_{\infty}}=5.6287
$$

Why?

- By old estimation:

$$
\begin{gathered}
2.5 \leq\left\|G(s)-G_{1}(s)\right\|_{\mathcal{H}_{\infty}} \leq 9 \\
4 \leq\left\|G(s)-G_{2}(s)\right\|_{\mathcal{H}_{\infty}} \leq 14
\end{gathered}
$$

- By our estimation:

$$
\begin{aligned}
9 & \leq\left\|G(s)-G_{1}(s)\right\|_{\mathcal{H}_{\infty}} \leq 9 \\
4 & \leq\left\|G(s)-G_{2}(s)\right\|_{\mathcal{H}_{\infty}} \leq 14
\end{aligned}
$$

\mathcal{H}_{2} optimal model reduction using cross Gramians

- \mathcal{H}_{2}-norm of $G(s)$ for a MIMO system

$$
\|G\|_{\mathcal{H}_{2}}^{2}:=\operatorname{trace}\left(\frac{1}{2 \pi} \int_{-\infty}^{\infty} G(-j \omega)^{T} G(j \omega) \mathrm{d} \omega\right) .
$$

- It can be computed as

$$
\|G\|_{\mathcal{H}_{2}}^{2}=\operatorname{trace}\left(B^{T} Q B\right)=\operatorname{trace}\left(C P C^{T}\right)
$$

with P, Q the controllability and observability Gramians, which satisfy the Lyapunov matrix equations

$$
A P+P A^{T}+B B^{T}=0, \quad A^{T} Q+Q A+C^{T} C=0
$$

constructed from a minimal and stable realization

$$
(A, B, C) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m} \times \mathbb{R}^{p \times n}
$$

- For square systems, i.e. $m=p$, one can also construct the cross-Gramian R, which satisfies the Sylvester-type equation

$$
A R+R A+B C=0
$$

- In this case one can also compute $\|G\|_{\mathcal{H}_{2}}^{2}$ in terms of R

$$
\|G\|_{\mathcal{H}_{2}}^{2}=\operatorname{trace}(C R B)
$$

- For SISO systems or MIMO symmetric systems ($G^{T}=G$) one can show that

$$
R^{2}=P Q
$$

Error system

- Let

$$
\widehat{G}(s)=\widehat{C}(s I-\widehat{A})^{-1} \widehat{B}
$$

be the transfer function of the reduced system, with $(\widehat{A}, \widehat{B}, \widehat{C}) \in \mathbb{R}^{r \times r} \times \mathbb{R}^{r \times m} \times \mathbb{R}^{p \times r}$, with $p=m$ and $r \leq n$ fixed (ideally, $r \ll n$).

- The error system has transfer function

$$
E(s):=G(s)-\widehat{G}(s),
$$

with realization

$$
\left\{A_{e}, B_{e}, C_{e}\right\}=\left\{\left[\begin{array}{cc}
A & 0 \\
0 & \widehat{A}
\end{array}\right],\left[\begin{array}{l}
B \\
\widehat{B}
\end{array}\right],\left[\begin{array}{ll}
C & -\widehat{C}
\end{array}\right]\right\} .
$$

- Let $R_{e}:=\left[\begin{array}{cc}R & X \\ Y & -\widehat{R}\end{array}\right]$ be the cross Gramian associated with $E(s)$, which satisfies $A_{e} R_{e}+R_{e} A_{e}+B_{e} C_{e}=0$,
- In block form,

$$
\begin{aligned}
& {\left[\begin{array}{cc}
A & 0 \\
0 & \widehat{A}
\end{array}\right]\left[\begin{array}{cc}
R & X \\
Y & -\widehat{R}
\end{array}\right]+\left[\begin{array}{cc}
R & X \\
Y & -\widehat{R}
\end{array}\right]\left[\begin{array}{cc}
A & 0 \\
0 & \widehat{A}
\end{array}\right]} \\
& +\left[\begin{array}{l}
B \\
\widehat{B}
\end{array}\right]\left[\begin{array}{ll}
C & -\widehat{C}
\end{array}\right]=0
\end{aligned}
$$

- This yields the four Sylvester-type equations

$$
\begin{aligned}
A R+R A+B C & =0, & \widehat{A} \widehat{R}+\widehat{R} \widehat{A}+\widehat{B} \widehat{C}=0 \\
A X+X \widehat{A}-B \widehat{C} & =0, & \widehat{A} Y+Y A+\widehat{B} C=0
\end{aligned}
$$

- The \mathcal{H}_{2}-norm of the error system $E(s)$ can be computed via the cross Gramian R_{e} as

$$
\begin{aligned}
\|E(s)\|_{\mathcal{H}_{2}}^{2} & =\operatorname{trace}\left(C_{e} R_{e} B_{e}\right) \\
& =\operatorname{trace}(C R B+C X \widehat{B}-\widehat{C} Y B+\widehat{C} \widehat{R} \widehat{B})
\end{aligned}
$$

- Let

$$
\mathcal{J}(\widehat{A}, \widehat{B}, \widehat{C}):=\|E(s)\|_{\mathcal{H}_{2}}^{2}
$$

- We can now consider variations \widehat{A} to $\widehat{A}+\Delta_{\widehat{A}}$ and compute $\Delta_{X}, \Delta_{Y}, \Delta_{\widehat{R}}$ so that $X+\Delta_{X}, Y+\Delta_{Y}, \widehat{R}+\Delta_{\widehat{R}}$ satisfy the equations that define the cross-Gramian.
- Using those equations one can show that, to first order,

$$
\begin{aligned}
\Delta_{\mathcal{J}} & =\mathcal{J}\left(\widehat{A}+\Delta_{\widehat{A}}, \widehat{B}, \widehat{C}\right)-\mathcal{J}(\widehat{A}, \widehat{B}, \widehat{C}) \\
& =2 \operatorname{trace}\left(\left(\widehat{R}^{2}+Y X\right) \Delta_{\widehat{A}}\right)
\end{aligned}
$$

- Hence

$$
\nabla_{\widehat{A}} \mathcal{J}=2\left(\widehat{R}^{2}+Y X\right)
$$

- This is the "matrix derivative" of the \mathcal{H}_{2} norm of the error system under changes of \widehat{A}.
- In the same way, by considering variations of \widehat{B} and \widehat{C}, one gets, respectively,

$$
\nabla_{\widehat{B}} \mathcal{J}=2(\widehat{C} \widehat{R}+C X), \quad \nabla_{\widehat{C}} \mathcal{J}=2(\widehat{R} \widehat{B}-Y B)
$$

- By putting all these to zero, one gets conditions, in terms of the elements \widehat{R}, X, Y of the cross-Gramian of the error system, for the \mathcal{H}_{2} norm of the later to be stationary (and hence minimal).
- The resulting equations are called Wilson's optimal conditions.
- Wilson's conditions can be solved implicitly as

$$
\widehat{A}=W^{T} A V, \quad \widehat{B}=W^{T} B, \quad \widehat{C}=C V, \quad W^{T} V=\mathbb{I}_{n},
$$

where

$$
W=Y^{T}\left(\widehat{R}^{-1}\right)^{T}, \quad V=-X \widehat{R}^{-1}
$$

- This defines $\widehat{A}, \widehat{B}, \widehat{C}$ as functions of \widehat{R}, X and Y, i.e.

$$
\begin{aligned}
(\widehat{A}, \widehat{B}, \widehat{C}) & =G(\widehat{R}, X, Y) \\
& =\left(-\widehat{R}^{-1} Y A X \widehat{R}^{-1}, \widehat{R}^{-1} Y B,-C X \widehat{R}^{-1}\right)
\end{aligned}
$$

- However, the \widehat{R}, X, Y, in turn, depend on $\widehat{A}, \widehat{B}, \widehat{C}$ through the 3 Sylvester-like matrix equations

$$
\left.\begin{array}{l}
\widehat{A} \widehat{R}+\widehat{R} \widehat{A}+\widehat{B} \widehat{C}=0 \\
A X+X \widehat{A}-B \widehat{C}=0 \\
\widehat{A} Y+Y A+\widehat{B} C=0
\end{array}\right\} \text { i.e. } \quad(\widehat{R}, X, Y)=F(\widehat{A}, \widehat{B}, \widehat{C})
$$

- Putting all together one has

$$
(\widehat{A}, \widehat{B}, \widehat{C})=G(\widehat{R}, X, Y)=(G \circ F)(\widehat{A}, \widehat{B}, \widehat{C})
$$

- Therefore, the optimal approximating systems are fixed points of the map $H=G \circ F$ and, in principle, they could be computed iteratively.
- This is the same situation than the controllability and observability Gramian approach presented in [P. van Dooren et al., Appl. Math. Lett. 21, 1267 (2008)].
- In that case, however, there are 4 Lyapunov matrix equations, instead of 3 Sylvester-like, involved in each iteration, so the computational advantages of our method could be important for very large scale systems.
- Notice that, when compared with other methods such as balanced truncation, the one considered here allows one to fix an a priori order r of the approximation, and the error can then be computed after the optimal point has been obtained.
- One can show that \widehat{G} given by $(\widehat{A}, \widehat{B}, \widehat{C})$ defines a tangential interpolation of G at the mirror poles of \widehat{G}, i.e.

$$
\hat{G}\left(-\hat{\lambda}_{i}\right)=G\left(-\hat{\lambda}_{i}\right), \quad \frac{\mathrm{d}}{\mathrm{~d} s}(G(s)-\hat{G}(s))_{s=-\hat{\lambda}_{i}}=0
$$

for any pole $\hat{\lambda}_{i}$ of \hat{G}.

Block reduction

- Model order reduction of network systems looks for reduction methods that somehow preserve the topology of the network. Work in this direction has been presented, for instance, in [T . Ishizaki et al, Model reduction and clusterization of large-scale bidirectional networks, IEEE Trans. on Autom. Control 59, 48 (2014)].
- Inspired by that work, we (Josep M. Olm, HBM, CB) propose a new kind of reduction idea, which aims at lumping together some variables which share a similar input-to-state dynamics. Provisionally, we call this block model order reduction.
- The method is based on diagonalization. Hence it is not suitable for very large scale systems, but might be useful for control design for systems up to a few thousand degrees of freedom.
- Consider a linear system with a single input and with state-output

$$
\begin{aligned}
\dot{x} & =\bar{A} x+\bar{B} u, \\
y & =\mathbb{I} x,
\end{aligned}
$$

with $\bar{A} \in \mathbb{R}^{n \times n}$ stable and symmetric, $\bar{B}, x, y \in \mathbb{R}^{n}, u \in \mathbb{R}$.

- By means of an unitary (orthogonal in fact) transformation U we can bring this to diagonal form

$$
\begin{aligned}
\dot{z} & =\underbrace{U^{T} \bar{A} U}_{A} z+\underbrace{U^{T} \bar{B}}_{B} u, \\
y & =\underbrace{U}_{C} z
\end{aligned}
$$

with $A=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.

- Using the cyclic property of the trace, the \mathcal{H}_{2} norm of this system can be computed as

$$
\begin{aligned}
\|G(s)\|_{\mathcal{H}_{2}}^{2} & =\operatorname{trace}\left(C P C^{T}\right)=\operatorname{trace}\left(U P U^{T}\right) \\
& =\operatorname{trace}\left(P U^{T} U\right)=\operatorname{trace}(P)
\end{aligned}
$$

- Since A is symmetric, the controllability Gramian P obeys the Lyapunov equation $A P+P A+B B^{T}=0$, or

$$
P+A^{-1} P A=-A^{-1} B B^{T}
$$

- One has then, using that A is diagonal and that B is a column vector, $B=\left(b_{1} \cdots b_{n}\right)^{T}$,

$$
\begin{aligned}
2 \operatorname{trace}(P) & =-\operatorname{trace}\left(A^{-1} B B^{T}\right)=-\sum_{i, j}^{n} A_{i j}^{-1} B_{j} B_{i} \\
& =-\sum_{i=1}^{n} \frac{b_{i}^{2}}{\lambda_{i}}
\end{aligned}
$$

- Thus, for a $A^{T}=A<0$ system with single input and full-state output

$$
\|G\|_{\mathcal{H}_{2}}^{2}=-\frac{1}{2} \sum_{i=1}^{n} \frac{b_{i}^{2}}{\lambda_{i}} .
$$

- One can also show that, under the same restrictions,

$$
\|G\|_{\mathcal{H}_{\infty}}^{2} \leq-\sum_{i=1}^{n} \frac{\left|b_{i}\right|}{\lambda_{i}}
$$

- One can also compute $\|G\|_{\mathcal{H}_{2}}^{2}$ using

$$
\|G(s)\|_{\mathcal{H}_{2}}^{2}=\operatorname{trace}\left(B^{T} Q B\right)=\operatorname{trace}\left(Q B B^{T}\right)
$$

- The observability Gramian matrix Q obeys, in this case

$$
A Q+Q A=-C^{T} C=-U^{T} U=-\mathbb{I}
$$

and, for a nonsingular A, this can be solved as

$$
Q=-\frac{1}{2} A^{-1}
$$

- Hence

$$
\|G(s)\|_{\mathcal{H}_{2}}^{2}=-\frac{1}{2} \operatorname{trace}\left(A^{-1} B B^{T}\right)
$$

which coincides with the result of the first calculation.

- Assume that we select a block of m (not necessarily ordered or contiguous) states from the diagonalized system $(A, B, C=U)$, so that we have the m th order, single input, full n state output system $(\hat{A}, \hat{B}, \hat{C})$ with

$$
\hat{A}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{m}\right), \quad \hat{B}=\left(b_{1} \cdots b_{m}\right)^{T}, \quad \hat{C}=\hat{U}
$$

where \hat{U} is the $n \times m$ matrix formed by the selected m columns of U. The λ_{i}, b_{i} are the eigenvalues and entries of B corresponding to the selected states.

- Now we want to approximate this by another m th order system of the form

$$
\tilde{A}=\operatorname{diag}(\lambda, \ldots, \lambda), \quad \tilde{B}=(b \cdots b)^{T}, \quad \tilde{C}=\hat{U}
$$

such that the error system has an \mathcal{H}_{2} norm as small as possible.

- Notice that $\hat{U}^{T} \hat{U}=\mathbb{I}_{m \times m}$ because the m columns of \hat{U} are orthonormal vectors in \mathbb{R}^{n}, but $\hat{U} \hat{U}^{T} \neq \mathbb{I}_{n \times n}$.
- The rationale behind the system $(\tilde{A}, \tilde{B}, \tilde{C})$ is that a single dynamics with eigenvalue λ and input coefficient b yields all the states. Hence, only an integration must be performed, and then the output is recovered from m copies of this single state.
- For a given set of $\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ and $\left(b_{1}, \ldots, b_{m}\right)$, the scalars λ and b must be chosen so as to make the error as small as possible. In turn, the value of this minimal error can be made small by carefully selecting the $\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ and $\left(b_{1}, \ldots, b_{m}\right)$ that form a block.
- Let $\hat{G}(s)=\hat{U}\left(s \mathbb{I}_{m}-\hat{A}\right)^{-1} \hat{B}$ be the transfer function of the block and $\tilde{G}(s)=\hat{U}\left(s \mathbb{I}_{m}-\tilde{A}\right)^{-1} \tilde{B}$ that of the approximating block.
- The error system $E(s)=\hat{G}(s)-\tilde{G}(s)$ has a realization of order $2 m$ given by

$$
\begin{aligned}
A_{E} & =\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{m}, \lambda, \stackrel{m}{.} ., \lambda\right) \\
B_{E} & =\left(b_{1}, \ldots, b_{m}, b, \ldots . m, b\right)^{T} \\
C_{E} & =(\hat{U}-\hat{U})
\end{aligned}
$$

- Then $\|E\|_{\mathcal{H}_{2}}^{2}=\operatorname{trace}\left(B_{E}^{T} Q_{E} B_{E}\right)$, with Q_{E} the solution to

$$
A_{E} Q_{E}+Q_{E} A_{E}=-C_{E}^{T} C_{E}=\left(\begin{array}{cc}
-\mathbb{I}_{m \times m} & \mathbb{I}_{m \times m} \\
\mathbb{I}_{m \times m} & -\mathbb{I}_{m \times m}
\end{array}\right)
$$

- It can be seen that

$$
Q_{E}=\left(\begin{array}{cc}
-\frac{1}{2} \hat{A}^{-1} & \left(\hat{A}+\lambda \mathbb{I}_{m \times m}\right)^{-1} \\
\left(\hat{A}+\lambda \mathbb{I}_{m \times m}\right)^{-1} & -\frac{1}{2 \lambda} \mathbb{I}_{m \times m}
\end{array}\right) .
$$

- Then

$$
\|E\|_{\mathcal{H}_{2}}^{2}=\sum_{i=1}^{m}\left(-\frac{b_{i}^{2}}{2 \lambda_{i}}+2 \frac{b b_{i}}{\lambda+\lambda_{i}}-\frac{b^{2}}{2 \lambda}\right) \equiv F(\lambda, b) .
$$

- Critical points of $F(\lambda, b)$ are given by

$$
b^{*}=\frac{2 \lambda^{*}}{m} \sum_{j=1}^{m} \frac{b_{j}}{\lambda^{*}+\lambda_{j}}
$$

with λ^{*} a fixed point of the map

$$
f(x)=\frac{1}{2} \frac{\sum_{j=1}^{m} \frac{b_{j}}{x+\lambda_{j}}}{\sum_{j=1}^{m} \frac{b_{j}}{\left(x+\lambda_{j}\right)^{2}}} .
$$

- Using these results, one can compute the value of $\|E\|_{\mathcal{H}_{2}}^{2}$ at the critical point as

$$
F\left(\lambda^{*}, b^{*}\right)=-\sum_{j=1}^{m} \frac{b_{j}^{2}}{2 \lambda_{j}}+\frac{1}{m}\left(\sum_{j=1}^{m} \frac{b_{j}}{\lambda^{*}+\lambda_{j}}\right)^{3}\left(\sum_{j=1}^{m} \frac{b_{j}}{\left(\lambda^{*}+\lambda_{j}\right)^{2}}\right)^{-1}
$$

- As a check, if $\lambda_{j}=\lambda$ and $b_{j}=b$ for all $j=1, \ldots, m$, then $b^{*}=b, f(x)=\frac{1}{2}(x+\lambda), \lambda^{*}=\lambda$ and $F\left(\lambda^{*}, b^{*}\right)=0$.
- A detailed examination of $F\left(\lambda^{*}, b^{*}\right)$ reveals that, in order to make the error as small as possible, the λ_{i} and b_{i} of a block should be, as expected, packed as close as possible.
Additionally, however,
- a block should not contain b_{i} of different signs.
- the λ_{i} should be bounded away from 0 .
- A bound on $F\left(\lambda^{*}, b^{*}\right)$ can be computed in terms of the radii of the sets of λ_{i} and of b_{i}.
- Presently, we are using the kmeans clustering procedure of Matlab to form the blocks, but it is not optimal. We are working on a in-house clustering algorithm.
- This method seems quite promising. In our examples, which certainly might not be representative of practical situations, errors of less than 1% are obtained when approximating systems with $n=1000$ with just 10 clusters.

Key general references on model order reduction

(A.C. Antoulas, Approximation of Large-Scale Dynamical Systems, SIAM Press, 2005.

R W.H.A. Schilders, H.A. van der Vorst, J. Rommes, Eds., Model Order Reduction: Theory, Research Aspects and Applications, Springer, 2008.

