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ABSTRACT: The present work demonstrates, for the first time, the
development of a computationally efficient closed-loop system with a
model predictive controller (MPC) where a computational fluid
dynamics (CFD) process model is utilized to represent the process
behavior. Specifically, we present the development of a MPC and its
implementation within the CFD model of a steam methane reforming
reactor, which has been developed and validated in our previous work, to
create the CFD-based closed-loop system. Initially, we develop an MPC
algorithm using a linear approximation of the dynamics based on the
CFD data, and implement it within the CFD simulation as a user-defined function. The MPC accounts for the physical
limitations (maximum allowable operating temperature of the outer reforming tube wall) of the reactor as a constraint. We
demonstrate the application of the developed MPC within the CFD simulations for a set-point change under the influence of a
tube-side feed disturbance. The CFD model determines an optimal outer reforming tube wall temperature trajectory to track the
set-point, and the results of the simulation are compared with those resulting from a CFD-based closed-loop simulation under
proportional-integral (PI) control.

■ INTRODUCTION

The steam methane reforming (SMR) process is a widely used
method for industrial hydrogen production.1,2 The SMR
process converts methane gas and superheated steam in the
presence of a nickel-based catalyst into hydrogen, carbon
dioxide, and carbon monoxide. The steam methane reformer is
the core unit (denoted as “reformer”) in the SMR process, and
it is composed of a tube side where the SMR process takes
place and a furnace side where combustion takes place. The
two sides interact by heat transfer through the reforming tube
walls. In the furnace side, the combustion of the fuel feed,
usually a mixture of methane, hydrogen, carbon dioxide, carbon
monoxide, and air, generates heat and provides energy to the
reforming tubes primarily by radiative heat transfer.
In the late 1960s, the first mathematical model of a reformer

was developed.3 Reformer mathematical models have become
more sophisticated and complex to improve the accuracy with
which they represent physical phenomena. As the under-
standing of physical and chemical phenomena inside the
reformer has improved, more comprehensive mathematical
models, which consider the physicochemical mechanisms
within the reformer (e.g., combustion models, radiation
mechanisms, flue gas flow patterns, SMR reaction kinetics,
and packed bed reactor models) in more detail, have been
developed.4 However, the increasing complexity of the
fundamental nonlinear partial differential equations describing
the reformer’s physicochemical phenomena4 makes the
mathematical modeling very difficult.

The increases in computing power since the development of
the earliest reactor mathematical models have brought new
tools to the SMR modeling effort. Computational fluid dyamics
(CFD) modeling is a tool which has become increasingly
important for reformer modeling and design. CFD combines
physical and chemical models with a detailed representation of
the reformer geometry, allowing it to generate results which
constitute reasonable substitutes for experimental data. Para-
metric studies conducted using CFD models allow for fast and
flexible modification of design parameters without the time and
economic expenses associated with physical hardware changes
and redesign.5 Previous studies have successfully simulated
industrial furnaces, and also SMR process models as packed bed
reactors by means of CFD.6−12 CFD modeling has also been
used to study the physicochemical reforming phenomena at a
microscopic scale, for example, the effects of catalyst orientation
on catalytic performance,11 and experimental data validation of
a CFD model of a bench-scale reforming tube.13

Hydrogen production is dependent on the reforming tube
outer wall temperature; that is, a higher outer reforming tube
wall temperature, given the same physical operating conditions,
should theoretically result in higher hydrogen conversion.
However, continuous operation over the design temperature
for the reforming tube can result in a decrease in the reforming
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tube lifetime; that is, a prolonged increase of the tube wall
temperature of 20 K over the design temperature decreases the
reforming tube’s lifetime by half.4,14 Also, temperatures far
enough above the design temperature have the potential to
cause catastrophic failure which can result in expensive
repairs.14 As a result, controlling a steam methane reformer
with a constrained model-based controller such as model
predictive control (MPC) that accounts for the maximum
temperature limitations may be beneficial.
Similar processes have been shown to benefit from MPC in

the literature (e.g.,15 evaluates the benefits of MPC compared
to classical proportional-integral (PI) control for a gasifier/
reformer system using a data-driven model for state predictions
within the MPC and a first-principles model to represent the
plant), but no work has yet looked at integrating MPC within a
CFD model so that the CFD model acts as a representation of
the plant dynamics instead of a first-principles model. However,
utilizing a CFD model as a representation of the plant dynamics
when evaluating controller designs would significantly improve
controller assessment at the control design phase compared to
using a first-principles model for this purpose. This is because
first-principles models are often simplified either by approx-
imating geometry/properties of a plant or by neglecting details
of the transport and chemical reaction phenomena occurring
inside the plant (e.g., the effects of the flue-gas flow pattern are
ignored in ref 4). On the other hand, CFD modeling allows
accurate predictions of reacting fluid flow behavior and captures
all geometry characteristics of physical systems through
computer-aided design software. Thus, simulation data
generated from CFD models can often be considered to be
reasonable representations of experimental data from the
corresponding systems. As a result, if a CFD model can be
used to represent the plant in the closed-loop system, process
output responses observed for a given resulting control design
during a computational investigation are more likely to be
consistent with the behavior that will be observed at the plant
when it is verified experimentally.
Motivated by this, the present work demonstrates the

assembly of a computationally efficient closed-loop system with
a model-based feedback controller from a CFD model, model-
based controller, and quadratic programing (QP) solver, which
can subsequently be simulated by a stand-alone CFD software
package (i.e., ANSYS Fluent). Subsequently, the performance
of a model-based controller and classical PI controller are
compared in terms of set-point tracking and disturbance
rejection in the context of an industrial-scale steam methane
reforming tube to show the benefits of closed-loop CFD
simulations for comparing control design options at the control
design phase. The CFD model of a reforming tube used in this
study has been developed and validated using published data in
Lao et al., and therefore, the reforming tube CFD model can be
considered to be a reasonably accurate representation of the
plant.16 Initially, a standard methodology for designing a
model-based feedback controller (MPC) by deriving a data-
driven discrete-time linear model based on the dynamic open-
loop CFD simulation results generated from a high-fidelity
CFD model is utilized, so that the MPC computes an optimal
temperature trajectory for a reforming tube wall and accounts
for the temperature limitations of the reforming tube. Then, we
bridge the communication pathway between the reforming tube
CFD model and the feedback controller by encoding the MPC
algorithm and QP solver in the form of user-defined functions
within the ANSYS Fluent framework, which are subsequently

integrated into the CFD model to create the closed-loop
system. In the closed-loop system, specific information on each
component (i.e., the CFD model, feedback model-based
controller, and QP solver) becomes accessible by other
components, so that the feedback controller can directly
retrieve the hydrogen mole fraction at the reforming tube outlet
from the CFD simulation data at the end of each sampling
period, and the optimized outer wall temperature profile
computed based on the MPC algorithm and QP solver can be
immediately used as the new boundary condition of the CFD
model. The closed-loop system can be simulated by a stand-
alone software package ANSYS Fluent, which eliminates the
need to establish communication pathways between different
software products, reduces the overhead, and decreases the
memory requirement for the closed-loop simulation. Finally,
CFD-based closed-loop simulations for tracking a set-point
change of the area-weighted average hydrogen mole fraction at
the outlet of the reforming tube, in the presence of a
disturbance, demonstrate the use of the MPC within the
CFD simulation, and the results are compared with those of a
CFD-based closed-loop simulation under PI control. The CFD
simulation results demonstrate the use of closed-loop CFD
simulations for determining the most appropriate control
design for a given process, showing that the proposed MPC can
cause the closed-loop outlet hydrogen mole fraction to
approach its set-point more quickly than under PI control
because it accounts for the process model and bounds on the
control action, and with the addition of an integrating term, it
can reject the disturbance.

■ SINGLE REFORMING TUBE
Industrial-Scale Furnace Geometry. The reforming tube

utilized for the CFD-based closed-loop simulations in this work
is based on an industrial-scale top-fired, cocurrent reformer
designed by Selas Fluid Processing Corporation (Figure 1).

The reformer is composed of 96 burners distributed across 8
rows of 12 burners, and 336 tubes distributed across 7 rows of
48 tubes. The reforming tubes are packed with nickel oxide
over alpha alumina (i.e., Ni/α−Al2O3) catalyst particles, which
facilitate the reactions within the reformer and heat transfer
from the tube walls to the inside of the tube. The external
diameter, internal diameter, and exposed length of the
reforming tube are 14.6 cm, 12.6 cm, and 12.5 m, respectively.
The reforming tubes are heated mainly by radiation inside

the high-temperature furnace chamber to drive the net
endothermic SMR reactions. Flue gas tunnels are located at
the bottom of the furnace to evacuate the flue gas generated by

Figure 1. Overall view of furnace geometry.
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the combustion reactions inside the furnace chamber (Figure
1). Plus, there are 35 extraction ports in each of the flue gas
tunnels. The furnace flue gas flows through the extraction ports
and exits at the front openings of the coffin boxes.
We investigate the implementation of MPC within a CFD

model for a single reforming tube16 in this unit to control the
hydrogen production and obtain a desired dynamic response.
The single reforming tube is modeled using industrial-scale
parameters, including the dimensions and geometry, and the
CFD modeling of this tube is summarized in the following
sections.
Tube Geometry and Mesh. The mesh quality is especially

significant in CFD modeling. Producing a high quality mesh
improves solution accuracy using the CFD solver and also
decreases computation time. In this work, the reforming tube
geometry was simplified to a two-dimensional (2D) axisym-
metric geometry (Figure 2a). Using this simplification, we

developed a mesh of 100% orthogonal quality with 24 690
quadrilateral cells. This mesh is of significantly higher
orthogonal quality and has fewer cells than its equivalent 3D
mesh.
Additionally, as discussed in our previous paper,16 the

boundary layer close to the tube wall is specially designed since
it plays an important role in modeling heat convection from the
inner reforming tube wall to the gas mixture. Specifically,
NASA’s Viscous Grid Spacing Calculator17 is adopted with a
suitable Y+ value18 to calculate the first node height from the
inner reforming tube wall.
Kinetic Model. The reforming reactions and water−gas

shift reaction take place at the catalyst active sites in the single
reforming tube. Specifically, reactants diffuse from the tube-side
gas mixture to the catalyst surface, and finally reach the catalyst
pores, where the main reactions occur. Then, the products
desorb from the catalyst pores and return to the tube-side gas
mixture. Due to the complexity of reaction, the following
intrinsic reaction kinetic model by Xu and Froment19 was
implemented for the SMR reactions:
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where pH2
, pCH4

, pH2O, pCO and pCO2
are the partial pressures of

H2, CH4, H2O, CO, and CO2, respectively, in the bulk tube-side
gas mixture, KH2

, KCH4
, and KCO are adsorption constants for

H2, CH4, and CO, respectively, KH2O is a dissociative adsorption
constant of H2O, k1, k2, and k3 are rate coefficients of the SMR
reactions, and DEN is a dimensionless parameter.
The model of eq 1 was implemented in the ANSYS Fluent

simulations by compiling a C language user-defined function
(UDF). It is noted that the internal and external diffusion
resistances of the catalyst particles are not considered in the
above reaction kinetics. Therefore, we multiply the reaction
rates in eq 1 by an effectiveness factor, 0.1,20 to account for the
impact of diffusion on the intrinsic reaction rates.

Compressible Gas Flow. The tube-side inlet operating
conditions used are those from our previous work.16 The Mach
number is estimated to be larger than 0.3 based on the inlet
operating conditions, which means that the density variations of
the fluid flow should be taken into consideration because of the
high pressure. In this work, we choose the pressure-based solver
to apply the pressure-based Navier−Stokes solution algo-
rithm.18 Compared to the density-based solver, the pressure-
based solver has a physical velocity formulation that is utilized
in this work for simulating flow through the catalyst packing in
the reforming tube, and in addition can obtain the same results
as the density-based solver while offering more freedom for the
simulations. Additionally, in order to increase the accuracy of
the CFD simulation results, the gas equation of state should be
selected carefully, especially for the pressure-based solver. Here,
the compressible ideal gas equation of state is used to describe
the compressibility of the tube-side gas mixture.

Porous Zone. The reforming tube is packed with catalyst
particles, which cause a pressure drop that cannot be neglected.
Therefore, in this work, the Ergun equation is adopted to
estimate the pressure drop across the porous zone in the CFD
modeling. The Ergun equation shown in eq 2 is a semiempirical
expression which expresses the relationship between the
pressure drop and the modified Reynolds number. It can be
applied over a wide range of Reynolds numbers and for various
packing patterns, and is represented as follows:

Figure 2. Two-dimensional axisymmetric reforming tube geometry
(Figure 2a)and mesh structure (Figure 2b).
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where μ is the viscosity of the fluid, Dp is the mean particle
diameter, L is the depth of the porous media, γ is the void
fraction (porosity) of the packed bed, ΔP is the pressure drop
through the porous media, v∞ is the bulk velocity of the fluid,
and ρ is the density of the porous media. The solution of the
Ergun equation (eq 2) is Dp, which can be used to compute the

viscous resistance coefficient ( γ
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3 ) of the packed bed. We also made the

assumption that the viscous and inertial resistance coefficients
are defined along the direction vectors in the Cartesian two-
dimensional (2D) coordinate system, where the principal axis
direction is v1 = [1,0] and the radius direction is v2 = [0,1].
For the catalyst particles in the reforming tube, the

commercial catalyst, Johnson Matthey’s Katalco 23−4Q,21 a
Ni/α−Al2O3 catalyst, is adopted in the modeling of the single
reforming tube. In our previous work, we discussed the
properties of this catalyst and demonstrated that the use of
these properties is reasonable for obtaining CFD simulation
results in accordance with typical plant data, despite that this
catalyst is different from the Ni/MgAl2O4 catalyst used to
derive the reaction kinetics in eq 1.16

■ OPEN-LOOP SIMULATION
In our previous work,16 a fourth-order polynomial with a given
maximum wall temperature (Twall

max) was proposed to construct
the outer reforming tube wall temperature profile to
approximate the plant data.4 The outer reforming tube wall
temperature Twall(x) at the location x (m) from the inlet (x = 0
m) (where the outlet of the tube is x = 12.5 m) can be
calculated through the following fourth-order polynomial
function:
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The value of Twall
max in eq 3 can be set using process control to a

value that causes a desired hydrogen mole fraction at the outlet
of the reforming tube (xH̅2

outlet) to be obtained. We demonstrate
this method of setting the reforming tube wall temperature
profile using an open-loop control strategy. Specifically, the
CFD simulations under the open-loop control from ref 16 are
first presented to show that xH̅2

outlet can successfully reach the

desired set-point xH̅2

set in a disturbance-free environment (Figure
3). In this open-loop simulation, the process manipulated input
is a constant predetermined outer reforming tube wall
temperature set by eq 3 for the value of Twall

max corresponding
to xH̅2

set based on the steady-state relationship between xH̅2

outlet and
Twall
max determined in ref 16. This predetermined profile is shown

in Figure 4, and the process output is xH̅2

outlet, which changes

from an initial steady-state (Twall
max = 1100 K, xH̅2

outlet = 0.427) due

to the set-point change requiring xH̅2

set = 0.465. It is concluded

that we are able to increase xH̅2

outlet to a desired value by raising

Twall due to the endothermic nature of the SMR process.
However, the time required to drive xH̅2

outlet to the desired xH̅2

set

under the open-loop policy may not be optimal. Besides,
disturbances could also cause the steady-state xH̅2

outlet to deviate

from the desired xH̅2

set. Thus, in this work, we investigate the
manipulation of Twall

max using model predictive control (MPC)
and comparing the dynamic performance of the algorithm with
proportional-integral (PI) and open-loop control.
Remark 1 This work focuses on control and thus the

transient response of the process outputs. The CFD data
generated by the reforming tube CFD model in which the
boundary conditions (i.e., the outer wall temperature and the
tube-side feed) are typical plant data have been validated in ref
16 using typical steady-state plant data and have been found to
capture very well measurable variables such as species
concentration and process-gas temperature at the reforming
tube outlet. However, typical transient plant data is not
available for evaluating the validity of assumptions made in
developing the reforming tube CFD model (e.g., a constant
effectiveness factor) when the plant is not operated at a single
steady-state but is instead subjected to set-point changes.
Nevertheless, the methodology proposed in this work
(developing closed-loop CFD simulations for a process under
MPC and using them to evaluate MPC versus classical control
designs with a simulated plant model that can be considered to
be a reasonably accurate representation of experimental data)
can be used regardless of the CFD modeling procedure or the
process modeled using CFD. Furthermore, the fact that a
model considered to be adequate for steady-state CFD
simulations may not be appropriate for capturing transient
behavior under control designs should be considered when
developing a CFD model for industrial processes to ensure that
it will accurately represent the plant dynamics for controller
evaluation (the availability of routine process operating data at
an industrial plant can aid in obtaining the information
necessary to validate a CFD model for an industrial facility).
Finally, the fact that MPC has the capability to incorporate
constraints (unlike classical control designs such as PI control)
should not be overlooked when comparing controllers with
CFD simulations since it gives the controller flexibility that is
not necessarily apparent from the dynamic response that will be
observed in the closed-loop CFD simulations.
In practice, Twall

max is not set directly, but rather is the result of
the transport and chemical reaction phenomena taking place
inside the reformer (e.g., the lean combustion phenomena, the
redistribution of the combustion heat between the refractory
wall, flue gas tunnels, and reforming tubes under the influence
of the flue gas flow pattern, and the SMR process). Typically,
the optimal outer wall temperature values of reforming tubes

Figure 3. Open-loop dynamic response of xH̅2

outlet using a predetermined

outer reforming tube wall temperature trajectory with xH̅2

set = 0.465.
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are achieved by changing the percent opening positions of flow
control valves to adjust the distribution of fuel to the reformer,
and this operating strategy is often referred to as “furnace
balancing” in the literature.22 In the present work, because we
focus on a single reforming tube and thus do not model the
burners, we assume that the outer wall temperature can be
directly controlled; however, the methodology in this work
could be extended to the case that the industrial-scale reformer
is simulated (e.g., a control design that regulates the radially
averaged value of the hydrogen mole fraction among all
reforming tubes by adjusting the burner flow rates with MPC
could be developed), though this is not pursued in this work.

■ DATA-DRIVEN MODELING
To facilitate the use of model predictive control in later
sections, data-driven modeling is utilized to derive a linear
model from the CFD simulation results that is practical because
of its low order but also derived from high-fidelity CFD
simulation data. According to the transient response of xH̅2

outlet

with a step-change of Twall
max, the first-order transfer function from

ref 16 is adopted to describe the dynamic response of the
output of the reforming tube. It is discussed in ref 16 that the
differences among the transfer functions obtained from
different step changes are negligible. Therefore, the open-loop
simulation results are used to obtain an empirical relationship
between xH̅2

outlet and Twall
max. Specifically, given a set of Twall

max and

xH̅2

outlet data with time from the open-loop simulation, the
maximum likelihood estimation (MLE)23,24 method is first
used to identify the parameters of the single-input−single-
output (SISO) model. Then, the SISO model is converted to a
discrete-time state-space model for use in MPC. The SISO
model and MLE formulation are:

= +y k
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where y(k) and u(k) are deviation variables for the process
output xH̅2

outlet and process input Twall
max, respectively, e(k) is the

measurement error, which is assumed to be a white noise
function with zero mean and a standard deviation of 1, A(s) and
B(s) are the coefficients of the process input and measurement
error on the Laplace domain, k is a discrete point at which the
system is being evaluated, τ(y(k),u(k)) is the maximum
likelihood estimator, and θ = [a0 a1 b0] is the parameter vector
of the estimated model.
The SISO model (eq 4a) is then converted to a discrete-time

state-space model to represent the process model in MPC.
Disregarding measurement error in the SISO model, the
following discrete-time state-space model is obtained via Matlab
functions:

= +
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+
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where xd,k is the current state of the discrete-time system, xd,k+1
is the next state of the system with respect to the current state
xd,k and input uk, yk is the process output, and A, B, C, and D
are the coefficient matrices corresponding to the estimated
coefficients in the SISO model. Given the MPC sampling
period ΔT = 10.0 s, the coefficient matrices A, B, C, and D in
eq 5 are estimated to be 0.774, 1.83 × 10−4, 1.00, and 0.00,
respectively. Therefore, a data-driven model that describes the
dynamic response of xH̅2

outlet is obtained for the purpose of
designing MPC.

■ FEEDBACK CONTROLLER DESIGN
In this section, an MPC is developed and incorporated within
CFD-based closed-loop simulations to control xH̅2

outlet to attain

the new desired set-point xH̅2

set. The closed-loop system under
this feedback control scheme is able to eliminate the offset
between xH̅2

outlet and xH̅2

set at steady-state, and also to enhance the
dynamic performance of the process. Specifically, given an
increase of xH̅2

set at a certain time, it is observed that under the

feedback control scheme, xH̅2

outlet initially approaches the desired

xH̅2

set rapidly due to a large increase in the maximum wall
temperature (and thus in the wall temperature distribution
according to eq 3). After the initial fast increase of the
temperature, the outer reforming tube wall temperature drops
somewhat. As a result, xH̅2

outlet increases less quickly in this

period, and finally approaches xH̅2

set slowly and maintains xH̅2

outlet at

Figure 4. Predetermined outer reforming tube wall temperature trajectory with time for open-loop control with xH̅2

set = 0.465.
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the final steady-state. Closed-loop simulation results under PI
control, presented for comparison, show similar behavior. A
disturbance is also considered, and the MPC must be
augmented by integral action to avoid set-point offset during
closed-loop simulation due to the approximate model used for
state predictions. Assumptions made in the controller designs
are that the dynamics of the outer reforming tube wall
temperature can be neglected (in other words, we can assume
that the outer reforming tube wall temperature is able to reach
the predicted profile immediately). In addition, we assume that
the measurements of xH̅2

outlet are available at all sampling
instances.
Considering the safety requirements and life expectancy of

the reforming tube for practical hydrogen production, the
constraint on Twall, which is the maximum allowable temper-
ature value of 1200 K, is added to all control schemes
investigated in this section. Specifically, temperature limits are
imposed as hard constraints within the MPC optimization
problem to ensure that the controller output never exceeds the
limit. In the PI control scheme design, the temperature
constraints are activated if the controller output (Twall

max) is out of
the range. The specific PI and MPC schemes used are
presented in the following sections.
PI Control. The PI control scheme was developed in our

previous work16 as follows:

= ̅ − ̅e t x x t( ) ( )k H H k
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where tk, t0, and Δt are the current time, the initial time, and the
sampling period, respectively. The error e(tk) between a
measurement of xH̅2

outlet(tk) and the set-point xH̅2

set is represented
by eq 6a. Tmax is the upper bound of the outer reforming tube
wall temperature, Twall

max(t0) is the maximum outer reforming
tube wall temperature at the initial steady-state, and Twall

max (tk +
Δt) is the predicted value for the beginning of the next
sampling period. Kc and τI are the controller gain and controller
time constant of the controller output uPI(tk) in eq 6c.
Parameters of the classical PI controller are calculated as
follows: initial estimates of Kc and τI are computed based on the
Cohen−Coon tuning method and the SISO data-driven model,
and then are adjusted until the process response of the CFD
closed-loop system appears to be critically damped, and their
values are found be to Kc = 1856.3 and τI = 46.4, which
provides a fast response without overshoot. The PI sampling
period is set to 0.04 s, based on the previous work.16

At each sampling time, the controller output uPI(tk) is
computed based on the deviation of the current xH̅2

outlet from its

set-point xH̅2

set. After applying the controller output uPI(tk), the
predicted wall temperature Twall

max(tk + Δt) is attained. If Twall
max(tk +

Δt) is greater than the maximum temperature, then the value of
Twall
max(tk + Δt) is set to Tmax (eq 6d). This predicted wall

temperature profile (eq 3) will be applied to the process during
the next sampling period. The above procedure is repeated
until the error between xH̅2

outlet and xH̅2

set is smaller than the
specified tolerance.

Model Predictive Control Scheme. On the basis of the
data-driven modeling of the reaction process in a single
reforming tube, a model predictive controller is designed to
regulate the hydrogen production at the outlet of the tube.
Minimizing the sum of the deviations of xH̅2

outlet from its desired

set-point xH̅2

set throughout the prediction horizon is chosen as the
controller objective function, and the outer reforming tube wall
temperature is used as the manipulated input. The formulation
of the MPC is

∑ − −
= =

+ +y r Q y rmin ( ) ( )
T j j P i

P

k i i k i( ), 1,...,
1

sp
T

sp
wall
max

(7a)

= +

= −
+ + + +x x u

m P

A Bs.t.

0, ..., 1

d k m d k m k m, 1 ,

(7b)

= +

=
+ + +y x u

m P

C D

0, ...,
k m d k m k m,

(7c)

+ Δ ≤T x t T T( , )kwall max (7d)

where yk+i is the deviation variable for the predicted process
output xH̅2

outlet at i sampling steps from the current (kth)
sampling step within the prediction horizon, rsp is the deviation
form of the desired set-point xH̅2

set, tk is the current time, P = 20 is
the number of prediction steps in the horizon, and Qi is a
penalty matrix, which is set to the identity matrix here. The
notation Twall

max(j), j = 1, ..., P, signifies the P maximum wall
temperatures computed throughout the prediction horizon by
the MPC algorithm. The MPC of eq 7 is implemented with a
sampling period ΔT = 10.0 s and a prediction horizon PΔT =
200.0 s (the control horizon is the same as the prediction
horizon). It is noted that the MPC sampling period is different
from the PI sampling period, because we chose the MPC
sampling period in accordance with practical industrial
considerations such that the MPC computes a new control
action less frequently than the PI control law. Additionally, the
CFD-based closed-loop simulation results with several different
prediction horizons were compared as will be shown below, and
the chosen prediction horizon was shown to provide reasonable
results with a reasonable computation time.
At the end of each MPC sampling period, the measurement

of xH̅2

outlet is acquired from the CFD-based closed-loop simulation
for the calculation of the optimal solution of eq 7. Then, the
first value of the set of optimal Twall

max determined for each
sampling period in the prediction horizon is applied to the
system over the following sampling period. The above
procedure is repeated with new measurements at every
sampling time.
The MPC is implemented within the CFD software package

Fluent utilized for the simulations through a user-defined
function (UDF). Fluent UDF’s cannot directly compile Matlab
programs, and the data exchange between the two software
packages is time-consuming; thus, Matlab was not utilized to
implement MPC within the CFD-based closed-loop simu-
lations. Instead, we developed an MPC inside the UDF by
using an active-set method25,26 to deal with the inequality-
constrained quadratic programming (QP) problem in MPC. A
standard QP has the following form (where the active set is
denoted):
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= +q x x x x dmin ( )
1
2

G
x

T T
(8a)

≤ ∈ *a x b i xs.t. , ( )i i
T
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where x( ) is an active set, x* is the optimal solution of the
QP, and ai and bi are vectors used in the inequality constraints.
Equation 7 is of the form of eq 8 upon substitution of the
model of eq 5 into the objective function of eq 7 so that the
active-set method can be applied. The active-set method
calculates the optimal solution by iteratively solving equality-
constrained QP subproblems, which are formulated as follows:
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α= ++x x pk k k k1 (10b)

where G and d are matrices specific to the QP developed for a
given process model (eq 8), λ* is a Lagrange multiplier, k is
the working set, αk is the step-length coefficient, pk is the step
length, ai,k is a matrix with row vectors ai

T where i∈ k, bi,k is a
vector with components bi, i∈ k, xk is the current solution,
and xk+1 is the solution for the next iteration. Specifically, given
xk and a working set k, a step pk is computed through eq 9 by
treating all the constraints in k as equalities, and temporarily
disregarding the others until eq 8 is minimized. Then, through
eq 10a, αk is determined, and therefore xk+1 is derived for the
next iteration using eq 10b. The subproblems are iteratively
solved until the optimal point x* is derived that satisfies all the
constraints as shown in Figure 5. We validated this QP solver

programmed within the UDF by comparing results from
solving the QP with the results from the Matlab QP-solving
function, and found the difference to be negligible.
Remark 2. Having the data-driven model derived from high-

fidelity CFD data for designing the MPC is beneficial compared
to having a first-principles model for developing such a
controller because the CFD data used to obtain the model is
likely to be a better representation of the data that would be
obtained from an online process than the data obtained from a
first-principles model would be. This means that the MPC
designed from such a model may be able to be implemented
online without the need to utilize process operating data to
develop a model for the MPC as would be typical, or if a data-
driven model is obtained from routine operating data, the

response of the process operated under the MPC with the
process data-based data-driven model may be similar to that
expected based on the closed-loop CFD simulations with the
CFD-based data-driven model.
Remark 3. In this work, we focus on a single reforming tube

and therefore the process output measurement that is fed back
to the MPC is the radially averaged mole fraction of hydrogen
at the outlet of the reforming tube. This quantity is not typically
measured in practice because at a hydrogen production plant,
there are many reformers and the hydrogen mole fraction in the
combined gas obtained from all reforming tubes would be
measured. However, if the method described in this paper were
extended to an online reformer, the data-driven model could
capture the dynamics between the burner flow rates and the
hydrogen mole fraction in the combined gas from all reforming
tubes, for example, in which case the measured output could be
readily obtained.

MPC and Integral Feedback Control Scheme. Since our
MPC is developed based on a data-driven model, which cannot
account for changes of the process model when disturbances
are introduced to the process, an MPC and integral feedback
control scheme is designed to maintain good dynamic
performance of the closed-loop system in the presence of
disturbances. The controller is formulated as follows:

= ++u t u t u t( ) ( ) ( )I k k I kMPC MPC (11a)

∫τ
τ τ=u t

K
e( ) ( ) dI k

c

I t

tk

0 (11b)

where uMPC+I(tk), uMPC(tk) and uI(tk) are the controller output,
the term in the controller output calculated by the MPC of eq
7, and the term in the controller output calculated by the
integration in eq 11b, respectively. The controller gain for the
integration (

τ
Kc

I
) as shown in eq 11b is chosen as 12 based on

closed-loop simulations that indicated that this value prevented
overshoot and offset from the set-point in the simulation of the
closed-loop system. It is noted that this strategy is different
from the dynamic optimization and integral feedback control
scheme examined in ref 16 because the value uMPC(tk) in eq 11a
is determined from eq 7 utilizing feedback at each sampling
time, while a similar term in the dynamic optimization and
integral feedback control scheme from the prior work was
determined at the first sampling period in the prediction
horizon but not updated with feedback throughout time
because the MPC was not incorporated within the UDF in ref
16.

Results. In this section, we present process responses of the
closed-loop systems with the classical PI controller and MPC,
both in the presence and absence of disturbances, for the
reforming tube. Each closed-loop system is fully constructed
under the ANSYS Fluent framework and is composed of two
major components (i.e., the reforming tube CFD model and
feedback controller), which are sequentially executed. The
feedback controller is realized in the form of a user-defined
function of the CFD model as shown in eqs 6 and 7, so that the
direct communication between the CFD model and feedback
controller can be established. Dynamic simulations of the
closed-loop reforming tube CFD model with feedback control
were executed by the ANSYS Fluent solver on an 8 core 32
RAM PC with 1TB internal storage. Typically, the solution
time of each simulation is expected to decrease with more
computational resources (e.g., the ANSYS Fluent solver utilizes

Figure 5. MPC closed-loop system with QP solver, in which QP
subproblems are solved iteratively to obtain the optimal solution.
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more computing nodes), which was observed when the ANSYS
Fluent solver was changed from serial mode (i.e., 1 computing
node) to 4-core parallel mode (i.e., 4 computing nodes).
However, as the number of computing nodes increases, the
overhead due to communication between the computing nodes
also increases, which eventually negates the benefit of parallel
computing. In the present work, the reduction in solution time
has been found to be negligible when the ANSYS Fluent solver
is allowed to utilize more than 4 computing nodes, and the 4-
core parallel ANSYS Fluent solver typically takes 24 h of
computational time to simulate 100 s in the closed-loop system.
In addition, the simulation settings of the closed-loop systems
are the same as in the open-loop simulation. Specifically, in
each simulation, the process was initiated from an initial steady-
state under a constant wall temperature profile (i.e., Twall

max =
1100 K, xH̅2

outlet = 0.427). After that, a set-point change (xH̅2

set =
0.465) is introduced to the closed-loop system to test its
dynamic performance.
The closed-loop simulations under PI control and under

MPC were run for about 350 s to allow xH̅2

outlet to reach its final
steady-state. Figure 6 panels a and b show that the predicted
outer reforming tube wall temperature profiles under the two
control schemes are within the temperature constraints. Figure
7 compares the dynamic performance of xH̅2

outlet with the same

step-change in the set-point xH̅2

set for the two controllers. The
simulations show that the model predictions within the MPC
allowed it to achieve a rapid dynamic response to minimize the
objective function and track the set-point.

In addition to evaluating the performance of the closed-loop
reforming tube under MPC, we also investigated the use of
CFD-based closed-loop simulations in tuning the MPC
sampling period and prediction horizon. Several MPC closed-
loop simulations with various prediction horizons (i.e., P = 10,
P = 30) and the same MPC sampling period (ΔT = 10 s) were
compared with results from the values chosen in this work (P =
20, ΔT = 10 s). The dynamic responses of the closed-loop
MPC with the three different prediction horizons are similar,
and the prediction horizon P = 30 requires a longer simulation
time than the two others. Even though the MPC closed-loop
simulations utilizing P = 10 and P = 20 have almost the same
performance, P = 20 is selected based on the tuning method for
the prediction horizon since P = 20 is most likely to cover the

Figure 6. Outer reforming tube-wall temperature profile trajectory in the absence of a tube-side feed disturbance under PI control (a) and under
MPC (b) with xH̅2

set = 0.465.

Figure 7. Propagation of xH̅2

outlet with time in the absence of a tube-side

feed disturbance under MPC (solid line) and under PI control (dashed
line). The open-loop system response (dashed-dotted line) is also
included for a wall temperature profile for which xH̅2

set = 0.465.
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entire dynamic response. In addition, MPC closed-loop
simulations with different MPC sampling periods (i.e., ΔT =
20 s, ΔT = 30 s) and the same prediction horizon (P = 20)
were also conducted and the results are compared in Figure 8,

which exhibit noticeable distinctions in the simulation results. It
is noticed that the three MPC’s with different sampling periods
were all able to drive the value of xH̅2

outlet to its set-point without
offset; however, the dynamic response improved as the MPC
sampling period ΔT was decreased. Hence, ΔT = 10 s is a
reasonable choice for the sampling period of the MPC.
CFD-based closed-loop simulations were also performed in

the presence of a 20% disturbance in the tube-side feed mass
flow rate. In this case, the MPC of eq 7 was not able to achieve
successful set-point tracking due to the plant-model mismatch,
and the proposed MPC and integral feedback control (MPC+I)
scheme shown in eqs 11a and 11b was used. The fraction, Kc/τI,
of the MPC+I scheme was chosen based on a trial-and-error
approach such that the closed-loop simulation, in which the
SISO model was used to represent the process dynamics, under
the influence of the disturbance appeared to be critically
damped. The results of utilizing this control scheme, as well as
PI and open-loop control, are shown in Figure 9. Both the
MPC and integral feedback control scheme and the PI
controller were able to eliminate the impact of the disturbance,
and to successfully drive xH̅2

outlet to the desired xH̅2

set. The results
also suggest that CFD-based closed-loop simulations may be
valuable for evaluating whether a proposed controller design,

particularly when an empirical model is used in deriving the
controller, will provide adequate control (e.g., disturbance
rejection) for a process.

Comparison between Control Schemes. We compare
the performance of the PI and MPC feedback control schemes
through two primary aspects: the ability to drive xH̅2

outlet to the

desired xH̅2

set in the presence of a step change in set-point, and
the speed of the closed-loop response. Through the comparison
between PI and MPC, we observe that both controllers can
successfully drive xH̅2

outlet to xH̅2

set without offset. Nevertheless,
there are differences between the predicted outer reforming
tube wall temperature trajectories. Specifically, the MPC
feedback control scheme initially maintains Twall

max at the
maximum allowable temperature 1200 K for 20 s as shown in
Figure 6b, which causes xH̅2

outlet to rapidly increase toward the

desired xH̅2

set. It takes only 60 s for xH̅2

outlet to reach the desired xH̅2

set

for the first time, while it takes around 308 s for the PI control
scheme. Therefore, the improvement of the dynamic response
is nearly 80.5%. In addition, it is noticed that there exists a
slight overshoot (xH̅2

outlet = 0.4651) compared to the desired set-

point (xH̅2

set = 0.465) under the MPC scheme, but this overshoot
is small (it is only 0.3% of the total difference between the
initial condition and set-point of xH̅2

outlet). With regard to the
settling time, the closed-loop system under MPC takes ∼250 s
to advance to the new steady-state, which is on the same order
of magnitude as the time required for the system under the PI
controller for which it takes ∼308 s. The closed-loop system
with the MPC achieves a faster response than the one with the
PI controller because the closed-loop system with the MPC has
the knowledge of the process dynamics, which allows it to
calculate more aggressive control actions.

■ CONCLUSION

The present work detailed the integration of a model predictive
controller with a reforming tube CFD model to represent an
industrial-scale single reforming tube to develop a computa-
tionally efficient closed-loop system. The development of a
SISO data-driven model, MPC and QP solver were discussed.
Specifically, the MPC formed a quadratic program due to the
use of an approximate linear model developed based on the
dynamic CFD simulation data generated from open-loop
simulations of the reforming tube CFD model. Furthermore,
the MPC was formulated to account for a physical constraint
on the reforming tube (an upper limit on the tube wall
temperature) utilizing a hard constraint in the optimization
problem. Then, the MPC algorithm and QP solver were
encoded in the form of user-defined functions under the
ANSYS Fluent framework and were subsequently integrated
into the CFD model to create the CFD-based closed-loop
system. Closed-loop systems were simulated by ANSYS Fluent,
which allowed direct communication between the MPC
algorithm, QP solver, and the CFD model, which reduced
the overhead and decreased the memory requirement for the
closed-loop simulation. It is important to point out that this
unified CFD modeling/feedback control framework can be
applied to other chemical process systems where CFD
modeling is needed to capture process behavior. Dynamic
CFD simulation data was used to compare MPC and PI
controller designs and to evaluate the best parameters
(sampling period and prediction horizon) for the MPC. The

Figure 8. Propagation of xH̅2

outlet with time in the absence of a tube-side

feed disturbance under MPC with different MPC sampling periods
(i.e., ΔT = 10 s, ΔT = 20 s, ΔT = 30 s) in which xH̅2

set = 0.465.

Figure 9. Propagation of xH̅2

outlet with time in the presence of a 20%
tube-side feed disturbance under the MPC and integral feedback
control scheme (solid line) and under PI control (dashed-dotted line).
The open-loop system response (dashed line) is also included for a
wall temperature profile for which xH̅2

set = 0.465.
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simulations indicated that the settling time of the closed-loop
system with the MPC is shorter than the one with the PI
controller in the absence and presence of disturbances, which
confirmed that the MPC offered superior set-point tracking and
disturbance rejection than the classical PI controller, assuming
that the reforming tube CFD model that was rigorously
validated with typical steady-state plant data provides an
accurate representation of the process dynamics during the
transients induced by set-point changes. In future work, the
MPC could be modified with additional constraints on the rate
of change of the outer wall temperature to produce practically
implementable control actions accounting for limitations of the
actuation system, and could be extended to control an
industrial-scale reformer.
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