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When managers and researchers encounter a data set, they typically ask two key questions: (1) Which model
(from a candidate set) should I use? And (2) if I use a particular model, when is it going to likely work

well for my business goal? This research addresses those two questions and provides a rule, i.e., a decision tree,
for data analysts to portend the “winning model” before having to fit any of them for longitudinal incidence
data. We characterize data sets based on managerially relevant (and easy-to-compute) summary statistics, and
we use classification techniques from machine learning to provide a decision tree that recommends when to
use which model. By doing the “legwork” of obtaining this decision tree for model selection, we provide a
time-saving tool to analysts. We illustrate this method for a common marketing problem (i.e., forecasting repeat
purchasing incidence for a cohort of new customers) and demonstrate the method’s ability to discriminate
among an integrated family of a hidden Markov model (HMM) and its constrained variants. We observe a strong
ability for data set characteristics to guide the choice of the most appropriate model, and we observe that some
model features (e.g., the “back-and-forth” migration between latent states) are more important to accommodate
than are others (e.g., the inclusion of an “off” state with no activity). We also demonstrate the method’s broad
potential by providing a general “recipe” for researchers to replicate this kind of model classification task in
other managerial contexts (outside of repeat purchasing incidence data and the HMM framework).
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1. Introduction
The explosion in technology-enabled data collection
has changed the focus of marketing modelers away
from aggregated data at the store or market level
toward more granular, panel-oriented data structures
and associated statistical methodologies. Companies
have reduced their reliance on “rolled-up” data pro-
vided by syndicated vendors (e.g., IRI, Nielsen) and
now build more of their analytics around customer-
level longitudinal patterns that they can obtain from
their own internal operations. But while this increased
reliance on “site-centric” data (Zheng et al. 2011)
offers a number of meaningful benefits to the firm, it
also comes with some potential costs to the researcher.

First, site-centric data provide a detailed descrip-
tion of each customer’s stream of purchases (and
other actions that the firm can measure directly),
but such data often lack information about market-
ing variables, competitive tactics, and other potential

“drivers” of the behavior(s) of interest (Donkers et al.
2007, Schweidel et al. 2008) that are typically pro-
vided by a third-party firm and are often difficult to
link to purchase data. Thus, many firms are focus-
ing their decision-making efforts around the flow of
incidence activities, i.e., the timing and nature of each
transaction, which is very rich but also quite different
from the inputs used in more traditional marketing-
mix models (Hanssens et al. 2005).

Second, this detailed stream of incidence actions
can be characterized by an ever-larger swath of math-
ematical models. That is, increased granularity comes
with the potential for increased model complexity and
hence a more difficult model selection problem than
faced by previous generations of researchers, who
often relied on relatively standard model specifica-
tions (Cooper and Nakanishi 1988, Wittink et al. 1988)
that were sufficient for the relatively standard data
structures made available by a small set of third-party
data providers.

188

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

10
8.

36
.1

07
.1

86
] 

on
 3

0 
M

ar
ch

 2
01

4,
 a

t 1
5:

52
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Schwartz, Bradlow, and Fader: Model Selection Using Database Characteristics
Marketing Science 33(2), pp. 188–205, © 2014 INFORMS 189

With this “data evolution” in mind, consider a busi-
ness intelligence manager for an e-commerce firm
who is examining panel data from three recent prod-
uct launches (see Figure 1). Her goal is to project
repeat purchase patterns for each data set because
her company’s production, marketing, and customer
relationship management activities depend on an
accurate forecast. How should she choose which sta-
tistical model is most appropriate for each product’s
data set? She could run a number of different panel-
oriented incidence models and choose the one that
fits each data set best, but a series of separate “model
bake-offs” would be a highly inefficient process and
would offer no assurances that the chosen model(s)
will be best suited for forecasting purposes of similar
data sets. Instead, are there clues in each data set that
might help her make the right choices without hav-
ing to run an array of models over and over again
for each new data set? Can we look at many data
sets and model performances to extract general rules
about when to use which model? That is the goal of
this paper: We want to help managers choose among
competing longitudinal incidence models, based only
on observed data set-level summary statistics, i.e.,
database characteristics, before they need to run any
models.

We will create a “decision tree” that can guide the
manager toward the most appropriate model speci-
fication for a given data set, based only on observ-
able (and easy-to-compute) summary statistics on that
data set. In other words, we will do the “up-front
work” so that the decision tree is a time-saving tool
for other analysts. We recognize that each data set

Figure 1 Three Different Commonly Observed Patterns of Aggregate Sales over Time (e.g., Arising from a Product Launch or Repeat Purchasing of
Cohort of New Customers)
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consists of a mix of heterogeneous customers who
may go through different kinds of dynamic pur-
chasing patterns over time, and we want to iden-
tify the most suitable model specification to capture
these within- and across-customer sources of vari-
ation. However, we do not use the database char-
acteristics directly in our models to predict future
purchasing (i.e., we do not treat them as X variables
in a statistical model), but instead, we use them to
help identify the best model (chosen from a class of
different latent-state model specifications) that can be
used for forecasting and other diagnostic purposes.

For instance, referring back to Figure 1, data set A’s
steadily declining sales may indicate that latent cus-
tomer attrition is prevalent but occurs at different
rates for different customers, so a “buy till you die”
model such as the Pareto/NBD (Schmittlein et al.
1987) or the beta-geometric/beta-binomial (BG/BB;
see Fader et al. 2010) model might be appropriate.
In contrast, the sales for data set B seem to show
a substantial rise toward the end of the observation
period, so a hidden Markov model (HMM), in which
customers move back and forth between different
states of purchasing propensities (Liechty et al. 2003,
Netzer et al. 2008), might be the best model to employ
for forecasting purposes. Finally, the sales curve for
data set C is harder to classify as a buy till you die or
an HMM-type pattern—it seems to reflect elements of
both specifications. Perhaps we need a hybrid version
of these two models to capture and project it.

Although there are innumerable models that could
be viable candidates for this kind of longitudinal inci-
dence data, we choose a particular set that is tightly
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connected to each other but still very flexible. The
models we consider are the HMM and three differ-
ent constrained variants of it (including the BG/BB
model). Since they are part of an integrated family,
they offer an opportunity to detect when each under-
lying model component (in this case, the presence
of an absorbing state and/or the need for a “no-
purchase” state) is worth including or “turning off.”
This provides added insight to the analyst about the
nature of customer dynamics, above and beyond sim-
plified model implementation and improved model
performance.

For this context (i.e., repeat-transaction incidence
data, the HMM and its constrained variants), we do
all of the “legwork” for the analyst. We run an array
of constrained and unconstrained HMM models on
dozens of synthetic data sets, generated to broadly
represent the kinds of patterns that are likely to occur
in real-world settings. Although this is computation-
ally expensive initially (a high up-front cost for us
as the researcher), it yields significant savings for the
downstream user—the manager simply follows our
advice and selects the most appropriate model given
the nature of her data set and runs it—the “winner”—
and not the entire class of models.

The focal managerial criterion we use to select
among models is the forecast error for each cohort’s
purchases, so the winning model has the minimum
mean absolute error in a holdout period. We use well-
established machine-learning methods known as clas-
sification and regression trees (CART) and random forests
to derive general rules to suggest which model to
use under different circumstances, based entirely on
observed (and managerially meaningful) patterns in
the customer-base data. The database characteristics
that turn out to be most important (in our setting)
include the nature of the decline in cohort-level sales
over time as well as purchase concentration (e.g., the
“80:20 rule”) across customers.

Since the development of the decision tree is our
key contribution, the structure of the paper centers
around it. There are three “ingredients” for the clas-
sification approach, and we devote a section of the
paper to each one: the candidate models in §2, the
database characteristics in §3, and the performance
criterion to determine the “winning” model for each
data set in §4. Putting these three ingredients together,
we create the decision tree in §5 and focus on its inter-
pretation, validation, and managerial implications.

Although we perform our analysis for a spe-
cific data/modeling context (albeit an important one
in today’s marketing environment), the same basic
“recipe” developed here can be applied to many other
settings. Thus, we formalize our approach as a more
general methodology in Appendix B, using the same
ingredients outlined above: a set of models, database

characteristics, and a selection criterion (i.e., perfor-
mance or error measure with loss function). We now
begin the process of laying out these elements to build
our decision tree.

2. Which Models to Consider? The
HMM and Its Constrained Variants

The decision tree recommends which model to use for
a given data set, but we have to provide a considera-
tion set of models: the HMM and its constrained vari-
ants. Why do we consider this class? First, they are
appropriate for this popular context of understanding
and projecting repeat-purchase patterns of a cohort of
customers using longitudinal incidence data (Liechty
et al. 2003, Montgomery et al. 2004, Montoya et al.
2010, Netzer et al. 2008, Schweidel et al. 2011). Sec-
ond, these models cover a wide range of underlying
“stories” of customer behavior, leading to different
observable data patterns. This helps us achieve the
goal of the paper: establish the link between data set-
level summaries and model performance.

Third, these models form an integrated family;
that is, each model is a constrained or unconstrained
version of another in the set. Some of these are estab-
lished yet seemingly unrelated models, such as buy
till you die and latent-class models, among others.
But they are all special cases of the HMM. These con-
nections have only been partially explored and in an
ad hoc manner in the previous literature, as we dis-
cuss below (Netzer et al. 2008, Schweidel et al. 2011).
However, the extra insight that we provide is that
the four variants of the HMM that we consider are
described by two model components each with two
levels (as seen in the 2 × 2 framework discussed in
Table 1). So the decision tree not only recommends
a specific model but also emphasizes the presence or
absence of more general model components, thereby
adding more insight and comparability across data
sets.

The unconstrained HMM used here has two states,
and the within-state purchase likelihoods are repeated
Bernoulli trials by individuals who can begin the cal-
ibration period in state 1 or state 2. We allow for
unobserved continuous heterogeneity for the within-
state purchase propensities as well as the between-
state transition probabilities. Formally stated, we let
yit = 1 for day t if the customer i purchased and yit = 0
otherwise.1 Then,

yit ∼

{

Bernoulli(p1i) if in state 11 Zit = 11
Bernoulli(p2i) if in state 21 Zit = 21 (1)

1 Without loss of generality, we use “day” to refer to the unit of
discrete time and “purchase” as the observed behavior of interest.
It could be, instead, for example, viewing online videos or not in a
given week, donating or not in a given quarter, etc.
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Table 1 Nested Model Relationships Among the HMM and Its Constrained Variants

State 2 is cold State 2 is off

Backward and forward transitions HMM On and off

pi = 4p1i 1 p2i 5 and äi =

(

1 − �12i �12i

�21i 1 − �21i

)

pi = 4p1i 105 and äi =

(

1 − �12i �12i

�21i 1 − �21i

)

Only forward transitions Hot then cold BG/BB

pi = 4p1i 1 p2i 5 and äi =

(

1 − �12i �12i

0 1

)

pi = 4p1i 105 and äi =

(

1 − �12i �12i

0 1

)

Notes. The rows and columns illustrate how constraints on two model components lead to different models. The pi and äi are the individual-level within-state
transaction probabilities and between-state transition probability matrix, respectively.

where the latent-state variable, Zit , indicates which
state a customer occupies on each day. The individual-
level parameters of the HMM are the within-
state propensities, pi, and the transition probability
matrix, äi. That is,

pi = 4p1i1 p2i5 and äi =

(

1 − �12i �12i
�21i 1 − �21i

)

0 (2)

We let the initial state membership be a population-
level parameter, and any individual can start in state 1
with probability �1 or state 2 with probability 1 −�1.
We assume independent beta distributions to allow
for heterogeneity across individuals for the compo-
nents of pi and äi.2 Specifically, the prior distributions
used are

p1i ∼ beta4�p1
1�p1

51 p2i ∼ beta4�p2
1�p2

51

�12i ∼ beta4��12
1��12

51 �21i ∼ beta4��21
1��21

51
(3)

where � = a/4a + b5 is the mean and � = 1/4a +

b + 15 is the polarization index of the beta distribu-
tion with shape parameters a and b (Sabavala and
Morrison 1977). In general, for S ≥ 2 states, each
row r of the transition probability matrix is a vec-
tor 4�r1i1 0 0 0 1 �rSi5 ∼ Dirichlet4�r11 0 0 0 1�rS5.3 We distin-
guish between states by referring to state 1 as having
a within-state propensity at least as large as that of
state 2 for each individual (i.e., p1i ≥ p2i for all i). This
prevents the label-switching problem known to exist
with latent-state models (Stephens 2000).

We highlight the off-diagonal entries of the transi-
tion probability matrix, since �12i denotes the prob-
ability an individual moves “forward” (state 1 to 2)
and �21i represents the probability an individual

2 The initial state membership probability is assumed to be a
population-level parameter as a result of the definition of a cohort
of customers acquired at the same time. Additionally, the results
are robust to using a logit-normal for heterogeneity on all individ-
ual parameters and for allowing correlations among them.
3 We use highly uninformative hyperpriors on the population-
level parameters of the beta (or Dirichlet) distributions. For more
details about the distributions used in the sampling procedure, see
Appendix A.

moves “backward” (state 2 to 1). Not allowing
backward transitions is equivalent to making state 2
absorbing.

Given this formulation of the unconstrained HMM,
the three nested models emerge as we constrain either
or both model components. To start, when we apply
both constraints to all individuals, such that there is
an off state (p2i = 0) and backward transitions are pro-
hibited (�21i = 0), the buy till you die BG/BB model
emerges.4

Then, as we think about how the BG/BB model and
HMM differ along these two dimensions, we can con-
sider each of those dimensions separately (i.e., either
p2i = 0 or �21i = 0). These constraints determine the
two dimensions of Table 1. When applying each of the
two constraints separately, different models emerge
(the off-diagonal cells of Table 1), and each tells a dis-
tinct story of customer behavior.

When only p2i = 0, the on and off model (OF)
emerges. Consumers can make back-and-forth transi-
tions between an “on” state of activity and an “off”
state of inactivity. Like the HMM, customers can make
backward transitions, yet like the BG/BB model,
when in the off state, customers have no chance of
activity. This kind of model has been explored in
papers on Markov-modulated Poisson processes (Ma
and Buschken 2011).

Alternatively, when only �21i = 0, we get the hot
then cold model (HC). At any time, customers can
be either in a “hot” state (higher propensity to pur-
chase) or a “cold” state (purchasing is less likely but
still possible). Like the BG/BB model, once the cus-
tomer reaches the cold state, she remains there (no
backward transitions), and like the HMM, in the cold
state, purchasing is possible. The hot-then-cold order-
ing is informed by the prevalence of customer attri-
tion or, at least, the slowing down of transactions
(in aggregate) that is common in most cohort-level

4 Unlike the BG/BB as in Fader et al. (2010), which assumes that all
individuals start in the “alive” state, in our BG/BB specification we
allow individuals to start in either state, according to initial state
probability vector �. The model utilized here is more general.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

10
8.

36
.1

07
.1

86
] 

on
 3

0 
M

ar
ch

 2
01

4,
 a

t 1
5:

52
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Schwartz, Bradlow, and Fader: Model Selection Using Database Characteristics
192 Marketing Science 33(2), pp. 188–205, © 2014 INFORMS

data sets.5 Such behavior appears in queuing theory
models, such as phase-type distributions (Bladt and
Neuts 2003, O’Cinneide 1990), and in marketing mod-
els (Fader et al. 2004, Schweidel and Fader 2009).

Past literature has noted how the latent-class model
(Kamakura and Russell 1989) is a special case of an
HMM (�12i = �21i = 0), and other work often utilizes a
nested model with a “death” state (Netzer et al. 2008,
Schweidel et al. 2011). However, the other links among
the HMM and its constrained models (e.g., BG/BB,
HC, OF) that we consider have not been documented
in full detail as an integrated framework with the 2×2
structure as described here.

Viewing the HMM and its constrained variants
as an integrated family provides an opportunity to
detect when (i.e., for which types of data sets) each
model component is worth including. One may ini-
tially (but erroneously) think that the nested structure
would guarantee that the more flexible HMM would
perform at least as well as any of its constrained
versions (with one or both model components shut
off) on all model-performance criteria. But this is not
guaranteed in practice. We illustrate that when fore-
casting repeat transactions out of sample, the more
general model does not always beat its nested ver-
sions, and hence there is value in the decision tree
provided in this paper.

The decision tree answers our key question: For
what kinds of database characteristics does each
model perform best? To perform this classification, we
need a range of different data sets generated from the
2 × 2 framework. We generate 64 synthetic data sets,
each with T = 30 weeks of data in calibration (and 30
for holdout) and N = 500 customers, with consider-
able variation by simulating them from unconstrained
and constrained versions of the HMM (i.e., to capture
each of the submodels as well as the full uncon-
strained HMM) with a generous range of population-
level parameters:

�p1
∈ 600051005071 �p2

∈ 600001001071

��12
∈ 600101003571 ��21

∈ 600001002571

�p1
1�p2

1��1
1��2

∈ 600101004571 �1 ∈800501100090

(4)

We discuss these synthetic data sets and the vari-
ability across them in the next section. However,
after creating these data sets, we put aside the data-
generating process and describe them entirely by
easy-to-compute and managerially relevant database
characteristics, which we now cover in detail.

5 For this reason, we do not consider a separate “cold then hot”
model, although the general HMM and OF specifications allow
individual-level purchasing to speed up over time.

3. Selecting Database Characteristics
The decision tree is a tool that predicts which spec-
ification is likely to be the winning model by only
looking at summary statistics of a particular database.
Just as we need a set of reasonable models from which
to choose, we also need a set of database character-
istics to drive the choice process. But which database
characteristics should we consider? We illustrate our
process of identifying relevant database characteristics
by returning to one of the opening examples, repeat
purchasing for data set A. Before running any models,
analysts frequently examine two typical displays of
a cohort’s purchasing behavior: a cross-sectional his-
togram of customer-level transactions and a longitudi-
nal tracking plot of cohort-level purchases over time.
These two graphs appear in Figure 2.

What are the key features of each graph? We want
to choose summaries that are both managerially rele-
vant and easy to compute directly from these aggre-
gate plots. We identify four summaries that offer
a fairly complete characterization of each plot. For
the histogram, we propose summaries to capture the
nature of the head and the tail of the distribution as
well as its central tendency. For the tracking plot, we
focus on the early and late trends in purchasing as the
cohort ages and the trend’s overall “bowed” shape,
as well as the overall variability over time.

More specifically, Table 2 contains a listing of
these measures, which we will use in our subsequent
empirical analysis. Although there is not an exact sci-
ence to selecting these measures, we choose them here
to represent central tendency (e.g., average frequency),
higher moments (e.g., top percentile, purchase con-
centration 80:20-type rule), and trend behavior (e.g.,
steepness, shape, trend variability). We do not claim
this list to be comprehensive, but these values vary
widely and in systematic ways across the data sets
generated by the HMM and its constrained versions.

The variation in these measures across databases is
essential: it allows us to explicitly show the range of
empirical patterns we consider here and is required
to obtain a meaningful classification tree linking
these summaries to the model selection process.
We illustrate some of this variation in values of these
summary statistics for data sets A, B, and C (see
Table 3). It is interesting to see how the data sets
are indistinguishable on some dimensions (e.g., fre-
quency), quite distinct from each another on others
(e.g., penetration), and occasionally exhibit pairwise
similarities (e.g., late trend for data sets B and C).

In most empirical settings, we think about the
amount of information as being related to the num-
ber of observations within a data set. But in this
setting, each data set is reduced to a single obser-
vation described along multiple dimensions, i.e., the
database characteristics described above. Thus, we
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Figure 2 The Observed Database Characteristics Arise Naturally from Plots That Managers Typically Examine When Deciding Which Model(s) to Run
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Note. The histogram (left) shows how the number of transactions varies across customers in the observation period, and the tracking plot (right) shows
incremental transactions of the cohort over the same period.

construct a “data set of data sets,” a collection of
64 simulated data sets reflecting variation along the
summary statistics and representing real-world data
sets (Fader et al. 2010, Netzer et al. 2008, Schweidel
et al. 2011). Specifically, we generate data sets from all
possible combinations of the parameter values noted
in §2, which allows us to reflect both the structural
variation and the “natural randomness” that arises
from simulating the purchases. Once the data sets

Table 2 Database Characteristics that Capture Features of a
Longitudinal Incidence Data Set and Can Be Computed from
Summary Plots (e.g., Histogram and Tracking Plot)

Characteristic Description

Frequency How many active days of transactions are there per
customer?

Penetration How many unique customers have made at least one
transaction?

Concentration How is activity spread out among customers (i.e.,
what fraction of all transactions was made by the
top 20% of customers)?

Top 5% level How much are the most active customers
purchasing (i.e., what level of transactions is the
cutoff for the top 5% of most active customers)?

Early trend What is the trend in the first half of the calibration
period (i.e., drop from first to middle day as a
percentage of the size of the customer base)?

Late trend What is the trend in the second half of the calibration
period (i.e., drop from middle to last day as a
percentage of the size of the customer base)?

Trend Gini How much does the actual curve deviate from a line
connecting the first and last days (i.e., how much
area is there below the trend line and the curve, as
percentage of the levels of the line, à la the Gini
coefficient)?

Trend variability How much day-to-day variation is present in the
calibration period (i.e., standard deviation of
incremental sales)?

are created, the true values of the population-level
parameters are no longer taken into consideration.

Figure 3 shows the large variability along the val-
ues of the database characteristics across the simu-
lated data sets. For instance, nearly half of the data
sets have penetration rates between 40% and 70%.
About 40% of them have a very steep declining trend
(steeper than a drop in transactions equivalent to 15%
of the cohort size), whereas others show some growth
in purchases for the cohort over time. Thus, we
believe that by selecting and creating data sets in this
way, we will have avoided biasing our classification
results to favor any particular model specification.

To ensure that our chosen characteristics are ex-
plaining most of the meaningful variation across the
collection data sets, we ran a principal components
analysis and an exploratory factor analysis on an
even larger set of summary statistics beyond the
ones described earlier. We do not present the detailed
results but note a few highlights. The principal com-
ponents analysis indicates that 99% of the measured
variation across the 64 data sets can be captured
by six independent components. The loadings of the

Table 3 Database Characteristics for the Three Highlighted Data Sets

%

Characteristic Data set A Data set B Data set C

Frequency 11 12 11
Penetration 48 83 68
Concentration 84 55 63
Top 5% level 63 40 43
Early trend −17 −29 −7
Late trend −3 1 0
Trend shape 27 46 13
Trend variability 4 6 2

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

10
8.

36
.1

07
.1

86
] 

on
 3

0 
M

ar
ch

 2
01

4,
 a

t 1
5:

52
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Schwartz, Bradlow, and Fader: Model Selection Using Database Characteristics
194 Marketing Science 33(2), pp. 188–205, © 2014 INFORMS

Figure 3 Histograms Summarizing the Variability for Each Database
Characteristic Across All 64 Data Sets
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principal components analysis and the loadings of the
exploratory factor analysis (with five, six, and seven
factors) all point to a very similar set of summary
statistics, such as central tendency, concentration, and
variation over time.

We also recognize that a number of these database
characteristics are naturally correlated with each
other. Some measures are quite independent (e.g., late
trend and penetration, r = 0001), but other pairs have
correlations that are large and significant (e.g., aver-
age frequency and penetration, r = 0086). Although
this kind of multicollinearity could be a serious
problem in a typical regression-like model, it does
not affect the classification tree and random for-
est approach since they are nonparametric methods
designed specifically for (sequential) variable selec-
tion (Breiman 2001a, Breiman et al. 1984).

4. Assessing Model Performance
The final ingredient that goes into the classification
tree is a rule for declaring a winning model for a
given data set. Here, we select a winner based on
each model’s ability to predict an important man-
agerial quantity that is widely used for purchas-
ing data because of its link to customer lifetime
value and other profit measures: aggregate incremen-
tal sales over a holdout period. Specifically, we select
an error measure that summarizes the time series of
discrepancies between the model and the observed
sales for each “Markov chain Monte Carlo (MCMC)
world.” We will look at the variability of the errors
across “worlds” and also average the errors across
the worlds to obtain a measure of the model’s error
for that data set that integrates over the posterior
uncertainty. The error measure we use, mean absolute
error (MAE), assumes a linear loss function and is
frequently used for time-series data. In the more gen-
eral formulation of this procedure (see Appendix B),
one can select any managerial quantity (replacing out-
of-sample aggregate sales over time) and error mea-
sure with a different loss function (to replace MAE).
Although we present results using MAE for our con-
text, our classification tree results are robust to alter-
native common summary error measures (e.g., mean
absolute percent error and root mean squared error).6

Formally stated, we quantify performance as the
degree to which the model-based posterior predic-
tive distribution of out-of-sample aggregate sales
is outlying with respect to the quantity’s observed
value. We assume the posterior distribution has
been obtained using standard MCMC procedures
(detailed in Appendix A), yielding posterior draws
g = 11 0 0 0 1G. For data set k, yobs

kt is number of the
observed incremental transactions at time period t,
and y

∗4g5

kmt is one replicate from model m’s correspond-
ing posterior predictive distribution for that quantity
(i.e., incremental transactions). Then for each poste-
rior replicate g, we compute the mean absolute error:

d
4g5

km =
1
T

T
∑

t=1

∣

∣y
∗4g5

kmt − yobs
kt

∣

∣0 (5)

6 We note that our choice of error measure for model selection is
in contrast to commonly used likelihood-based summary criteria,
such as Bayesian information criterion (BIC) and deviation infor-
mation criterion (DIC) (Montgomery et al. 2004, Montoya et al.
2010, Netzer et al. 2008, Schweidel et al. 2011). We use an empirical
quantity for model selection since many scholars caution against
using purely likelihood-based measures (Gelman and Rubin 1995),
especially for latent-state models, such as the HMM and its vari-
ants, because one must face issues with unstable estimators, com-
putation of the posterior distribution, and correction factors of the
log-marginal likelihood (Chib 1995, Lenk 2009, Newton and Raftery
1994, Spiegelhalter et al. 2002).
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We will use the values of d
4g5

km in two ways. On
the one hand, we will examine the average posterior
MAE for all four models on each data set to deter-
mine a single winner per data set. On the other hand,
to provide a more nuanced set of findings, we char-
acterize the full posterior uncertainty of the MAE by
computing the probability that each model has low-
est value (i.e., the proportion of times each model is
the winner across the G posterior replicates) because
we would not want to overly penalize a model that is
a “close second,” for instance. We also use the latter
directly in our classification tree.

Now, armed with a set of models (the HMM and
its constrained variants), the in-sample database char-
acteristics for each data set (see Table 2), and an error
measure (out-of-sample MAE), we have all of the
ingredients for the decision tree, which is described
next.

5. When to Use Which Model?
A Classification Tree

We classify data sets to reveal how we can select
the model with the best out-of-sample error by only
using in-sample database characteristics. This enables
us to answer the paper’s central question: Given a
data set’s summary statistics, which model best fits
the data?

The winning model, m
Winner4g5
k , for data set k and

posterior world g is determined by the identifying
the model with the minimum error d

4g5

km among all M
models:

m
Winner4g5
k = arg min

m=110001M
d
4g5

km 0 (6)

We use a classification tree to relate the identity of the
winning model, m

Winner4g5
k , to the vector of database

characteristics, �4Yobs
k 5. Given the performance of all

M models across all K data sets and G posterior repli-
cates, we explain variations in the model performance
(i.e., which model wins) as a function of the observed
summaries of that data set. Stated formally, we cap-
ture this relationship as follows:

m̂
Winner4g5
k = Tree6�4Yobs

k 571 (7)

where the function “Tree” denotes the classification
tree predicting the winning model m̂Winner4g5

k for each
of the data sets k = 11 0 0 0 1K and posterior world g =

11 0 0 0 1G.
The classification tree provides cutoff values of the

data set-level summary statistics to place entire data
sets into “buckets.” This classifies data sets in an
easy-to-interpret manner. Each bucket of data sets has
a similar profile of data set-level summary statistics

and similar patterns of model performance. There-
fore, when a new data set is encountered, it can be
classified using this decision rule to identify which
of the models will likely be most suited for it. This
allows us to uncover relationships between observed
patterns in the data and model fit that are easy to
interpret while avoiding the need to make any addi-
tional assumptions about functional form or error dis-
tributions common to ordinary regression models.

Additionally, our classification tree approach goes
one step further because it also reflects the natu-
ral parameter and model uncertainty. We reflect that
uncertainty since our Bayesian modeling approach
provides the full posterior distribution of perfor-
mance for each data set–model pair. As a result, each
case to be classified is unique to a particular posterior
draw from a model run on a data set. This means that
the data to be used to construct the classification tree
contain G = 100 model-based replicates of the K = 64
observed data sets. By using G replicates of each set
of observed data set summaries (independent vari-
ables), we allow for G different values of errors from
each model–data set pair; hence, each data set has a
distribution of different winning models (dependent
variables) and therefore receives an appropriate num-
ber of “votes.”

5.1. Classification Tree
The classification tree in Figure 4 can be easily read by
starting at the top and following a series of “if0 0 0then”
decisions down to a terminal node at the bottom of
each branch. These terminal nodes represent a group
of data sets with the same observed summary statis-
tic branch values (predictor variables). Each node has
a recommended winning model but also displays
the within-node winning percentages for each model
(based on the number of posterior worlds in which
each model had the lowest forecast error). Note that
the N values in the tree sum to 6,400 cases, reflecting
the use of 100 posterior replicates for each of the 64
simulated data sets.

Four database characteristics were selected by the
classification tree’s sequential variable selection algo-
rithm as being diagnostic: early trend, late trend, con-
centration, and trend Gini (trend shape).

The early and late trend statistics reflect the change
in transactions over each half of the calibration period
(15 days in each half) expressed as a percentage of the
total customer base (500 customers). The classification
tree partitions early trend into three levels: very steep
(steeper than a drop in daily transactions equivalent
to 11% of the customer base), moderately steep (a drop
between 1% and 11%), and relatively flat or positive
(a slope that is more positive than −1%). Late trend is
partitioned into two levels, which we label moderately
steep (a drop steeper than 3% of the total customer
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Figure 4 The Classification Tree

BG/BB
N = 700

[0.46, 0.26,
0.07, 0.21]

A

HC
N = 200

[0.28, 0.70,
0.01, 0.02]

Highly concentrated Not highly concentrated

BG/BB
N = 1,500

[0.40, 0.18,
0.16, 0.26]

A

Trend Gini
< 5% ≥ 5%

Concentration
≥ 82%   < 82%

Less bowed More bowed

HMM
N = 200

[0.28, 0.27,
0.09, 0.37]

Early trend
< –9% ≥ –9%

Early trend
< –11% ≥ –11%

Late trend
< –3% ≥ – 3%

Early trend
< –1% ≥ –1%

HMM
N = 1,300

[0.14, 0.09,
0.32, 0.45]

B

OF
N = 800

[0.08, 0.05,
0.55, 0.32]

C

Very steep Moderately steep

OF or HMM
N = 1,700

[0.02, 0.07,
0.47, 0.44]

At least moderately steep

Very steep

Relatively flat or
increasing

Moderately steep

At least slight decline Relatively flat or increasing

Notes. The tree is estimated on 6,400 cases, using 100 posterior samples for each of the 64 data sets. For any data set, the tree should be read from top
to bottom: the ovals represent the partitions, the rectangles indicate the terminal nodes, and the listed model is the recommended one for that particular
combination of database characteristics. Also listed is a vector summarizing the posterior winning percentage for all four models (left to right: BG/BB, HC, OF,
and HMM). The highlighted data sets A, B, and C appear where they are best classified.

base) and relatively flat or positive (a slope that is more
positive than −3%). Next, the split for concentration
has a remarkable resemblance to the 80:20 rule. A data
set is either highly concentrated (more than 82% of pur-
chases are made by the top 20% of customers) or not
highly concentrated.

The trend Gini summary statistic reflects the shape
of the curve. How much does the actual curve devi-
ate from a line connecting the first and last days
of the calibration period (i.e., how much area is
there between curve and the trend line)? In other
words, this measures the degree to which the curve
is “bowed.” The variable is split into a less bowed
shape (close to linear with value less than 5%) and a
more bowed shape (value greater than 5%). Negative

values indicate that there is more area between the
curve and the trend line that sits above the trend line
than below the trend line.

We illustrate the use of the tree by returning to
our three introductory data sets. Recall their database
characteristics were shown in Table 3. We can trace
how the tree classifies these data sets to illustrate
exactly how a manager can use our decision tree. For
instance, data set A exhibits a sales pattern that is
downward sloping early on (steeper than −1%) and
not strongly downward sloping later on (equal to
−3%) and where more than 82% of the purchases are
made by the top 20% of customers. Thus, the classifi-
cation tree recommends that it would be best modeled
using the BG/BB model since that model provides
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Table 4 For Each Data Set and Each Model’s Posterior Draw, the
Out-of-Sample Forecast Is Generated from the Posterior
Predictive Distribution and MAE Is Computed

Data set

Model A B C

BG/BB 4.37 9071 14013
HC 4.91 10016 17029
OF 6.52 10020 7009
HMM 5.13 8035 9044

Notes. The posterior mean of the MAE values for each model–data set pair
is shown here. The lowest error value (i.e., winning model) for each data set
is in bold.

the best out-of-sample forecast for 40% of the pos-
terior replicates associated with the 15 different data
sets that have similar values of database character-
istics. (And indeed, the BG/BB model does provide
the best forecast for data set A, as we show in
Tables 4–6.)

It is interesting to note the internal consistency of
the tree. In particular, the precise value of the late
trend for data set A is exactly the classification tree’s
cutoff value (−3%). So even if the data set’s late trend
were just slightly less than that cutoff, the data set
would still fall into a node dominated by the BG/BB
model (i.e., in the leftmost terminal node of the tree,
the BG/BB model is the best-performing model in
46% of posterior replicates).

For data sets with a declining early trend and a
flat or increasing late trend, but without a high pur-
chase concentration (fewer than 82% of the purchases
made by the top 20% of customers), a different pattern
emerges. Data sets B and C are two such examples,
so they fall into two terminal nodes in this part of
the tree. Data sets represented in this part of the tree
show a strong need to allow for back-and-forth tran-
sition (HMM and OF). But within the back-and-forth
pair, there is less certainty about which one wins.

Further splitting the data sets by trend Gini (trend
shape) over the calibration period and by early trend
one more time allows the analyst to better discriminate

Table 5 For Each Data Set and Each Model’s Posterior Draw, the
Out-of-Sample Forecast Is Generated from the Posterior
Predictive Distribution

Posterior distribution of MAE (%)

Data set A Data set B Data set C

Model 25 50 75 25 50 75 25 50 75

BG/BB 3.7 4.2 4.8 8.3 906 1100 1109 1400 1602
HC 4.0 4.6 5.5 8.9 1001 1104 1504 1703 1901
OF 4.9 6.2 7.8 8.6 1000 1106 603 700 708
HMM 4.1 4.7 5.8 7.0 801 905 707 900 1007

Notes. MAE is computed for each replicate data set. The posterior quantiles
(25%, 50%, and 75%) of the values across for each data set are shown here.
The lowest value (i.e., winning model) for each data set is in bold.

Table 6 Posterior Probabilities of Each Model “Winning” Are
Computed as the Proportion of Replicated Data Sets (e.g.,
“MCMC Worlds”) in Which Each Model Has the Lowest MAE

Posterior probability of model winning (%)

Data set BG/BB HC OF HMM

A 45 27 6 22
B 20 11 16 53
C 1 0 81 18

Note. These winning percentages illustrate the uncertainty in declaring a
winner.

when each model is likely to perform better. For data
sets with a more bowed shape (trend Gini greater than
or equal to 5%) and a very steep early trend (steeper
than 9%), such as data set B, the HMM wins with 45%
of votes versus the OF with 32%. However, for others
with a moderately steep early trend (between a 1% and
9% drop) and a more bowed shape, such as data set C,
the OF wins with 55% of votes versus the HMM with
32%. Data sets B and C are therefore best classified by
the HMM and OF, respectively.

The split on trend shape (trend Gini) and an addi-
tional split on early trend should be intuitive because
the HMM is a more general model than the OF. As a
result, the HMM can generate a wider range of pat-
terns across data sets than the OF can because of the
extra model flexibility (e.g., state 2 purchase probabil-
ity is not necessarily zero). To understand this, keep
in mind the patterns common to the data sets in this
part of the tree: not highly concentrated purchasing
and flat or increasing late trend. On the one hand, for
less bow-shaped curves, the OF has difficulty captur-
ing a nearly linear pattern since the off state induces
a moderate steep early drop. On the other hand, for
markedly bow-shaped curves, the OF also has diffi-
culty capturing both the very steep early declining
trends and flat or increasing later trend. Capturing
such an interaction among database characteristics is
an advantage that CART methods have over tradi-
tional linear regression approaches.

5.2. Uncertainty in Model Performance
As we take a deeper dive into particular branches
of the decision tree, we examine the uncertainty in
model performance. That is, although the model with
the lowest error is declared the winner, we describe
how we one can use votes for each winning model by
utilizing the full posterior from the Bayesian model
output.

As an illustration, we return to data sets A, B, and C
to look at the comparative performance of the HMM
and its variants from the 2 × 2 framework. The aver-
age performance seen in the plots of Figure 5 are
quantified in Table 4.

We summarize each model’s performance for a
data set using MAE averaged over the posterior
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Figure 5 Three Example Data Sets with Predictions Arising from Each of the Four Models
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Note. The mean of each model’s posterior predictive distribution is shown.

uncertainty. For example, for data set A, the BG/BB
model has the best average out-of-sample predic-
tion (MAE = 4037, mean across replicates), closely fol-
lowed by the HC (4.91). For data set B, the HMM
(8.35) clearly outperforms the other three models, and
data set C is best modeled by the OF (7.09).

Whereas those are posterior means of model per-
formance, we also convey the degree of uncertainty
in these assessments using replicated data sets asso-
ciated with the full posterior predictive distribution.
To illustrate this uncertainty, we plot the predicted
incremental sales for each posterior replicate for data
set A and the observed daily incremental sales (see
Figure 6). By visual inspection of these tracking plots
alone, it is difficult to detect whether the BG/BB
model truly predicts better than the other three
models.

Although we would like to declare a single winning
model for each data set, the high level of uncertainty
around the model predictions seems to raise a warn-
ing flag about making any strong statements about
differences among the models. Therefore, we want to
quantify the “shades of gray” in model performance
by recognizing that when declaring a winning model,
the vote need not be unanimous.

Thus, instead of only examining posterior mean of
MAE, we characterize its full distribution. For the
highlighted data sets A, B, and C, we show the dis-
tribution of each model’s MAE across all replicates
(see Figure 7). Table 5 displays the corresponding
distribution summaries (e.g., median and interquar-
tile ranges of MAE across replicates).

Not surprisingly, the densities of the performance
measure of the four models are somewhat overlap-
ping. For example, in data set A, although most of
the mass of the BG/BB model density is lower (bet-
ter) than that of the HMM and HC densities, there is
some probability that the HMM or HC has a lower
MAE than the BG/BB model. This suggests there is
not a unanimous winner. By contrast, in data set C, for
instance, there is much less overlap, suggesting that
the OF has an even higher chance of a lower MAE
than do the others.

But what is the probability that each model is the
winning model for a data set? We take advantage of
the Bayesian output to make this probability state-
ment. Table 6 shows each model’s winning percentage
for data sets A, B, and C. That winning percentage,
or percentage of votes, is the proportion of posterior
worlds in which each model has the lowest error. For
instance, the OF is quite clearly the winner for data
set C since it wins 81% of the time. For data set A,
although the BG/BB model is the winner, the distri-
butions of the error for three of the four models over-
lap. So it is not surprising that they split the votes,
and the BG/BB model wins 45% of the time com-
pared with 27%, 6%, and 22% for HC, OF, and HMM,
respectively.

5.3. Assessing the Predictive Value of the
Decision Tree: In Sample

How accurate are the resulting recommendations
from the tree? We answer this question to assess the
tree’s predictive value. First, we focus on the simple
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Figure 6 Illustrations of the Range of Variability in Model Prediction for Data Set A
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measure of the hit rate of the classification tree. The
hit rate is the number of times the tree recommends
a model that is, in fact, the best model to use on that

Figure 7 Posterior Distribution of Out-of-Sample MAE for the Three Highlighted Data Sets
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not a clear winning model. When one density that stands out as better than the others (e.g., data set C), there is a clear winning model.

data set. Averaged across all models and iterations,
the hit rate is 46%. We put this hit rate in context
by noting that from a purely operational standpoint,
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the tree allows the analyst to run one model instead
of four. In other words, by reducing the work of an
analyst by 75%, the tree makes a recommendation of
which model to use that is about twice as good as
guessing (a 25% hit rate) randomly among the four
models. This hit rate also fares well when compared
with tougher comparative yardsticks, such as the pro-
portional chance criterion and maximum chance cri-
terion (Morrison 1969), which yield benchmark hit
rates of 28% and 35%, respectively. The latter metric
is often hard to beat in a discriminant analysis set-
ting. It assesses how much better our classifications
are compared with using the most common actual
winner (in this case, the HMM) every time. Thus the
decision tree clearly offers some improvements over
that simple (but often effective) approach.

However, this measure is purely an in-sample one:
it uses the same 64 data sets for calibration and clas-
sification purposes, so it may be subject to overfitting.
We next describe a procedure, random forests, that
will allow us to reflect the uncertain nature of the tree
itself and its application to holdout data.

5.4. Assessing the Predictive Value of the Tree
Using Random Forests: Out of Sample

To answer the question about the value of the tree,
using another lens, we turn to another machine-
learning method closely related to CART known
as random forests (Breiman 2001a, Liaw and Wiener
2002). Although the single classification tree we have
described above takes into account the parameter and
model uncertainty, it does not take into account uncer-
tainty in the structure of the classification tree itself.
The random forest captures extra variation around the
classification. This requires many classification trees,
so the random forest algorithm “grows” many trees
(hence, the “forest”).

What is special about the random forest is that
it has a built-in monitoring system to make sure it
produces predictions that are validated on a hold-
out set and that are utilizing important predic-
tor variables. Both aspects of predictions prevent
overfitting (Breiman 2001a, Liaw and Wiener 2002).
Fortunately, the random forest algorithm has a built-
in cross-validation procedure calculating an n-fold
cross-validation, where the holdout sample size, n,
is typically about 1/3 of the cases (Breiman 2001a).
The holdout misclassification rate, in the language of
machine learning, is called the “out-of-bag” error rate,
or the “generalized error rate” since it is intuitively
similar to cross-validation error, which indicates the
ability of the predictive model to generalize to cases
outside of the given data set.

The random forest out-of-sample error rates broken
down by each model are in Table 7, and the hit rate
across all four models is 48%. This closely matches the
in-sample hit rate using one classification tree. It is

Table 7 Out-of-Sample Classification for Each of the 6,400 Cases
(Data Set–World Pairs) from the Random Forest

Model BG/BB HC HMM OF Hit rate (%)

BG/BB 840 151 215 114 64
HC 372 247 145 154 27
HMM 430 40 11056 677 48
OF 259 7 742 951 49

Notes. Rows indicate which model actually fits the data best. Columns indi-
cate which model was recommended by the random forest’s classification
for that data set using a 2/3 sample for calibration (in sample) and 1/3 sam-
ple for validation (out of sample). The hit rate is the proportion of each type
of data set correctly classified as out of sample (i.e., the diagonal entries
divided by row sums).

encouraging to see that, even when a data set is not
used for calibration, it can be classified correctly with
a high level of accuracy.

Looking more carefully at the classification tree
and random forest results, several distinctive patterns
arise. It is clear that the BG/BB and HMM models
have substantially higher hit rates than do the other
two models. It also seems that each of these polar
opposite models (at least in terms of parameters and
complexity) can serve as effective “representatives” to
characterize the entire family of HMM models covered
here.

This result raises the question about which of the
two constraints/dimensions associated with our 2×2
framework is more important to capture: the pres-
ence of an off state or the existence of an absorbing
state. A closer inspection of Table 7 clearly reveals the
answer: classifying whether or not the data require
an absorbing-state model or a back-and-forth model
is much more informative than the presence of an off
state. There is a high degree of confusion between
the BG/BB model and HC, and likewise for HMM
and OF, but relatively little confusion between the
BG/BB model and OF or between HMM and HC.
In Table 8, we aggregate the classifications across
this single dimension and see incredibly high hit
rates (62% and 89%) when we ignore the presence or
absence of the off state.

We have explored the predictive value of the deci-
sion tree, so it is natural to ask what is driving its good
predictive ability. To better understand the drivers of

Table 8 Combined Cases of Data Sets and Classifications Into
Models with Absorbing States (BG/BB and HC) and
Back-and-Forth Transitions (OF and HMM)

State Absorbing Back-and-forth Hit rate (%)

Absorbing 11383 855 62
Back-and-forth 466 31696 89

Notes. That is, by ignoring the presence or absence of an off/death state, the
hit rates are quite high. Like Table 7, these are out-of-sample classifications,
so the hit rate is the proportion of cases correctly classified.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

10
8.

36
.1

07
.1

86
] 

on
 3

0 
M

ar
ch

 2
01

4,
 a

t 1
5:

52
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Schwartz, Bradlow, and Fader: Model Selection Using Database Characteristics
Marketing Science 33(2), pp. 188–205, © 2014 INFORMS 201

our strong classification capabilities, we now analyze
the database characteristics’ diagnostic value.

5.5. Which Database Characteristics
Are Most Diagnostic?

The output of the random forests uncovers which vari-
ables are most important in explaining classification
success. This not only validates the decision tree
obtained via CART but also quantifies variable impor-
tance. Variable importance in random forests is a
measure of the average improvement in prediction
accuracy of a tree when this variable is included (and
its values are intact) compared with when this vari-
able’s values are meaningless (arbitrarily permuted
across observations).

Figure 8 displays each database characteristic’s
variable importance. This analysis confirms what we
see in the classification tree: early trend, late trend,
trend Gini (trend shape), and concentration are the
four most important variables, and they are clearly
separated out from the others. Among the four, how-
ever, late trend is the most important. This makes
intuitive sense because the models differ in their abil-
ity to generate decreasing or increasing patterns in
aggregate sales over time. For instance, for a data
set with a strongly increasing late trend, the BG/BB
model and HC, because of their absorbing state,
would not be able to capture it at all. This pro-
vides more evidence that even before running any
models, an analyst could use these easy-to-compute
database characteristics to refine the decision about
which model is likely to perform best.

Figure 8 Relative Importance of Each Database Characteristic
(Predictor Variable) Used in the Classification Trees
Obtained from the Random Forest

Top 5% level

Reach

Trend variability

Frequency

Trend Gini

Early trend

Concentration

Late trend

25 30 35 40 45 50

Variable importance

Notes. The most important variables are those that provide the largest
increase in out-of-sample (out-of-bag) classification hit rate, averaged across
all trees in the forest. The late trend, early trend, and concentration are clearly
the three most important and confirmed by appearing in the classification
tree obtained via CART methods. The next most important variable is trend
Gini (trend shape), which also appears in the classification tree.

5.6. How Much Value Does the
Classification Tree Add?

What does the analyst gain by using our decision
tree? From the above discussion, we find the deci-
sion tree nearly doubles the hit rate compared with
uninformed guessing about which of the four mod-
els to run. And much of the remaining error rate is
associated with the relatively unimportant distinction
between the presence or absence of an off state.

But although this information helps ease the task of
choosing the right model, it also tells us how well an
analyst would do using the decision tree compared
with running all four models for every data set. So it
is reasonable to ask: How much error would the ana-
lyst suffer by using only one model for all data sets?
After all, this is the starting point for many analysts.
Suppose the analyst only used BG/BB models for all
data sets she encountered. How poorly would she
have performed? We can compare the error incurred
to the average performance if she always used the
truly winning model for each data set. Table 9 sum-
marizes this analysis.

Running the BG/BB model on all data sets yields an
error 52% worse than using the true winning model
(average MAE = 9052 versus 6.28). An analyst would
do better by running only the HMM, which yields
an error 21% worse than the using winning model
(average MAE = 7063). By contrast, using the model
recommended by decision tree for each data set is the
best option because it greatly reduces error to only
12% worse than the winning model (average MAE =

7005). That is, in terms of relative error to the best
model, only using the HMM is 75% worse than using
the decision tree. So using the decision tree is a win-
win: it requires 75% less effort and helps the analyst
to avoid a 75% increase in relative error.

The value of the decision tree is even greater if
we look beyond average performance and consider
the worst case scenario of model performance. When
examining the variability in performance, the 95%
level of error for using any single model can be quite

Table 9 Absolute and Relative Benefits of Using the Classification
Tree over Running Each Model for All Data Sets

BGBB HC OF HMM Tree Winner

Mean MAE 9052 9019 8014 7063 7005 6028
% worse than 52% 46% 30% 21% 12% —

winner

95% MAE 22034 18097 16070 15063 13000 11057
% worse than 93% 64% 44% 35% 12% —

winner

Notes. The MAE values reflect performance of running each model for all
data sets compared with following the tree’s recommendation (“Tree”) and
always selecting the model with best out-of-sample fit for each data set
(“Winner”). The percentages illustrate the loss compared with the best-fitting
model (Winner).
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high. However, the decision tree greatly controls that
upper tail of error. In particular, the high end of possi-
ble error for the HMM is 35% worse than the winner’s
error, but the decision tree is only 12% (see Table 9).

In short, our tree shows that an analyst should not
use the same model for all occasions, and it clearly
quantifies the cost of doing so.

6. General Discussion and
Future Directions

When researchers and managers regularly encounter
a particular kind of data structure and regularly
choose among a standard set of models, they often
develop good intuition about when to use which
model. Our approach rigorously quantifies and vali-
dates this kind of intuition through a well-structured
decision tree.

For the case of a database of repeat purchases over
time for a cohort of customers, we make specific rec-
ommendations about when to use the HMM and its
constrained variants and which data set-level sum-
maries are important for that decision. We find that
for data sets exhibiting an early decreasing trend in
aggregate sales, the BG/BB model provides the best
forecast when the trend continues to decrease even
later in the calibration period. But when it looks like
the trend has leveled off, the BG/BB model frequently
underpredicts, and more complexity is often war-
ranted. An interesting exception to this rule is the case
of high purchase concentration, which suggests that
the buy till you die framework is still likely to pro-
vide the best forecast. This may be reflective of the
customers exhibiting high heterogeneity in purchase
and churn rates rather than a more complex back-
and-forth state-switching process over time.

In the case of the 2 × 2 framework, the models
are classified with strong evidence along one dimen-
sion (the presence of an absorbing state versus back-
and-forth movement across states), but the data offer
weaker evidence to help discriminate data sets and
models along the other dimension (the presence or
absence of an off state). This may be surprising
in light of many papers that add a death state to
an HMM-like model. But it may be the case that
such models work well mainly because of the con-
straint making that state absorbing and not necessar-
ily because the behavior is “turned off” within it. This
finding could have important implications for model
builders and should be investigated more carefully in
settings beyond this framework.

Beyond our HMM-based example, our proposed
approach for empirical identification is more broadly
relevant. We explicitly test the characteristics of data
sets that distinguish one model from a related one.
Although this differs from a formal theoretical identi-
fication (e.g., using economic principles), it is aligned

with the calls for such activities that have been arising
more frequently in marketing (Hartmann et al. 2008).

The procedure that we propose is quite general:
given the appropriate inputs (i.e., database charac-
teristics), it can generate a decision tree prescribing
which model should be used for any given data set
and any given outcome/goal of interest. Understand-
ing the interplay between database characteristics and
the relative performance of models (and model com-
ponents) is a useful contribution beyond the illustra-
tive (yet common) context presented here. Although
we illustrate it here with the HMM on forecasting
incidence data (e.g., repeat purchasing of a cohort),
it is agnostic to these choices. In general, the recipe
for this method requires the following elements: (1) a
consideration set of candidate models, (2) a set of
predictor variables consisting of observed summary
statistics from each data set, and (3) the outcome vari-
able, which is a choice of how to “pick the winner”;
this requires a key managerial quantity and a loss
function for computing the error measure.

Classification and regression trees and random
forests, although popular in machine learning and
statistics, are still relatively new to the field of mar-
keting, so we hope our work will call more attention
to this powerful and versatile tool. Furthermore, our
application of it to the problem of model selection (as
opposed to variable selection) is relatively uncommon
even in the statistics literature, but it is clearly a natu-
ral and important issue in many marketing contexts.

Unlike traditional uses of classification methods,
we add an extra twist by employing them in a fully
Bayesian framework, allowing us to leverage the full
posterior distribution. This differs from previous mix-
tures of Bayesian and classification methods, e.g.,
Bayesian CART (Chipman et al. 1998), since we con-
struct a decision tree from information that already
incorporates a joint posterior distribution. Our mix of
Bayesian approaches with classification methods is a
promising area of research for the interface of market-
ing, statistics, and machine learning. The combination
of the two approaches represents an exciting blurring
of methodological boundaries, and marketing prob-
lems such as the one examined here have a great deal
to offer in the debate between the “two cultures” of
data modeling (statistics) and algorithmic modeling
(machine learning) put forward by Breiman (2001b).

As computational costs decrease and access to
grid/cloud computing increases, the procedure we
propose here will be even easier to do in a vari-
ety of contexts. Of course, one could argue that with
greater computing power, there is less need to worry
about selecting the single best model a priori—just
run a bunch of models and pick the best one. But
this logic is flawed for several reasons. First, our
analysis focuses on performance in a holdout period,
not in-sample fit. Second, and related, there is great
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danger in choosing models that are overly complex
and excessively customized to every different data
set. And third, we believe strongly in exploring and
learning from the underlying patterns that are driv-
ing the observed data patterns. This kind of “data
science” not only will help analysts create and choose
better models but also will help managers make better
tactical decisions to create and extract more value
from their customer relationships.
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Appendix A. Hierarchical Bayes Sampler Details
We provide the computational details for the models that
we ran. We provide the details of the sampler for the general
HMM with S states. It can be constrained for the two-state
HMM and each of its nested models, as described in §2.

The MCMC procedure generates draws from the joint
posterior:

6Zit1pi1äi1ap1bp1�1� � Y7

=

I
∏

i=1

T
∏

t=1

6Yit �Zit1 pi76Zit �Zi1t−11äi1�7

· 6pi � ap1bp1Zi1Yi76äi �Á1Zi76ap1bp76�76�7 (A1)

with constants (I individuals and T time periods),
individual-level parameters (pi and äi), and population-
level parameters (ap1bp1Á1 and �).

The procedure obtains these draws by alternating
between the following conditional distributions:

6Zi � Yi1äi1pi1�71

6pi � Yi1Zi1ap1bp71

6äi � Zi1Á71

6ap1bp � p71

6Á �ä71

6� � Z70

(A2)

For each entry in the “data set of data sets” described in §3,
we estimate all four models from the 2×2 framework. We use
64 data sets, 4 models per data set, 2 chains per model, result-
ing in 512 independent MCMC chains. We run each chain
for at least 50,000 iterations depending on the convergence
criterion for that given model and chain. This requires more
than 1,000 days of computing time on a single core. Instead
of using only one core, we distributed the computational task
to take advantage of the parallel structure of the task. On
Amazon’s Elastic Computing Cloud, we used 64 nodes with

eight cores per node for 48 hours (24,576 “core-hours”). We
ran each MCMC chain on each of the 512 cores, so we fin-
ished running all the models in two days. This was funded
by a grant from Amazon Web Services.

Each model is estimated using a version of the MCMC
sampler for HMM with certain components shut off or not.
The code is available from the authors upon request. For
each chain and for each pair of chains for each model,
we perform a set of within-chain diagnostics for conver-
gence and computation of effective sample size, as well as
across-chain diagnostics for post-convergence mixing—all
recommended now as standard practice (Gelman and Rubin
1992, Gelman et al. 2004, Geweke 1992, Plummer et al. 2006,
Raftery and Lewis 1992).

The draws of model parameters, ì, and latent states, Z∗,
have been obtained using a data-augmented Gibbs sampler
(Tanner and Wong 1987) with an embedded Metropolis-
Hastings step. Below we describe how each subset of
parameters was drawn from its corresponding conditional
distribution in the MCMC procedures.

Step 1. Generate Zi = 4Zi11 0 0 0 1ZiT 5. The customer’s
latent-state sequence is drawn via the forward-backward
algorithm. The latent states are sampled starting at t = T
moving backward based on the probabilities defined recur-
sively starting at t = 1 and moving forward using dynamic
programming. For the case of S = 2, given the observed out-
come at t and the probability of being in either state at t−1,
each element �i1 t1 k is a sum of the two elements from t − 1
weighted by the probability of the corresponding transition
probabilities. Then the probability of drawing state k is

6Zit �Yi1äi1pi1�7=
�i1 t1k

�i1 t11 +···+�i1 t1S
1

�i1 t11 =p
yit
1i 41−p1i5

1−yit 4�i1 t−111 ·�11i+···+�i1 t−11S ·�S1i51

···

�i1 t1S =p
yit
Si 41−pSi5

1−yit 4�i1 t−111 ·�1Si+···+�i1 t−11S ·�SSi50

(A3)

Once the sequences from 11 0 0 0 1 T are drawn for all indi-
viduals, then conditioning on those sampled latent states
as if they were data (i.e., data augmentation) simplifies
the subsequent conditional distributions. Hence, we define
a vector, Ni, where each element counts the number of
times an individual spent a day in each latent state, Nij =
∑T

t=1 18Zi1 t−1 = j9. We also define a matrix, Nit , where each
entry j , k counts the number of transitions made between
each pair of latent states, Nijk =

∑T
t=1 18Zi1 t−1 = j918Zit = k9.

Step 2. Generate pi = 4p1i1 0 0 0 1 pSi5. The customer’s pur-
chase probability vector is sampled directly from a beta
distribution. The use of independent beta priors for each
probability yields a beta posterior distribution (since the
likelihoods have no covariates). For state k, the prior and
posterior are

6pki7=beta4apk1bpk51

6pki �Yi1Zi1Ìp1Ôp7

=beta
(

apk+
T
∑

t=1

yit18Zit =k91bpk+Nij −

T
∑

t=1

yit18Zit =k9

)

1

(A4)

where apk and bpk are the shape parameters of the beta dis-
tribution and �pk and �pk are the mean and polarization
index, as defined in §2. To ensure p1i ≥ p2i, we use rejection
sampling of the whole vector.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

10
8.

36
.1

07
.1

86
] 

on
 3

0 
M

ar
ch

 2
01

4,
 a

t 1
5:

52
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Schwartz, Bradlow, and Fader: Model Selection Using Database Characteristics
204 Marketing Science 33(2), pp. 188–205, © 2014 INFORMS

Step 3. Generate äi. The customer’s transition probabil-
ity matrix must have its rows sum to 1, so it is a multino-
mial vector. Using independent Dirichlet priors on each row
yields Dirichlet posteriors. For the probability of moving
from j to any other state 11 0 0 0 1 S, the prior and posterior are

6�j112S1i7=Dirichlet4�j112S51

6�j112S1i �Zi1��j1��j 7 (A5)

=Dirichlet4�j11 +Nij1110001�j1S +Nij1S51

where the 1:S indexes a vector of parameters and where rj
is the vector of Dirichlet shape parameters, which can be
summarized by mean probability vector ��j =Áj/6

∑S
k=1 �jk7

and polarization index ��j = 1/61 +
∑S

k=1 �jk7.
Step 4. Generate �. The initial latent-state membership

probability vector depends on the latent states across all
individuals at t = 1. Defining N1k =

∑I
i=1 18Zk1 = k9, the uni-

form hyperprior and the posterior are

6�7= Dirichlet411 0 0 0 1151

6� � Z7= Dirichlet41 +N111 0 0 0 11 +N1S50
(A6)

Step 5. Generate 4ap1 bp5. There is a highly uninformative
hyperprior for each shape parameter of each beta dis-
tribution characterizing the heterogeneity of state-specific
purchase propensities. For state k, the hyperprior and pos-
terior are

6apk1 bpk7∝ 4apk + bpk5
−5/21

6apk1bpk � pk7∝ Lbeta4pki1 0 0 0 1 pkI 54apk + bpk5
−5/21

(A7)

where Lbeta is the beta density function, and the prior dis-
tribution proportional to 4a + b5−5/2 is recommended by
Gelman et al. (2004). That prior is uniform on the beta distri-
bution a/4a+ b5 and considered weakly informative on the
polarization index 41 + a+ b5−1. Since the posterior has no
closed-form expression, we use a Metropolis-Hastings step
with a log Normal proposal density. Its tuning parameter, or
variance, is set to 0005 to obtain an appropriate acceptance
probability.

Step 6. Generate Á. The Dirichlet distribution shape
parameters Áj = 4�j11 0 0 0 1�jS5 are generated by a general-
ization of the procedure used to generate the shape param-
eters of the beta distributions. For state j (i.e., row j of the
transition probability matrix), the hyperprior and posterior
are

6Áj 7=

( S
∑

k=1

�jk

)−42S+15/2

1

6Áj � �j112 S7∝ LDirichlet4�j112 S1 i1 0 0 0 1 �j112 S1 I 5Lgamma4Áj51

(A8)

where LDirichlet is the Dirichlet density function. Again, the
prior distribution proportional to 4�j1 + · · · + �jS5

−42S+15/2

is a generalization for the Dirichlet shape parameters of
the prior used for the beta shape parameters (Everson
and Bradlow 2002). Since the posterior has no closed-form
expression, we use a Metropolis-Hastings step with a log
Normal proposal density. Its tuning parameter, or variance,
is set to 0005 to obtain an appropriate acceptance probability.

Appendix B. General Recipe: Developing a
Decision Tree for Model Selection
Using Database Characteristics
Although we perform our analysis for a specific data/
modeling context, the same basic recipe developed in this

paper can be applied to many other settings. We formal-
ize this recipe as a general method for model evaluation
and selection involving the three basic ingredients: the set
of candidate models, the database characteristics, and the
performance criterion. This enables the analyst to answer
the questions “Which model should I use for this this data
set?” and “Given a data set, how well will a given model
perform?”

Step 1. Selecting models. Our procedure supposes that
the analyst has a consideration set of models 11 0 0 0 1M . The
models can all be run on data sets with the same structure.
We also suppose that model-based simulation can be done
via Monte Carlo, or Markov chain Monte Carlo, if needed.
Our procedure assumes that an MCMC sampler has been
run to obtain draws g = 11 0 0 0 1G from each model’s the joint
posterior distribution, 6ìm � Yobs7.

Step 2. Choosing database characteristics. We character-
ize the database with a set of summary statistics. These
should be (1) easy-to-compute characteristics, (2) manageri-
ally relevant, and (3) largely comprehensive and mutually
exclusive. Formally stated, we denote these the data set-
level summary statistics as a covariate vector, �4Yobs

k 5, for
data set k. These are to be computed before running any
models on the kth data set, which itself is denoted by Yobs

k .
These are the independent variables of interest in the even-
tual classification.

Step 3. Determining performance criterion. Assessing
model performance for model selection is an important step
that should be driven by the business goal. We use an
empirical validation approach via posterior predictive dis-
tributions. We generate data, Y∗4g5

m , from the model-based
predictive distribution, 6Y∗

m � Yobs7, where g indexes replica-
tions 11 0 0 0 1G.

For the performance measure feature s, we summarize
the generated data by Ts4Y

∗4g5
m 5. We quantify performance

as model errors: the degree to which the model-based pos-
terior predictive distribution of feature s is outlying with
respect to the feature’s observed value, Ts4Yobs

k 5.
Let D denote a loss function along a single dimension—

that is, the distance between the draws from the posterior
predictive distribution and the single observed value of fea-
ture of a data set. This distance, dmks , summarizes model m’s
performance on data set k in terms of feature s, utilizing all
replicates g = 11 0 0 0 1G:

dmks =D4Ts4Y
∗415
mk 51 0 0 0 1 Ts4Y

∗4G5
mk 53 Ts4Y

obs
k 550 (B1)

The choice of the function D should depend on the desired
feature.

Regardless of which performance metric and error mea-
sure is chosen, a single metric is obtained for each posterior
replicate. For each replicate, we select the model with the
lowest error and consider it the winning model, which is
the nominal categorical outcome variable to be classified.

Step 4. Classifying data sets by relating model perfor-
mance to observed database characteristics. Putting those
three ingredients together, we create the decision tree to
infer the relationship between which model is best (out-
come) and database characteristics (predictors). We formal-
ize the classification as its own predictive tool. The inde-
pendent variables of interest are the data set-level summary
statistics, �4Yobs

k 5, computed before running any models on
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the kth data set, denoted by Yobs
k . These values are the pre-

dictors of model performance. The error measure, d4g5
ksm, as

defined above, is on a continuous scale. For classification
purposes, however, the dependent variable should be an
indicator of the winning model m

Winner (g)
ks , a nominal cate-

gorical variable with M levels. For each data set k, feature
s, and posterior replicate g,

m
Winner4g5
ks = arg min

m=8110001M9

d
4g5
ksm0 (B2)

We use a classification tree to relate the identity of
the winning model, mWinner

k , to the database characteristics,
�4Yobs

k 5. Given the performance of all M models across all
K data sets for feature s, we explain variations in the model
performance (i.e., which model wins) as a function of the
observed summaries of that data set. Stated formally, we
capture this relationship as follows:

m̂
Winner4g5
k = Tree6�4Yobs

k 571 (B3)

where “Tree” denotes the classification tree predicting the
winning model m̂

Winner4g5
k for each of the data sets k =

11 0 0 0 1K and replicates g = 11 0 0 0 1G. The results will show
which data set-level summaries are associated with differ-
ences in performance across the models for the feature of
interest. The exact same setup used for CART methods can
be used for implementing random forests. The same basic
relationships are uncovered, but different methods are used.
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