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Abstract 
New language elements are introduced in Modelica 
3.1 to facilitate use Modelica models in embedded 
systems, e.g., as controllers. Models can be conven-
iently configured by marking the borders of the re-
spective controller parts and by defining the mapping 
of the marked parts to target processors and target 
tasks.  

This approach allows to define a “logical” model 
from which all different “real” controller configura-
tions for Model-, Software-, Hardware-in-the-Loop 
(MiL, SiL, HiL), rapid prototyping, and production 
code for multi-processing/multi-tasking are auto-
matically derived by setting configuration options. 
Furthermore, a new, free library - Modelica_Embed-
dedSystems - is presented that provides a convenient 
user interface to the new language elements. In 
summary, the power of Modelica in the area of real-
time control is improved significantly. 

Keywords: Embedded systems, real-time control, 
multi-tasking, multi-core, multi-rate, model paral-
lelization, Model-in-the-Loop, Software-in-the-Loop, 
Hardware-in-the-Loop, rapid prototyping. 

1 Introduction 
Modelica has been used in advanced controller ap-
plications for embedded systems for several years, 
especially when non-linear plant models are part of 
the control system (Looye et. al. 2005), such as non-
linear control systems for aircrafts (Bauschat et. al. 
2001), for industrial robots (Thümmel et. al. 2005), 
or for power plants (Franke et. al. 2008). 

Within the ITEA2 EUROSYSLIB project, a ma-
jor effort started at end of 2007 to enhance Modelica 
considerably in the area of model-based control. This 

effort is also carried on in the ITEA2 MODELISAR 
project that started during 2008.  

Existing methods and tools have been analyzed 
and different designs have been performed. Typi-
cally, controller parts that are to be downloaded to 
target platforms are defined by the root of a hierar-
chical structure. However, this standard approach has 
several inherent limitations and therefore, a novel, 
new approach was developed where only the borders 
of control systems are marked and algorithms have 
been developed to deduce the controller code from 
this information. Furthermore, in principal any Mod-
elica model is supported, and therefore a controller 
to be downloaded to a real-time target machine may 
contain non-linear differential-algebraic equation 
systems as needed for advanced control systems. 

Modelica extensions have been designed and are 
included in version 3.1 of the Modelica Specification 
(Modelica 2009). A free library “Modelica_-
EmbeddedSystems” has been developed as a conven-
ient user interface to the new language elements. A 
prototype implementation in Dymola (Dymola 2009) 
was performed to validate the concept. Furthermore, 
device drivers for Windows game controllers, I/O 
boards using the Comedi-Interface (Comedi 2009) on 
real-time Linux and CAN-bus have been imple-
mented by DLR. Device drivers for dSPACE 
(www.dspaceinc.com) hardware and the Lego Mind-
storms NXT platform (mindstorms.lego.com) have 
been implemented by Dynasim, and the concept has 
been used in a student project (Akesson et. al. 2009). 

2 Logical and Technical  
System Architecture 

A model of an embedded system is composed of 
subsystems which may have local controllers. The 
subsystems are coupled physically and through con-



trol systems (e.g. with buses). The notation from 
(Schäuffele and Zurawka 2005) is used: 

Complex controllers, e.g., in vehicles, are first de-
signed with an abstract view which is termed “logi-
cal system architecture”. Here all the functional and 
logical behavior of the control system is defined. In a 
second step this architecture is mapped to a “techni-
cal system architecture” which is the concrete im-
plementation of the control system in several tasks 
on several micro-controllers inter-connected by com-
munication buses and other communication methods. 
For complex control systems, as in vehicles with 
over 60 ECUs interconnected via different bus sys-
tems, it must be possible to map from the logical to 
the technical architecture in a very flexible way. The 
new Modelica language extensions have been de-
signed to fulfill this demanding requirement. 

An already sufficiently complicated, but still ra-
ther simple, logical system architecture of a robot is 
shown in the left part of Figure 1. Every “axis” of the 
robot has a local control system in addition to the 
continuous motor and gearbox models. All local con-
trollers are connected to a global controller (at the 
top of the figure) via a control bus. This system has 
eight coupled controllers that shall be downloaded to 
different processors (e.g., all axes controllers on two 
signal processors and the global controller on an-
other processor and the processors communicate via 
buses). An example is shown in the right part of Fig-
ure 1 where this mapping of the logical to the techni-
cal system architecture is sketched. The new method 
has now the following important properties: 

1. The user is not forced to manually assemble the 
parts belonging to the technical system architec-
ture for download to the ECUs. Instead a Mode-
lica translator performs this automatically from 
the logical system representation, given informa-
tion about the mapping to the technical system 
architecture. Note, with standard methods and 
tools this is not possible, because the logical sys-
tem architecture would be destroyed if the user is 
forced to move all controller parts under a hier-
archical structure. 

2. The mapping to the technical system architecture 
can be defined without modifying the logical 
system architecture. This is performed by a new 
model that inherits (extends) from the logical 
system model and where the mapping informa-
tion is given as modifier, including the selection 
of hardware drivers. The latter are defined via 
replaceable external objects. 

With these two features it is possible to conveniently 
configure different use cases, such as: 

• Model-in-the-Loop (MiL) simulation  
(Plant: variable step size integrators. Controller: 
ideal, synchronous continuous or discrete control-
lers) 

• Software-In-the-Loop (SiL) simulation  
(Plant: variable step size integrators. Controller: 
non-ideal, asynchronous controllers with modeled 
latencies). 

• Rapid prototyping (real-time)  

 Figure 1: Mapping of logical to technical system architecture for a robot control system. 
(Displayed ECUs adapted from http://commons.wikimedia.org/wiki/File:KeylessGoSiemensVDO.jpg) 



(Plant: physical prototype. Controller: asynchronous 
controllers, channel assignment). 

• Hardware-In-the-Loop (HIL) simulation (real-time) 
(Plant: fixed step size, multi-rate integrators.  
Controller: embedded in ECUs, multi-tasking, pro-
duction code, fixed-point representation, channel as-
signment, bus communication). 

• Production code (real-time)  
(Plant: Real product. Controller: embedded in ECUs, 
multi-tasking, production code, fixed-point represen-
tation, channel assignment, bus communication). 

Dealing with embedded systems in Modelica accord-
ing to the sketched concept above consists of the fol-
lowing parts: 

• New Modelica language elements are intro-
duced. This is described in section 4. Basically, a 
new annotation “mapping” and some new built-
in operators are provided. Furthermore, new al-
gorithms are sketched to deduce the controller 
code from the logical system architecture. 

• A new library “Modelica_EmbeddedSystems” is 
offered that provides a convenient interface to 
the new language elements. This library is dis-
cussed in the next section. It is provided freely 
and it is planned to be included in the Modelica 
Standard Library (note: a user may provide its 
own interface to the new language elements). 

• Hardware drivers as Modelica external objects to 
access hardware from a Modelica model. A few 
hardware drivers that are available on every 
PC/notebook are provided in the Mode-
lica_EmbeddedSystems library freely for Win-
dows and for Linux. Other hardware drivers will 
be provided from third parties (e.g., commer-
cially from tool vendors). 

3 Modelica_EmbeddedSystems 
The Modelica_Embedded-Systems library is avail-
able as an open source library from www.modelica.-
org/libraries and will be the basis of embedded sys-
tems in Modelica. The current status of the library is 
shown in the screenshot to the right. 

The Examples sub-library contains various use 
cases to demonstrate the usage of the library. Only 
some of the available examples are currently in-
cluded in the library. 

The Interfaces sub-library contains the basic 
components to define communication points (i.e., 
borders of controller parts) and to select the imple-
mentation of the actual communication in the em-

bedded system. This can be 
external I/O, network 
communication or inter-
task communication on the 
same ECU. 

The Communication 
sub-library contains open 
source drivers for simu-
lated communication (ideal 
and with simulated quanti-
zation effects taken into 
account), as well as a sim-
ple template for hardware 
drivers.  

The Configuration 
sub-library contains tem-
plates to define the con-
figuration of the embedded 
target systems (tasks, sub-
tasks, sampling, target pro-
cessor, etc.).  

Types and Icons are 
utility sub-libraries. 

The major goal of the li-
brary is to define the split-
ting of a model in tasks and 
subtasks and to associate device drivers with input 
and output signals of the respective parts. The fol-
lowing notation is used:  

A “task” identifies a set of equations that are 
solved together as one entity, so equations are sorted 
and solved in a “synchronous” way as usual in Mod-
elica. There are no equations that relate variables 
from different tasks because communication to and 
from tasks is performed by function calls of Mode-
lica ExternalObjects1. Different tasks are executed 
asynchronously with possible synchronization via 
the ExternalObjects used for communication and 
possibly running on different cores or processors. 
Typically, a Modelica task is mapped to a task of the 
underlying operating system. 

A “subtask” identifies a set of equations inside a 
task that are executed in the same way within the 
subtask with regards to sampling and integration me-
thod: If a subtask has continuous equations, all these 
equations are solved with the same integration 
method. Different subtasks can use different integra-
tion methods, e.g., fixed or variable step size meth-
ods of different orders. If a subtask is sampled, it is 
activated at the sampling instants and the equations 
of the subtask are integrated from the time instant of 
                                                      
1 A Modelica ExternalObject defines a Modelica interface 
to C-functions that operate on the same memory and have 
constructor and destructor functions for this memory. 



the last sample instant up to the current sample in-
stant using the defined integration method. If a sub-
task is running on a real-time system, usually real-
time integrators are utilized like explicit fixed-step 
solvers. The equations of several subtasks in the 
same task are automatically synchronized via equa-
tion sorting. 

3.1 Communication Blocks 

The usage of the Modelica_EmbeddedSystems li-
brary will be demonstrated by the very simple use 
case from Figure 2. The model consists of a refer-
ence controller (“ramp”), a feedback controller 
(“feedback” and “PI”) and a plant (“torque”, “load” 
and “speedSensor”). The task of the controller is to 
control the speed of the load inertia.  

The model is split in different partitions by plac-
ing "communication blocks" in the signal paths. This 
is the "logical" model. At this stage it is only defined 
how the model is split into different parts, but it is 
not yet defined how to handle these parts (or more 
precisely, by default all communication blocks just 
pass their input signal to their output). 

A "target" model is derived by inheriting from 
the model and by applying modifiers on the commu-
nication blocks. These modifiers usually reference a 
"configuration block" (in Figure 2 this is called "co-
medi") where all details are defined how to map this 
model to one or more target machines. 

The "communication blocks" are the central part 
of the Modelica_EmbeddedSystems library and pro-
vide a graphical user interface between the user and 
the new Modelica 3.1 language elements. Clicking 
on one of the communication blocks in Dymola 
gives the menu shown in Figure 3. 

The most important option is the first entry 
"communicationType". It defines the communication 
that shall take place between the input and the output 

of the communication block: 

• Direct communication with Modelica equations 
(simplest case: y = u). This is mainly used to 
start and have a meaningful default, and/or to 
test some controller effects like noise or signal 
delays. 

• Communication between two subtasks. This de-
fines that the input and output signals are in dif-
ferent subtasks. All properties of these subtasks 
can be configured with the rest of the options, 
e.g., that the input subtask is periodically sam-
pled with a defined sampling rate. 

• Communication between two tasks. This defines 
that the input and output signals are running in 
different tasks on the same machine. All proper-
ties of the tasks can be configured with the rest 
of the options, e.g., in which way the communi-
cation between the tasks takes place (e.g., via 
shared memory). 

• Communication to a port. This defines that the 
input signal is sent to an I/O board or to a bus 
(like the CAN bus). In this case, the communica-
tion block has no output signal. All properties of 
the I/O board can be configured with the rest of 

Figure 2: Simple drive train with two controller parts and three communication blocks. 

Figure 3: Menu of a communication block. 



the options, as well as the task/subtask properties 
of the equations that generate the signal to be 
sent to the I/O board. 

• Communication from a port. This defines that 
the output signal is received from an I/O board 
or from a bus. In this case, the communication 
block has no input signal. All properties of the 
I/O board can be configured with the rest of the 
options, as well as the task/subtask properties of 
the equations that use the received signal. 

Depending on the selected option, input fields of the 
parameter menu are enabled. These are mostly re-
placeable models using Modelica ExternalObjects. 
For example, when clicking on "toPort", all currently 
loaded device drivers to send a signal to an I/O board 
are listed. Selecting the desired device driver and 
then clicking on the "table" symbol to the right of the 
menu, opens the driver specific menu to configure 
this particular device. 

Whenever a user introduces a device driver that is 
derived by inheritance from one of the partial models 
defined in Modelica_EmbeddedSystems.Interfaces 
(like Interfaces.BaseReal.PartialWriteRealToPort), 
this device driver is automatically included in the 
corresponding list of the communication block, due 
to the “choicesAllMatching” annotation defined in 
this block. 

The important point is that all these hardware 
configuration settings can be made without copying 
the "logical model" and modifying it, but just inherit-
ing from it and applying modifiers on the communi-
cation blocks. 

When clicking on "inSubtask", the sub-
task/task/target properties of the model part can be 
defined that is connected to the input of the commu-
nication block (in a similar way, the properties of the 
output can be defined with “outSubtask”). In Figure 
4 a typical screen shot is shown: 

This is a hierarchical structure where all properties of 
a mapping annotation can be defined (for details see 
section 4). In Figure 4, the top-most hierarchical dia-
log level is shown to define the identifier, the sam-
pling properties and the integration method of the 

subtask in which the input signal is running. The 
subtask identifier is a string that must be unique 
within a task. If the same subtask shall be referenced 
in different communication blocks, identical subtask 
identifiers must be given.  

The second level of the dialog is shown in Figure 
5, to define the task identifier, the task priority, the 
basic sample period (if the task is periodically sam-
pled) and the core, if the task is running on a multi-
core machine. 

Finally, the third level of the dialog (shown in Figure 
6) is used to define the identifier of the target on 
which the task is running and the “kind” of the tar-
get. The kind property will identify in a tool-specific 
way all properties of the target machine that need to 
be known for the code generation (e.g. if the target 
has or does not has a floating point unit). 

From the information provided in the communication 
blocks, it is possible to partition all equations of the 
flattened Modelica model in to the desired pieces. 
E.g., in the example above, two different C-codes are 
generated, one for the two controller parts and one 
for the plant and both are running in different tasks. 
The reference and the feedback controller are run-
ning with different sampling rates in the same task 
(sub-sampling). 

The algorithm to determine the equations that be-
long to the different parts is sketched in section 4.4. 
In short, the BLT-algorithm (usually used by Mode-
lica translators to determine the sorting of the equa-
tions) must be applied two or three times additionally 
on the model equations. So, a Modelica tool vendor 
has the basic algorithm already and must just apply it 
in some variants. 

Note, subtask properties (like sampling period) 
may be defined at the input and/or at the output of a 

Figure 4: Defining subtask properties of the input 
signal of a communication block.

Figure 5: Defining task properties. 

Figure 6: Defining target properties.



subtask. If a subtask has several inputs and/or several 
outputs it is sufficient to define this information only 
at one location. For example in the use case of Fig-
ure 2, the properties of a subtask are defined at the 
output signal of the respective subtask. 

3.2 Configuring Subtasks, Tasks, Targets and 
Devices. 

All information to configure the subtasks, tasks and 
targets could be given in the hierarchical menus of 
the communication blocks shown in Figure 4, 5, and 
6. However, this has a significant drawback: In the 
example above, the same target properties have to be 
defined three times (for all three different subtask 
definitions) and the task properties of the controllers 
have to be defined twice (for the “reference” and for 
the “feedbackController” subtask). Even more criti-
cal is the configuration of the device drivers. For 
example, an IO board is typically initialized once 
and then channel assignment takes place. It is diffi-
cult to define such initialization processes in the 
communication blocks. 

In order to avoid redundant definitions and to 
have a simple way to initialize the device drivers, it 
is recommended to define all configuration options 
at one place once on the top level of the control sys-
tem. An example is block “comedi” in the lower left 
part of Figure 2, where the control system is config-
ured for real-time Linux using the comedi device 
drivers (Comedi 2009).  

This block consists of record instances to define 
subtask, task and target properties of all parts of the 
control system and to initialize the used device driv-
ers. For example, Modelica_EmbeddedSystems.-
Configuration.Subtask is defined as: 
record Subtask 
   parameter Task inTask = Task(); 
   parameter identifier  = "Default"; 
   ... 
end Subtask; 

The first parameter in the record is “inTask” which 
is an instance of record “Task”. In order to auto-
matically have a hierarchical menu built up, a default 
value of “Task()” is given, i.e., the record construc-
tor of record “Task” is called. When using the Sub-
task record in a configuration block, the “task” prop-
erties are defined in an instance of record “Task” 
(called “controller” in Figure 7). In the subtask defi-
nitions, like “slowSampler” and “fastSampler” in 
Figure 7, parameter “inTask” is defined as the in-
stance name of the record task (“controller” in Figure 
7). By this technique, the configuration is defined in 
a non-redundant way.  

 
Device drivers are record instances where device-
specific configuration options are given and a final 
parameter is used for the device handle that is de-
fined by a call to the constructor of the respective 
ExternalObject. 

Finally, a hierarchical modifier is used to refer-
ence the configuration record instances at the appro-
priate places in the communication blocks. For ex-
ample, parameter “inSubtask” in the communication 
block at the output of the feedback controller in Fig-
ure 2 is defined as “comedi.fastSampler”. In Dymola 
this can be conveniently defined by just clicking on 
the small arrow at the right part of the input field of 
“inSubTask” and selecting “Insert Component Ref-
erence”. Dymola presents a list in which the in-
stances (like comedi.fastSampler) are listed that can 
be utilized in the input field, and the modeler has just 
to select the appropriate entry. 

3.3 Mapping to Target Data Types 

Modelica has the four basic data types Real, Inte-
ger, Boolean and String that are usually mapped 
by Modelica translators to the C-types “double”, 
“int”, “int” and “char*”, respectively. In many 
cases a different mapping is desired if the target is an 
embedded micro-controller. The details how this is 
defined is not standardized in Modelica 3.1. Stan-
dardization will occur when more practical experi-
ence is gained. In the meantime, vendor-specific en-
hancements have to be used. 

In the simplest case, the “target.kind” definition 
in the “Target” record defines the type of the target 
machine. A vendor may associate different data type 
mappings for different target kinds. For example, a 
Modelica “Real” type may then be automatically 
mapped to a C “float” type.  

Figure 7: Configuration of use case for real-time 
Linux with the comedi device drivers.

Target machine 

Task and processor
(on target machine)

Sampling and 
integrator (in task) 

Device initialization
and configuration 



For cheap microprocessors that do not have a 
floating point unit, such an automatic type mapping 
is not sufficient. For this purpose, vendor-specific 
variable annotations are planned that can be changed 
via hierarchical modifiers. The purpose is to allow 
definitions of the following form: 

block Controller 
  Real x(min=20, max=80); 
  ... 
end Controller; 

Controller myController(x annotation( 
   mapping(__NameOfVendor( 
                   targetType = uint16, 
                   min=10, max=100)))); 

The interpretation is that “x” is mapped on the target 
machine to an unsigned 16-bit integer “xi” with 
range [0 .. 65535] so that x = 10.0 is mapped to 
xi = 0 and x = 100.0 is mapped to 65535: 

xi = round( (x – 10)*65535 / (100-10) ) 

The “targetMapping” min/max values (10 .. 100) 
might be different from the variable min/max values 
(20 .. 80) in order to have a margin so that operations 
on “xi” do not immediately cause overflow. 

It is of course not practical to define such a data 
type mapping on every variable in a controller ma-
nually. Here, special tool support is needed. Possible, 
tool-specific approaches might be: 

• All variables from the model part that shall be 
downloaded are displayed in a hierarchical vari-
able browser and the GUI supports a convenient 
way to define the mapping quickly for sets of va-
riables (e.g., all selected variables, or all vari-
ables of the same type in a particular hierarchy). 

• The data type mapping might be defined for a 
few variables only (e.g., for the input variables). 
Via the equation-based relationships between va-
riables, this mapping is propagated along the eq-
uations. E.g., if “a = b + c” and a data type map-
ping is defined for “b”, but not for “a” and “c”, 
then “a” and “c” are mapped in the same way as 
“b”. This approach is similar to the automatic 
“unit” propagation in Dymola. 

This approach of data type mapping has the big ad-
vantage that every Modelica model can be utilized 
even on cheap microprocessors without any changes 
to the “logical” model (at least in principal). In con-
trast, the standard approach in many controller envi-
ronments is much more restrictive: Every model has 
to be defined from the beginning in the desired data 
types of the expected target system. As a result, 
whenever a controller is designed, it must be re-
implemented from scratch for a particular target sys-
tem. 

4 Modelica Language Extensions 
In this section the Modelica language extensions and 
the needed algorithms are sketched to implement the 
approach discussed above. All the details can be 
found in the Modelica 3.1 Language Specification 
(Modelica 2009, Chapter 16). 

4.1 Defining Subtask Boundaries 

Boundaries of subtasks are identified with the fol-
lowing built-in operator (which is part of the built-in 
package “Subtask”): 

Subtask.decouple(v);  // same as v 
A boundary between a subtask A and a subtask B is 
defined by using this operator in an equation of sub-
task A with a variable v which is computed in sub-
task B. The operator returns its argument. Typically, 
this operator is used as: 

u = Subtask.decouple(y); 

where y is an output of subtask B and u is an input of 
subtask A. The effect is that “u = y” and “u” and “y” 
are in different subtasks. 

4.2 Defining Subtask, Task and Target 

The “mapping” annotation defines properties of va-
riables. This annotation can only be applied on a dec-
laration of a variable that does not have a constant 
or parameter prefix. It is usually applied on input 
and output variables of a subtask or a task. Example: 
parameter Modelica.SIunits.Time Ts; 
RealInput u annotation(mapping( 
 target (identifier = "cluster"),  
 task   (identifier = "slowTask", 
         sampleBasePeriod = Ts), 
 subtask(identifier = "reference", 
         samplingType = 
         Subtask.SamplingType.Periodic, 
         samplePeriodFactor = 4))); 

The meaning is that variable “u” is in the subtask 
“reference” which is periodically sampled with a 
sample period of “4*Ts”. Subtask “reference” is 
within task “slowTask” that has a base sampling pe-
riod of Ts. Task “slowTask” shall be downloaded to 
the target machine with the name “cluster”. 

The mapping annotation is formally defined by 
the following hierarchical record definition (as with 
all annotations, also here vendor-specific extensions 
can be added): 
record mapping 
  Boolean apply = true; 
  Target     target ; 
  Task       task   ; 
  Subtask    subtask; 
end mapping; 



record Target 
  String identifier="DefaultTarget"; 
  String kind = "DefaultTargetType"; 
end Target; 
 
record Task 
  String   identifier = "DefaultTask"; 
  Integer  onProcessor      = -1; 
  Integer  priority         =  1; 
  Modelica.SIunits.Period 
           sampleBasePeriod =  0; 
end Task; 
 
record Subtask 
  String identifier= "DefaultSubtask"; 
  Subtask.SamplingType samplingType =  
        Subtask.SamplingType.Continuous 
  Integer samplePeriodFactor(min=1)= 1; 
  Integer sampleOffsetFactor(min=0)= 0; 
  IntegrationMethod integrationMethod 
                   = "SameAsSimulator"; 
 Modelica.SIunits.Period fixedStepSize; 
end Subtask; 

All values supplied to these records can be parameter 
expressions. If  

mapping(apply = false, 
        target (..), 
        task   (..),  
        subtask(..)); 

the “target(..), task(..), subtask(..)” definitions are 
ignored. This is, e.g., used to conveniently define in 
a parameter menu whether the input and/or the out-
put signal of a communication block defines tar-
get/task/subtask properties without complicated 
Modelica code. 

The mapping annotation defines that the respec-
tive variable is computed in the task with the identi-
fication “task.identifier” and with the task priority 
“task.priority”, on the target platform (e.g., com-
puter, processor) with the identification “tar-
get.identifier” on processor “onProcessor”. 

The interpretation of task.identifier, 
task.onProcessor, task.priority, target.identifier and 
target.kind is tool-dependent. For example, tar-
get.kind may identify a multi-processor or multi-core 
target machine and task.onProcessor may identify 
the processor or core on this target. Alternatively, a 
tool may identify a particular processor or core with 
target.kind and may ignore task.onProcessor. 

The respective task may have one or more sub-
tasks. A task is active when any of its subtasks is 
active. A subtask is defined with the following prop-
erties: 

• If samplingType = Subtask.SamplingType.-
Continuous, the subtask is a continuous system 
that is always active. 

• If samplingType = Subtask.SamplingType.-
Periodic, the subtask is periodically sampled 
with a sample period of “samplePeriodFactor * 
task.sampleBasePeriod” and an offset of “sam-
pleOffsetFactor*task.sampleBasePeriod”. So 
sample period and sample offset are integer mul-
tiples of the task.sampleBasePeriod. 

• The differential equations in a subtask are inte-
grated according to the “integrationMethod” 
property. For fixed-step integration methods, a 
fixed integrator step size of fixedStepSize is 
used. A tool may adapt the selected fixed step 
size, e.g., by automatically restricting it to the 
time from the previous to the actual activation. 
Usually, fixedStepSize = samplePeriodFactor * 
task.sampleBasePeriod. In some applications, 
fixedStepSize might be smaller than one sample 
period, in order to have several integrator steps 
in one sample period since otherwise the fixed 
step size integration method might not be stable. 

The mapping annotation influences the simulation 
result and therefore different simulation results might 
be obtained if this annotation is removed. 

4.3 Inquiring Subtask Properties 

In order for purely discrete models to be imple-
mented, there are two operators to inquire properties 
of the subtask in which the model is running: 

• Subtask.activated(): 
Returns true at the activation time instant of the 
subtask, where this operator is called. At all oth-
er time instants when the associated task is exeu-
ted, including initialization, the operator returns 
false. 

• Subtask.lastSampleInterval(): 
Returns the time instant from the activation time 
instant of a subtask to the previous activation 
time instant of the same subtask, where this op-
erator is called. 

If one of these operators is used, the corresponding 
subtask is not allowed to have subtask.sampleType = 
Subtask.SamplingType.Continuous. 

In many standard cases these operators are not 
needed. Typically, a controller block, like a PI block, 
is implemented in its continuous form. When the 
subtask is periodically sampled, the Modelica trans-
lator automatically derives the discrete form, if an 
appropriate integration algorithm with fixed step-size 
is used. For linear control systems it is recommended 
to use the trapezoidal integration algorithm, since 
this gives the closest correspondence between the 
continuous and the sampled form and only small lin-



ear equation systems must be solved in the discrete 
form (since the trapezoidal method is an implicit in-
tegration algorithm). 

In some cases, a controller has only a discrete re-
presentation. A typical example is a finite impulse 
response (FIR) filter. A mean value FIR filter, would 
be typically implemented in the following form: 
block meanValueFilter 
  import Modelica.Blocks.Interfaces; 
  Interfaces RealInput  u; 
  Interfaces.RealOutput y; 
equation 
  when {initial(), Subtask.activated()} 
    then 
    y = (u + pre(u)) / 2; 
  end when; 
initial equation 
  pre(u) = u;  // steady state init 
end meanValueFilter; 

4.4 Partitioning a Model in to Parts 

Via the decouple(..) operator and the mapping an-
notation, certain variables of a model are marked. In 
this section the algorithm is sketched how to derive 
all equations that belong to a particular subtask and 
task, respectively: 

This requires the “Block Lower Triangular” (BLT) 
transformation to be applied several times. The BLT 
algorithm is, e.g., described in (Pantelides 1988). 
This is the standard algorithm used in Modelica 
translators to sort the equations of a model and iden-
tify the algebraic loops. In (Pantelides 1988) it is 
shown that a differential-algebraic equation system 
does not have a unique solution2, if all “der(v)” are 
replaced by “v” and a unique assignment for all un-
known variables is not possible (“v” are treated as 
unknown variables in this case). 

We will use a similar technique below. The moti-
vation is that the “der(..)” and “pre(..)” operators act 
as “loop breakers” between equation systems. If 
“der(v1)” is replaced by “v1” and “pre(v2)” is re-
placed by “v2” and all “v1” and “v2” are treated as 
unknowns, then algebraic loops are present between 
all equations that need to be “treated” together. 

Based on this observation we can now sketch the 
partitioning algorithm: 

1. BLT to determine the (asynchronous) tasks: 

If tasks are present, there are function calls to receive 
signals from another task or from external inputs and 

                                                      
2 or more precisely, the system has an infinite index. If on 
the other hand all variables “v” have a unique assignment, 
then and only then, the “Pantelides” algorithm to deter-
mine the equations to be differentiated will converge. 

to send signals to another task or external outputs. 
From a Modelica point of view, there is no coupling 
between variables of different tasks (due to the func-
tion calls) and therefore the equations are naturally 
“cut” in to partitions. These partitions are determined 
by replacing all pre(v1) with v1 and all der(v2) by 
v2 and by performing a BLT transformation. 

All BLT blocks that have variables with the same 
task.identifier annotation belong to the same task. If 
a BLT block B references one or more variables that 
are assigned in a BLT block A, that belongs to a task 
task.identifier, then all equations of B belong to task 
task.identifier. If a BLT block C references variables 
that are assigned in B, then all equations of C belong 
to task task.identifier, and so on. If a BLT block, di-
rectly or indirectly, references variables that are as-
signed in two different tasks, this is an error (wrong 
mapping annotations). All remaining BLT blocks 
that do not belong to any task are collected together 
to a “continuous” default task. This default task is 
usually running on the host machine or might also be 
deactivated (not running). 

2. BLT to determine the (synchronous) subtasks: 

This is achieved by inspecting all equations of every 
task. For every task, the decouple(v) operators are 
conceptually replaced by zero, so that “v” is no long-
er part of the equation where decouple(v) appeared. 
As a result, subtasks are decoupled. BLT is per-
formed on all equations of a task by replacing all 
pre(v1) with v1 and all der(v2) by v2. 

If one or more variables of a BLT-block A have a 
subtask annotation, the equations belong to this sub-
task S. If a BLT block B references one or more va-
riables that are assigned in A, all equations of B be-
long also to S. If a BLT block C references variables 
that are assigned in B, all equations of C belong also 
to S, and so on. All remaining BLT blocks that do 
not belong to any subtask, are collected together to a 
“continuous” default subtask. It is an error, if a BLT 
block, directly or indirectly, references variables that 
are assigned in two different subtasks. If different 
subtasks have identical samplingType, samplePe-
riodFactor and sampleOffsetFactor, the subtasks can 
be merged (the subtasks are sampled at the same 
time instants but different integration methods are 
used for the subtasks). 

3. BLT to determine the sorted equations in a task: 

Standard BLT is performed on the equations of a 
task (identified in step 1) to determine the execution 
order of all equations. In this phase, every “de-
couple(v)” operator is replaced by “v”. If sampled 
subtasks are present, the corresponding equations 



(identified in step 2) must be guarded by if-clauses 
and must be only evaluated if the corresponding 
sampling event occurs. As a result the sorted (syn-
chronous) equations of a task are obtained. 

Note, due to the equation sorting, it is guaranteed 
that a variable reading from an input communication 
channel is only used after it is read and that a vari-
able is first computed before writing it to an output 
communication channel. 

The description above was made for clarity. It is, 
however, not the most efficient implementation. For 
example, it is possible to combine step 1 and 2, by 
just performing the BLT transformation according to 
step 2, i.e., in total only two and not three BLTs are 
needed . The task/subtask annotations are then used 
in a corresponding way to determine the tasks and 
subtasks.  

5 Conclusions 
In this article, a powerful extension to Modelica has 
been described that is used to define a “logical” 
model in Modelica and from this same model derive 
various “real” representations as needed for, e.g., 
Model-in-the-Loop, Software-in-the-Loop, or Hard-
ware-in-the-Loop Simulation, as well as rapid proto-
typing, or generation of production code. With re-
spect to standard approaches in state-of-the-art con-
trol design environments, no copying of model parts 
takes places and the data type on the target machine 
is defined as a mapping rule of the “logical” model. 

The language elements are not complete and 
some features are missing. After getting more ex-
perience with this new way of describing control 
systems, more features will be standardized and 
missing features will be added. Especially, it is 
planned to include triggered subtasks in the next ver-
sion. 
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