
Modelica for Embedded Systems
Hilding Elmqvist1, Martin Otter2, Dan Henriksson1, Bernhard Thiele2, Sven Erik Mattsson1

1 Dassault Systèmes, Lund, Sweden (Dynasim)
2German Aerospace Centre (DLR), Institute for Robotics and Mechatronics, Germany

Hilding.Elmqvist@3ds.com, Martin.Otter@DLR.de, Dan.Henriksson@3ds.com,
Bernhard.Thiele@DLR.de, SvenErik.Mattsson@3ds.com

Abstract
New language elements are introduced in Modelica
3.1 to facilitate use Modelica models in embedded
systems, e.g., as controllers. Models can be conven-
iently configured by marking the borders of the re-
spective controller parts and by defining the mapping
of the marked parts to target processors and target
tasks.

This approach allows to define a “logical” model
from which all different “real” controller configura-
tions for Model-, Software-, Hardware-in-the-Loop
(MiL, SiL, HiL), rapid prototyping, and production
code for multi-processing/multi-tasking are auto-
matically derived by setting configuration options.
Furthermore, a new, free library - Modelica_Embed-
dedSystems - is presented that provides a convenient
user interface to the new language elements. In
summary, the power of Modelica in the area of real-
time control is improved significantly.

Keywords: Embedded systems, real-time control,
multi-tasking, multi-core, multi-rate, model paral-
lelization, Model-in-the-Loop, Software-in-the-Loop,
Hardware-in-the-Loop, rapid prototyping.

1 Introduction
Modelica has been used in advanced controller ap-
plications for embedded systems for several years,
especially when non-linear plant models are part of
the control system (Looye et. al. 2005), such as non-
linear control systems for aircrafts (Bauschat et. al.
2001), for industrial robots (Thümmel et. al. 2005),
or for power plants (Franke et. al. 2008).

Within the ITEA2 EUROSYSLIB project, a ma-
jor effort started at end of 2007 to enhance Modelica
considerably in the area of model-based control. This

effort is also carried on in the ITEA2 MODELISAR
project that started during 2008.

Existing methods and tools have been analyzed
and different designs have been performed. Typi-
cally, controller parts that are to be downloaded to
target platforms are defined by the root of a hierar-
chical structure. However, this standard approach has
several inherent limitations and therefore, a novel,
new approach was developed where only the borders
of control systems are marked and algorithms have
been developed to deduce the controller code from
this information. Furthermore, in principal any Mod-
elica model is supported, and therefore a controller
to be downloaded to a real-time target machine may
contain non-linear differential-algebraic equation
systems as needed for advanced control systems.

Modelica extensions have been designed and are
included in version 3.1 of the Modelica Specification
(Modelica 2009). A free library “Modelica_-
EmbeddedSystems” has been developed as a conven-
ient user interface to the new language elements. A
prototype implementation in Dymola (Dymola 2009)
was performed to validate the concept. Furthermore,
device drivers for Windows game controllers, I/O
boards using the Comedi-Interface (Comedi 2009) on
real-time Linux and CAN-bus have been imple-
mented by DLR. Device drivers for dSPACE
(www.dspaceinc.com) hardware and the Lego Mind-
storms NXT platform (mindstorms.lego.com) have
been implemented by Dynasim, and the concept has
been used in a student project (Akesson et. al. 2009).

2 Logical and Technical
System Architecture

A model of an embedded system is composed of
subsystems which may have local controllers. The
subsystems are coupled physically and through con-

trol systems (e.g. with buses). The notation from
(Schäuffele and Zurawka 2005) is used:

Complex controllers, e.g., in vehicles, are first de-
signed with an abstract view which is termed “logi-
cal system architecture”. Here all the functional and
logical behavior of the control system is defined. In a
second step this architecture is mapped to a “techni-
cal system architecture” which is the concrete im-
plementation of the control system in several tasks
on several micro-controllers inter-connected by com-
munication buses and other communication methods.
For complex control systems, as in vehicles with
over 60 ECUs interconnected via different bus sys-
tems, it must be possible to map from the logical to
the technical architecture in a very flexible way. The
new Modelica language extensions have been de-
signed to fulfill this demanding requirement.

An already sufficiently complicated, but still ra-
ther simple, logical system architecture of a robot is
shown in the left part of Figure 1. Every “axis” of the
robot has a local control system in addition to the
continuous motor and gearbox models. All local con-
trollers are connected to a global controller (at the
top of the figure) via a control bus. This system has
eight coupled controllers that shall be downloaded to
different processors (e.g., all axes controllers on two
signal processors and the global controller on an-
other processor and the processors communicate via
buses). An example is shown in the right part of Fig-
ure 1 where this mapping of the logical to the techni-
cal system architecture is sketched. The new method
has now the following important properties:

1. The user is not forced to manually assemble the
parts belonging to the technical system architec-
ture for download to the ECUs. Instead a Mode-
lica translator performs this automatically from
the logical system representation, given informa-
tion about the mapping to the technical system
architecture. Note, with standard methods and
tools this is not possible, because the logical sys-
tem architecture would be destroyed if the user is
forced to move all controller parts under a hier-
archical structure.

2. The mapping to the technical system architecture
can be defined without modifying the logical
system architecture. This is performed by a new
model that inherits (extends) from the logical
system model and where the mapping informa-
tion is given as modifier, including the selection
of hardware drivers. The latter are defined via
replaceable external objects.

With these two features it is possible to conveniently
configure different use cases, such as:

• Model-in-the-Loop (MiL) simulation
(Plant: variable step size integrators. Controller:
ideal, synchronous continuous or discrete control-
lers)

• Software-In-the-Loop (SiL) simulation
(Plant: variable step size integrators. Controller:
non-ideal, asynchronous controllers with modeled
latencies).

• Rapid prototyping (real-time)

 Figure 1: Mapping of logical to technical system architecture for a robot control system.
(Displayed ECUs adapted from http://commons.wikimedia.org/wiki/File:KeylessGoSiemensVDO.jpg)

(Plant: physical prototype. Controller: asynchronous
controllers, channel assignment).

• Hardware-In-the-Loop (HIL) simulation (real-time)
(Plant: fixed step size, multi-rate integrators.
Controller: embedded in ECUs, multi-tasking, pro-
duction code, fixed-point representation, channel as-
signment, bus communication).

• Production code (real-time)
(Plant: Real product. Controller: embedded in ECUs,
multi-tasking, production code, fixed-point represen-
tation, channel assignment, bus communication).

Dealing with embedded systems in Modelica accord-
ing to the sketched concept above consists of the fol-
lowing parts:

• New Modelica language elements are intro-
duced. This is described in section 4. Basically, a
new annotation “mapping” and some new built-
in operators are provided. Furthermore, new al-
gorithms are sketched to deduce the controller
code from the logical system architecture.

• A new library “Modelica_EmbeddedSystems” is
offered that provides a convenient interface to
the new language elements. This library is dis-
cussed in the next section. It is provided freely
and it is planned to be included in the Modelica
Standard Library (note: a user may provide its
own interface to the new language elements).

• Hardware drivers as Modelica external objects to
access hardware from a Modelica model. A few
hardware drivers that are available on every
PC/notebook are provided in the Mode-
lica_EmbeddedSystems library freely for Win-
dows and for Linux. Other hardware drivers will
be provided from third parties (e.g., commer-
cially from tool vendors).

3 Modelica_EmbeddedSystems
The Modelica_Embedded-Systems library is avail-
able as an open source library from www.modelica.-
org/libraries and will be the basis of embedded sys-
tems in Modelica. The current status of the library is
shown in the screenshot to the right.

The Examples sub-library contains various use
cases to demonstrate the usage of the library. Only
some of the available examples are currently in-
cluded in the library.

The Interfaces sub-library contains the basic
components to define communication points (i.e.,
borders of controller parts) and to select the imple-
mentation of the actual communication in the em-

bedded system. This can be
external I/O, network
communication or inter-
task communication on the
same ECU.

The Communication
sub-library contains open
source drivers for simu-
lated communication (ideal
and with simulated quanti-
zation effects taken into
account), as well as a sim-
ple template for hardware
drivers.

The Configuration
sub-library contains tem-
plates to define the con-
figuration of the embedded
target systems (tasks, sub-
tasks, sampling, target pro-
cessor, etc.).

Types and Icons are
utility sub-libraries.

The major goal of the li-
brary is to define the split-
ting of a model in tasks and
subtasks and to associate device drivers with input
and output signals of the respective parts. The fol-
lowing notation is used:

A “task” identifies a set of equations that are
solved together as one entity, so equations are sorted
and solved in a “synchronous” way as usual in Mod-
elica. There are no equations that relate variables
from different tasks because communication to and
from tasks is performed by function calls of Mode-
lica ExternalObjects1. Different tasks are executed
asynchronously with possible synchronization via
the ExternalObjects used for communication and
possibly running on different cores or processors.
Typically, a Modelica task is mapped to a task of the
underlying operating system.

A “subtask” identifies a set of equations inside a
task that are executed in the same way within the
subtask with regards to sampling and integration me-
thod: If a subtask has continuous equations, all these
equations are solved with the same integration
method. Different subtasks can use different integra-
tion methods, e.g., fixed or variable step size meth-
ods of different orders. If a subtask is sampled, it is
activated at the sampling instants and the equations
of the subtask are integrated from the time instant of

1 A Modelica ExternalObject defines a Modelica interface
to C-functions that operate on the same memory and have
constructor and destructor functions for this memory.

the last sample instant up to the current sample in-
stant using the defined integration method. If a sub-
task is running on a real-time system, usually real-
time integrators are utilized like explicit fixed-step
solvers. The equations of several subtasks in the
same task are automatically synchronized via equa-
tion sorting.

3.1 Communication Blocks

The usage of the Modelica_EmbeddedSystems li-
brary will be demonstrated by the very simple use
case from Figure 2. The model consists of a refer-
ence controller (“ramp”), a feedback controller
(“feedback” and “PI”) and a plant (“torque”, “load”
and “speedSensor”). The task of the controller is to
control the speed of the load inertia.

The model is split in different partitions by plac-
ing "communication blocks" in the signal paths. This
is the "logical" model. At this stage it is only defined
how the model is split into different parts, but it is
not yet defined how to handle these parts (or more
precisely, by default all communication blocks just
pass their input signal to their output).

A "target" model is derived by inheriting from
the model and by applying modifiers on the commu-
nication blocks. These modifiers usually reference a
"configuration block" (in Figure 2 this is called "co-
medi") where all details are defined how to map this
model to one or more target machines.

The "communication blocks" are the central part
of the Modelica_EmbeddedSystems library and pro-
vide a graphical user interface between the user and
the new Modelica 3.1 language elements. Clicking
on one of the communication blocks in Dymola
gives the menu shown in Figure 3.

The most important option is the first entry
"communicationType". It defines the communication
that shall take place between the input and the output

of the communication block:

• Direct communication with Modelica equations
(simplest case: y = u). This is mainly used to
start and have a meaningful default, and/or to
test some controller effects like noise or signal
delays.

• Communication between two subtasks. This de-
fines that the input and output signals are in dif-
ferent subtasks. All properties of these subtasks
can be configured with the rest of the options,
e.g., that the input subtask is periodically sam-
pled with a defined sampling rate.

• Communication between two tasks. This defines
that the input and output signals are running in
different tasks on the same machine. All proper-
ties of the tasks can be configured with the rest
of the options, e.g., in which way the communi-
cation between the tasks takes place (e.g., via
shared memory).

• Communication to a port. This defines that the
input signal is sent to an I/O board or to a bus
(like the CAN bus). In this case, the communica-
tion block has no output signal. All properties of
the I/O board can be configured with the rest of

Figure 2: Simple drive train with two controller parts and three communication blocks.

Figure 3: Menu of a communication block.

the options, as well as the task/subtask properties
of the equations that generate the signal to be
sent to the I/O board.

• Communication from a port. This defines that
the output signal is received from an I/O board
or from a bus. In this case, the communication
block has no input signal. All properties of the
I/O board can be configured with the rest of the
options, as well as the task/subtask properties of
the equations that use the received signal.

Depending on the selected option, input fields of the
parameter menu are enabled. These are mostly re-
placeable models using Modelica ExternalObjects.
For example, when clicking on "toPort", all currently
loaded device drivers to send a signal to an I/O board
are listed. Selecting the desired device driver and
then clicking on the "table" symbol to the right of the
menu, opens the driver specific menu to configure
this particular device.

Whenever a user introduces a device driver that is
derived by inheritance from one of the partial models
defined in Modelica_EmbeddedSystems.Interfaces
(like Interfaces.BaseReal.PartialWriteRealToPort),
this device driver is automatically included in the
corresponding list of the communication block, due
to the “choicesAllMatching” annotation defined in
this block.

The important point is that all these hardware
configuration settings can be made without copying
the "logical model" and modifying it, but just inherit-
ing from it and applying modifiers on the communi-
cation blocks.

When clicking on "inSubtask", the sub-
task/task/target properties of the model part can be
defined that is connected to the input of the commu-
nication block (in a similar way, the properties of the
output can be defined with “outSubtask”). In Figure
4 a typical screen shot is shown:

This is a hierarchical structure where all properties of
a mapping annotation can be defined (for details see
section 4). In Figure 4, the top-most hierarchical dia-
log level is shown to define the identifier, the sam-
pling properties and the integration method of the

subtask in which the input signal is running. The
subtask identifier is a string that must be unique
within a task. If the same subtask shall be referenced
in different communication blocks, identical subtask
identifiers must be given.

The second level of the dialog is shown in Figure
5, to define the task identifier, the task priority, the
basic sample period (if the task is periodically sam-
pled) and the core, if the task is running on a multi-
core machine.

Finally, the third level of the dialog (shown in Figure
6) is used to define the identifier of the target on
which the task is running and the “kind” of the tar-
get. The kind property will identify in a tool-specific
way all properties of the target machine that need to
be known for the code generation (e.g. if the target
has or does not has a floating point unit).

From the information provided in the communication
blocks, it is possible to partition all equations of the
flattened Modelica model in to the desired pieces.
E.g., in the example above, two different C-codes are
generated, one for the two controller parts and one
for the plant and both are running in different tasks.
The reference and the feedback controller are run-
ning with different sampling rates in the same task
(sub-sampling).

The algorithm to determine the equations that be-
long to the different parts is sketched in section 4.4.
In short, the BLT-algorithm (usually used by Mode-
lica translators to determine the sorting of the equa-
tions) must be applied two or three times additionally
on the model equations. So, a Modelica tool vendor
has the basic algorithm already and must just apply it
in some variants.

Note, subtask properties (like sampling period)
may be defined at the input and/or at the output of a

Figure 4: Defining subtask properties of the input
signal of a communication block.

Figure 5: Defining task properties.

Figure 6: Defining target properties.

subtask. If a subtask has several inputs and/or several
outputs it is sufficient to define this information only
at one location. For example in the use case of Fig-
ure 2, the properties of a subtask are defined at the
output signal of the respective subtask.

3.2 Configuring Subtasks, Tasks, Targets and
Devices.

All information to configure the subtasks, tasks and
targets could be given in the hierarchical menus of
the communication blocks shown in Figure 4, 5, and
6. However, this has a significant drawback: In the
example above, the same target properties have to be
defined three times (for all three different subtask
definitions) and the task properties of the controllers
have to be defined twice (for the “reference” and for
the “feedbackController” subtask). Even more criti-
cal is the configuration of the device drivers. For
example, an IO board is typically initialized once
and then channel assignment takes place. It is diffi-
cult to define such initialization processes in the
communication blocks.

In order to avoid redundant definitions and to
have a simple way to initialize the device drivers, it
is recommended to define all configuration options
at one place once on the top level of the control sys-
tem. An example is block “comedi” in the lower left
part of Figure 2, where the control system is config-
ured for real-time Linux using the comedi device
drivers (Comedi 2009).

This block consists of record instances to define
subtask, task and target properties of all parts of the
control system and to initialize the used device driv-
ers. For example, Modelica_EmbeddedSystems.-
Configuration.Subtask is defined as:
record Subtask
 parameter Task inTask = Task();
 parameter identifier = "Default";
 ...
end Subtask;

The first parameter in the record is “inTask” which
is an instance of record “Task”. In order to auto-
matically have a hierarchical menu built up, a default
value of “Task()” is given, i.e., the record construc-
tor of record “Task” is called. When using the Sub-
task record in a configuration block, the “task” prop-
erties are defined in an instance of record “Task”
(called “controller” in Figure 7). In the subtask defi-
nitions, like “slowSampler” and “fastSampler” in
Figure 7, parameter “inTask” is defined as the in-
stance name of the record task (“controller” in Figure
7). By this technique, the configuration is defined in
a non-redundant way.

Device drivers are record instances where device-
specific configuration options are given and a final
parameter is used for the device handle that is de-
fined by a call to the constructor of the respective
ExternalObject.

Finally, a hierarchical modifier is used to refer-
ence the configuration record instances at the appro-
priate places in the communication blocks. For ex-
ample, parameter “inSubtask” in the communication
block at the output of the feedback controller in Fig-
ure 2 is defined as “comedi.fastSampler”. In Dymola
this can be conveniently defined by just clicking on
the small arrow at the right part of the input field of
“inSubTask” and selecting “Insert Component Ref-
erence”. Dymola presents a list in which the in-
stances (like comedi.fastSampler) are listed that can
be utilized in the input field, and the modeler has just
to select the appropriate entry.

3.3 Mapping to Target Data Types

Modelica has the four basic data types Real, Inte-
ger, Boolean and String that are usually mapped
by Modelica translators to the C-types “double”,
“int”, “int” and “char*”, respectively. In many
cases a different mapping is desired if the target is an
embedded micro-controller. The details how this is
defined is not standardized in Modelica 3.1. Stan-
dardization will occur when more practical experi-
ence is gained. In the meantime, vendor-specific en-
hancements have to be used.

In the simplest case, the “target.kind” definition
in the “Target” record defines the type of the target
machine. A vendor may associate different data type
mappings for different target kinds. For example, a
Modelica “Real” type may then be automatically
mapped to a C “float” type.

Figure 7: Configuration of use case for real-time
Linux with the comedi device drivers.

Target machine

Task and processor
(on target machine)

Sampling and
integrator (in task)

Device initialization
and configuration

For cheap microprocessors that do not have a
floating point unit, such an automatic type mapping
is not sufficient. For this purpose, vendor-specific
variable annotations are planned that can be changed
via hierarchical modifiers. The purpose is to allow
definitions of the following form:

block Controller
 Real x(min=20, max=80);
 ...
end Controller;

Controller myController(x annotation(
 mapping(__NameOfVendor(
 targetType = uint16,
 min=10, max=100))));

The interpretation is that “x” is mapped on the target
machine to an unsigned 16-bit integer “xi” with
range [0 .. 65535] so that x = 10.0 is mapped to
xi = 0 and x = 100.0 is mapped to 65535:

xi = round((x – 10)*65535 / (100-10))

The “targetMapping” min/max values (10 .. 100)
might be different from the variable min/max values
(20 .. 80) in order to have a margin so that operations
on “xi” do not immediately cause overflow.

It is of course not practical to define such a data
type mapping on every variable in a controller ma-
nually. Here, special tool support is needed. Possible,
tool-specific approaches might be:

• All variables from the model part that shall be
downloaded are displayed in a hierarchical vari-
able browser and the GUI supports a convenient
way to define the mapping quickly for sets of va-
riables (e.g., all selected variables, or all vari-
ables of the same type in a particular hierarchy).

• The data type mapping might be defined for a
few variables only (e.g., for the input variables).
Via the equation-based relationships between va-
riables, this mapping is propagated along the eq-
uations. E.g., if “a = b + c” and a data type map-
ping is defined for “b”, but not for “a” and “c”,
then “a” and “c” are mapped in the same way as
“b”. This approach is similar to the automatic
“unit” propagation in Dymola.

This approach of data type mapping has the big ad-
vantage that every Modelica model can be utilized
even on cheap microprocessors without any changes
to the “logical” model (at least in principal). In con-
trast, the standard approach in many controller envi-
ronments is much more restrictive: Every model has
to be defined from the beginning in the desired data
types of the expected target system. As a result,
whenever a controller is designed, it must be re-
implemented from scratch for a particular target sys-
tem.

4 Modelica Language Extensions
In this section the Modelica language extensions and
the needed algorithms are sketched to implement the
approach discussed above. All the details can be
found in the Modelica 3.1 Language Specification
(Modelica 2009, Chapter 16).

4.1 Defining Subtask Boundaries

Boundaries of subtasks are identified with the fol-
lowing built-in operator (which is part of the built-in
package “Subtask”):

Subtask.decouple(v); // same as v
A boundary between a subtask A and a subtask B is
defined by using this operator in an equation of sub-
task A with a variable v which is computed in sub-
task B. The operator returns its argument. Typically,
this operator is used as:

u = Subtask.decouple(y);

where y is an output of subtask B and u is an input of
subtask A. The effect is that “u = y” and “u” and “y”
are in different subtasks.

4.2 Defining Subtask, Task and Target

The “mapping” annotation defines properties of va-
riables. This annotation can only be applied on a dec-
laration of a variable that does not have a constant
or parameter prefix. It is usually applied on input
and output variables of a subtask or a task. Example:
parameter Modelica.SIunits.Time Ts;
RealInput u annotation(mapping(
 target (identifier = "cluster"),
 task (identifier = "slowTask",
 sampleBasePeriod = Ts),
 subtask(identifier = "reference",
 samplingType =
 Subtask.SamplingType.Periodic,
 samplePeriodFactor = 4)));

The meaning is that variable “u” is in the subtask
“reference” which is periodically sampled with a
sample period of “4*Ts”. Subtask “reference” is
within task “slowTask” that has a base sampling pe-
riod of Ts. Task “slowTask” shall be downloaded to
the target machine with the name “cluster”.

The mapping annotation is formally defined by
the following hierarchical record definition (as with
all annotations, also here vendor-specific extensions
can be added):
record mapping
 Boolean apply = true;
 Target target ;
 Task task ;
 Subtask subtask;
end mapping;

record Target
 String identifier="DefaultTarget";
 String kind = "DefaultTargetType";
end Target;

record Task
 String identifier = "DefaultTask";
 Integer onProcessor = -1;
 Integer priority = 1;
 Modelica.SIunits.Period
 sampleBasePeriod = 0;
end Task;

record Subtask
 String identifier= "DefaultSubtask";
 Subtask.SamplingType samplingType =
 Subtask.SamplingType.Continuous
 Integer samplePeriodFactor(min=1)= 1;
 Integer sampleOffsetFactor(min=0)= 0;
 IntegrationMethod integrationMethod
 = "SameAsSimulator";
 Modelica.SIunits.Period fixedStepSize;
end Subtask;

All values supplied to these records can be parameter
expressions. If

mapping(apply = false,
 target (..),
 task (..),
 subtask(..));

the “target(..), task(..), subtask(..)” definitions are
ignored. This is, e.g., used to conveniently define in
a parameter menu whether the input and/or the out-
put signal of a communication block defines tar-
get/task/subtask properties without complicated
Modelica code.

The mapping annotation defines that the respec-
tive variable is computed in the task with the identi-
fication “task.identifier” and with the task priority
“task.priority”, on the target platform (e.g., com-
puter, processor) with the identification “tar-
get.identifier” on processor “onProcessor”.

The interpretation of task.identifier,
task.onProcessor, task.priority, target.identifier and
target.kind is tool-dependent. For example, tar-
get.kind may identify a multi-processor or multi-core
target machine and task.onProcessor may identify
the processor or core on this target. Alternatively, a
tool may identify a particular processor or core with
target.kind and may ignore task.onProcessor.

The respective task may have one or more sub-
tasks. A task is active when any of its subtasks is
active. A subtask is defined with the following prop-
erties:

• If samplingType = Subtask.SamplingType.-
Continuous, the subtask is a continuous system
that is always active.

• If samplingType = Subtask.SamplingType.-
Periodic, the subtask is periodically sampled
with a sample period of “samplePeriodFactor *
task.sampleBasePeriod” and an offset of “sam-
pleOffsetFactor*task.sampleBasePeriod”. So
sample period and sample offset are integer mul-
tiples of the task.sampleBasePeriod.

• The differential equations in a subtask are inte-
grated according to the “integrationMethod”
property. For fixed-step integration methods, a
fixed integrator step size of fixedStepSize is
used. A tool may adapt the selected fixed step
size, e.g., by automatically restricting it to the
time from the previous to the actual activation.
Usually, fixedStepSize = samplePeriodFactor *
task.sampleBasePeriod. In some applications,
fixedStepSize might be smaller than one sample
period, in order to have several integrator steps
in one sample period since otherwise the fixed
step size integration method might not be stable.

The mapping annotation influences the simulation
result and therefore different simulation results might
be obtained if this annotation is removed.

4.3 Inquiring Subtask Properties

In order for purely discrete models to be imple-
mented, there are two operators to inquire properties
of the subtask in which the model is running:

• Subtask.activated():
Returns true at the activation time instant of the
subtask, where this operator is called. At all oth-
er time instants when the associated task is exeu-
ted, including initialization, the operator returns
false.

• Subtask.lastSampleInterval():
Returns the time instant from the activation time
instant of a subtask to the previous activation
time instant of the same subtask, where this op-
erator is called.

If one of these operators is used, the corresponding
subtask is not allowed to have subtask.sampleType =
Subtask.SamplingType.Continuous.

In many standard cases these operators are not
needed. Typically, a controller block, like a PI block,
is implemented in its continuous form. When the
subtask is periodically sampled, the Modelica trans-
lator automatically derives the discrete form, if an
appropriate integration algorithm with fixed step-size
is used. For linear control systems it is recommended
to use the trapezoidal integration algorithm, since
this gives the closest correspondence between the
continuous and the sampled form and only small lin-

ear equation systems must be solved in the discrete
form (since the trapezoidal method is an implicit in-
tegration algorithm).

In some cases, a controller has only a discrete re-
presentation. A typical example is a finite impulse
response (FIR) filter. A mean value FIR filter, would
be typically implemented in the following form:
block meanValueFilter
 import Modelica.Blocks.Interfaces;
 Interfaces RealInput u;
 Interfaces.RealOutput y;
equation
 when {initial(), Subtask.activated()}
 then
 y = (u + pre(u)) / 2;
 end when;
initial equation
 pre(u) = u; // steady state init
end meanValueFilter;

4.4 Partitioning a Model in to Parts

Via the decouple(..) operator and the mapping an-
notation, certain variables of a model are marked. In
this section the algorithm is sketched how to derive
all equations that belong to a particular subtask and
task, respectively:

This requires the “Block Lower Triangular” (BLT)
transformation to be applied several times. The BLT
algorithm is, e.g., described in (Pantelides 1988).
This is the standard algorithm used in Modelica
translators to sort the equations of a model and iden-
tify the algebraic loops. In (Pantelides 1988) it is
shown that a differential-algebraic equation system
does not have a unique solution2, if all “der(v)” are
replaced by “v” and a unique assignment for all un-
known variables is not possible (“v” are treated as
unknown variables in this case).

We will use a similar technique below. The moti-
vation is that the “der(..)” and “pre(..)” operators act
as “loop breakers” between equation systems. If
“der(v1)” is replaced by “v1” and “pre(v2)” is re-
placed by “v2” and all “v1” and “v2” are treated as
unknowns, then algebraic loops are present between
all equations that need to be “treated” together.

Based on this observation we can now sketch the
partitioning algorithm:

1. BLT to determine the (asynchronous) tasks:

If tasks are present, there are function calls to receive
signals from another task or from external inputs and

2 or more precisely, the system has an infinite index. If on
the other hand all variables “v” have a unique assignment,
then and only then, the “Pantelides” algorithm to deter-
mine the equations to be differentiated will converge.

to send signals to another task or external outputs.
From a Modelica point of view, there is no coupling
between variables of different tasks (due to the func-
tion calls) and therefore the equations are naturally
“cut” in to partitions. These partitions are determined
by replacing all pre(v1) with v1 and all der(v2) by
v2 and by performing a BLT transformation.

All BLT blocks that have variables with the same
task.identifier annotation belong to the same task. If
a BLT block B references one or more variables that
are assigned in a BLT block A, that belongs to a task
task.identifier, then all equations of B belong to task
task.identifier. If a BLT block C references variables
that are assigned in B, then all equations of C belong
to task task.identifier, and so on. If a BLT block, di-
rectly or indirectly, references variables that are as-
signed in two different tasks, this is an error (wrong
mapping annotations). All remaining BLT blocks
that do not belong to any task are collected together
to a “continuous” default task. This default task is
usually running on the host machine or might also be
deactivated (not running).

2. BLT to determine the (synchronous) subtasks:

This is achieved by inspecting all equations of every
task. For every task, the decouple(v) operators are
conceptually replaced by zero, so that “v” is no long-
er part of the equation where decouple(v) appeared.
As a result, subtasks are decoupled. BLT is per-
formed on all equations of a task by replacing all
pre(v1) with v1 and all der(v2) by v2.

If one or more variables of a BLT-block A have a
subtask annotation, the equations belong to this sub-
task S. If a BLT block B references one or more va-
riables that are assigned in A, all equations of B be-
long also to S. If a BLT block C references variables
that are assigned in B, all equations of C belong also
to S, and so on. All remaining BLT blocks that do
not belong to any subtask, are collected together to a
“continuous” default subtask. It is an error, if a BLT
block, directly or indirectly, references variables that
are assigned in two different subtasks. If different
subtasks have identical samplingType, samplePe-
riodFactor and sampleOffsetFactor, the subtasks can
be merged (the subtasks are sampled at the same
time instants but different integration methods are
used for the subtasks).

3. BLT to determine the sorted equations in a task:

Standard BLT is performed on the equations of a
task (identified in step 1) to determine the execution
order of all equations. In this phase, every “de-
couple(v)” operator is replaced by “v”. If sampled
subtasks are present, the corresponding equations

(identified in step 2) must be guarded by if-clauses
and must be only evaluated if the corresponding
sampling event occurs. As a result the sorted (syn-
chronous) equations of a task are obtained.

Note, due to the equation sorting, it is guaranteed
that a variable reading from an input communication
channel is only used after it is read and that a vari-
able is first computed before writing it to an output
communication channel.

The description above was made for clarity. It is,
however, not the most efficient implementation. For
example, it is possible to combine step 1 and 2, by
just performing the BLT transformation according to
step 2, i.e., in total only two and not three BLTs are
needed . The task/subtask annotations are then used
in a corresponding way to determine the tasks and
subtasks.

5 Conclusions
In this article, a powerful extension to Modelica has
been described that is used to define a “logical”
model in Modelica and from this same model derive
various “real” representations as needed for, e.g.,
Model-in-the-Loop, Software-in-the-Loop, or Hard-
ware-in-the-Loop Simulation, as well as rapid proto-
typing, or generation of production code. With re-
spect to standard approaches in state-of-the-art con-
trol design environments, no copying of model parts
takes places and the data type on the target machine
is defined as a mapping rule of the “logical” model.

The language elements are not complete and
some features are missing. After getting more ex-
perience with this new way of describing control
systems, more features will be standardized and
missing features will be added. Especially, it is
planned to include triggered subtasks in the next ver-
sion.

6 Acknowledgements
Partial financial support of DLR by BMBF (BMBF
Förderkennzeichen: 01IS07022F) for this work with-
in the ITEA2 project EUROSYSLIB is highly appre-
ciated (www.itea2.org/public/project_leaflets/EU-
ROSYSLIB_profile_oct-07.pdf).

Dynasim thanks the Swedish funding agency
VINNOVA (2008-02291) for partial funding for this
work within the ITEA2 project MODELISAR.

Furthermore, we would like to thank our Mode-
lica Association colleagues Ramine Nikoukhah (IN-
RIA), Torsten Blochwitz and Gerd Kurzbach (ITI
GmbH) for fruitful discussions.

References
Akesson J., Nordström U., Elmqvist H. (2009): Dymola

and Modelica_EmbeddedSystems in Teaching –
Experiences from a Project Course. In: F. Casella
(editor): Proc. of the. 7th Int. Modelica Conference,
Como. www.modelica.org/events/modelica2009

Bauschat, M., Mönnich, W., Willemsen, D., and Looye,
G. (2001): Flight testing Robust Autoland Con-
trol Laws. In Proceedings of the AIAA Guidance,
Navigation and Control Conference, Montreal CA.

Comedi (2009). Linux Control and Measurement Device
Interface. www.comedi.org.

Dymola (2009). Dymola Version 7.3. Dassault Systèmes,
Lund, Sweden (Dynasim). Homepage:
www.dymola.com.

Franke R., Babji B.S., Antoine M., Isaksson A. (2008):
Model-based online applications in the ABB Dy-
namic Optimization framework. In: B. Bachmann
(editor): Proc. of the 6th Int. Modelica Conference,
Bielefeld. www.modelica.org/events/-
modelica2008/Proceedings/sessions/session3b1.pdf

Looye G., Thümmel M., Kurze M., Otter M., Bals J.
(2005): Nonlinear Inverse Models for Control. In:
G. Schmitz (editor): Proc. of the 4th Int. Modelica
Conference, Hamburg.
www.modelica.org/events/Conference2005/online_
proceedings/Session3/Session3c3.pdf

Modelica (2009). Modelica Language Specification 3.1.
www.modelica.org/documents/ModelicaSpec31.pdf

Pantelides C. (1988): The consistent initialization of
differential-algebraic systems. SIAM Journal of
Scientific and Statistical Computing, pp. 213-231.

Schäuffele J. and T. Zurawka (2005): Automotive Soft-
ware Engineering – Principles, Processes, Meth-
ods and Tools. SAE International. ISBN-10 0-
7680-1490-5.

Thümmel M., Otter M., Bals J. (2005): Vibration Con-
trol of Elastic Joint Robots by Inverse Dynamics
Models. H. Ulbrich, W. Günthner (editors): IUTAM
Symposium on Vibration Control of Nonlinear Me-
chanisms and Structures, München, ISBN 978-1-
4020-4160-0, pp. 343-353.

