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2011

Thermoelectric modules are an important alternative to heat engines in the harvesting of

waste heat. Electrical-thermal analogues are often employed when studying heat conduc-

tion and this analogue can be extended to develop an equivalent circuit for thermoelectric

effects. For the primarily one-dimensional problem of thermoelectricity, the equations can

be discretized to create a simple mathematical model. In this document, such a model is

developed from first principles and show that the electro-thermal coupling is properly in-

corporated. The results of simulations using the model are then presented and validated

experimentally. Furthermore, in one possible application of thermoelectric modules, a

self-contained cooling unit with an integrated thermoelectric generator is designed. By

performing fluid dynamics simulations on a fan and heat sink model, the geometry and

operating conditions can be optimized and the start-up and transient characteristics are

studied.
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Chapter 1

Introduction

1.1 Background

Waste heat is heat produced as a byproduct in power generation, industrial processes and

electrical machines, among others. Vast amounts of waste heat are produced by industry.

In addition, low-grade heat (heat sources roughly under 100 C)[1] is also available from

natural sources such as geothermal reservoirs and solar energy. Recovering this heat into

usable electricity would save a significant amount of money through increasing efficiency

and lowering fuel costs as well as being beneficial to the environment.[2] For any heat

engine, the laws of thermodynamics place fundamental constraints on the amount of

useful power which can be extracted. Owing to the need for any generation process to

discard heat, the fraction of heat which may be converted depends on the intake and

exhaust temperature, with lower temperatures being less efficient. However, since such

a large amount of energy is freely available, the engineering problem then becomes one

of economics, and choosing the technology and configuration which produces the best

utilization of heat.

In the case of heat recovery, the technologies to do so already exist and are already in

use. The two most prominent technologies used in this application are those derived from

1



Chapter 1. Introduction 2

heat engines and those derived from thermoelectricity. The Rankine cycle, often used in

power plants, is a heat engine which uses the phase change of steam or another working

fluid to drive a turbine and generate electricity. At low temperatures, organic working

fluids with low boiling points are used instead of steam to increase efficiency, and this

process is termed the Organic Rankine Cycle (ORC). Thermoelectric generators, which

are semiconductor junction type devices, use the thermoelectric effect to convert heat to

electricity and vice versa. They have the advantage of being very simple with no moving

parts, requiring low maintenance and are therefore able to be used for sources of heat for

which the organic Rankine cycle would be inapplicable, such as those located in remote

or hostile environments.[1] For example, in space applications, consideration is given to

their low weight and reliability compared to heat engines. [3]

1.2 Physics of Thermoelectric Materials

Due to the phenomena of electron and phonon transport in conductors and semiconduc-

tors, electrical current and heat flux are, in general, coupled and linear functions of the

electric field and the gradient of temperature [4][5], i.e.:

J = σE− σα∇T
(
A

m2

)
(1.1)

q = πJ− k∇T
(
W

m2

)
(1.2)

Where E and T are the electric field and temperature, respectively, α is the Seebeck

Coefficient, π is the Peltier Coefficient, σ is the electrical conductivity and k is the

thermal conductivity. However,even without knowing exactly what the coefficients (α,

π, σ, k) are, it is clear from equations (1.1) and (1.2) that in any material which allows

both electrical and heat conduction,

1. a temperature gradient causes an electric field to develop in the absence of electrical

current, and
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2. an electric field causes a thermal gradient to develop in the absence of thermal

current.

For a derivation of the transport equations, refer to Appendix A.

In 1821 Thomas Johann Seebeck discovered that a circuit composed of two different

metals could deflect a compass needle when a temperature gradient was applied across

it. This is termed the Seebeck effect, and its associated Seebeck coefficient α, is defined

as:

α (T ) =
E

∇T
≈ ∆V

∆T

(
V

K

)
(1.3)

Jean-Charles Peltier discovered what is known as the Peltier effect in 1834, namely that

current passing through the junction of two dissimilar materials caused heating or cooling

at the junction. The Peltier coefficient π is the ratio of the rate of heat flux q to current

density in the absence of a temperature gradient:

π(T ) =
q

J
=
Q

I
(1.4)

with units of Watts per Ampere.

The Peltier and Seebeck effects are also not independent, as was predicted by Lord

Kelvin and experimentally shown. α and π are related through the second Kelvin relation:

α(T ) =
π (T )

T
(1.5)

which shows that the Seebeck coefficient alone is enough to provide all of the thermo-

electric properties of a material. A brief discussion of this relationship can be found in

Appendix B.

The more familiar quantities of electrical conductivity (σ) and thermal conductivity

(k) are defined as:

σ (T ) =
J

E

(
S

m

)
(1.6)

and

k (T ) = − q

∇T

(
W

mK

)
(1.7)
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Equations (1.1) and (1.2) are the theoretical basis of the thermoelectric effect. How-

ever, note that although both the Seebeck and Peltier effects may appear to require the

junction of two dissimilar materials, neither is a contact effect and both arise due to the

presence of temperature gradients in the bulk.

Figure 1.1: Thermoelectric Circuit

Experimentally, it is difficult to measure the absolute Seebeck coefficient of a single

material since the same temperature difference that is applied across the material under

test will also be applied across the measurement apparatus. For instance, in Figure 1.1,

if material A is the material under test, material B is the material of the voltmeter leads

and a temperature difference of T1 - T2 is put across material A, then the voltmeter is at

some intermediate temperature T0 and the voltage measured is:

V = −
∫
E · dl = −

∫
α
dT

dl
dl =

∫ T1

T0

αB dT +

∫ T2

T1

αA dT +

∫ T0

T2

αB dT (1.8)

=

∫ T2

T1

αA dT +

∫ T1

T2

αB dT =

∫ T2

T1

αA − αB dT

showing that it is only possible to measure the difference in Seebeck coefficients of two ma-

terials. However, it is still useful from a practical perspective to define absolute Seebeck

coefficients, since most common conductive materials have negligible Seebeck coefficients

and in practice the situation presented in figure 1.1 will constitute a measurement of αA.



Chapter 1. Introduction 5

Also, due to the properties of semiconductors, n-type and p-type materials have

Seebeck coefficients of opposing signs. (See the expressions (A.18) and (A.34) for α

in Appendix A) For this reason, thermoelectric modules almost always consist of two

semiconductor materials which appear electrically in series and thermally in parallel, as

shown in figure 1.2.

Figure 1.2: Thermoelectric Module

1.2.1 Efficiency

The efficiency of the type of thermoelectric module shown in figure 1.3 can be written

as:

ηmax =
TH − TL
TH

√
1 + Z(TH+TL)

2
− 1√

1 + Z(TH+TL)
2

+ TL
TH

(1.9)
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(1.9) is in the form of the ideal Carnot efficiency multiplied by a factor, which is a

function of the so-called “figure of merit” Z, defined as:

Z =
α2σ

k
(1.10)

where α is the Seebeck coefficient, σ is the electrical conductivity and k is the thermal

conductivity. In some literature, an alterative figure of merit, ZT, which actually denotes

Z(TL+TH)
2

, is employed instead. Research into materials for thermoelectric properties

primarily focuses on improving this figure of merit. Refer to Appendix C for further

discussion of the efficiency and figure of merit.

When choosing the material to use for a thermoelectric generator, it is most worth-

while to look at the three values which make up the figure of merit Z. The electrical

conductivity σ is a measure of charge carrier concentration, of which metals have the

highest while insulators have very low concentration and semiconductors lie somewhere

in the intermediate. Thermal conductivity also increases with increasing carrier concen-

tration. The Seebeck coefficient, on the other hand, decreases with increasing carrier

concentration [2]. Semiconductors generally have the highest figures of merit due to hav-

ing the best combinations of the three properties and nearly all modern thermoelectric

materials are semiconductors.

Modern commercial thermoelectric semiconductor materials can be divided into three

temperature ranges: Low temperature (< 450 K) alloys use bismuth in combination

with antimony, tellurium and selenium, medium range (850 K) materials are based on

lead telluride and high temperature (up to 1300 K) materials are based on silicon and

germanium [2].

Most commercially available thermoelectric devices consist of a large number of ther-

mocouples connected in series and sandwiched between a thermally conductive hot plate

and cold plate. Since the voltage output of a single semiconductor thermocouple is low

(on the order of hundreds of microvolts per degree), many elements need to be in series

in order to reach a reasonable voltage and be compatible with the operating voltages of
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most transistors. Each thermocouple module then consists of a p-type leg and an n-type

leg, since α is positive for p-type semiconductors and negative for n-type semiconductors.

In order to maximize efficiency, some modern modules are also segmented or cascaded,

which is to say that a single leg may use multiple materials in series. This is due to the

fact that thermoelectric modules often see temperature gradients of hundreds of degrees,

and since the figure of merit for a single material may change significantly over the tem-

perature range, it becomes advantageous to use more than one material [2]. Also, the

metal-semiconductor junctions in a thermoelectric module are ohmic contacts, meaning

that the device is essentially symmetrical and can pump heat or current in either di-

rection. Figure 1.3 shows a diagram of a segmented thermoelectric module with ohmic

junctions.

Figure 1.3: Segmented Generator

1.2.2 VI Characteristic

Figure 1.4 shows a measured VI characteristic and its corresponding power curve for a

commercial TE module with 20 Watts of heat flux applied to the high side. A peak can

be seen in the power curve and thus there is one electrical operating point for each set

of temperature boundary conditions for which the output power is maximized. This is

similar to the power curve for photovoltaic cells.
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Figure 1.4: Measured VI and Power Curves

Though thermoelectricity is a nonlinear effect in temperature and voltage, the non-

linearity is small at low temperature differences and currents, and the rough location

(treating the Seebeck voltage as an ideal source) of the peak power in terms of current

is given in equation 1.11.

IPmax ≈
α (TH − TL)

2Rte

(1.11)

where Rte is the electrical resistance of the thermoelectric module.

1.3 The Organic Rankine Cycle

An alternative to thermoelectricity for power generation is the heat engine. The thermo-

dynamic process used most commonly for power generation is the Rankine Cycle. Here

we briefly outline the steps in the cycle and its efficiency.
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Figure 1.5: Rankine Cycle

The ideal Rankine cycle has the following legs as described below with reference to

figure 1.5:

• 1-2 (Pump): Isentropic compression. Working fluid is pumped from the low pres-

sure condenser to the high pressure evaporator

• 2-3 (Boiler): Isobaric heat input. Working fluid is evaporated into a dry vapor and

fed into the turbine

• 3-4 (Turbine): Isentropic expansion. Vapor expands through a turbine, generating

power

• 4-1 (Condenser): Isobaric heat rejection. Vapor is condensed back into a fluid and

then recycled back into the boiler

1.3.1 Efficiency

The efficiency of the cycle depends on the choice of the working fluid. Water (steam)

is generally used for power generation purposes, but at lower temperatures water is no

longer thermodynamically favorable as a working fluid due to its saturated vapour curve.

Therefore, in order to recover power from low grade waste heat, organic fluids which have
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lower boiling points than water are used instead, and this is termed the Organic Rankine

Cycle (ORC). The efficiency, η, is given by:

η =
(H3 −H4)− (−∆Wp)

H3 −H2

(1.12)

≈ Cp (T3 − T4)

Cp (T3 − T4) + λR − (−∆Wpump)

where H3 −H4 is the energy generated in leg 3-4, H3 −H2 is the energy input in leg 2-3

and (−∆Wp) represents parasitic losses. Cp is the heat capacity of the vapor, λR is the

latent heat of vaporization and (−∆Wpump) = H2 −H1 denotes the energy required for

the pumping phase. The full derivation for this expression can be found in Appendix C

Current applications of the ORC include waste heat recovery from industrial processes

as well as solar and geothermal power generation. The literature describes an ORC

intended to cool technical equipment such as a transformer, with electrical generation as a

byproduct. In such a configuration, the device would receive cooling from an intermediate

fluid which would then act as the heat reservoir for the “boiler” component of the ORC

[6].

1.4 Objectives

The primary objective of this project is to develop a new and more accurate model of a

thermoelectric generator by applying the finite volume method to the phenomenological

equations of thermoelectricity. Using the discretized equations, a simple equivalent circuit

can be created to aid in visualization. A secondary aim will be to design a self-contained

cooling unit with an integrated thermoelectric generator. Specifically, it will be seen

whether a thermoelectric generator integrated into a heat sink and fan can provide enough

power to run the cooling fan in closed loop. By performing fluid dynamics simulations

on the fan and heat sink model, it can be determined for what geometry and under what

operating conditions a thermoelectric generator can power a cooling fan.
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1.5 Thesis Outline

The chapters and appendices are organized as follows:

In chapter 2, existing one-dimensional models of thermoelectric devices are discussed

and a new model based on the finite volume method (FVM) is developed, resulting in a

coupled system of time-dependent partial differential equations. A discretization process

is applied to the system, with careful attention paid to flux balance at the internal

boundaries. The resulting system of coupled ordinary differential equations is simulated

using Matlab and compared to experimental results.

In chapter 3, one possible application of thermoelectric generators is explored. An

integrated heat sink-thermoelectric generator assembly is designed and tested for its

electrical and thermal properties. Finite element (FEM) simulations in COMSOL are

performed on the design in order to optimize the geometry. It was found that using the

optimal geometry, there is a range of operating points under which it is possible for a

thermoelectric module to power a cooling fan.

Appendix A presents a derivation of the transport equations (1.1) and (1.2) from the

Boltzmann equation, which is a transport equation from statistical mechanics. In the

derivation, a relaxation time approximation is used to show that the form of (1.1) and

(1.2) is correct while avoiding the use of quantum mechanics to calculate transition rates.

The validity of this approximation is also discussed.

Appendix B is a brief discussion of the Kelvin relation (equation (1.5)), presenting a

line of reasoning based on thermodynamics.

Appendix C gives the full derivation for the efficiency and figure of merit for thermo-

electric modules (equations (1.9) and (1.10), respectively), as well as the derivation for

the efficiency for the Rankine Cycle (equation (1.12)).

Appendix D presents the mathematics behind a commercial FEM software package

(COMSOL) model of a thermocouple. The model accounts for the temperature depen-

dence of the transport coefficients. The COMSOL model was used to verify the results
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from both the experiment and the finite volume simulation in Chapter 2.

Appendix E gives the details of the experimental apparatus which was constructed

to verify the simulation results.

Appendix F contains the MATLAB code used to simulate the model developed in

Chapter 2.



Chapter 2

Finite Volume Model of

Thermoelectric Module

2.1 Introduction

Thermoelectric modules are energy conversion devices which can either convert heat to

electricity or operate in reverse as a heat pump. Despite relatively low efficiency, their

solid-state nature allows them to be used in applications such as harvesting waste heat

where a heat engine would be impractical.

The physics of thermoelectricity can be modeled at several levels: quantum mechan-

ical, statistical mechanical and at a macroscopic level using the transport equations

directly. Though using quantum mechanics is the only way to most accurate way to

approximate the basic material properties, from the Boltzmann equation (statistical me-

chanics) one can derive the phenomenological transport equations (see Appendix A).

The phenomenological equations are far more practical and just as accurate provided the

necessary material properties are known from experiment.

Equivalent circuit models are often used to model heat conduction, and the basis of

both electrical and thermal circuits is a mathematical discretization of their respective

13
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diffusion equations. By applying the same discretization process, it is possible to solve

the coupled thermoelectric equations with a great deal of accuracy. Once the discretized

equations are obtained, an equivalent circuit can be easily built as a visualization tool.

However, creating such a model is not straightforward due to the coupled and nonlin-

ear nature of the transport equations, and difficulties in treating flux balance at the

boundaries.

Solving the physics of thermoelectricity is a three-dimensional problem which is one-

dimensional to first approximation due to a combination of factors: (1) the geometry of

the material, (2) the regime that commercial thermoelectric modules are being operated

in and (3) the scale of the effects we are interested in. The 1-D problem can be modeled

using a variety of numerical approaches. The same numerical methods are equally valid

for the equivalent three-dimensional problem, but the one-dimensional model is easier

to code up, faster to compute, and easier to visualize using a circuit model. The finite

volume method is the chosen discretization used in this work because conceptually it is

the one that most easily deals with the flux equations found in systems of electrical and

thermal transport. It is worth noting, however, that in problems with only one dimension

there is not much difference between the various flavours of discretization, and all are in

fact just applying the fundamental theorem of calculus to a function on a domain. This

chapter presents present the discretized system and the results from the simulations.

2.2 Review of Thermoelectric Models

Many one-dimensional models exist for thermoelectric materials. The majority of these

fall under the category of circuit-based models or analytical models, both of which tend

to omit some of the physics in order to get a simpler picture. This section presents an

overview of some popular models.

Circuit models are attractive due to their simplicity and the convenience of obtaining
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quick results from circuit simulators. These models range from relatively simple lumped

equivalent circuits[7] [8] [9] to distributed circuits [10][11]. The basis of these models is

the idea of expanding on an electro-thermal analogue circuit[12] by adding nonlinear

current sources to account for the thermoelectric effect. This method, while valuable for

simplicity and visualization, requires one to make many unstated assumptions. These

assumptions are usually extreme simplifications meant for quick calculations of important

values.

Furthermore, commercial circuit simulators are, in general, inadequate in dealing with

distributed circuits of the complexity required to satisfactorily model a thermoelectric

device. This is mainly due to the difficulty of manipulating a nonlinear distributed

circuit. For instance, many programs are unable to create nonlinear dependent sources

(of voltage and temperature) or distributed circuits containing non-fixed circuit elements.

This results in the scope of some models being limited by the capabilities of commercial

software packages.

An analytical model which appears frequently in textbooks [13][14] on the subject

treats the thermoelectric material as one block with transport coefficients which are

constant throughout the material, and is used to establish an expression for the figure of

merit. The two ubiquitous equations used for this simple model are:

QH = K (TH − TL) + (αp − αn)THI −
1

2
I2R (2.1)

∆V = (αp − αn) (TH − TL) (2.2)

which states that the high side heat power is the sum of the conduction, Peltier and

Joule (1
2
I2R, where R is the electrical resistance of the thermoelectric module) terms

and the voltage is the combined Seebeck coefficient of the p-type and n-type legs times

the temperature difference. Using these equations (and the equivalent equation for heat

at the low side), it is indeed possible to calculate an approximate value for the voltage

difference or heat flux. However, there are obviously flaws with such a simple model. For
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example, the 1
2
I2R term in equation (2.1) arises from the oft-stated but rarely justified

claim that exactly half of the Joule heat flows to each end of the device.

Overall, some shortcomings of existing models may be identified as follows:

• Not allowing for transport coefficients that depend on temperature. Indeed, exper-

iments show that the three transport coefficients (the Seebeck coefficient, electrical

conductivity and thermal conductivity) are significantly temperature dependent in

the low to medium temperature range. The Seebeck coefficient especially can vary

significantly even in a relatively small temperature range[15][16], and therefore all

three coefficients, and the Seebeck coefficient in particular, should be modeled as

functions of temperature. Very rarely in the literature are models with temperature-

dependent coefficients proposed (but see [11]).

• Not including a model of the high side and low side heat sinks/heat exchangers. In

any real physical application of a thermoelectric device, there must be a heat source

and sink to transport the heat flux to and from the device. When modeling the

dynamics of the system, these will almost always have a much larger heat capacity

than the thermoelectric device itself, and will therefore play a large role in the

transient response. Some models [7] do include the high side and low side thermal

circuits, but these components are not modeled using distributed circuits or given

as much attention as the thermoelectric model.

• Most important of all is the mathematical implementation of the flux balance at

the interface between the thermoelectric material and the heat sinks, which to the

author’s knowledge has not been examined in the literature.

We propose to discretize the modeling PDEs directly, thus bypassing the need for a

circuit model. This way, all assumptions are known and the model can be easily related

back to the original physics. Furthermore, in the discretization process one can adjust

the accuracy and level of complexity of the model by choosing alternate approximations
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for the boundary conditions, the transport coefficients, and the like. While an equivalent

circuit representation for the discretized system may be possible, it would only be of

secondary importance.

2.3 The Modeling Equations and Boundary Condi-

tions

The system consists of three domains with four boundaries. The subdomains and their

equations are shown in figure 2.1.

Figure 2.1: Subdomain Equations

Subdomains I and III represent the heat source and sink, respectively, and subdomain

II represents the thermoelectric material. The time-dependent thermoelectric equations

shown in figure 2.1 can be obtained by substituting equations (1.1) and (1.2) into the

charge and heat flux conservation equations (equations (2.3) and (2.4)), shown below.

∇ · J +
∂ρ

∂t
= 0 (2.3)

∇ · q + ρCv
∂T

∂t
= Q̇ = E · J (2.4)

The thermal boundary conditions are:

• A: A heat flux q0 is imposed (−k ∂T
∂x

= q0)
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• B: The heat is continuous across the interface (flux balance); A current J0 is imposed

(J = J0)

• C: The heat is continuous across the interface (flux balance);, A voltage V0 is

imposed (V = 0)

• D: A temperature Tamb is imposed (T = Tamb)

It is assumed that k, ρCv, ε and σ are constant within each subdomain; they can (and

will) differ between domains due to material differences. In subdomain II, α = α(T ) is

a function of temperature, as the voltage gradient created by the Seebeck coefficient is

the quantity we are most interested in. Assuming that k, ρCv, etc are constant simplifies

the development of the equations somewhat. That said, should the model be needed in

a regime where these quantities depend on either temperature or electric field then the

methods presented for α(T ) would generalize directly.

2.4 The Finite Volume Method

In the finite volume method, each domain is divided into intervals (or meshes), each one

of length ∆x, centered about xi with endpoints xi−1/2 and xi+1/2. Functions of x such

as temperature T (x, t) are then averaged over the ith interval to become T i (t) using a

differencing scheme, such as the one in equation (2.5). Similarly, Tx (x, t) is approximated

by Tx (xi, t) as in equation (2.6), and so forth. As long as the intervals have the same

length, ∆x, this approximation is second-order accurate for functions that have bounded

second derivatives in space. The discretization scheme used on the bulk in this work is

shown for T below:

T i (t) :=
1

∆x

∫ xi+1/2

xi−1/2

T (x, t) dx (2.5)

1

∆x

∫ xi+1/2

xi−1/2

∂T

∂x
(x, t) dx ≈

T
(
xi+1/2, t

)
− T

(
xi−1/2, t

)
∆x

≈ T i+1 (t)− T i−1 (t)

2∆x
(2.6)
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1

∆x

∫ xi+1/2

xi−1/2

∂2T

∂x2
(x, t) dx ≈

∂T
∂x

(
xi+1/2, t

)
− ∂T

∂x

(
xi−1/2, t

)
∆x

(2.7)

≈
T i+1(t)−T i(t)

∆x
− T i(t)−T i−1(t)

∆x

∆x

=
T i+1 (t)− 2T i (t) + T i−1 (t)

(∆x)2

and E is handled in the same fashion.

Another approximation which must be made frequently is that the average of a

product is approximately equal to the product of the averages. It can be shown that

ΠU = ΠU +O (∆x2), or that the error is second order in ∆x.

2.5 Heat equation on subdomains I and III

This section contains the discretization of the heat equation (equation (2.8)) on the bulk

of subdomains I and III. Note that while we use k and ∆x here for the derivation for

simplicity, they are in general different between the two subdomains.

Figure 2.2: Mesh Nodes in Subdomain I and III Bulk

ρCv
∂T

∂t
=

∂

∂x

(
k
∂T

∂x

)
(2.8)

1

∆x

∫ i+1/2

i−1/2

ρCv
∂T

∂t
dx =

1

∆x

∫ i+1/2

i−1/2

∂

∂x

(
k
∂T

∂x

)
dx (2.9)

ρCv
∂Ti
∂t

=
k

∆x

[(
∂T

∂x

)
i+1/2

−
(
∂T

∂x

)
i−1/2

]
(2.10)
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ρCv
∂Ti
∂t

=
k

∆x

[(
Ti+1 − Ti

∆x

)
−
(
Ti − Ti−1

∆x

)]
(2.11)

2.6 TE Equations in subdomain II

This section contains the discretization of the thermoelectric equations (equations (2.12)

and (2.13)) on the bulk (subdomain II).

Figure 2.3: Mesh Nodes in Subdomain II Bulk

ρCv
∂T

∂t
= σE2 − σαE∂T

∂x
+

∂

∂x

[(
k + σα2T

) ∂T
∂x
− σαTE

]
(2.12)

ε
∂E

∂t
= J0 − σE + σα

∂T

∂x
(2.13)

1

∆x

∫ i+1/2

i−1/2

ρCv
∂T

∂t
dx =

1

∆x

∫ i+1/2

i−1/2

σE2 − σαE∂T
∂x

+
∂

∂x

[(
k + σα2T

) ∂T
∂x
− σαTE

]
dx

(2.14)

1

∆x

∫ i+1/2

i−1/2

ε
∂E

∂t
dx =

1

∆x

∫ i+1/2

i−1/2

J0 − σE + σα
∂T

∂x
dx (2.15)

ρCv
∂Ti
∂t

= σEi
2 − σαiEi

Ti+1/2 − Ti−1/2

∆x
+

k

∆x

[(
∂T

∂x

)
i+1/2

−
(
∂T

∂x

)
i−1/2

]
(2.16)

+
σαi

2

∆x

[(
T
∂T

∂x

)
i+1/2

−
(
T
∂T

∂x

)
i−1/2

]
− σαi

∆x

[
(TE)i+1/2 − (TE)i−1/2

]

ε
∂Ei
∂t

= J0 − σEi + σαi
Ti+1/2 − Ti−1/2

∆x
(2.17)
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ρCv
∂Ti
∂t

= σEi
2 − σαiEi

Ti+1 − Ti−1

2∆x
+

k

∆x

[
Ti+1 − 2Ti + Ti−1

∆x

]
(2.18)

+
σαi

2

∆x

[
Ti+1 + Ti

2

Ti+1 − Ti
∆x

− Ti + Ti−1

2

Ti − Ti−1

∆x

]
−σαi

∆x

[
Ti+1 + Ti

2

Ei+1 + Ei
2

− Ti + Ti−1

2

Ei + Ei−1

2

]
ε
∂Ei
∂t

= J0 − σEi + σαi
Ti+1 − Ti−1

2∆x
(2.19)

Next, for the heat equations at the outside boundary we apply the boundary condi-

tions to obtain the correct discretized equations.

2.7 Heat equation at boundary A

This section contains the discretization of the heat equation (equation (2.20)) at the

leftmost boundary of the domain.

Figure 2.4: Boundary A

ρCv
∂T

∂t
=

∂

∂x

(
k
∂T

∂x

)
(2.20)

1

∆x

∫ i+1/2

i−1/2

ρCv
∂T

∂t
dx =

1

∆x

∫ i+1/2

i−1/2

∂

∂x

(
k
∂T

∂x

)
dx (2.21)

ρCv
∂Ti
∂t

=
k

∆x

[(
∂T

∂x

)
i+1/2

−
(
∂T

∂x

)
i−1/2

]
(2.22)

At this boundary, −k ∂T
∂x

= q0, so:

ρCv
∂Ti
∂t

=
k

∆x

[(
Ti+1 − Ti

∆x

)
− q0

]
(2.23)
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2.8 Heat equation at boundary D

This section contains the discretization of the heat equation (equation (2.24)) at the

rightmost boundary of the domain.

Figure 2.5: Boundary D

ρCv
∂T

∂t
=

∂

∂x

(
k
∂T

∂x

)
(2.24)

1

∆x

∫ i+1/2

i−1/2

ρCv
∂T

∂t
dx =

1

∆x

∫ i+1/2

i−1/2

∂

∂x

(
k
∂T

∂x

)
dx (2.25)

ρCv
∂Ti
∂t

=
k

∆x

[(
∂T

∂x

)
i+1/2

−
(
∂T

∂x

)
i−1/2

]
(2.26)

At this boundary, T = Tamb, so
(
∂T
∂x

)
i+1/2

can be approximated as:(
∂T

∂x

)
i+1/2

≈ Tamb − Ti
∆x/2

(2.27)

and thus the discretized equation is:

ρCv
∂Ti
∂t

=
k

∆x

[
Tamb − Ti

∆x/2
− Ti − Ti−1

∆x

]
(2.28)

2.9 Heat and TE equations at boundaries B and C

In order to properly discretize the equations on the inner boundaries, we must first

examine what is happening in the physical system. The paths for the electrical and

thermal fluxes are shown in figure 2.6.
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Figure 2.6: Paths for Electrical and Thermal Fluxes

The heat and electrical equations are only coupled in the thermoelectric material,

subdomain II. In a real thermoelectric device, the electrical current would enter and

leave via soldered wires while the heat flux flows through the top and bottom plates.

Subdomains I and III represent the materials in the path of the heat flux and are included

in the model because they contribute significantly to the transient response, while the

electrical domains outside of the thermoelectric material are not modeled because they

contribute very little. This presents a unique difficulty as, in the model, the boundaries

are between a system of two coupled equations and a single equation on whose domain

the electrical material properties are technically undefined. Moving forward, we must be

more careful with our approximations and more precise with our definitions.

We will only derive the equations at boundary B, since an identical procedure can

be used to find the equations at boundary C. It is also worth noting that there are

two approaches to meshing at a material boundary: one mesh element straddling the

boundary (mesh node on material boundary) or two mesh elements on either side of

the boundary (mesh boundary on material boundary). In this analysis we choose not to

straddle, since, when integrating, it is unclear how the electrical equations and coefficients

should be defined in the half of the mesh residing in subdomains I and III.

Before tackling the issue of approximating the terms in the thermoelectric equations
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at the boundary, let us examine the simpler case of the heat equation across a boundary

where the thermal resistance changes.

Figure 2.7: Heat Flux Across a Boundary

Let the cell on the left side be labeled i− 1 and the cell on the right be labeled i, as

shown in figure 2.7. By flux balance,

lim
x→xi−1/2−

(
k
∂T

∂x

)
= lim

x→xi−1/2 +

(
k
∂T

∂x

)
(2.29)

kl
Ti−1/2 − Ti−1

∆xl/2
= kr

Ti − Ti−1/2

∆xr/2
(2.30)

Solving for Ti−1/2, we have:

Ti−1/2 =

∆xl
kl
Ti + ∆xr

kr
Ti−1

∆xl
kl

+ ∆xr
kr

(2.31)

which indicates that this choice of Ti−1/2 satisfies flux balance. This approximation is well

known to electrical engineers as it is the one made in circuit theory for resistor dividers.

Plugging in this expression for Ti−1/2 back into the expression for the flux to the left of

right of the boundary, we arrive at:(
k
∂T

∂x

)
l

=

(
k
∂T

∂x

)
r

=
2
(
Ti − Ti−1

)
∆xl
kl

+ ∆xr
kr

(2.32)

The next question is how to approximate Ti−1/2 with the thermoelectric domain on

the right side of the boundary, since the way we approximate Ti−1/2 directly determines

how we write ∂T
∂x i−1/2

. The flux balance is now:

kI
∂T

∂x
=
(
kII + σIIα

2T
)
− σIIαTE (2.33)
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This raises the question of how to approximate the electric field at the boundary B.

Let us take a Gaussian surface at the boundary:

Figure 2.8: Gaussian Surface at boundary B

The left side, we have said, is a wire which we can approximate as having zero electric

field and a forcing current density of J0 and the right side is the thermoelectric material.

The charge conservation equation and Gauss’s law at the boundary shown in figure 2.8

is:

∇J +
∂ρ

∂t
= 0 , ∇E =

ρ

ε
(2.34)

Taking the volume integral of over the volume enclosed by the surface of both equa-

tions, we have: ∫
V

∇J dV +
∂

∂t

∫
V

ρ dV = 0 ,

∫
V

∇E dV =
1

ε

∫
V

ρ dV (2.35)∫
∂V

J dV +
∂

∂t

∫
V

ρ dV = 0 ,

∫
∂V

E dV =
1

ε

∫
V

ρ dV (2.36)

J+ − J− +
∂

∂t

∫
V

ρ dV = 0 , E+ − E− =
1

ε

∫
V

ρ dV (2.37)

We have assumed that E−, the electric field in the conductor, is vanishing and the

expressions for J+ and J− are known, so taking the derivative of the right equation and

substituting it into the left one yields:

ε
∂E+

∂t
+ σIIE

+ − σIIα∇T − J0 = 0 (2.38)

This is actually just the same equation we have been using everywhere else on the

thermoelectric domain. Thus, our system requires two additional differential equations
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on boundaries B and C which is discretized as follows (at boundary B):

ε
∂Ei−1/2

∂t
= J0 − σIIEi−1/2 + σIIαi

Ti − Ti−1/2

∆x/2
= 0 (2.39)

Now we can return to the heat flux balance at the boundary:

kI

(
∂T

∂x

)
l

= kII

(
∂T

∂x

)
r

+ σIIα
2T

(
∂T

∂x

)
r

− σIIαTE (2.40)

Note that there are two ways to discretize the σIIα
2T
(
∂T
∂x

)
r

term in the above equa-

tion, either by substituting T = Ti−1/2, resulting in a quadratic equation for Ti−1/2, or

by approximating T = Ti, resulting in a linear equation for Ti−1/2.

Depending on the choice for T at the boundary in equation (2.40), we can write:

Ti−1/2 − Ti−1

∆xI/2kI
=
Ti − Ti−1/2

∆xII/2kII
− σIIα2Ti

Ti − Ti−1/2

∆xII/2
− σIIαTiEi−1/2 (2.41)

or:

Ti−1/2 − Ti−1

∆xI/2kI
=
Ti − Ti−1/2

∆xII/2kII
− σIIα2Ti−1/2

Ti − Ti−1/2

∆xII/2
− σIIαTi−1/2Ei−1/2 (2.42)

The linear solution for Ti−1/2 is:

Ti−1/2 =

∆xII
kII

Ti−1 + ∆xI
kI
Ti + σIIα

2∆xI
kIkII

Ti
2 − σIIα∆xI∆xII

2kIkII
TiEi−1/2

∆xI
kI

+ ∆xII
kII

+ σIIα2∆xI
kIkII

Ti
(2.43)

and the quadratic solution is:

Ti−1/2 = −
A−

√
A2 + 16∆x2

IkIIα
2Ti + 16∆xI∆xIIσIIα2kITi−1

4∆xIσIIα2
(2.44)

where

A = 2∆xIIkI + 2∆xIkII − 2∆xIσIIα
2Ti + σIIα∆xI∆xIIEi−1/2 (2.45)

As can be seen, the solution to the quadratic equation is a very complicated expres-

sion, and for our model we choose to use the linear expression for Ti−1/2. The difference

was tested using the code and found to be negligible.
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Thus, the choice of Ti−1/2 made in equation (2.43) satisfies flux balance at the bound-

ary between the heat equation and thermoelectric subdomains. The discretized expres-

sions for ∂T
∂x

on either side of the boundary are then:(
∂T

∂x

)
l

=
Ti−1/2 − Ti−1

∆xl/2
(2.46)

(
∂T

∂x

)
r

=
Ti − Ti−1/2

∆xr/2
(2.47)

where Ti−1/2 takes the value in equation (2.43). Something should be said about using

this much more complicated expression instead of ignoring the additional thermoelectric

terms and using the simple expression for (∂T/∂x)i−1/2 from the heat equation flux

balance on both sides of the boundary. Not including the exact expression derived from

flux balance means that one is effectively introducing flux at the boundary which wouldn’t

be there naturally. This effect increases with the difference in the thermal conductivity

across a boundary.

2.10 Boundary B, left side element

This section contains the discretization for the heat equation (equation (2.48)) in the

mesh element on the left side of boundary B. A similar process can be used to derive the

expression for the heat equation in the mesh element on the right side of boundary C.
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Figure 2.9: Boundary B (Left)

ρCv
∂T

∂t
=

∂

∂x

(
k
∂T

∂x

)
(2.48)

1

∆xI

∫ i+1/2

i−1/2

ρCv
∂T

∂t
dx =

1

∆xI

∫ i+1/2

i−1/2

∂

∂x

(
k
∂T

∂x

)
dx (2.49)

(ρCv)I
∂Ti
∂t

=
k

∆xI

[(
∂T

∂x

)
i+1/2

−
(
∂T

∂x

)
i−1/2

]
(2.50)

Now it is straightforward to write an expression at i + 1/2 using the expressions

derived for previously:

(ρCv)I
∂Ti
∂t

=
1

∆xI


∆xII
kII

TI+
∆xI
kI

Ti+1+
σIIα

2∆xI
kIkII

Ti+1
2−σIIα∆xI∆xII

2kIkII
Ti+1 Ei+1/2

∆xI
kI

+
∆xII
kII

+
σIIα

2∆xI
kIkII

Ti+1

− Ti

∆xI/2kI
− Ti − Ti−1

∆xI/kI


(2.51)
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2.11 Boundary B, right side element

Figure 2.10: Boundary B (Right)

The derivations for the thermoelectric equations at the leftmost and rightmost elements

in subdomain II begin exactly like equations (2.12) to (2.17), except now the value for

Ei−1/2 is simply Ei−1/2 since we have chosen to add an additional equation for it, and

the values solved for previously for Ti−1/2 and
(
∂T
∂x

)
i−1/2

can now be used where they are

required. The resulting expressions are extremely long if displayed in full and can be

easily written from equations (2.16), (2.17), (2.43) and (2.47) so we will omit them here.

2.12 Initial Conditions

For a best guess at the solution, we turn to the heat and current equations without

the additional thermoelectric terms. If T1 is the temperature at the first mesh (the one

closest to boundary A), TNhigh is the temperature at the left side of B, TNhigh+N is the

temperature at the right side of C, TNhigh+N+Nlow is the temperature at D, EB and EC

are the electric fields at B and C respectively and E1 through EN are the electric fields

on the mesh nodes, then:

Ti = Tamb+q0

(
Nhigh +N +Nlow − i+

1

2

)
∆xIII
kIII

for Nhigh+N+1 ≤ i ≤ Nhigh+N+Nlow

(2.52)
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Ti = TNhigh+N+1+q0

(
∆xII
2kII

+
∆xIII
2kIII

)
+q0 (Nhigh +N − i) ∆xII

kII
for Nhigh+1 ≤ i ≤ Nhigh+N

(2.53)

Ti = TNhigh+1 + q0

(
∆xII
2kII

+
∆xI
2kI

)
+ q0 (Nhigh − i)

∆xI
kI

for 1 ≤ i ≤ Nhigh (2.54)

EB = EC = Ei =
J0

σII
for 1 ≤ i ≤ N (2.55)

Note that the final approximation, for E, is poor when J0 is small , since when the

forced current is low most of the electric field will be from the thermoelectric terms which

are omitted in (2.55).

2.13 Derivation of Equivalent Circuit

The first step in developing an equivalent circuit model is to convert the conductivities

and other material properties in the equations into circuit quantities, such as resistance

and capacitance. Take the discretized TE equations in the bulk as an example:

ρCv
∂Ti
∂t

= σEi
2 − σαiEi

Ti+1 − Ti−1

2∆x
+

k

∆x

[
Ti+1 − 2Ti + Ti−1

∆x

]
(2.56)

+
σαi

2

∆x

[
Ti+1 + Ti

2

Ti+1 − Ti
∆x

− Ti + Ti−1

2

Ti − Ti−1

∆x

]
−σαi

∆x

[
Ti+1 + Ti

2

Ei+1 + Ei
2

− Ti + Ti−1

2

Ei + Ei−1

2

]

ε
∂Ei
∂t

= J0 − σEi + σαi
Ti+1 − Ti−1

2∆x
(2.57)

First, the electric field must be written in terms of voltage. To do this, we make use

of the following definition:

W (x, t) = E∆x (2.58)

in order to introduce W , a quantity of convenience which is the voltage difference across

the element. This ∆x represents the same ∆x as the others in the two equations since

the electric field being discussed is measured across the mesh element. The equations
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become:

ρCv
∂Ti
∂t

=
σWi

2

∆x2
− σαi

Wi

∆x

Ti+1 − Ti−1

2∆x
+

k

∆x

[
Ti+1 − 2Ti + Ti−1

∆x

]
(2.59)

+
σαi

2

∆x

[
Ti+1 + Ti

2

Ti+1 − Ti
∆x

− Ti + Ti−1

2

Ti − Ti−1

∆x

]
−σαi

∆x

[
Ti+1 + Ti

2

Wi+1 +Wi

2∆x
− Ti + Ti−1

2

Wi +Wi−1

2∆x

]
ε

∆x

∂Wi

∂t
= J0 −

σWi

∆x
+ σαi

Ti+1 − Ti−1

2∆x
(2.60)

Now multiply the temperature equation by A∆x and multiply the voltage equation

by A to obtain:

Cth
∂Ti
∂t

=
Wi

2

∆Re

− αi
Wi

∆Re

Ti+1 − Ti−1

2
+ (2.61)

1

∆Rth

(
Ti+1 − 2Ti + Ti−1

)
+

αi
2

2∆Re

(
Ti+1

2 − 2Ti
2

+ Ti−1
2
)

− αi
4∆Re

[(
Ti+1 + Ti

) (
Wi+1 +Wi

)
−
(
Ti + Ti−1

) (
Wi +Wi−1

)]

Ce
∂Wi

∂t
= I0 −

Wi

∆Re

+ αi
Ti+1 − Ti−1

2∆Re

(2.62)

where the following substitutions have been made:

Cth = A∆xρCv (2.63)

∆Rth =
∆x

kA
(2.64)

∆Re =
∆x

σA
(2.65)

Ce =
Aε

∆x
(2.66)

I0 = AJ0 (2.67)
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The terms in the equations can be thought of as currents into a node. The diffusive

flux and capacitive terms become resistors and capacitors, respectively, and any terms

which cannot be represented by a passive circuit element can be represented by nonlinear

controlled current sources. The result is two coupled distributed circuits, one for the

electrical equation and one for the thermal equation. The simpler electrical circuit is

shown in figure 2.11:

Figure 2.11: Equivalent Circuit Element (Electrical)

For the thermal circuit, one can lump all of the nonlinear thermoelectric terms into a

single current source going into the node, as shown in figure 2.12, or alternatively one can

separate the volume sources from the flux terms in the integral formulation, as shown in

figure 2.13. These two methods are mathematically equivalent in that the node equations

written out in either case will be identical. The first option is slightly easier to implement

since all of the terms are in a single current source while the second is more physically

intuitive.
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Figure 2.12: Equivalent Circuit Element (Thermal)

Figure 2.13: Equivalent Circuit Element (Thermal, Alternative)

As mentioned previously, a circuit model can be used as a quick and accurate tool for

simulating systems of equations given that the circuit is an exact representation of the

underlying equations. However, while it is possible for our equivalent circuit model to be

created in a commercial circuit simulator, it is more practical to numerically solve the

system of ODEs directly. This is due to the difficulty of circuit simulators to simulate

current sources which are arbitrary functions of values measured elsewhere in the circuit.

Another restriction stemming from circuit software is its inability to model distributed

networks consisting of non-standard elements (i.e. more than just an RC network). The

circuit model developed in this chapter, being relatively simple, is generally more useful
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as a conceptualization/visualization tool.

2.14 Scaling

Since the thermoelectric model was developed for a single piece of thermoelectric material,

it is important to discuss how it would scale when the materials are arranged as a PN

thermocouple, and furthermore with M thermocouples electrically in series and thermally

in parallel, as is the case in commercial thermoelectric modules. First, it is possible to use

the one-dimensional model to solve for a PN couple by replacing the transport parameters

with their combined values (i.e. α = αp−αn, 1/σ = 1/σp+1σn, k = kp+kn, etc.). This is

done because in such a configuration, the total length is altered for the electrical equation

while the area is altered for the thermal equation and so it doesn’t make sense to alter the

subdomain lengths of the two equations separately. This type of approximation makes

the assumption that the transport coefficients in the P and N legs of the thermocouple

are nearly equal so that the problem can still be treated as one-dimensional.

The approach for two elements can be generalized to the case with M elements. For

the electrical equation, since M elements are now in series, the total length is multiplied

by M while the cross-sectional area stays the same. For the thermal circuit, the total

cross-sectional area is multiplied by M while the length stays constant. This has the

effect of setting 1/σtot = M/σ, ktot = Mk and αtot = Mα, etc.

In applications where scaling needs to occur, it is probably easiest to use resistances

and capacitances instead of conductivities. Using resistances, the physical area and length

are lumped into one term and so all one needs to worry about is that the total resistance

is modified by M and the resistance of each discretized element is the total resistance

divided by M .
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2.15 Simulation

The finite volume model was tested using Matlab’s ODE solver. A slightly modified

version of the equations was used in the code (See Appendix F for Matlab code) due to

the fact that thermal and electrical resistances (R) and capacitances (C) were measured

instead of conductivities (k, σ) and capacities (Cv, ε), which were used in the original

discretization. As an example, the equations used to represent the bulk in the MATLAB

code are identical to equations (2.61) and (2.62).

Matlab’s ode23 ODE solver (one of Matlab’s implementations of an explicit Runge-

Kutta method) was used to solve the system of ODE’s. The material properties used in

the code were measured using the experimental apparatus and heat capacity calculations

were made based on weight. The Seebeck coefficient, α, is implemented in the code as

a third-order Lagrange polynomial approximation with constant values above and below

the highest and lowest measured temperature. Figure 2.14 shows a comparison between

the measured and simulated results starting at room temperature with an input power

of 20 Watts. In this case the initial conditions were room temperature and zero voltage

at each node in the system. The two simulated curves are for the finite volume model

developed in this chapter, as well as for a simple model based on equations 2.1 and 2.1

with a simplified linear model for each subdomain.
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Figure 2.14: Open Circuit Voltage vs. Time

Good agreement during the transient and steady state are seen between all three

curves. Since most of the time-dependent behavior of the experimental system is due

to the heat capacity of the heat sinks, the simple model predicts the transient behavior

of the system well. However, since the simple model uses a constant value for alpha,

it will produce steady-state errors for voltage unless the value for α which happens to

produce the correct result is used. The following table shows the steady state voltage

and computation times for the finite volume model for different mesh refinements:
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Meshes Computation Time (s) V

Simple (3) 0.3 1.02

6 35.5 0.9667

12 42.2 0.9769

18 42.9 0.9805

24 46.1 0.9823

30 49.3 0.9834

60 74.6 0.9854

62 84.3 0.9854

For an overview of the experimental apparatus, refer to Appendix E and for the

Matlab code, refer to Appendix F.

2.16 Summary

In this chapter, a finite volume model for a thermoelectric device was developed. Various

existing models were evaluated and it was found that some were too simple and lacked

important facets, such as time dependence and variable transport coefficients. In order to

address these issues, a more thorough and mathematically rigorous approach was taken.

The problem was restricted to one spatial dimension due to the symmetries present

in most applications involving thermoelectric materials and discretized using a centre-

differencing finite volume method. The domain was divided into three subdomains: the

high side heat exchanger, the thermoelectric material and the low side heat exchanger.

The discretization process was carried out for the corresponding equations on each of

these subdomains: the heat exchanger subdomains contained the heat equation and

the thermoelectric subdomains contained the coupled thermoelectric PDE’s. Particular

attention was paid to the internal boundaries, on which flux balance was applied to

obtain the correct expressions for the boundary temperatures and voltages. Acceptable
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approximations for the initial conditions for the system were chosen based on the ordinary

heat and current equations. Using a thermal-electrical circuit analogy, an equivalent

distributed circuit element was created of the non-boundary elements as a visualization

tool. However, actually creating the model in many commercial circuit simulators is

difficult due to their restrictions in creating dependent sources. Finally, a method to

scale the model to multiple thermocouples was discussed.

Using Matlab, transient results from the model were compared to experimentally

measured results and good agreement was observed.
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Case Study: Thermoelectric Heat

Sink Design

3.1 Introduction

Power devices must be cooled in order to avoid damaging the semiconductor junction

and risking device failure. The standard thermal management technique for high power

devices involves a heat sink and some form of active cooling, which may be either air

or liquid-based. In this chapter we investigate whether a thermoelectric device can be

incorporated into a cooling system to keep the device cooled to specification while still

generating power from waste heat. One possible application for such a device is in systems

with high voltages where there are cost incentives against bringing in external voltages

to power cooling systems and a self-contained cooling unit would be desirable.

To do this, we attempt to optimize the geometry of the heat sink to deliver maximum

heat flux to a thermoelectric module while keeping the junction temperature of the power

device below its maximum rated temperature. Furthermore, we explore the possibility

of the power generated by the TE module being used to power a cooling fan, in order

to have a completely self-contained cooling unit. The finite element simulation package

39
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COMSOL is used extensively in the design process to optimize the geometry and validate

our designs. We perform both static and transient heat transfer simulations to examine

the steady state and start-up behavior of the system.

3.2 Design Constraints

Essentially the goal is to remove sufficient heat from the device so that it does not

overheat, while retaining the largest temperature at the hot side of the TE module to

generate power. There are two broad categories in terms of geometrical configurations:

the thermoelectric module can either be thermally in series or in parallel with the main

heat sink. Furthermore, flow conditions considered for the chosen geometry must in-

clude both forced convection for the steady state and natural convection for the start-up

transient. The following constraints are required:

• Constraint 1: Maximum junction temperature of 125 C

• Constraint 2: Create the largest possible temperature difference across thermoelec-

tric module given constraint 1

• Constraint 3: Thermal contact can only be made on one side of the device (usually

the case for power devices)

3.3 Thermal Circuit

A thermally series configuration, as show in figure 3.1, is not feasible simply because,

while it would provide the largest temperature difference across the thermoelectric mod-

ule, the thermal resistance of the TE module is so large that efficient heat removal is

impossible, even with forced convection.
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Figure 3.1: Thermally Series Configuration

This leaves a parallel configuration as the only alternative. Regardless of the exact

geometry, the general simplified DC thermal circuit for any parallel configuration will

have the same structure in steady state and is shown in figure 3.2.

Figure 3.2: Simplified DC Thermal Circuit

In this DC thermal circuit, Rte, the thermoelectric module’s thermal resistance, can

be assumed to be much larger than the combined thermal resistance of the other branch,

so that very little heat passes through the thermoelectric branch. Rhs depends on the

geometry and heat sink material, while Rhs−air depends on the surface area of the fins

and air speed in the forced convection case. We also assume that we have no control

over Rte, since the surface area available for the TE module will necessarily be on the
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order of the size of the device. With these assumptions, the original design constraints

amount to a maximization of the high side temperature up to Tjunct by increasing Rhs1

and Rhs−air1 while minimizing the heat sink resistances in the top branch so that as much

of the temperature difference as possible appears across Rte. We propose one possible

configuration, shown in figure 3.3, which allows us to modify these parameters.

Figure 3.3: Thermally Parallel Configuration

In the proposed configuration, the TE module is placed at the hottest point of the

heat sink, so that as long as constraint 1 is met, constraint 2 is also met. Rhs−air can be

modified by changing the number of fins in the main heat sink and the thermoelectric

heat sink, and Rhs1 and Rhs2 can be changed by altering the dimensions of the main heat

sink.

3.4 FEM Simulation

Ultimately, the goal of designing this type of combined thermoelectric heat sink is to

have the cooling fan powered by the thermoelectric module. In order to test the viability
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of doing so, we have created a case study of the geometry in figure 3.3 for a hypothetical

power electronics device based on the MBN1500E33 from Hitachi, a power IGBT with 2

kW of power dissipation.

Figure 3.4: Boundary Conditions, Forced Convection

In the simulation, the device is a volumetric heat source producing 2000 W and the
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thermoelectric module has the same length and width as the device, with a thickness of

3.4 mm (roughly the thickness of a commercial Peltier cooler). In accordance with the

assumption that heat can only be removed from one side of the device, the top surface

has a thermal insulation boundary condition. Figure 3.4 shows the boundary conditions

for the steady-state forced convection simulations. The device is immersed in a box

of air in which represents open space. The heat equation is solved on the solid and

coupled to the incompressible Navier-Stokes equations on the fluid domain via continuity

for heat and the no-slip condition for fluid flow. The no-slip boundary condition on

walls is a common approximation made in computational fluid dynamics for low and

intermediate velocities, and greatly simplifies the computation as long as the fins are not

close enough together that boundary overlap effects occur. The inlet boundary conditions

are constant temperature and velocity profile and the outlet boundary conditions are

constant pressure and heat outflow. The heat outflow condition in COMSOL is identical

to thermal insulation and states that the only heat transfer is by convection. The side

walls of the fluid domain also have the thermal insulation condition and no-slip walls

which, for a large enough box approximates a large open domain.

Figures 3.5 to 3.9 show the results of the forced convection simulations.

Figure 3.5: Surface Temperature, Forced Convection
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Figure 3.6: Cross Sectional Temperature, Forced Convection (Temperatures in Kelvin)

The rectangular outline in figure 3.6 represents the position of the device, and the

point denotes the axis along which figure 3.7, the temperature profile, is plotted. The

orientation of the in figure 3.6 is the same as in figure 3.4. In figure 3.7, the temperature

profile goes linearly from x = 0 mm, the top of the IGBT to x = 16 mm, the tip of the

thermoelectric heat sink’s fins.
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Figure 3.7: Temperature Profile, Forced Convection

With an inlet velocity of 2 m/s, we see a drop of approximately 60◦ C across the

thermoelectric module in steady state, quite good considering the highest temperature

in the system is just under 125 degrees. Integrating the heat flux into the TE module

results in a value of 250 W. Assuming an average efficiency of 4% for the thermoelectric

module, around 10 W of power will be recovered.

Integrating the pressure drop over the inlet and multiplying by the inlet velocity,

we calculate the fan power required to cool the heat sink to be about 5 W. In theory

then, it appears that by using an optimized geometry and with an efficient thermoelectric

material, using the recovered heat to power the cooling fan in closed loop is possible, at

least in steady state. A trade-off can be made between output power and fan speed (and

hence, device temperature) since increasing fan speed lowers the average temperature

of the system. Figures 3.8 and 3.9 show the total heat flux through the thermoelectric

module and temperature, respectively, as functions of fan speed.
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Figure 3.8: Heat Flux vs. Fan Speed

Figure 3.9: Device Temperature vs. Fan Speed

The heat flux-vs.-fan speed (Figure 3.8) and device temperature-vs.-fan speed (Figure

3.9) are extrapolated below 1 m/s due to the fact that the forced convection model does
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not take into account natural convection. At low fan speeds the steady-state solution

approaches a situation where temperature is uniform and no heat flows through either

branch, which is unrealistic. If the fan power-vs.-fan speed characteristic is known, then

the intersection between the fan power-vs.-fan speed and power generated-vs.-fan speed

curves denotes the steady state operating point of the system without any control, as

shown in figure 3.10.

Figure 3.10: Operating Point

The locuses of maximum thermoelectric power represent the peak power points (refer

to Figure ??) as functions of input heat and fan speed, with reference to Figure 3.8, since

the peak power generated will be a fixed percentage of the total heat flux through the

thermoelectric leg of the geometry. The point shown in figure 3.10 is the operating point

with the least available power output. Therefore, any operating point to the left of the
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steady-state operating point along the fan power curve is possible with the appropriate

control system, trading power output for device temperature while generating excess

power. A block diagram of one possible implementation of a control system is shown in

figure 3.11.

Figure 3.11: Example Control System

The components of the control system in figure 3.11 are:

• Plant: The plant includes the heat sinks and thermoelectric module, which may be

obtained using the appropriate model, for instance the one developed in this paper.

• Maximum power point tracker (MPPT): A controller which measures the input

voltage and current and alters the duty cycle of a dc/dc converter to maintain the

instantaneous power V I at a maximum. This ensures that the power being output

by the TE module remains on the locus of peak power points.

• Voltage Regulator and Bus: Creates a constant voltage bus to power the fan and
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to distribute excess power if the fan is not taking 100% of the power generated.

• Fan Controller: Measures fan current and speed in order to regulate fan speed. The

fan speed command can be (1) set based on the difference between the measured

thermoelectric power and a reference power, (2) set at a constant value or (3) be

allowed to reach the steady state operating point. The fan controller then sends

the PWM signals to the inverter which powers the fan.

• Fan: A synchronous motor which cools the device and heat sinks.

The final thing to consider is the start-up behaviour of such a coupled system. Since

we have already designed for the system to have the maximum allowed junction temper-

ature in order to recover the largest amount of energy, having the system start in natural

convection will shoot Tjunct past 125 degrees C. Assuming the fan gets enough power to

turn on at exactly 125 degrees, it is of interest to simulate exactly how much higher the

temperature rises and for how long. For this purpose we designed another simulation with

natural convection conditions, ran that simulation until Tjunct reached 125 degrees, and

used the state at that point as the initial conditions for a forced convection simulation.

The result is shown in figure 3.12.
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Figure 3.12: Temperature Overshoot

The results of the simulation show that for our test case, the temperature overshoot is

on the order of a few degrees over a time scale of tens of seconds. The percent overshoot

would depend on the geometry of the heat sink and the amount of heat being generated

by the device, but these results show any transient temperature rise during start-up is

limited in both magnitude and duration.

3.5 Summary

The steady state and transient behavior of the sample design was investigated, and it was

found that a steady state solution where a fan was being driven by power generated from

waste heat was theoretically possible, and that the temperature overshoot associated

with startup was relatively minor. A possible control structure for the system was also

considered.
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Conclusion

Thermoelectricity is a promising method of harvesting low-grade waste heat in appli-

cations where traditional methods are impractical. Applications of thermoelectric gen-

erators are generally limited by their low efficiency, which is improving as new materi-

als and structures are discovered. In this work, a finite volume based one dimensional

model of thermoelectric generators was made. The model is time-dependent and includes

temperature-dependent coefficients as well as the high side and low side heat sinks. The

model, simulated using Matlab, was shown to accurately reproduce experimental mea-

surements of the open circuit voltage of a commercial module.

Separately, in order to investigate whether a thermoelectric module can be integrated

into a cooling system for a power semiconductor, a heat-sink/thermoelectric generator

assembly was designed and simulated in COMSOL. It was found that, given high enough

power, the thermoelectric generator was able to harvest enough heat to power a cooling

fan and still keep the junction temperature below the maximum rated junction temper-

ature. Furthermore, it was found that the temperature overshoot in the system during

fan startup is fairly insignificant.

52
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4.1 Contributions

The main contribution from this work is a new finite volume model of thermoelectric

devices based on the physics of the thermoelectric effect. Though for a one-dimensional

model the various discretization schemes are closely related, the finite volume method was

used because it is more intuitive from a physical perspective. This model can be used to

very exactly predict the transient and steady-state behaviour of a complete thermoelectric

system including heat sinks, given the material properties are known. Furthermore, the

equivalent circuit representation of the model was developed for visualization purposes.

4.2 Future Work

Directions for further research along the same lines include possible ways to expand the

finite volume model, perhaps into higher dimensions or to include more phenomena such

as contact resistance. Also, it would be interesting to perform an experimental verification

of the theoretical results in Chapter 4 in order to see how accurate the results of the heat

transfer simulations are.



Appendix A

Derivation of the Transport

Equations

A.1 Carrier Transport in Solids

The function f (t, ~r, ~p) is defined as the distribution function in one particle phase space;

it is the probability density of systems having generalized position and momentum coor-

dinates (~r, ~p). Thus, f (t, ~r, ~p) d3rd3p is the number of systems within the volume d3rd3p

in phase space. The time evolution of f (t, ~r, ~p) is governed by the Boltzmann equa-

tion which is based on the continuity of the distribution function in phase space, with

interactions between particles lumped into a collision term:

∂f

∂t
+
∂~r

∂t
· ∇rf +

∂~p

∂t
· ∇pf =

(
∂f

∂t

)
coll

(A.1)

where

∂~r

∂t
=
∂x

∂t
x̂+

∂y

∂t
ŷ +

∂z

∂t
ẑ (A.2)

∇p =
∂

∂px
p̂x +

∂

∂py
p̂y +

∂

∂py
p̂z (A.3)

54



Appendix A. Derivation of the Transport Equations 55

and(
∂f

∂t

)
coll

=
∑
~p′

S
(
~p, ~p′

)
f (~p)

[
1− f

(
~p′
)]
−
∑
~p′

S
(
~p′, ~p

)
f
(
~p′
)

[1− f (~p)] (A.4)

is the sum of the collision probabilities into and out of state ~p. In equation (A.4), S
(
~p, ~p′

)
is the transition probability from ~p to ~p′, f (~p) is the probability that state ~p is occupied

and
[
1− f

(
~p′
)]

is the probability that state ~p′ is unoccupied. Several approximations

can be made at this point to allow an analytic solution. The first and most drastic is the

relaxation time approximation, which states that:(
∂f

∂t

)
coll

≈ −f − f0

τ
(A.5)

Where τ is the relaxation time and f0 is the equilibrium or unperturbed distribution

function. This approximation is a simplification of scattering, which allows the per-

turbed and unperturbed functions to be related. The relaxation time approximation is

widely used because it makes the Boltzmann equation much easier to solve compared

to attempting a full quantum mechanical treatment. However, the relaxation time ap-

proximation may only be applied when certain very stringent criteria are met. In order

for the scattering rates to be encapsulated in the relaxation time, (1) τ is assumed not

to be a function of energy and (2) the energy gained or lost by electrons in non-elastic

collisions must be small compared to the electron’s original energy. Under the relaxation

time approximation, equation (A.1) can be rewritten as:

∂f

∂t
+ ~v · ∇rf +

~F

m
· ∇vf = −f − f0

τ
(A.6)

where ~v = ∂~r/∂t = ~p/m and F = ∂~p/∂t (m is the effective mass of the particle).

Equation (A.6) can be further rewritten in terms of f0 and the difference between f and

f0:

∂ (f − f0)

∂t
+
∂f0

∂t
+~v ·∇rf0 +~v ·∇r (f − f0)+

~F

m
·∇vf0 +

~F

m
·∇v (f − f0) = −f − f0

τ
(A.7)

At this point some further approximations can be made in order to linearize the

Boltzmann equation:
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1. The deviation of the distribution function from equilibrium is small, i.e. |f − f0| �

f0

2. The gradient of f − f0 is small compared to the gradient of f0

3. Changes in the external fields happen much slower than τ (transient terms are

negligible)

Using these approximations, many of the terms in the previous equation can be ne-

glected and f can be written as:

f = f0 − τ

(
~v · ∇rf0 +

~F

m
· ∇vf0

)
(A.8)

This approximation process takes into account only the first order expansion of f

(where f0 is the zeroth order term) and neglects any higher order terms. Using this

expression it is now possible to derive analytical expressions for the flux of charge and

heat.

Now the distribution function f is known, a particle in a particular state with wavevec-

tor ~k carries a charge flux Je and Jq and heat flux equal to:

Je = qv
(
~k
)
D
(
E,~k

)
f (A.9)

Jq = Ev
(
~k
)
D
(
E,~k

)
f (A.10)

where q is the particle’s charge, v is the particle’s group velocity, and D (E) is the

differential density of states, defined as the density of states g (E) per solid angle Ω. In

isotropic media, the differential density of states does not depend on angular direction

and is equal to g (E) /4π, or the density of states divided by the solid angle of a sphere.

For convenience, only the one-dimensional gradients in the x-direction will be consid-

ered. θ is defined as the angle between ~k and the x-axis and φ is defined as the angle

between the projection of ~k onto the y-z plane and the y-axis. Using this geometry, the
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x-component of the velocity can be written simply as vx = v cos θ and the differential

solid angle as dΩ = sin θdθdφ.

A.2 Solution to the Linearized Boltzmann Equation

under the Relaxation Time Approximation

In semiconductors, the equilibrium distribution function for electrons and holes is known

to be the Fermi-Dirac distribution:

f0 = f (E,Ef , t) =
1

exp
E−Ef
kT

+ 1
(A.11)

where both E and EF are measured from the bottom of the conduction band for electrons

and from the top of the valence band for holes.

For thermoelectric phenomena, the semiconductor is under both an electric field and

a temperature gradient simultaneously. This implies that both the Fermi level and tem-

perature are functions of position. Therefore, f can be written as:

f = f0 − τ
(
vx
∂f0

∂x
− eE
m

∂f0

∂vx

)
(A.12)

= f0 − τ
(
vx
∂f0

∂EF

∂EF
∂x

+ vx
∂f0

∂T

∂T

∂x
− eE
m

∂f0

∂E

∂E

∂vx

)
= f0 − τ

(
vx
∂f0

∂EF

∂EF
∂x

+ vx
E − EF

T

∂f0

∂E

∂T

∂x
− eE ∂f0

∂E
vx

)
(A.13)

= f0 − τvx
(
−∂f0

∂E

∂EF
∂x
− E − EF

T

∂f0

∂E

∂T

∂x
− eE ∂f0

∂E

)
= f0 − τvx

∂f0

∂E

(
∂EF
∂x

+
E − EF

T

∂T

∂x
+ eE

)
= f0 − τvx

∂f0

∂E

(
−e∂Φ

∂x
+
E − EF

T

∂T

∂x

)
where the following relations have been used: ~F = −eE , ∂E/∂vx = mvx, ∂f0/∂EF =

−∂f0/∂E (a mathematical consequence of f0 being the Fermi distribution) and−∂Φ/∂x =

1
e
∂EF/∂x + E (Φ is the electrochemical potential). Also, in this case only electrons are
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considered, though the derivation is equally valid for holes after making the appropriate

sign change for q.

The total electrical current in the x-direction can be written as an integral over energy

and solid angle of the individual carrier flux defined in equation (A.9), where each electron

carries a charge of −e:

Je (x) =
1

4π

∮ (∫ ∞
0

qvxg (E) f dE

)
dΩ (A.14)

= − e

4π

∮ (∫ ∞
0

vxg (E) f dE

)
dΩ

= − e

4π

∫ 2π

0

∫ π

0

(∫ ∞
0

vxg (E) f dE

)
sin θdθdφ

= − e

4π

∫ 2π

0

∫ π

0

(∫ ∞
0

vxg (E)

[
f0 − τvx

∂f0

∂E

(
−e∂Φ

∂x
+
E − EF

T

∂T

∂x

)]
dE

)
sin θdθdφ

f0 naturally drops out of the integration at this point because it is the equilibrium

distribution, and therefore represents equal amounts of energy going in both the positive

and negative direction. vx = v cos θ can also be used here to further write:

Je (x) = −e
2

∫ π

0

(∫ ∞
0

v2 cos2 θg (E) τ
∂f0

∂E

(
−e∂Φ

∂x
+
E − EF

T

∂T

∂x

)
dE

)
sin θdθ (A.15)

= −e
3

∫ ∞
0

v2g (E) τ
∂f0

∂E

(
−e∂Φ

∂x
+
E − EF

T

∂T

∂x

)
dE

(note that
∫

cos2 θ sin θdθ = −1
3

cos3 θ)

Je (x) = −
[
−e

2

3

∫ ∞
0

v2g (E) τ
∂f0

∂E
dE

]
∂Φ

∂x
−
[
e

3T

∫ ∞
0

v2 (E − EF ) g (E) τ
∂f0

∂E
dE

]
∂T

∂x

(A.16)

Similarly, for the heat flux, each electron in the conduction band carries energy equal
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to (E − EF ) so the total thermal current is:

Jq (x) =
1

4π

∮ (∫ ∞
0

(E − EF ) vxg (E) f dE

)
dΩ (A.17)

=
1

4π

∫ 2pi

0

∫ p

0

i

[∫ ∞
0

(E − EF ) vxg (E) fdE

]
sin θdθdφ

=
1

2

∫ π

0

[∫ ∞
0

(E − EF ) vxg (E) fdE

]
sin θdθ

=
1

2

∫ π

0

[∫ ∞
0

(E − EF ) v2
xg (E) τ

∂f0

∂E

(
−e∂Φ

∂x
+
E − EF

T

∂T

∂x

)
dE

]
sin θdθ

=
1

2

∫ π

0

[∫ ∞
0

(E − EF ) v2 cos2 θg (E) τ
∂f0

∂E

(
−e∂Φ

∂x
+
E − EF

T

∂T

∂x

)
dE

]
sin θdθ

=
1

3

∫ ∞
0

(E − EF ) v2g (E) τ
∂f0

∂E

(
−e∂Φ

∂x
+
E − EF

T

∂T

∂x

)
dE

= −
[
e

3

∫ ∞
0

(E − EF ) v2g (E) τ
∂f0

∂E
dE

]
∂Φ

∂x

−
[
− 1

3T

∫ ∞
0

(E − EF )2 v2g (E) τ
∂f0

∂E
dE

]
∂T

∂x

Now that both the equation for the current and heat flux have been derived, it is

possible to determine the expressions for the macroscopic transport coefficients. Setting

the current Jq to 0 in equation (A.17) and taking the ratio of the electric field and the

temperature gradient gives us the expression for the Seebeck coefficient, defined as α:

α = −
∂Φ
∂x
∂T
∂x

= − 1

eT

∫∞
0

(E − EF ) v2g (E) τ ∂f0

∂E
dE∫∞

0
v2g (E) τ ∂f0

∂E
dE

(A.18)

This expression for the Seebeck coefficient can be thought of as the average energy

carried per electron divided by the electrical conductivity at each energy level, effectively

making the Seebeck coefficient a measure of the average heat flux per electron.

Similarly, setting the temperature gradient equal to zero yields the definition of the

electrical conductivity σ:

σ = −e
2

3

∫ ∞
0

v2g (E) τ
∂f0

∂E
dE (A.19)

Eliminating ∂Φ/∂x, Jq (x) can be put into its most commonly encountered form in
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terms of Je (x) and ∂T/∂x:

Jq (x) = −1

e

∫∞
0

(E − EF ) v2g (E) τ ∂f0

∂E
dE∫∞

0
v2g (E) τ ∂f0

∂E
dE

Je (x) (A.20)

− 1

3T

[(∫∞
0

(E − EF ) v2g (E) τ ∂f0

∂E
dE
)2∫∞

0
v2g (E) τ ∂f0

∂E
dE

−
∫ ∞

0

(E − EF )2 v2g (E) τ
∂f0

∂E
dE

]
∂T

∂x

The expression in front of Je (x) is defined as the Peltier coefficient π:

π = −1

e

∫∞
0

(E − EF ) v2g (E) τ ∂f0

∂E
dE∫∞

0
v2g (E) τ ∂f0

∂E
dE

(A.21)

and the expression in front of ∂T/∂x is defined as the electron thermal conductivity ke:

ke =
1

3T

[(∫∞
0

(E − EF ) v2g (E) τ ∂f0

∂E
dE
)2∫∞

0
v2g (E) τ ∂f0

∂E
dE

−
∫ ∞

0

(E − EF )2 v2g (E) τ
∂f0

∂E
dE

]
(A.22)

If equation (A.22) is expanded and simplified, it can be found that all of the terms

with EF cancel and this results in the following expression for ke:

ke =
1

3T

[(∫∞
0
Ev2g (E) τ ∂f0

∂E
dE
)2∫∞

0
v2g (E) τ ∂f0

∂E
dE

−
∫ ∞

0

E2v2g (E) τ
∂f0

∂E
dE

]
(A.23)

A.3 Temperature Dependence of Transport Coeffi-

cients

The purpose of solving the Boltzmann equation for the transport coefficients is to derive

the temperature dependence of α, σ and k. For electrons and holes, which follow Fermi-

Dirac statistics, the equilibrium distribution and density of states functions are:

f0 =
1

exp E−EF
kT

+ 1
(A.24)

g (E) =
4π (2m∗)

3
2 E

1
2

h3
(A.25)

where m∗ is the effective mass and h is Planck’s constant. If the energy bands for the

material are parabolic then m∗ is not a function of E and can be removed from the
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integral. The simplest relaxation time approximation uses a power law dependence on

E:

τ = τ0E
r (A.26)

where r depends on the type of scattering that is dominant.

Substituting equations (A.24) - (A.26) into equations (A.18), (A.19) and (A.23), we

have:

α = − 1

eT

[∫∞
0
Er+5/2 ∂f0

∂E
dE∫∞

0
Er+3/2 ∂f0

∂E
dE
− EF

]
(A.27)

σ = −29/2e2π (m∗)1/2 τ0

3h3

∫ ∞
0

Er+1/2∂f0

∂E
dE (A.28)

ke = −29/2π (m∗)1/2 τ0

3Th3

[(∫∞
0
Er+5/2 ∂f0

∂E
dE
)2∫∞

0
Er+3/2 ∂f0

∂E
dE

−
∫ ∞

0

Er+7/2∂f0

∂E
dE

]
(A.29)

Equations (A.27) - (A.29) all contain an integral in the form of
∫∞

0
En ∂f0

∂E
dE. This

integral can be solved through first integrating by parts:∫ ∞
0

En∂f0

∂E
dE =

(
nEn−1f0

)∞
0
− n

∫ ∞
0

En−1f0dE (A.30)

= −n
∫ ∞

0

En−1f0dE

= −n
∫ ∞

0

En−1

exp E−EF
kT

+ 1
dE

and then making the substitution x = E
kT

:

−n
∫ ∞

0

En−1

exp E−EF
kT

+ 1
dE = −n (kT )n

∫ ∞
0

xn−1

ex−η + 1
dx (A.31)

where η is the normalized Fermi energy. The integral
∫∞

0
xn−1

ex−η+1
dx can be solved with

help from polylogarithms [17]:∫ ∞
0

xn−1

ex−η + 1
dx = −Γ (n)Lin (−eη) (A.32)
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so the integral in (A.30) becomes:∫ ∞
0

En∂f0

∂E
dE = −n (kT )n Γ (n)Lin (−eη) (A.33)

Using equation (A.33), equations (A.27) - (A.29) can be rewritten as:

α = −k
e

(kT )1/2

[(
r + 5

2

)
Γ
(
r + 5

2

)
Lir+ 5

2
(−eη)(

r + 3
2

)
Γ
(
r + 3

2

)
Lir+ 3

2
(−eη)

− η

]
(A.34)

σ = −29/2e2π (m∗)1/2 τ0

3h3
(kT )r+1/2

(
r +

1

2

)
Γ

(
r +

1

2

)
Lir+ 1

2
(−eη) (A.35)

ke = −29/2π (m∗)1/2 τ0

3Th3
(kT )r+7/2


((
r + 5

2

)
Γ
(
r + 5

2

)
Lir+ 5

2
(−eη)

)2(
r + 3

2

)
Γ
(
r + 3

2

)
Lir+ 3

2
(−eη)

(A.36)

−
(
r +

7

2

)
Γ

(
r +

7

2

)
Lir+ 7

2
(−eη)

]
Thus, assuming the scattering parameter r is known, these relationships contain the

temperature dependence of the transport coefficients.

A.4 Two-Band Effects

So far the transport coefficients have only been derived with the electron being the only

carrier. The contributions made by holes (or any other type of charged carrier) to the

thermoelectric effect can be added to the transport equations by considering the partial

transport coefficients. For electrons in the conduction band, we have:

Je = σe

(
−∂Φ

∂x

)
− σeαe

∂T

∂x
(A.37)

qe = αeTJe − ke
∂T

∂x
(A.38)
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where the relation π = αT comes from equations (A.18) and (A.21), and αe, σe and

ke refer to the expressions in (A.18), (A.19) and (A.23), respectively, or the electronic

contribution to each of the transport coefficients. For holes in the valence band, the

equations are identical:

Jh = σh

(
−∂Φ

∂x

)
− σhαh

∂T

∂x
(A.39)

qh = αhTJh − kh
∂T

∂x
(A.40)

In the absence of a temperature gradient, the total current is:

J = Je + Jh = (σe + σh)

(
−∂Φ

∂x

)
(A.41)

so the total conductivity is:

σ = (σe + σh) (A.42)

In the absence of current, which requires the hole and electron currents to be equal

and opposite,

(σe + σh)

(
−∂Φ

∂x

)
= (σeαe + σhαh)

∂T

∂x
(A.43)

The Seebeck coefficient is defined as:

α = −
∂Φ
∂x
∂T
∂x

=
σeαe + σhαh
σe + σh

(A.44)

which is the average of the two partial Seebeck coefficient, weighted by their individual

conductivities. Next, in order to arrive at an effective electron thermal conductivity,

again the current must be zero, so that the electron and hole currents are equal and

opposite:

Je = −Jh =
σeσh
σe + σh

(αh − αe)
∂T

∂x
(A.45)

Substituting this back into the expression for the electron heat flux, we find:

q = qe + qh = −
[
ke + kh +

σeσh
σe + σh

(αh − αe)2

]
∂T

∂x
(A.46)
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Therefore the combined thermal conductivity is:

k = −
[
ke + kh +

σeσh
σe + σh

(αh − αe)2

]
(A.47)

A.5 Phonon Thermal Conductivity

Electrons are not the only carriers of heat in a lattice. Phonons, or lattice vibrations

are the other carrier of heat in semiconductors. Phonons, which obey Bose-Einstein

statistics, have the distribution function in equation (A.48):

f0 = f0 (ω, T ) =
1

exp hω
kT

+ 1
(A.48)

Using the same procedure as the was used for the charge carriers, f can be written

under a temperature gradient as:

f = f0 − τ
(
vx
∂f0

∂T

∂T

∂x

)
= f0 + τvx

ω

T

∂f0

∂ω

∂T

∂x
(A.49)

and the heat flux is:

Jq (x) =
1

4π

∮ (∫ ωmax

0

~ωvxg (ω) fdω

)
dΩ (A.50)

where ωmax is the maximum phonon frequency, which varies depending on the approxima-

tion used. One example is the Debye frequency, the upper bound for phonon frequencies

in the Debye model. Using the same procedure as in equation (A.17), we can write:

Jq (x) =
~

3T

[∫ ωmax

0

ω2v2g (ω) τ
∂f0

∂ω
dω

]
∂T

∂x
(A.51)

Equation (A.51) is effectively Fourier’s law:

q = −kp
∂T

∂x
(A.52)

where

kp = − ~
3T

[∫ ωmax

0

ω2v2g (ω) τ
∂f0

∂ω
dω

]
(A.53)
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This reverts back to the simple form for the lattice thermal conductivity from the

kinetic model if v and τ can be pulled out of the integral:

kp =
1

3
τv2Cv =

1

3
CvvΛ (A.54)

where Λ is the mean free path length τv and Cv is the lattice specific heat. The total

thermal conductivity in a semiconductor is a sum of the lattice and electron thermal

conductivities:

k = ke + kp (A.55)

A.6 Full Transport Equations

For completeness the full transport equations in three dimensions will be restated here,

using the symbol E for the electric field.

J = σE− σα∇T (A.56)

q = αTJ− k∇T (A.57)

where J and q are the electrical current density and heat flux density, respectively, E is

the electric field, T is temperature, and σ,α and k are the electrical conductivity, Seebeck

coefficient and thermal conductivity.



Appendix B

Brief Discussion of the Kelvin

Relation

Thomson’s original proof of the Kelvin relation, that the Peltier coefficient of a metal

is equal to its Seebeck coefficient multiplied by the temperature, was based on ther-

modynamic reasoning. However, Thomson included assumptions not covered by ther-

modynamics and he considered the relation a conjecture to be proven or disproven by

experiment, although subsequent experiments have shown the Kelvin relation to be true.

We now know that the Thomson relation is just one example of a class of relations

known as the Onsager reciprocal relations [18], which are central to the thermodynamics

of irreversible processes. We summarize Onsager’s theorem here as follows:

Suppose a system has a set of generalized currents, J1,J2,Jn flowing within it which

are influenced by a set of generalized forces, X1,X2,Xn, resulting in a linear system of

equations:

Ji =
∑
j

LijXi (B.1)

And furthermore suppose that Ji and Xi have been defined in such a way that the

66
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rate of entropy generation in the system is:

δS =
∑
i

LiXi (B.2)

Then the matrix of coefficients Lij is symmetrical.

In the context of thermoelectricity, there are two currents, heat and electrical current.

For electrical current, the change in entropy is:

δS =
J · E
T

(B.3)

and for heat the change in entropy is:

δS = q∇ 1

T
(B.4)

Therefore the four forces and currents for the thermoelectric system are:

J1 = J (B.5)

J2 = q (B.6)

X1 =
E

T
(B.7)

X2 = ∇ 1

T
= −∇T

T 2
(B.8)

Written in terms of the macroscopic transport coefficients (α, σ, π, k), the equations

are:

J1 = σTX1 + σαT 2X2 (B.9)

J2 = σπTX1 + kT 2X2 (B.10)

and the Onsager reciprocal relation for the system is:

σαT 2 = σπT (B.11)
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or

αT = π (B.12)



Appendix C

Efficiency and Figure of Merit

C.1 Thermoelectric

With a few assumptions, a first-order approximation of efficiency can be made for a sin-

gle thermocouple acting as a generator. Here we present the procedure most commonly

found in textbooks on the subject. The most common configuration is an n-type semi-

conductor and a p-type semiconductor as the two arms of the thermocouple with a high

side temperature TH and low side temperature TL, as in Figure 2. The thermocouple is

then connected across a load RL so that useful work can be produced. In this case, the

definition of the efficiency is:

η =
Power absorbed by load

Power supplied by hot junction
(C.1)

Starting from equation (1.1):

J = σE− σα∇T (C.2)

If the current J is set to zero (i.e. there is an open circuit) then equation (C.2) can

be rewritten in both the p and n-type legs as:

E = α∇T (C.3)
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Performing the same integral as in equation (1.8), we find that the voltage across the

resistor provided by the generator as a result of the Seebeck effect is:

V =

∫ TH

TL

(αp − αn) dT = (αp − αn) (TH − TL) (C.4)

If the series resistance of the two branches is R then the current that flows is:

I =
(αp − αn) (TH − TL)

R +RL

(C.5)

and so the power delivered to the load is:

P = I2RL =

(
(αp − αn) (TH − TL)

R +RL

)2

RL (C.6)

Next, the heat delivered by the source must be considered. Besides the conducted

heat, there is also the heat created by the Peltier effect and the Joule heat. This can be

written as:

q = K (TH − TL) + (αp − αn)THI −
1

2
I2R (C.7)

where K is the thermal conductance of the p and n branches in parallel:

K =
kpAp
lp

+
knAn
ln

(C.8)

The expression for the efficiency is then:

η =

(
(αp−αn)(TH−TL)

R+RL

)2

RL

K (TH − TL) + (αp − αn)TH
(αp−αn)(TH−TL)

R+RL
− 1

2

(
(αp−αn)(TH−TL)

R+RL

)2

R
(C.9)

The efficiency depends on the way the load is matched to the internal resistance of

the thermocouple. If the ratio RL/R is called m, then dη/dm = 0 may be solved [19] to

find:

(RL/R)optimal =

√
1 +

Z (TL + TH)

2
(C.10)

where Z is known as the figure of merit, given by:

Z =
α2
pn

RK
(C.11)
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Substituting the above back into the expression for efficiency and making the appro-

priate algebraic manipulations, we have:

η =
TH − TL
TH

√
1 + Z(TL+TH)

2
+ 1√

1 + Z(TL+TH)
2

+ TL
TH

(C.12)

This final expression is notable because it is in the form of something multiplied by

the Carnot efficiency. Equally important, it can be seen that if the cold plate and hot

plate temperatures are kept constant, increasing Z is the only way to increase maximum

efficiency. Finally, it’s important to note that the figure of merit defined above is for a

pair of materials and using this definition is cumbersome when trying to identify good in-

dividual thermoelectric materials. For this reason the figure of merit for a single material

is defined as:

Z =
α2σ

k
(C.13)

C.2 Rankine Cycle

Here we briefly discuss the calculation of efficiency for the Rankine Cycle. The derivation

here is for completeness only and is essentially identical to the treatment given in [20].
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Figure C.1: Rankine Cycle in PT Coordinates

Figure C.1 shows the Rankine Cycle in a P-T diagrams. Leg 1-2 represents pumping,

2-3 reheating, vaporization and superheating, 3-4 isentropic expansion and 4-1 cooling

and condensation. There are phase changes during the cooling and reheating stages at

points R and S. In terms of the enthalpy, the efficiency is:

η =
(H3 −H4)− (−∆Wp)

H3 −H2

(C.14)

where (−∆Wp) denotes parasitic losses including pumping and circulation losses. De-

pending on the working fluid used, equation (C.14) alone can be used to approximate the

efficiency by consulting steam tables. However, with some assumptions equation (C.14)

can be expanded. Since enthalpy is a state function whose changes are independent of

path, H3 −H2 can be written as:

H3 −H2 = (H3 −H4) + (H4 −HR) + λR + (H ′R −H1)− (H2 −H1) (C.15)

where λR denotes the latent heat of vaporization and HR and H ′R denote the enthalpy

of the saturated vapour and liquid at equilibrium during condensation (leg 4-1). By



Appendix C. Efficiency and Figure of Merit 73

definition, HR = H ′R + λR. Another way to express the heat input at pressure P2 is:

H3 −H2 = (H3 −HS) + λS + (H ′S −H2) (C.16)

= (Cp)V |P2 (T3 − TS) + λS + (Cp)L |P2 (TS − T2)

where (Cp)V |P2 represents the mean heat capacity of the vapour phase, (Cp)L |P2 repre-

sents the mean heat capacity of the liquid phase and λS ≈ λR.

Equating the two expressions for H3−H2 in equations (C.15) and (C.16) and solving

for H2 −H1, we find:

H2 −H1 = (H3 −H4) + (H4 −HR) + λR + (H ′R −H1) (C.17)

− [(H3 −HS) + λS + (H ′S −H2)]

= Cp (T3 − T4) + (H4 −HR) + λR + (H ′R −H1)

−
[
(Cp)V |P2 (T3 − TS) + λS + (Cp)L |P2 (TS − T2)

]
If it can be assumed that (Cp)V |P2 ≈ Cp and T1 = T2 = T4 = TR then equation (C.17)

can be further simplified to:

H2 −H1 ≈
[
Cp − (Cp)L |P2

]
(TS − T4) + (λR − λS) (C.18)

The expressions for (H2 −H1) in equations (C.17) and (C.18) represent the energy

required for the pumping phase (leg 1-2) and will be labeled −∆Wpump. Some further

assumptions can now be made to simplify the expression for the efficiency. If there

is no cooling of the exhaust vapours and no supercooling of the condensate, then the

simplifications H4 − HR = 0 and H ′R − H1 can be made, and equation (C.14) can be

rewritten:

η =
(H3 −H4)− (−∆Wp)

(H3 −H4) + λR − (−∆Wpump)
(C.19)

Furthermore, if parasitic losses can be neglected and assuming ideal isentropic expan-

sion, the expression simplifies to:

η =
Cp (T3 − T4)

Cp (T3 − T4) + λR − (−∆Wpump)
(C.20)



Appendix D

Finite Element Model of

Thermoelectric Generator

COMSOL, a multiphysics finite element simulation suite, was used to perform the fi-

nite element simulations for the thermoelectric module. COMSOL doesn’t include an

application mode specific to thermoelectricity, so the general PDE mode must be used

instead. COMSOL also doesn’t allow arbitrary equations to be entered but rather pro-

vides a general equation for which the coefficients can be set. For steady state analysis,

the subdomain equation provided by the PDE mode is:

∇ (−c∇u− αu + γ) + au + β · ∇u = f (D.1)

where u is the dependant variable. The idea is to rewrite the PDE for any system in

this form and then provide COMSOL with the coefficients c, α, a, β and source term f .

Since everything must necessarily be in terms of the gradient of the dependant variables,

the coupled equations of heat and current flow have to be written in terms of the scalar

variables T and V .
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Figure D.1: FEM Geometry

D.1 Subdomain Equations

Revisiting equations (1.1) and (1.2):

J = σE− σα∇T (D.2)

q = αTE− κ∇T. (D.3)
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There are also the constitutive relations from Maxwell’s equations and from the def-

inition of heat flow:

∇ · J = 0 (D.4)

∇ · q = Q̇ = E · J (D.5)

Finally, the definition of the electric field in terms of the electric potential:

E = −∇V (D.6)

Substituting equations (D.2) and (D.3) into (D.4) and (D.6) and making the necessary

manipulations, we arrive at the coupled equations:

∇ ·
((
σα2T + k

)
∇T
)

= σ (∇V · ∇V + α∇V · ∇T ) (D.7)

∇ · (σα∇T ) +∇ · (σ∇V ) = 0 (D.8)

For three dimensions this can be written out as:

∇·
((
σα2T + k

)
∇T
)

= σ

((
∂V

∂x

)2

+

(
∂V

∂y

)2

+

(
∂V

∂z

)2

+ α

(
∂T

∂x

∂V

∂x
+
∂T

∂y

∂V

∂y
+
∂T

∂z

∂V

∂z

))
(D.9)

∇ · (σα∇T ) +∇ · (σ∇V ) = 0 (D.10)

We assume that the transport coefficients (α, σ, k) are dependent on only temperature

and not position so they can be taken outside of the gradients. Now that the coupled

equations are in this form, it is easy to see what the coefficients would be in COMSOL’s

PDE. First of all, since there are two dependent variables, T and V , u becomes a matrix

instead of a scalar:

u =

 T

V

 (D.11)

and the coefficients are:

c =

 σα2T + k σαT

σα σ

 (D.12)
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c =

 σ

((
∂V
∂x

)2
+
(
∂V
∂y

)2

+
(
∂V
∂z

)2
+ α

(
∂T
∂x

∂V
∂x

+ ∂T
∂y

∂V
∂y

+ ∂T
∂z

∂V
∂z

))
0

 (D.13)

while the other coefficients are equal to 0. Writing out ∇(−c∇u) = f then reconstructs

the coupled equations.

D.2 Boundary Conditions

COMSOL provides support for the two most common types of boundary conditions,

Dirichlet and Neumann.

Dirichlet Boundary Condition:

n · (−c∇u− αu + γ) + qu = g − hTu (D.14)

hu = r (D.15)

Neumann Boundary Condition:

n · (−c∇u− αu + γ) + qu = g − hTu (D.16)

The coefficient matrices c, α and γ have already been set in the subdomain equations,

q isn’t necessary, and h doesn’t need to be anything but the identity matrix, so the two

types of boundary conditions are simplified to: T

V

 =

 r1

r2

 (D.17)

 n · q

n · J

 =

 g1

g2

 (D.18)
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allowing the potentials or fluxes on a boundary to be set directly with the correct units,

which is convenient. The thermal and electrical insulation boundary condition which is

used along insulated surfaces would be: n · q

n · J

 =

 0

0

 (D.19)



Appendix E

Experimental Setup

The purpose of performing experiments was to ascertain experimental values for the

transport coefficients and to obtain results to compare to the finite-volume model. The

tests carried out with our experimental apparatus include measurements of the Seebeck

coefficient and conductivity of the thermoelectric module as a function of temperature and

measurements in time of the open-circuit voltage while heating from room temperature

for comparison to the model.

In the experimental setup, two power resistors connected electrically in parallel are

used to supply a constant heat flux to the hot side of the thermoelectric module. On

the cold side, a heat sink and fan are used to remove heat. A hollow oven brick is

placed over the heating elements and polyurethane foam insulation is placed beside the

thermoelectric module to provide thermal insulation. It is assumed that the insulation

is sufficient enough that nearly all of the electrical power put into the resistors (V 2/R)

is delivered to the thermoelectric module as heat.
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Figure E.1: Experimental Block Diagram

A potentiometer connected to the terminals of the thermoelectric module allows the

operating point to be varied. From this setup it is possible to perform tests to generate

heat flux-voltage-current curves as well as measure the Seebeck coefficient and thermal

and electrical conductivities.
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Figure E.2: Experimental Setup

1. Heat sink

2. Thermoelectric module

3. Foam insulation

4. Cooling fan

5. Resistive heating element

6. Oven brick

In order to approximate the heat capacitance values of the components in the exper-

imental apparatus, they were individually weighed and multiplied by their specific heat

capacities. The measured values are given in the following table. A small, estimated

value was used for the TE module because a value for Cp could not be obtained for it.
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Component Material Mass (g) Cp(kJ/(kgK) Capacitance (J/K)

Resistors Steatite Ceramic 72.0 (x2) 0.9[21] 130

Heat Sink Aluminum 36.5 0.9 33

TE Module Bi2Te3 & Ceramic 19.0 20



Appendix F

Matlab Code

F.1 thermoelectric1.m

thermoelectric1.m is the main function which contains the equations derived in Chapter

2. It outputs dx dt which is the difference vector for the state variable x. dx dt is

passed to MATLAB’s ODE solver. Some of the internal variables are also declared in

this function.

function [dx_dt]=thermoelectric1(t,x,Num_Elements, Q_in, T_amb, I, Re_tot,

Rth_tot, N_high, N_low, R_high_tot, R_low_tot)

N=Num_Elements;

dx_dt=zeros(2*N+N_high+N_low+2,1);

alpha=zeros(N,1);

Re = Re_tot/N;

Rth = Rth_tot/N;

R_high=R_high_tot/N_high;

R_low=R_low_tot/N_low;

C_high=180/N_high; %high side heat capacity
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C_low=40/N_low; %low side heat capacity

Cth=20/N; %thermal circuit heat capacity

Ce=500e-5*N; %electrical circuit capacitance

for i=1:N %Sets up alpha as a function of T.

alpha(i)=Sfun(x(N_high+i));

%alpha(i)=0.022;

end

%Sets up the placeholder variables for T at boundary B and T at boundary C

(instead of writing out this whole expression inside each of the other

expressions)

%This is with the linear equation for T_1-1/2, this expression and the

derivation are in the thesis document

Tb = (Rth*x(N_high) + R_high*x(N_high+1) + alpha(1)^2*Rth*R_high*

x(N_high+1)^2/Re - Rth*R_high*alpha(1)*x(N_high+1)*x(N_high+2*

N+N_low+1)/(2*Re))/(Rth + R_high + Rth*R_high*alpha(1)^2*x(N_high+1)/Re);

Tc = (Rth*x(N_high+N+1) + R_low*x(N_high+N) + alpha(N)^2*Rth*R_low*

x(N_high+N)^2/Re + alpha(N)*Rth*R_low*x(N_high+N)*x(N_high+2*N+N_low+2)

/(2*Re))/(Rth + R_low + alpha(N)^2*Rth*R_low*x(N_high+N)/Re);

dx_dt(1) = (Q_in + (x(2)-x(1))/R_high)/C_high;

for i=2:N_high-1

dx_dt(i) = (x(i+1)-2*x(i)+x(i-1))/R_high/C_high;

end

dx_dt(N_high) = ((Tb-x(N_high))/(R_high/2) - (x(N_high)-x(N_high-1))/R_high)/C_high;
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dx_dt(N_high+1) = ( (1/Re)*( x(N_high+N+N_low+1)^2 -alpha(1)*x(N_high+N+N_low+1)*

((x(N_high+2)+x(N_high+1))/2-Tb)/(1) ) -alpha(1)*((x(N_high+2)+x(N_high+1))/2

*(x(N_high+N+N_low+2)+x(N_high+N+N_low+1))/2 - Tb*x(2*N+N_high+N_low+1))/Re

+(alpha(1)^2/Re)*((x(N_high+2)+x(N_high+1))*(x(N_high+2)-x(N_high+1))/2-Tb*2*

(x(N_high+1)-Tb)) + (x(N_high+2)-x(N_high+1))/Rth + (Tb-x(N_high+1))/(Rth/2))/Cth;

dx_dt(N_high+N+N_low+1) = (I - x(N_high+N+N_low+1)/Re + alpha(1)*((x(N_high+2)+

x(N_high+1))/2-Tb)/Re)/Ce;

for i=N_high+2:N_high+N-1

dx_dt(i) = ((1/Re)*( x(N+N_low+i)^2 - (1/2)*alpha(i-N_high)*x(N+N_low+i)*

(x(i+1) - x(i-1)) ) -alpha(i-N_high)*((x(i+1)+x(i))/2*(x(N+N_low+i+1)+x(N+N_low+i))/2

-(x(i)+x(i-1))/2*(x(N+N_low+i)+x(N+N_low+i-1))/2)/Re +(alpha(i-N_high)^2/Re)*

((x(i+1)+x(i)) * (x(i+1)-x(i))/2-(x(i)+x(i-1))*(x(i)-x(i-1))/2)+ (x(i+1)-2*x(i)+x(i-1))

/Rth)/Cth;

dx_dt(i+N+N_low) = (I - x(i+N+N_low)/Re + alpha(i-N_high)*(x(i+1)-x(i-1))/(2*Re))/Ce;

end

dx_dt(N_high+2*N+N_low) = (I - x(N_high+2*N+N_low)/Re + alpha(N)*(Tc-(x(N_high+N)+

x(N_high+N-1))/2)/Re)/Ce;

dx_dt(N_high+N) = ((1/Re)*( x(N_high+2*N+N_low)^2 -alpha(N)*x(N_high+2*N+N_low)*(Tc-

(x(N_high+N)+x(N_high+N-1))/2) ) - alpha(N)*(Tc*x(2*N+N_high+N_low+2)-(x(N_high+N-1)

+x(N_high+N))/2*(x(N_high+2*N+N_low)+x(N_high+2*N+N_low-1))/2)/Re+(alpha(N)^2/Re)*

(Tc*2*(Tc-x(N_high+N))-(x(N_high+N)+x(N_high+N-1))*(x(N_high+N)-x(N_high+N-1))/2)

+ (x(N_high+N-1)-x(N_high+N))/Rth + (Tc-x(N_high+N))/(Rth/2))/Cth;

dx_dt(N_high+N+1) = (-(x(N_high+N+1) - Tc)/(R_low/2) + (x(N_high+N+2) - x(N_high+N+1))

/R_low)/C_low;

for i=N_high+N+2:N_high+N+N_low-1

dx_dt(i) = ((x(i+1) - 2*x(i)+x(i-1))/(R_low))/C_low;
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end

dx_dt(N_high+N+N_low) = ((x(N_high+N+N_low-1)

- x(N_high+N+N_low))/(R_low) + (T_amb - x(N_high+N+N_low))

/(R_low/2))/C_low;

dx_dt(2*N+N_high+N_low+1)=(I-2*x(2*N+N_high+N_low+1)/Re+2*alpha(1)*(x(N_high+1)-Tb)/Re)

/(Ce);

dx_dt(2*N+N_high+N_low+2)=(I-2*x(2*N+N_high+N_low+2)/Re+2*alpha(1)*(Tc-x(N_high+N))/Re)

/(Ce);

F.2 main.m

main.m is the script that calls MATLAB’s ODE solver, ode23() to solve the function de-

fined in thermoelectric1.m. Also in this code, some variables needed for the ODE solver

are declared and the material-related constants and initial conditions used in thermo-

electric1.m are defined.

clear

clc

Simulation_Time=3000;

Num_Elements=10;

N_high=10;

N_low=10;

Q_in=20; %input heat flux in the thermal subcircuit

I=0.00; %current in the electrical subcircuit

Re_tot=4.4; %Total electrical resistance
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Rth_tot=2; %Total thermal resistance

T_amb=293.15; %ambient temperature in the thermal subcircuit

R_high_tot=0.1; %high side thermal resistance

R_low_tot=0.8; %low side thermal resistance

Initial_Cond=zeros(2*Num_Elements+N_high+N_low+2,1);

%set up initial conditions for temperature

%for i=N_high+Num_Elements+N_low:-1:N_high+Num_Elements+1

% Initial_Cond(i)=T_amb+Q_in*R_low_tot/(2*N_low)+(N_high+Num_Elements+N_low-i)

*Q_in*R_low_tot/N_low;

%end

%for i=N_high+Num_Elements:-1:N_high+1

% Initial_Cond(i)=Initial_Cond(N_high+Num_Elements+1)+Q_in*(Rth_tot/(2*Num_Elements)

+R_low_tot/(2*N_low))+(N_high+Num_Elements-i)*Q_in*Rth_tot/Num_Elements;

%end

%for i=N_high:-1:1

% Initial_Cond(i)=Initial_Cond(N_high+1)+Q_in*(Rth_tot/(2*Num_Elements)+

R_high_tot/(2*N_high))+(N_high-i)*Q_in*R_high_tot/N_high;

%end

%set up initial conditions for voltage

%for i=N_high+Num_Elements+N_low+1:N_high+Num_Elements+N_low+Num_Elements

% Initial_Cond(i)=I*Re_tot/Num_Elements;

%end

%Set up initial conditions for voltage boundary elements

%Initial_Cond(2*Num_Elements+N_high+N_low+1)=I*Re_tot/Num_Elements;

%Initial_Cond(2*Num_Elements+N_high+N_low+2)=I*Re_tot/Num_Elements;
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%-----------------------INITIAL CONDITIONS FOR TEST RUN--------------------------

-------

%set up initial conditions for temperature

for i=N_high+Num_Elements+N_low:-1:1

Initial_Cond(i)=T_amb;

end

%set up initial conditions for voltage

for i=N_high+Num_Elements+N_low+1:N_high+Num_Elements+N_low+Num_Elements

Initial_Cond(i)=0;

end

%Set up initial conditions for voltage boundary elements

Initial_Cond(2*Num_Elements+N_high+N_low+1)=0;

Initial_Cond(2*Num_Elements+N_high+N_low+2)=0;

%--------------------------------------------------------------------------------

-------

options=odeset(’MaxStep’, 1);

%, ’OutputFcn’,@odeplot,’OutputSel’, [1 2 3 4 5 6 7]

[tg,xg]=ode23(@thermoelectric1,[0 Simulation_Time],Initial_Cond,options,Num_Elements,

Q_in, T_amb, I, Re_tot, Rth_tot, N_high, N_low, R_high_tot, R_low_tot);

x=xg.’;

V=-sum(x(N_high+Num_Elements+N_low+1:N_high+Num_Elements+N_low+Num_Elements,size(x,2)));
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Vg=zeros(size(x,2),1);

for i=1:size(x,2)

Vg(i)=-sum(x(N_high+Num_Elements+N_low+1:N_high+Num_Elements+N_low+Num_Elements,i));

end

F.3 Sfun.m

Sfun.m is called by thermoelectric1.m and is the function alpha(T). The function is a

third order Lagrange polynomial approximation based on experimental measurements on

the commercial Peltier cooler in Appendix E.

% This is the function alpha(T)

function [S] = Sfun(T)

if T<307.15

T = 307.15;

elseif T > 344.65

T = 344.65;

end

S = (-73*T^3/6e10 + 129*T^2/2e8 - 47*T/15e5 + 21/5000)/0.82;
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