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Autonomous vehicle (AV) technology has matured sufficiently to be in testing on public roads. However,
traffic models of AVs are still in development. Most previous work has studied AV technologies in micro-simulation.
The purpose of this dissertation is to model and optimize AV technologies for large city networks to predict how AVs
might affect city traffic patterns and travel behaviors. To accomplish this, we construct a dynamic network loading
model for AVs, consisting of link and node models of AV technologies, which is used to calculate time-dependent
travel times in dynamic traffic assignment. We then study several applications of the dynamic network loading to
predict how AVs might affect travel demand and traffic congestion.

AVs admit reduced perception-reaction times through technologies such as (cooperative) adaptive cruise
control, which can reduce following headways and increase capacity. Previous work has studied these in micro-
simulation, but we construct a mesoscopic simulation model for analyses on large networks. To study scenarios with
both autonomous and conventional vehicles, we modify the kinematic wave theory to include multiple classes of flow.
The flow-density relationship also changes in space and time with the class proportions. We present multiclass cell
transmission model and prove that it is a Godunov approximation to the multiclass kinematic wave theory. We also
develop a car-following model to predict the fundamental diagram at arbitrary proportions of AVs.

Complete market penetration scenarios admit dynamic lane reversal — changing lane direction at high
frequencies to more optimally allocate road capacity. We develop a kinematic wave theory in which the number of
lanes changes in space and time, and approximately solve it with a cell transmission model. We study two methods
of determining lane direction. First, we present a mixed integer linear program for system optimal dynamic traffic
assignment. Since this is computationally difficult to solve, we also study dynamic lane reversal on a single link with
deterministic and stochastic demands. The resulting policy is shown to significantly reduce travel times on a city
network.

AVs also admit reservation-based intersection control, which can make greater use of intersection capacity
than traffic signals. AVs communicate with the intersection manager to reserve space-time paths through the
intersection. We create a mesoscopic node model by starting with the conflict point variant of reservations and
aggregating conflict points into capacity-constrained conflict regions. This yields an integer program that can be
adapted to arbitrary objective functions. To motivate optimization, we present several examples on theoretical and
realistic networks demonstrating that näıve reservation policies can perform worse than traffic signals. These occur
due to asymmetric intersections affecting optimal capacity allocation and/or user equilibrium route choice behavior.
To improve reservations, we adapt the decentralized backpressure wireless packet routing and P0 traffic signal policies
for reservations. Results show significant reductions in travel times on a city network.

Having developed link and node models, we explore how AVs might affect travel demand and congestion.
First, we study how capacity increases and reservations might affect freeway, arterial, and city networks. Capacity
increases consistently reduced congestion on all networks, but reservations were not always beneficial. Then, we
use dynamic traffic assignment within a four-step planning model, adding the mode choice of empty repositioning
trips to avoid parking costs. Results show that allowing empty repositioning to encourage adoption of AVs could
reduce congestion. Also, once all vehicles are AVs, congestion will still be significantly reduced. Finally, we present
a framework to use the dynamic network loading model to study shared AVs. Results show that shared AVs could
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reduce congestion if used in certain ways, such as with dynamic ride-sharing. However, shared AVs also cause
significant congestion.

In summary, this dissertation presents a complete mesoscopic simulation model of AVs that could be used
for a variety of studies of AVs by planners and practitioners. This mesoscopic model includes new node and link
technologies that significantly improve travel times over existing infrastructure. In addition, we motivate and present
more optimal policies for these AV technologies. Finally, we study several travel behavior scenarios to provide insights
about how AV technologies might affect future traffic congestion. The models in this dissertation will provide a basis
for future network analyses of AV technologies.
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1 Introduction

1.1 Background

Autonomous vehicle (AV) technology has the potential to revolutionize the ground transportation systems
that are vital to the function of modern cities. Due to urbanization and population growth, demand for traffic
networks is increasing. However, the high time and cost requirements of constructing traffic network infrastructure
have resulted in significant traffic congestion in many major cities. Fortunately, vehicle automation and new traffic
control protocols could greatly reduce traffic congestion with relatively minor changes in infrastructure. Besides
changing traffic flow, AVs could also create new low-cost options for travelers that may change the typical home-to-
work vehicle use patterns.

AVs incorporate a variety of new technologies that could greatly increase traffic safety and efficiency. The
precision, reaction times, and consistency of computers should reduce incidents, which contribute to congestion.
Furthermore, because of the computer precision, AVs can safely operate at smaller margins than human-driven
vehicles (HVs). For instance, reduced reaction times admits smaller following headways. This can increase road
capacity [52, 67, 99] and the stability of the traffic flow [79] in response to bottlenecks or other obstructions to
traffic flow. Furthermore, AV communication protocols admit more complex intersection behaviors. Reservation-
based intersection control [28, 30] reduces intersection safety margins by relying on computer precision to prevent
conflicts. Vehicles reserve specific space-time sections of the intersection, timing conflicting turning movements to
avoid occupying the same intersection space at the same time but with smaller margins than permitted by traffic
signals.

Besides the benefits to traffic efficiency, AVs are likely to be more convenient for travelers. Passengers
can engage in alternative activities via computers or smartphones. This is likely to reduce the disutility per unit
of in-vehicle travel time relative to conventional (human-driven) vehicles (HVs). Furthermore, AVs can drop off
passengers and then reposition, empty, to alternative parking locations [57]. Empty repositioning allows travelers to
avoid parking costs at their destination or to share the AV with other household members. Many transit passengers
do not have another option because they are too young to have a driver’s license or do not own a vehicle. AVs could
make personal vehicle travel available to some of those captive transit riders. Therefore, once AVs become publicly
available, they may be be quickly adopted by travelers.

Most previous work on AVs has focused on micro-simulation, which models the specific actions and move-
ments of individual vehicles. AV behaviors can be explicitly defined in micro-simulation. However, to study an entire
city’s or region’s traffic, more aggregate models are necessary for tractability. Therefore, this dissertation focuses on
network models. A traffic network is a type of directed graph in which intersections are represented by nodes, and
connecting roads are modeled by links. A traffic network is represented by G= (N,A) where N is the set of nodes
and A is the set of arcs. Z⊆N is the set of centroids or zones. All demand enters and exits from the network at a
centroid.

1.2 Motivation

Due to the time required to construct network infrastructure, policymakers and planning organizations often
plan two or three decades in advance. With AVs in testing on public roads in several cities, AVs might be available
for general purchase within the time frame of current planning models. Policymakers rely on these models for
predictions of future levels of service to decide whether and how to improve infrastructure. Because AVs might
behave significantly differently than HVs, future predictions of traffic should specifically incorporate AV behavior.
However, current models of how AVs will affect traffic are very preliminary, and are not suitable for studying city-wide
traffic.
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Predicting how AVs will affect traffic requires holistic analysis of entire city networks. Vehicles seek to min-
imize their own travel time, which results in an user equilibrium (UE) [105] of route choices that is often suboptimal
for the overall network. In fact, the Braess [10] and Daganzo [24] paradoxes demonstrate that network improvements
could increase overall congestion due to UE behavior. The alternative, system optimal (SO) route choice, involves
assigning routes to each vehicle to minimize the total system travel time. However, SO is difficult to achieve in
practice. Marginal cost tolling on every link can result in SO behavior, but is difficult to implement. AVs could be
forced into SO behavior by coordinating routes, but this could cause litigation issues in addition to the high costs of
infrastructure. For instance, if an AV or its passengers are harmed by an assigned route, such as one that traverses
a flooded road, the liability could be placed on the system. Furthermore, finding the SO route choice in a dynamic
setting is computationally difficult, and solution methods are typically limited to toy networks. Therefore, predicting
how AVs might affect traffic requires city-wide modeling to include the effects of route choice.

However, developing a network model of AV behavior has considerable challenges. Most work on AVs has
used micro-simulation to simulate the behavior of individual vehicles. The purpose of network models is to study
how route choices affect congestion, which requires analysis of larger regions. Finding the UE route choice is known
as the traffic assignment problem. Traffic assignment models can be categorized into static traffic assignment (STA)
and dynamic traffic assignment (DTA) models. STA uses macroscopic link impedance functions to determine link
travel times as a function of link flows. STA models have nice mathematical properties, and STA can be quickly
solved for large networks. However, STA does not predict how congestion evolves over time, and has limited node
models. Because AV behaviors can significantly change link and node flows, this dissertation focuses on DTA. In
fact, we will show in Chapter 5 that using the less realistic STA can yield significantly different conclusions than
DTA.

DTA uses more detailed mesoscopic simulation of nodes and links to predict time-dependent congestion. The
objective of DTA is to find a dynamic user equilibrium (DUE) in which no vehicle can improve its time-dependent
travel time by changing routes. Finding DUE typically involves an iterative framework, illustrated in Figure 1.1. A
full traffic simulation is performed each iteration, and DTA for large cities can require many iterations. AV behaviors
significantly change the traffic simulator step, and the goal of this dissertation is developing a dynamic network
loading model for AVs. Therefore, efficient node and link models are necessary for network analyses.

However, mesoscopic models of AVs have received little attention in the literature thus far. Developing
aggregate models offers considerable challenge. The node model must be a consistent simplification of the intersection
models of AVs, which have previously been defined in terms of microsimulation. The link model should include mixed
AV/HV traffic and predict how the traffic behavior changes in space and time as the proportion of AVs changes.

It is reasonable to assume that AVs will have the same route choice objective as HVs: minimize individual
travel time. In fact, while bounded rationality models [66] are arguably more realistic for HVs, AVs will be aware
of minute differences in travel times in their route choices. Consequently, we assume AV choose routes to minimize
their own travel time, which results in a DUE. The main change AVs make to DTA is in the DNL model used to
calculate travel times. Therefore, after creating a DNL model of AVs, we will also have a DTA model of AVs.

Besides the changes to traffic flow, the new AV behaviors raise the questions of finding optimal policies for
making use of AV technology. (Note that the term policy as used here refers to the control taken in response to
a system state.) A considerable amount of literature has been devoted to optimizing infrastructure for HVs. For
instance, the well-studied network design problem seeks to answer how to improve traffic networks to minimize travel
time subject to cost limitations. For intersections, decades of study has established conditions for using different
types of controls (e.g. stop signs, traffic signals) and optimized signal timing for travel demand. The communications
capabilities of AVs creates even greater flexibility for intersection control and active traffic management strategies.
However, we will show in Chapter 3 that infrastructure for HVs could perform better than suboptimal use of AV
technologies. Therefore, it is necessary to model and optimize AV technologies before they are deployed.

This dissertation has three major goals:

1. Construct a complete dynamic network loading (DNL) model incorporating AV behavior. No such
model currently exists, and predicting how AV technology might affect traffic congestion is critically important
for policymakers. DNL is a subproblem to DTA, and an effective model is a prerequisite to finding optimal
policies for AV technology.

2. Improve use of AV technology. Using the DTA model, we will develop policies for more optimal use of AV
infrastructure. New road and intersection behaviors have been shown to reduce traffic congestion compared
with HV infrastructure in certain situations. However, much previous work has been focused on developing
new AV technologies without optimizing them.
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3. Analyze how AVs might affect traffic. Having developed a DNL model of AVs and developed better
strategies for using AV technology, the remaining question addressed by this dissertation is how AV technology
could affect traffic congestion. Besides changing traffic flow, AVs are also likely to affect travel demand. Of
course, it is impossible to know the full extent of traveler behavior changes before implementation. We will use
the network model to more accurately explore several traffic scenarios proposed in the literature.

1.3 Problem statements

To achieve the overall goal of modeling and optimizing network infrastructure for AVs, this dissertation
addresses three major modeling problems. As mentioned before, network models are constructed of links and nodes.
Each admits different behaviors for AVs, and therefore must be addressed separately in detail. During the process
of modeling AV technology, we also develop a framework amenable to optimization. After developing link and node
models, we then seek to answer how AVs might affect city traffic. We discuss each problem in more detail below.

1.3.1 Link model

AVs have significant effects on link flow. Computer reaction times allow safely reducing following headways
via (cooperative) adaptive cruise control and platooning. This results in greater capacity [52, 67, 99] and stability
of flow [79]. Reduced following headways are possible even in mixed flows of traffic. Traffic flow — defined by the
fundamental diagram in DTA — determines traffic congestion, and is therefore a major aspect of network models.
However, AV traffic flow has yet to be modeled in DTA. Since AV adoption will occur gradually, the network model
should be able to study arbitrary proportions of AVs on the road. Since the proportion of AVs at specific points
depends on the evolution of traffic flow, the link model must admit a fundamental diagram that changes in space
and time with the proportion of AVs. A multiclass kinematic wave theory with changing fundamental diagrams has
yet to be solved for large-scale DTA.

Furthermore, when AVs are a high proportion of vehicles, links may be made more efficient through AV-
specific active traffic management. Hausknecht et al. [49] proposed dynamic lane reversal (DLR) which uses inter-
section managers for reservations to control lane direction. This allows for safe, frequent changes in lane direction in
response to dynamic demand even within peak hours. DLR differs from currently used contraflow lanes in that the
direction of contraflow lanes cannot be safely changed frequently because of the difficulties in communicating with
human drivers. DLR could have major effects on network traffic, and determining an optimal DLR policy is also an
open problem.

1.3.2 Node model

A major section of the literature on AVs in traffic has focused on reservation-based intersection control [28,30].
Although reservations were designed for 100% AVs, extensions [19, 29, 31, 77] extended reservations to scenarios
with both AVs and HVs. Fajardo et al. [37] and Li et al. [63] demonstrated that in certain situations, reservations
substantially improve over optimized traffic signals. Since signals are a feasible policy for reservations [31], reservations
can always perform at least as well as signals. Therefore, reservation-based control should be included in the DTA
model of AVs, and has great potential for optimization.

Most previous studies on reservations have used micro-simulation because reservations are defined in terms
of individual vehicle movements in small intervals of space and time. Models of multiple intersections have been
limited to small networks [48] or made extensive simplifications that greatly reduced the capacity of the reservation
protocol [14]. Levin & Boyles [58] proposed a conflict region simplification for DTA, but it was not well justified,
and a was not amenable to optimization. Specifically, it was not clear how the conflict regions were an accurate
model of the collision avoidance constraints in the reservation protocol. Zhu & Ukkusuri [115] developed a linear
programming model for DTA, but it used unnecessarily restrictive collision avoidance constraints, and it is not clear
how it would scale to large networks. Therefore, a simplification of reservations consistent with microsimulation
tractable for large-scale DTA, and open to optimization, is still an open problem. A further question is how to
optimize reservations. Most previous studies used the first-come-first-served policy, in which vehicles are prioritized
according to their reservation request time. It is not clear that this is optimal for reservations, despite favorable
comparisons with optimized traffic signals [37,63].
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1.3.3 How do AVs affect traffic and travel demand?

The broad question of interest to practitioners and policymakers is how AVs will affect future traffic and travel
demand. Due to the lack of a complete network model of AV traffic, addressing this question has previously been
difficult. The DTA model developed in this dissertation admits more accurate network analyses, and we therefore
consider two questions about future traffic conditions with AVs:

1. How will AVs affect network traffic congestion? AVs could improve link efficiency due to reduced
following headways. Also, once the AV market penetration is sufficiently high, reservations could be used instead
of traffic signals. Holding demand constant, how will network traffic be affected as AV market penetration
increases?

2. How will AVs affect travel demand? AVs admit new traveler behaviors that could greatly affect travel
demand, and therefore travel congestion. Two such behaviors are empty repositioning trips [57] and shared
autonomous vehicles (SAVs) [34–36]. With empty repositioning, AVs drop off travelers at their destination
then park elsewhere to avoid parking costs or share the vehicle with other household members. Repositioning
could greatly increase the demand because each traveler choosing repositioning makes two vehicular trips per
traveler trip. SAVs are a fleet of publicly owned autonomous taxis that service travelers instead of travelers
owning a personal vehicle [34]. SAVs can operate at much lower costs than conventional taxis due to the lack
of driver. However, SAVs could also require empty repositioning and increase the number of vehicle trips.

1.4 Contributions

In addressing the problems discussed in Section 1.3, this dissertation makes the following contributions to
the literature. Figure 1.2 illustrates the overall contributions. First, we create models of multiclass link flow and DLR
(Section 1.4.1). Then, we develop and optimize a node model of reservation-based control (Section 1.4.2). Combining
the link and node models yields a complete network model, which we use to study how AVs could affect network
traffic under current and future (with new traveler behaviors from AV technology) demand scenarios (Section 1.4.3).

1.4.1 Cell transmission model

The first part of the dynamic network loading model is the link flow model. This dissertation modifies the
cell transmission model CTM) [21,22] to model two changes to vehicular flow from the introduction of AVs.
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1.4.1.1 CTM for mixed AV/HV flow

The most immediate impact is likely to be the effects reduced reaction times have on the flow-density
relationship. This does not require specific infrastructure like reservation-based intersections or DLR, and can occur
at any market penetration of AVs. To model the changing flow due to AV reaction times, we develop a multiclass
kinematic wave model [64, 78] in which the capacity and backwards wave speed of the fundamental diagram are
functions of class densities. Then, we develop a multiclass CTM consistent with the multiclass kinematic wave
theory. To predict the fundamental diagram at different proportions of AVs, we develop a car following model that
determines safe following distance as a function of speed and reaction time. This predicts the maximum speed
possible at a given density, resulting in a triangular fundamental diagram.

1.4.1.2 CTM and optimization of dynamic lane reversal

The second link flow behavior we consider is DLR [49]. DLR has yet to be studied or optimized at the
network level, and this dissertation aims to accomplish both. First, we present a CTM in which the number of lanes
per cell can vary per time step. We introduce safety constraints based on reasonable assumptions about AV behavior.
Next, we integrate DLR into the system optimal DTA linear program [61, 116], resulting in a mixed integer linear
program (MILP) to find a DLR policy and vehicle routing that satisfies SO. Since SO routing may be too strict an
assumption even for AVs, we then study DLR for single link, with the aim of integrating single link DLR policies
with UE behavior. We characterize the single link flow-optimal DLR policy when demand is deterministic, and use
it to inspire a heuristic for when demand is stochastic. Results show significant improvement on a city network.

1.4.2 Reservation-based intersection control

Reservation-based intersection control [28, 30] is a major component of traffic literature on AVs, and a
network model would not be complete without a node model of reservations. Reservations are defined in terms of
microsimulation, and therefore are not tractable for direct use in DTA. We first propose an integer program (IP) for
the conflict point simplification [115] based on capacity constraints instead of explicit conflict avoidance constraints.
Then, we aggregate conflict points into conflict regions for greater tractability. We also present a version for mixed
traffic reservations based on a “legacy mode” [19]. We then motivate and study more optimal policies for reservations.

1.4.2.1 Paradoxes of reservations

All previous work on reservations have indicated that the first-come-first-served (FCFS) policy performs
better than traffic signals. Indeed, Fajardo et al. [37] and Li et al. [63] compared FCFS reservations with optimized
traffic signals. However, we discovered three theoretical examples in which FCFS reservations perform worse than
signals. Two examples abuse the fairness ordering of FCFS. The third example shows that decentralized reservation
policies (including FCFS) can activate Daganzo’s paradox [24] when traffic signals would not. In addition to the
theoretical examples, we present two city subnetworks in which signals outperform FCFS reservations as well.

1.4.2.2 Integer program for optimization

The conflict region model we develop is formulated as an IP with arbitrary objective function. The general
objective function admits a wide range of policy goals, such as maximizing throughput, minimizing energy consump-
tion, or fairness (such as FCFS). Because IPs are NP-hard, we propose a polynomial-time heuristic. We derive several
theoretical results and show that the heuristic finds an optimal solution to the FCFS objective.

1.4.2.3 Backpressure control

Our IP finds the optimal vehicle ordering for an individual intersection at a specific time step. Because
intersection ordering affects network congestion, a policy that minimizes congestion over the entire network rather
than at individual intersections is preferable. We build on the work of Tassiulas & Ephremides [95] to develop
a pressure-based policy that maximizes queue stability. Because of the example demonstrating that decentralized
control cannot stabilize the network due to DUE route choice, we also adapt the P0 policy [88, 89] to reservations.
P0 is designed for UE route choice, and might be more effective when DUE route choice is a significant issue with
congestion. Since choosing vehicle ordering with the backpressure and P0 policies requires solving an IP, we apply
our heuristic and achieve significant reductions in congestion when compared with FCFS on a city network.
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1.4.3 Applications

Having developed a complete dynamic network loading model, we now turn to applying it to predicting how
AVs might affect network traffic.

1.4.3.1 Effects of AVs on network traffic

First, we study how AVs affect network traffic conditions under current demand scenarios on a variety
of freeway, arterial, and city networks. We study how AV adoption will affect link flow at a variety of market
penetrations. At partial adoption of AVs, we assume signals are still used for intersections, but also that AVs
proportionally improve link capacity. We then study the 100% AV adoption scenarios with reservations. In addition,
we study how the policies for reservations and DLR can further improve network traffic. Pressure-based reservation
policies and DLR each result in significant additional reductions in congestion.

1.4.3.2 Empty repositioning trips

Next, we study how AVs might affect travel demand. Levin & Boyles [57] suggested that AVs might drop
off travelers at their destination then return home to avoid parking costs or share the AV with other household
members. We present a four-step planning model using DTA with endogenous departure time choice [59] in which
travelers choose between transit, driving and parking, and driving and repositioning. We consider the scenario in
which travelers choosing to park drive HVs whereas travelers choosing repositioning use AVs. Due to the later
departure times of repositioning trips and the greater AV efficiency, allowing repositioning trips reduced congestion
by encouraging greater AV market penetration.

1.4.3.3 SAVs with realistic congestion models

Fagnant & Kockelman [34–36] suggested an even more radical change in travel behavior: a public fleet of
SAVs could provide cheap and efficient service, replacing private ownership of AVs. Previous work on SAVs have not
been able to use realistic congestion models due to lack of network modeling work on AVs. We present a framework
for integrating SAV behavior into our network model, and study how SAVs affect congestion and level of service. We
also test heuristics for dynamic ride-sharing with SAVs [35] in anticipation of future demand.

1.5 Organization

The goal of this dissertation is to develop a DTA model of AVs, optimize AV technology, and analyze how
AVs might affect traffic congestion and travel demand. This goal can be separated into three parts, illustrated in
Figure 1.2. First, Chapter 2 modifies CTM to model shared roads with arbitrary proportions of AVs as well as DLR.
Analytical results and efficient heuristics for the DLR policy are also presented. Next, Chapter 3 presents a node
model of reservation-based intersection control and develops an optimal policy. Finally, the node and link models
are used in Chapter 4 to study the effects of AVs and AV travel behaviors on city networks. Conclusions and future
directions are discussed in Chapter 5. Literature relevant to each topic is reviewed in detail in each chapter, and
notation is introduced as needed. A list of abbreviations may be found in Appendix A, and a list of notation may
be found in Appendix B.
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2 Link models incorporating autonomous vehicle

behaviors

2.1 Introduction

This chapter is concerned with developing mesoscopic link flow models of AV behaviors. The models in this
chapter are focused on predicting time-dependent flows through a single link in A. We develop DTA models of two
significant changes in AV technology. First, AVs have reduced perception reaction times from (cooperative) adaptive
cruise control and platooning, which admits safe reductions in following headways. Reduced headways changes the
flow-density relationship [52,67,79,99], and these changes will be active even at partial AV market penetration. We
discuss this more in Section 2.1.1. Second, analogous to reservation-based intersection control, AV communications
and computer precision admit more creative link behaviors, specifically DLR. AVs can safely respond to frequent
and rapid changes in lane direction [49]. Current lane reversal technology — contraflow lanes — cannot change lane
direction often due to the limitations of HVs. DLR can be used to adjust link capacities in response to time-varying
demand within peak periods or at other times. DLR is further discussed in Section 2.1.2.

2.1.1 Changes to flow-density relationship

AVs may also increase link capacity [52,67,99] because (cooperative) adaptive cruies control reduced percep-
tion reaction times requires smaller following distances, and AVs may be less affected than HVs by certain adverse
road conditions. However, capacity improvements are complicated by sharing roads with HVs, and roads will likely
be shared for many years before AVs are sufficiently available and affordable to completely replace HVs.

However, modeling link capacity improvements from shared road policies is still an open problem. Most
current models of AVs are micro-simulations, which are not computationally tractable for the traffic assignment
typically used to determine route choice. Levin & Boyles [57] modified static link performance functions model to
predict capacity improvements as a function of the proportion of AVs on each link based on Greenshields’ [43] capacity
model. However, in reality the proportion of AVs on each link will vary over time. DTA models flow more accurately
than static models and can include the varying-time effects of capacity. Kesting et al. [52] predicted theoretical
capacity for adaptive cruise control and use linear regression to extrapolate for various proportions of connected
vehicles (CVs) and non-CVs. For consistency with DTA, we use a constant acceleration model to analytically predict
capacity and wave speed as a function of the proportion of each vehicle class on the road, and generalize to multiple
classes with different reaction times. Whereas many previous papers on CVs use micro-simulation experiments, we
use DTA on a city network to study the impacts of AVs under dynamic user equilibrium (DUE) route choice.

This chapter makes two contributions towards developing a shared road DTA model. First, a multiclass
cell transmission model (CTM) is proposed that admits space-time variations of capacity and wave speed. Second,
a link capacity model based on a collision avoidance car following model with different reaction times is presented.
The link capacity assumptions lead to the triangular fundamental diagram assumed by Newell [71] and Yperman et
al. [111]. Intersection efficiency scales dynamically with the proportion of AVs using the intersection.

2.1.2 Dynamic lane reversal

Lane reversal has already been explored through contraflow lanes. Most literature pertains to evacuation
(see, for instance, [25, 104, 113]), because of the costs associated with reversing lanes for human drivers, but several
papers study contraflow for daily operations. Zhou et al. [114] use machine learning on queue length and total delay
for scheduling the lane reversal. Xue & Dong [109] similarly applied neural networks on fuzzy pattern clustering
to contraflow for a bottleneck tunnel. Meng et al. [70] use a bi-level optimization to address the driver response
to contraflow lanes through DUE behavior. As demonstrated by the Braess [10] and Daganzo [24] paradoxes,
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consideration of DUE routing behavior is important as it can adversely affect potential network improvements.
Therefore, our results include solving DTA on a city network.

The primary constraint on existing work on contraflow lanes for daily operations is communication with and
ensuring safety of human drivers. Reversing a lane with human drivers therefore often requires significant time and
cannot be performed frequently. Furthermore, it is impractical to perform on every road segment (link), and, where it
is used, the lane is reversed on the entire link. Partial lane reversal could increase flow by adding temporary turning
bays. Consequently, a more frequent DLR for AVs, controlled by a lane manager agent per link in communication
with AVs on the link, could result in significant improvements over contraflow lanes.

Our work is primarily motivated by the greater communications available for AVs due to the frequency of
lane reversals we propose for DLR. We assume that lane direction can be changed at very small intervals of space-
time, such as a few hundred feet of space and 6 second time steps. Such frequent reversals of lane direction can be
used to optimize lane direction for small variations in demand over time. Contraflow lanes are typically reversed for
the duration of a peak period, whereas DLR could change lane direction many times within a peak period to reduce
queueing and spillback. However, such small space-time intervals for DLR cannot be safely implemented with human
vehicles. The greater precision and bandwidth of AV communications is necessary.

In this dissertation, we assume that lane manager agents exist that can communicate the direction of each
lane at space and time intervals to all vehicles on the link. Hausknecht et al. [49] suggest using AV intersection
controllers as a lane manager to specify the direction of lanes for the entire link at different times. With some
changes the intersection controllers could communicate lane direction at space intervals as well, and we also assume
that AVs could be forced to obey these policies. Therefore, rather than study an enabling protocol, we focus on the
potential benefits.

Hausknecht et al. [49] found that DLR improved capacity on a micro-simulation of a small network and used
optimization techniques on the lane reversal problem for static traffic assignment (STA). A natural extension is how
to model DLR and construct optimal lane direction policies for city networks with dynamic demand and more realistic
flow models. Computational tractability becomes a major concern. As noted by Hausknecht et al. [49], even for a
static flow model, STA becomes a subproblem to finding the DLR policy, forming a bi-level optimization problem.
As the number of lanes is integer, the upper level involves integer programming (IP), a potentially NP-hard problem.
Dynamic demand also introduces stochasticity from the perspective of the lane manager because future conditions
may not be known perfectly. Therefore, finding the optimal DLR policy could require impractical computational
resources. However, a heuristic that yields consistent improvements over current fixed lane configurations would be
valuable.

This chapter incorporates DLR into the cell transmission model (CTM) [21,22] and studies optimal policies
for DLR. We consider two types of information availability for finding the optimal DLR policy. First, when future
demand is known, we study DLR in the context of IPs and present theoretical results and motivating examples. When
future demand is stochastic, we formulate DLR as a Markov decision process (MDP) and present a saturation-based
heuristic for computational tractability that appears to perform well on a variety of demands for a single bottleneck
link. We then solve DTA on a city network using this heuristic, and demonstrate significant improvements in system
efficiency.

2.1.3 Organization

The remainder of this chapter is organized as follows: Section 2.2 discusses literature on AVs in traffic and
dynamic lane reversal. Next, Section 2.3 presents the multiclass CTM. The fundamental diagram for the CTM is
developed in Section 2.4. After, we extend the CTM for dynamic lane reversal. We define the CTM in Section 2.5.
In Section 2.6, we consider a SO version of DLR. Due to the potential issues with enforcing SO behavior, Sections
2.7 and 2.8 study policies for DLR on a single link, assuming that route choice is UE. DLR results are presented in
Section 2.9. We present our conclusions from our link model studies in Section 2.10.

2.2 Literature review

This literature review addresses three aspects of modifying link models for AV behaviors. First, we begin
by discussing DTA and multiclass flow models in Section 2.2.1. Next, in Section 2.2.2 we discuss previous (micro-
simulation) work on flow models of AVs. Finally, we discuss the technology necessary for dynamic lane reversal and
the seminal DLR paper [49] in Section 2.2.3.
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2.2.1 Dynamic traffic assignment

DTA includes a number of different flow models, some of which are solved analytically and others which are
simulation-based. For an overview of DTA, we refer to Chiu et al. [15]. DTA uses dynamic flow models to predict
dynamic travel times and congestion more accurately than STA. Although many flow models have been proposed for
DTA, most current DTA models use a simulation-based approximation of the kinematic wave theory [64, 78]. The
partial differential equations of the kinematic wave theory are generally more difficult to solve when multiple vehicle
classes result in varying capacities. The method we use in this chapter is CTM, a Godunov approximation [42]
developed by Daganzo [21, 22]. The multiclass CTM presented in Section 2.3 is shown to approximately solve the
multiclass extension of the kinematic wave theory. The link tranmission model [110,111] reduces the numerical errors
associated with the CTM approximation, but is more difficult to adapt to multiclass flow with a varying flow-density
relationship. Recent work has also proposed exact solution methods such as a Lax-Hopf formulate [17,18], but these
would also be difficult to modify for multiclass flow.

Multiclass DTA has previously been studied in the literature although primarily with a focus on heteroge-
neous vehicles of length and speed. Wong & Wong [106] allowed vehicles to have a class-specific speed and demonstrate
that their model adheres to flow conservation. However, they use a new discrete space-time approximation to solve
their model, and it is not clear whether it is compatible with the most common simulation-based approximations,
which is desirable for integration with existing DTA models. Tuerprasert & Aswakul [97] formulated a multiclass
CTM with different speeds per class, including how different speeds affect cell propagation. It is not clear, though,
whether their model solves a multiclass form of LWR, or is a modification of CTM with useful properties.

2.2.2 Autonomous vehicle flow

The models presented in this chapter are concerned with varying capacities and wave speeds due to the
multiple classes of human-driven and autonomous vehicles. We assume that speed does not depend on vehicle class,
which is reasonable because some AVs are programmed to exceed the speed limit to maintain the same speed as
surrounding traffic for improved safety [3].

Potential improvements in traffic flow from CVs and AVs have begun to receive attention in the literature.
Adaptive cruise control (ACC) [67] has been developed to improve link capacity and, even if it is not incorporated
into AVs, will likely influence AV car-following behavior. Van Arem et al. [99] and Schladover et al. [84] used
micro-simulation to show that cooperative ACC can improve efficiency. Kesting et al. [52] developed a continuous
acceleration behavior model of CVs to predict theoretical capacity. They use a linear regression to extrapolate for
different proportions of CVs and non-CVs. We generalize by including multiple vehicle classes with different reaction
times in our constant acceleration model and predict both capacity and wave speed as a function of the proportion
of each vehicle class. Schakel et al. [79] used simulation to study traffic flow stability, finding that ACC increases
stability and also increases shockwave speed. This is consistent with the theoretical wave speed we develop in Section
2.3. Although much of the literature uses micro-simulation to study CVs and AVs, we use the predicted capacities
and wave speeds in a DTA model to study the impacts on a city network with DUE.

2.2.3 Dynamic lane reversal

The precision and communications potential of AVs have been used to propose several new traffic behaviors
such as DLR. A primary topic of study is improving intersection efficiency, and the communications required for the
proposed intersection controller can be adapted to the requirements of DLR.

Dresner & Stone [28,30] introduced reservation-based intersection control, in which AVs communicate with
an intersection manager to request intersection passage. The intersection manager simulates requests on a grid of
space-time tiles, which are accepted only if they do not conflict with other requests. Fajardo et al. [37] and Li
et al. [63] demonstrated that reservations can reduce delays beyond optimized signals. Therefore, when AVs are a
sufficiently high proportion of vehicular demand, reservations are likely to be used in place of signals [31].

The seminal DLR paper of Hausknecht et al. [49] observed that the intersection manager could be used to
control lane usage by restricting AVs from entering certain lanes. This could enforce DLR by ensuring that AVs
do not enter a lane in the wrong direction. Therefore, the reservation protocol is sufficient for implementing lane
reversal where lanes have the same direction for each link.

In this chapter, we consider lane reversal at multiple spatial intervals within a link. This can also be handled
by a modification to the intersection manager. In the reservation protocol, AVs communicate with the intersection
manager well before reaching the intersection to request a reservation. These longer-range communications can be
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used to establish lane direction at small space-time intervals and require AVs to switch lanes to comply with lane
reversals.

2.3 Multiclass cell transmission model

This section presents a multiclass extension of CTM. The focus of this section is on roads with both human
and autonomous personal vehicles; we do not include the speed differences between heavy trucks and personal
vehicles. The models in Sections 2.3 and 2.4 are defined for continuous flows, which some DTA models use. Because
this dissertation is also concerned with node models, and because reservation-based intersection controls are defined
for discrete vehicles, our results will discretize the flow model defined here. We make the following assumptions:

1. All vehicles travel at the same speed. Although in reality vehicle speeds differ, in DTA models the vehicle
speed behavior model is often assumed to be identical for all vehicles. This is reasonable even with multiple
vehicle classes because AVs may match the speed of surrounding vehicles, even if it requires exceeding the speed
limit, to improve safety [3]. Although Tuerprasert & Aswakul [97] consider different vehicle speeds in CTM, in
this study of HVs and AVs much of the differences in speed would come from variations in HV behavior that
are often not considered in DTA models.

2. Uniform distribution of class-specific density per cell. Single-class CTM assumes the density within a
cell is uniformly distributed. We extend that assumption to class-specific densities.

3. Arbitrary number of vehicle classes. Although this study focuses on the transition from HVs to AVs,
different types of AVs may be certified for different reaction times, and thus may respond differently in their
car-following behavior.

4. Backwards wave speed is less than or equal to free flow speed. This is necessary to determine cell
length by free flow speed because of the Courant-Friedrich-Lewy condition [20]. Although this is a common
assumption in DTA models, in Section 2.4 we show that a sufficiently low reaction time might break this
assumption.

We first define the multiclass kinematic wave theory in Section 2.3.1. Then, following the presentation of
Daganzo [21], we state the cell transition equations in Section 2.3.2 and show that they are consistent with the
multiclass kinematic wave theory in Section 2.3.3.

2.3.1 Multiclass kinematic wave theory

Let M be the set of vehicle classes. Let km(x, t) be the density of vehicles of class m at space-time point

(x, t) with total density denoted by k(x, t) =
∑
m∈M

km(x, t). Similarly, let qm(x, t) = u(k1

k , . . . ,
k|M|
k )km(x, t) be the

class-specific flow, with the total flow given by q(x, t) =
∑
m∈M

qm(x, t), and let the function u
(
k1

k , . . . ,
k|M|
k

)
denote

the speed possible with class proportions of k1

k , . . . ,
k|M|
k . In anticipation of dynamic lane reversal, we let L be the

number of lanes and define capacity and jam density per lane. Section 2.5 will expand L to vary in space and time.
Observe that class proportions of flow and density are identical:

Proposition 1.
qm(x, t)

q(x, t)
=
km(x, t)

k(x, t)
(2.1)

Proof.
qm(x, t) = ukm(x, t) (2.2)

relates flow and density. Therefore,

q(x, t) =
∑
m∈M

qm(x, t)

= u
∑
m∈M

km(x, t)
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= uk(x, t) (2.3)

which results in
qm(x, t)

q(x, t)
=
uqm(x, t)

uq(x, t)
=
km(x, t)

k(x, t)
(2.4)

Speed is limited by free flow speed, capacity, and backwards wave propagation:

u(k1, . . . k|M|) = min

uf ,
Q
(
k1

k , . . . ,
k|M|
k

)
L

k
,w

(
k1

k
, . . . ,

k|M|

k

)
(KL− k)

 (2.5)

where w
(
k1

k , . . . ,
k|M|
k

)
is the backwards wave speed, Q

(
k1

k , . . . ,
k|M|
k

)
is the capacity per lane when the proportions

of density in each class are k1

k , . . . ,
k|M|
k , uf is the free flow speed, and K is jam density per lane. K is assumed

not to depend on vehicle type because the physical characteristics (such as length and maximum acceleration) of
human-driven and autonomous vehicles are assumed to be the same. For consistency, conservation of flow must be
satisfied [106]:

∂qm(x, t)

∂x
= −∂km(x, t)

∂t
∀m ∈M (2.6)

2.3.2 Cell transition flows

As with Daganzo [21], to form the multiclass CTM we discretize time into timesteps of ∆t. Links are then
discretized into cells labeled by i = 1, . . . , |C| (where C is the set of cells) such that vehicles traveling at free flow
speed will travel exactly the distance of one cell per timestep. Let nmi (t) be vehicles of class m in cell i at time
t, where ni(t) =

∑
m∈M

nmi (t). Let ymi (t) be vehicles of class m entering cell i from cell i − 1 at time t. Then cell

occupancy is defined by
nmi (t+ 1) = nmi (t) + ymi (t)− ymi+1(t) (2.7)

with total transition flows given by

yi(t) =
∑
m∈M

ymi (t) = min

{∑
m∈M

nmi−1(t), Qi(t)L,
wi(t)

uf

(
NL−

∑
m∈M

nmi (t)

)}
(2.8)

where N is the maximum number of vehicles that can fit in cell i and Qi(t) is the maximum flow.
Equation (2.8) defines the total transition flows, which will now be defined specific to vehicle class. To avoid

dividing by zero, assume ni−1(t) > 0. (If ni−1(t) = 0, then qi−1(t) = 0 trivially). As stated in Assumption 2,
class-specific density is assumed to be uniformly distributed throughout the cell. Then class-specific transition flows

are proportional to
nm
i−1(t)

ni−1(t) :

ymi (t) =
nmi−1(t)

ni−1(t)
min

{∑
m∈M

nmi−1(t), Qi(t)L,
wi(t)

uf

(
NL−

∑
m∈M

nmi (t)

)}
(2.9)

Equation (2.9) may be simplified to

ymi (t) = min

{
nmi−1(t),

nmi−1(t)

ni−1(t)
Qi(t)L,

nmi−1(t)

ni−1(t)

wi(t)

uf

(
NL−

∑
m∈M

nmi (t)

)}
(2.10)

which shows that flow of class m is restricted by three factors: 1) class-specific cell occupancy; 2) proportional share
of the capacity; and 3) proportional share of congested flow.

In the general kinematic wave theory, class proportions may vary arbitrarily with space and time, which
includes the possibility of variations within a cell. Therefore, assuming uniformly distributed density results in the
possibility of non-FIFO behavior within cells. One class may have a higher proportion at the end of the cell, and
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thus might be expected to comprise a higher proportion of the transition flow. However, as discussed by Blumberg &
Bar-Gera [7], even single class CTMs may violate FIFO. The numerical experiments in this chapter use discretized
flow to admit reservation-based intersection models. The discretized flow also allows vehicles within a cell to be
contained within a FIFO queue, which ensures FIFO behavior at the cell level. Total transition flows for discrete
vehicles are determined as stated above for continuous flow.

2.3.3 Consistency with kinematic wave theory

Proposition 2. The transition flows of equations (2.7) and (2.10) satisfy the conservation of flow equation (2.6)
for the multiclass kinematic wave theory defined in Section 2.3.1.

Proof. Class-specific flow is proportional to density by Proposition 1. Consider the case that k > 0, because if k = 0
then flow is also 0. Then

qm(x, t) =
km
k

min

{
ufk,Q

(
k1

k′
, . . . ,

k|M|

k

)
L,w

(
k1

k
, . . . ,

k|M|

k

)
(KL− k)

}
(2.11)

Let ∆t be the time step and choose cell length such that uf ·∆t = 1. Then cell length is 1, uf is 1, x = i, K = N ,
and k(x, t) = ni(t). Cell length is chosen so that flow may traverse at most one cell per time step to satisfy the
Courant-Friedrichs-Lewy conditions [20]. Then

qm(x, t) =
nmi (t)

ni(t)
min

{
ni(t), Qi(t)L,

wi(t)

v
(NL− ni(t))

}
= ymi+1(t) (2.12)

except for the subindex of n the last term, which should be i+1. As with Daganzo [21] this difference is disregarded.

(See Daganzo [23] for more discussion on this issue.) Therefore ∂qm(x,t)
∂x = ymi+1(t) − ymi (t). Since ∂km(x,t)

∂t =
nmi (t + 1) − nmi (t) is the rate of change in cell occupancy with respect to time, the conservation of flow equation
∂qm(x,t)

∂x = −∂km(x,t)
∂t is satisfied by the cell propagation function of equation (2.7).

Proposition 3. The transition flows of equations (2.7) and (2.10) approximate the multiclass kinematic wave theory
defined in Section 2.3.1. Specifically,

lim
∆x→0

nmi (t)

∆x
= km(x, t) (2.13)

and

lim
∆t→0

ymi (t)

∆t
= qm(x, t) (2.14)

Proof. Since the transition flows satisfy conservation of flow by Proposition 2, the transition flows are a Godunov
approximation scheme [42], and therefore approximate the partial differential equations of the multiclass kinematic
wave theory.

Because it is not known how to solve the multiclass kinematic wave theory exactly, we will use the multiclass
CTM in our DNL model.

2.4 Car following model for autonomous vehicles

We now present a car following model based on kinematics to predict the speed-density relationship as a
function of the reaction times of multiple classes. Car following models can be divided into several types as described
by Brackstone et al. [9] and Gartner et al. [40]. For instance, some predict fluctuations in the acceleration behavior
of an individual driver in response to the vehicle ahead. However, for DTA a simpler model is more appropriate to
predict the speed of traffic at a macroscopic level. Newell [72] greatly simplified car following to be consistent with the
kinematic wave theory, but the model does not include the effects of reaction time. Instead, the car following model
used here is inspired by the collision avoidance theory of Kometani & Sasaki [53] to predict the allowed headway for
a given speed, which varies with driver reaction time. The inverse relationship predicts speed as a function of the
headway, which is determined by density. This car following model results in the triangular fundamental diagram
used by Newell [71] and Yperman et al. [111].

Although this car following model is useful in predicting the effects of a heterogeneous vehicle composition
on capacity and wave speed, other effects such as roadway conditions are not included. Furthermore, CTM assumes
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a trapezoidal fundamental diagram that admits a lower restriction on capacity. Therefore, the effect of reaction times
on capacity and backwards wave speed are used to appropriately scale link characteristics for realistic city network
models. Although AVs may be less affected by adverse roadway conditions than human drivers, this section assumes
similar effects for the purposes of developing a DTA model of shared roads. Other estimations of capacity and wave
speed may also be included in the multiclass CTM model developed in Section 2.3.

2.4.1 Safe following distance

Suppose that vehicle 2 follows vehicle 1 at speed u with vehicle lengths d. Vehicle 1 decelerates at a to a
full stop starting at time t = 0, and vehicle 2 follows suit after a reaction time of τ . The safe following distance, D,
is determined by kinematics.

The position of vehicle 1 is given by

x1(t) =

{
ut− 1

2at
2 t ≤ u

a
u2

2a t > u
a

(2.15)

where u
a

is the time required to reach a full stop. For t > u
a

, the position of vehicle 1 is constant after its full stop.
The position of vehicle 2, including the following distance of D, is

x2(t) =

{
ut−D t ≤ τ
ut− 1

2a(t− τ)2 −D t > τ
(2.16)

The difference is

x1(t)− x2(t) =


u− 1

2at
2 +D t ≤ τ

−atτ + 1
2a(τ)2 +D τ < t ≤ u

a
u2

2a − ut+ 1
2a(t− τ)2 +D t > u

a

(2.17)

and the minimum distance occurs when both vehicles are stopped, at u
a

+ τ . To avoid a collision,

D ≥ − u
2

2a
+ u

( u
a

+ τ
)
− 1

2
a
( u
a

)2

+ d = uτ + d (2.18)

2.4.2 Fundamental diagram

Equivalently, inequality (2.18) may be expressed as

u ≤ D − d

τ
(2.19)

which restricts speed based on following distance (from density). Flow may be determined from the relationship
q =

(
D−d
τ

)
k with D = 1

k , which is linear with respect to density. Figure 2.1 shows the resulting relationship
between flow and density for different reaction times for a characteristic vehicle of length 20 feet that decelerates at
9 feet per second per second for a free flow speed of 60 miles per hour. Since speed is bounded by free flow speed and

available following distance, the triangle is formed by q = min
{
uk,
(
D−d
τ

)
k
}

. Reaction times of 1 to 1.5 seconds

correspond to human drivers [50].
The maximum density at which a speed of u is possible is 1

uτ+d
from inequality (2.19), and therefore capacity

for free flow speed of uf is

Q = uf 1

ufτ + d
(2.20)

Backwards wave speed is

w = −
uf

ufτ+d

1
ufτ+d

− 1
d

=
d

τ
(2.21)

which increases as reaction time decreases. The direction of this relationship is consistent with micro-simulation
results by Schakel et al. [79]. Note that if τ < d

uf , which may be possible for computer reaction times, then

backwards wave speed exceeds free flow speed. If w > uf for CTM, then the cell lengths would need to be derived
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Figure 2.1: Flow-density relationship as a function of reaction time

from the backward wave speed, not the forward. That would complicate the cell transition flows. To avoid this issue,
this dissertation assumes that w ≤ uf .

2.4.3 Heterogeneous flow

The car following model in Section 2.4.2 is designed to estimate the capacity and backwards wave speed
when the reaction time varies, but is uniform across all vehicles. This section expands the model for heterogeneous
flow with different vehicles having different reaction times. Let the density be disaggregated into km for each vehicle
class m. Consider the case where speed is limited by density. Assuming that all vehicles travel at the same speed,
for all vehicle classes,

u =
Dm − `
τm

(2.22)

where Dm is the headway allotted and τm is the reaction time for vehicles of class m. Also, with appropriate units,∑
m∈M

kmDm = 1 (2.23)

is the total distance occupied by the vehicles. Thus∑
m∈M

km (Dm − d) = 1− kd (2.24)

By equation (2.22),
∑
m∈M

kmuτm = 1− kd, and

u =
1− kd∑

m∈M
kmτm

(2.25)

Equation (2.25) may be rewritten as u
∑
m∈M

kmτm = 1− kd. Dividing both sides by k yields

u
∑
m∈M

km
k

∆tm + d =
1

k
(2.26)
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Figure 2.2: Flow-density relationship as a function of AV proportion

Assuming that vehicle class proportions km
k remain constant because all vehicles travel at the same speed, the

maximum density for which a speed of uf is possible is

k =
1

uf
∑
m∈M

km
k τm + d

(2.27)

which follows by taking the reciprocal of equation (2.26). Capacity is

Q = uf 1

uf
∑
m∈M

km
k τm + d

(2.28)

Backwards wave speed is thus

w = −

uf

uf
∑

m∈M

km
k τm+d

1

uf
∑

m∈M

km
k τm+d

− 1
d

=
d∑

m∈M

km
k τm

(2.29)

Equations (2.25) through (2.29) reduce to the model in Section 2.4.2 in the single vehicle class scenario. Figure 2.2
shows an example of how capacity and wave speed increase as the AV proportion increases when human drivers have
a reaction time of 1 second and autonomous vehicles have a reaction time of 0.5 second. The cases of 0% AVs and
100% AVs are identical to the 1 second reaction time and 0.5 second reaction time fundamental diagrams in Figure
2.1, respectively.

2.4.4 Other factors affecting flow

In reality, factors such as narrow lanes and road conditions affect capacity as well. These factors are usually
in Highway Capacity Manual [2] estimates of roadway capacity used for city network models. The model above,
however, does not include factors beyond speed limit. To include these factors in the experimental results, we scale
existing estimates on capacity and wave speed in accordance with equations (2.28) and (2.29). Although the model
in Section 2.4.3 predicts a triangular fundamental diagram as used by Newell [71] and Yperman et al. [111], other
flow-density relationships are often used. CTM, the basis for multiclass DTA in this chapter, uses a trapezoidal
fundamental diagram [21].

Assume estimated roadway capacity and wave speed are Q̂ and ŵ, respectively, and that the reaction time for
human drivers is τHV. Human reaction times may vary depending on the location of the road; for instance reaction
times on rural roads are often greater than those in the city. Because capacity is affected by reaction time through
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equation (2.28), scaled capacity Q̃ is

Q̃ =
ufτHV + d

uf
∑
m∈M

km
k τm + d

Q̂ (2.30)

Similarly, wave speed is affected by reaction time through equation (2.29), so scaled wave speed w̃ is

w̃ =
τHV∑

m∈M

km
k τm

ŵ (2.31)

Equations (2.30) and (2.31) provide a method to integrate the capacity and backwards wave speed scaling
of Section 2.4.3 with other factors and realistic data.

2.5 Cell transmission model for dynamic lane reversal

In this section, we modify the CTM [21, 22] to include a varying number of lanes in space and time. The
modifications here are concerned with the number of lanes available, and are therefore orthogonal to the multiclass
CTM of Section 2.3. We make the following assumptions to ensure safe and realistic behavior:

1. Vehicles can change lanes at most once per time step. For a typical time step of 6 seconds with free
flow speed of 30 miles per hour, the corresponding cell length is 264 feet. That interval in space and time
should be sufficient for one lane change. Lane changing may cause disruptions to the traffic stream because
increases in density from forcing vehicles to merge may reduce flow. This is modeled by scaling the fundamental
diagram with the change in the numbers of lanes. When the number of lanes is reduced, the relative congestion
increases, resulting in reductions in capacity and possibly maximum flow as per the new fundamental diagram.

2. The lane manager can specify the direction of each lane per cell and time step. Changes in lane
direction are subject to constraints on jam density and lane changing.

3. All vehicles are autonomous and obey lane direction specified by the lane manager. We do not
admit human drivers because dynamic lane reversal with human drivers would introduce additional complexity
due to safety requirements.

4. All lanes traveling in the same direction are contiguous. This simplifies lane changing and turning
movement behavior.

5. DLR can be used for arterials and highway links that have a parallel, opposite direction link of
the same length and free flow speed.

2.5.1 Flow model

Consider a pair of links [a, b] ∈ A and [b, a] ∈ A from a to b and from a to b, respectively with contiguous
lanes and identical free flow speed v and backwards wave speed w, so that DLR is possible and cells align. (For links
without a parallel, opposite direction link, the number of lanes may be assumed to be fixed and follow the original
CTM). Let C be the set of cells in [a, b]. We assume that because [a, b] and [b, a] have contiguous lanes, every cell

i ∈ C has a parallel cell
←−
i of the same length in the opposite direction. Link [a, b] has cells 1 through |C|.

←−
|C| refers

to the first cell of link [b, a], and
←−
1 refers to the last cell. Figure 2.3 illustrates this notation. The cell length is uf∆t,

the distance a vehicle can travel in a time step of ∆t at free flow speed.
Assumptions 2 and 4 simplify defining the direction of each lane at each time step to specifying the number

of lanes in each direction in space and time. This also opens the possibility for preventing use of a lane in any
direction over some interval in spacetime. This could be used to clear a lane to reduce the congestion caused by a
later lane reversal.

Section 2.3 assumed a fixed number of lanes, L. For this section, we allow L to vary in space and time. We
define L to be a lane policy — specification of the number of lanes for each space-time interval, denoted Li(t) for
cell i and time t or L(x, t) at position x ∈ R. We replace the fixed L in the multiclass CTM of Section 2.3 with time
and space-varying number of lanes Li(t). L(x, t) is used to verify that CTM with lane reversals is consistent with
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Figure 2.3: Illustration of paired CTM links [a, b] and [b, a]

conservation of flow. In Section 2.5.2 we describe constraints on lane policies to follow the above assumptions. We
use a trapezoidal fundamental diagram for link flow:

q(x, t) = min{ufk,QL(x, t), w (KL(x, t)− k)} (2.32)

As with Daganzo [21] we specify the cell transition flows, then demonstrate that they satisfy conservation of flow:
∂q
∂x = −∂k∂t . Cell occupancy ni(t) is determined by transition flows yi(t, L), which depend on the lane policy L:

ni(t+ 1) = ni(t)− yi(t, L) + yi−1(t, L) (2.33)

with
yi(t, L) = min {Si(t, L), Ri+1(t, L)} (2.34)

where
Si(t, L) = min {ni(t), QLi(t)} (2.35)

is the sending flow and

Ri(t, L) = min
{
QLi(t),

w

v
(NLi(t)− ni(t))

}
(2.36)

is the receiving flow, where N is the maximum number of vehicles that can fit in 1 lane of cell i. Since the links are

interchangeable, equations (2.33) and (2.34) define cell evolution for cells 1 through |C| as well as cells
←−
|C| through

←−
1 .

Proposition 4. The transition flows of equations (2.33) through (2.36) satisfy conservation of flow, ∂q(x,t)
∂x =

−∂k(x,t)
∂t .

Proof. Let ∆t be the time step and choose cell length such that v∆t = 1. If units are chosen so that ∆t = 1,
cell length is 1, v = 1, x = i, K = N , and k(x, t) = ni(t). This cell length satisfies the Courant-Friedrich-Lewy
condition [20] for stability of these difference equations when w ≤ v.

Then, as with Daganzo [21],

q(x, t) = min
{
ni(t), QLi(t), QLi+1(t),

w

v
(NLi+1(t)− ni+1(t))

}
= yi(t, L) (2.37)

which results in ∂q(x,t)
∂x = yi+1(t) − yi(t). Since ∂k(x,t)

∂t = ni(t + 1) − ni(t) is the rate of change in cell occupancy

with respect to time, flow conservation ∂q
∂x = −∂k∂t is yi+1(t)− yi(t) = ni(t)− ni(t+ 1), which is the cell propagation

function of equation (2.33).

Proposition 5. The transition flows of equations (2.33) through (2.36) approximate the multiclass kinematic wave
theory defined in Section 2.3.1. Specifically,

lim
∆x→0

ni(t, L)

∆x
= k(x, t) (2.38)

and

lim
∆t→0

yi(t, L)

∆t
= q(x, t) (2.39)

Proof. Since the transition flows satisfy conservation of flow by Proposition 4, the transition flows are a Godunov
scheme [42], and therefore approximate the partial differential equations of the multiclass kinematic wave theory.
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2.5.2 Constraints

The number of lanes per cell and time step must satisfy constraints for safety. First, for all i ∈ C and for all
t the total number of lanes across a cell and its opposite is limited by the maximum number of lanes available, `i:

Li(t) + L←−
i

(t) ≤ `i (2.40)

We set `i = `←−
i

, and refer to it as either for simplicity. We do not require equality because it may be desirable to
empty a lane before reversing its direction.

Assumption 1 requires that if n←−
i

(t) > 0 then

|Li(t+ 1)− Li(t)| ≤ 1 (2.41)

|L←−
i

(t+ 1)− L←−
i

(t)| ≤ 1 (2.42)

so that vehicles in cell i at time t that remain in i at t+ 1 cannot be forced to change lanes more than once. Also,

|Li+1(t+ 1)− Li(t)| ≤ 1 (2.43)

|L←−−
i+1

(t+ 1)− L←−
i

(t)| ≤ 1 (2.44)

so vehicles moving from cell i at time t to cell i+ 1 at time t+ 1 do not have to change lanes more than once.
When the lane direction changes, the number of vehicles in a cell could potentially exceed the jam density,

which results in the following requirement:
NLi(t) ≥ ni(t) (2.45)

so that the available physical space in the cell (which changes based on its number of lanes) is sufficient to hold all
vehicles in the cell.

2.5.3 Feasibility

The additional constraints require an analysis of feasibility. Because the initial conditions could potentially
force a violation of constraint (2.45), a sufficient condition for feasibility is that constraints (2.40) through (2.45) are
initially satisfied. This is easily achievable for DTA models that start with empty links at t = 0 and load flow onto
links in subsequent time steps. Proposition 6 shows that if the initial cell occupancies are feasible, then there exists
a solution to DLR feasible for all time steps.

Proposition 6. Let LT be the set of policies satisfying constraints (2.40) through (2.45) for 0 ≤ t ≤ T . If for all
cells i

(i) Li(0) + L←−
i

(0) ≤ `

(ii) |Li+1(0)− Li(0)| ≤ 1

(iii) |L←−−
i+1

(0)− L←−
i

(0)| ≤ 1

(iv) NLi(0) ≥ ni(0)

(v) NL←−
i

(0) ≥ n←−
i

(0)

then LT 6= ∅.

Proof. A fixed lane policy is a policy L such that for all i ∈ C and for all t, Li(t) = Li(0). Any fixed lane policy
satisfies constraints (2.41) and inductively satisfies constraints (2.40), (2.43), and (2.45) if Li(0) + L←−

i
(0) ≤ `,

|Li+1(0)− Li(0)| ≤ 1, and NLi(0) ≥ ni(0), respectively.

The conditions of Proposition 6 correspond to constraints (2.40) through (2.45) for t = 0. Essentially, they
require that the initial state of the network is feasible. Part 1 requires that every lane has a single direction. Parts
ii and 3 require that the change in the number of lanes between two adjacent cells is at most one. Parts iv and v
require that the initial lane configuration provides enough space for vehicles in the network at time t = 0.
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A fixed lane policy can be used to provide a bound on the value of the optimal DLR policy. However, näıve
policies could easily perform worse than fixed lane policies. Section 2.6 presents a method to find the optimal DLR
policy under SO conditions, and Sections 2.7 through 2.9 are concerned with DLR policy with UE behavior.

2.6 System-optimal dynamic lane reversal

Due to the constraints formulated in Section 2.5.2, a SO DLR policy can be naturally developed based on
the linear program (LP) for SO CTM. Hausknecht et al. [49] also studied a bi-level program to optimize lane reversal
for STA. However, STA is designed for steady state conditions, and their formulation cannot evaluate the impact of
time-varying demand.

2.6.1 Formulation

In this section we present an MILP based on the SO LP for CTM by Ziliaskopoulos [116] for a single
destination and Li et al. [61] for more general networks. The SODTA formulation by Ziliaskopoulos has been widely
applied in a number of research applications, especially evacuation [16,83]. CTM more realistically propagates traffic
than alternative approaches relying on link performance functions. However, it faces drawbacks due to the size of
the linear program, the holding back issue (i.e., when the linearized relaxation of the CTM produces a solution that
would be infeasible in the non-linearized CTM [26,74]), and in multi-destination applications, FIFO violations [12].
While addressing these issues is unnecessary for the scope of this work, it is possible that in a network comprised
solely of AVs, the latter could represent realistic behavior.

The addition of the number of lanes per cell, assumed to be integer, requires an MILP as opposed to an
LP. In preparation for the formulation, let C̃ be the set of all cells in the network and E the set of cell connectors.
C̃ differs from C, which is the set of cells for a single link. Since C̃ includes all cells, let C̃R ⊂ C̃and C̃S ⊂ C̃ be
the sets of source and sink cells, respectively. Let T denote the time horizon. Without loss of generality, and for
simplicity of notation, let the time step be 1. To define cell transitions, let Γ−(i) and Γ+(i) be the sets of preceding
and succeeding cells to cell i. Let drs(t) be the demand for (r, s) ∈ C̃R × C̃S at time t. Let P̃ be a set of all pairs of

parallel opposite cells
(
i,
←−
i
)

.

The decision variables are cell density nrsi (t) specific to origin-destination (r, s), cell transition flows yrsij (t)

from i ∈ C̃ to j ∈ C̃ per origin-destination pair (r, s) at time t, and the number of lanes per cell Li(t). Because this
MILP is formulated for a network, including nodes, both the source and destination cells must be specified in the
cell transition flows. Due to the complexity of the MILP, we do not incorporate the node model of Chapter 3 into
the SO DLR formulation. (The node model will be combined with DLR in Sections 2.7 through 2.9.)

The objective of the DLR-SODTA model is to minimize total system travel time, which due to the CTM
assumptions, is simply the summation of the density of each cell over all time steps. This results in the following
MILP:

min Z =
∑

(r,s)∈ C̃R× C̃S

T∑
t=0

∑
i∈C̃\ C̃S

nrsi (t) (2.46)

s.t. nrsj (t+ 1) = nrsj (6) +
∑

i∈Γ−(j)

yrsij (t)−
∑

k∈Γ+(j)

yrsjk(t)
∀(r, s) ∈ C̃R × C̃S

∀j ∈ C̃\( C̃R ∪ C̃S)
∀0 ≤ t ≤ T

(2.47)

nrsj (t+ 1) = nrsj (t) +
∑

i∈Γ−(j)

yrsij (t)
∀(r, s) ∈ C̃R × C̃S

∀j ∈ C̃S

∀0 ≤ t ≤ T
(2.48)

T∑
t=0

∑
i∈Γ−(s)

yrsis (t) =

T∑
t=0

drs(t) ∀(r, s) ∈ C̃R × C̃S (2.49)

∑
j∈Γ+(i)

yrsij (t) ≤ nrsi (t)
∀(r, s) ∈ C̃R × C̃S

∀i ∈ C̃\( C̃R ∪ C̃S)
∀0 ≤ t ≤ T

(2.50)
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∑
r∈ C̃R

∑
s∈ C̃S

w

uf
nrsj (t) +

∑
i∈Γ−(j)

yrsij (t)

 ≤ w

uf
NjLj(t)

∀j ∈ C̃\( C̃R ∪ C̃S)
∀0 ≤ t ≤ T (2.51)

∑
r∈ C̃R

∑
s∈ C̃S

∑
i∈Γ−(j)

yrsij (t) ≤ Qj(t)Lj(t)
∀j ∈ C̃\( C̃R ∪ C̃S)
∀0 ≤ t ≤ T (2.52)

∑
r∈ C̃R

∑
s∈ C̃S

∑
i∈Γ−(j)

yrsij (t) ≤ Qi(t)Li(t)
∀i ∈ C̃\( C̃R ∪ C̃S)
∀0 ≤ t ≤ T (2.53)

nrsr (t+ 1)− nrsr (t) +
∑

j∈Γ+(r)

yrsrj (t) = drs(t)
∀(r, s) ∈ C̃R × C̃S

∀r ∈ C̃R

∀0 ≤ t ≤ T
(2.54)

nrsi (0) = 0
∀(r, s) ∈ C̃R × C̃S

∀(i, j) ∈ E

∀0 ≤ t ≤ T
(2.55)

yrsij (0) = 0
∀(r, s) ∈ C̃R × C̃S

∀(i, j) ∈ E

∀0 ≤ t ≤ T
(2.56)

yrsij (t) ≥ 0
∀(r, s) ∈ C̃R × C̃S

∀(i, j) ∈ E

∀0 ≤ t ≤ T
(2.57)

Li(t+ 1) ≥ Li(t)− 1
∀i ∈ C̃

∀0 ≤ t ≤ T (2.58)

Li(t+ 1) ≤ Li(t) + 1
∀i ∈ C̃

∀0 ≤ t ≤ T (2.59)

Li+1(t+ 1) ≥ Li(t)− 1
∀i ∈ C̃

∀0 ≤ t ≤ T (2.60)

Li+1(t+ 1) ≤ Li(t) + 1
∀i ∈ C̃

∀0 ≤ t ≤ T (2.61)

Li(t) + L←−
i

(t) ≤ `i
∀
(
i,
←−
i ∈ P̃

)
∀0 ≤ t ≤ T

(2.62)

Li(t) ≥ 0
∀i ∈ C̃

∀0 ≤ t ≤ T (2.63)

Constraints (2.47) through (2.54) define the cell transition flows. Constraints (2.50), (2.51), and (2.52) have been
modified from the original multi-destination CTM linear programming model to account for the explicit representation
of multiple lanes as a decision variable. Constraints (2.58) through (2.61) bound the number of lanes that can be
reversed per time period, and constraint (2.62) defines the number of lanes available to any pair of cells as `i, the
total number of lanes available to both cells, which is an input to the model. Note that all available lanes must be
allocated during all time periods, which will at times result in an arbitrary lane configuration.

2.6.2 Discussion

Let Z∗ be the optimal value of the objective function. Also, let Z̄ = Z solved with the additional constraints

Li(t) = L̄i ∀i ∈ C̃,∀0 ≤ t ≤ T (2.64)

for some L̄i’s satisfying L̄a + L̄b ≤ `a and L̄i ≥ 0 for all i ∈ C̃. Let Z̄∗ be the optimal solution with corresponding
flow and lane assignment

(
ȳ∗, L̄

)
. Z̄∗ reduces to solving the SO problem with a fixed lane configuration L̄. Clearly,(

ȳ∗, L̄
)

is a feasible solution to the original problem since the fixed configuration constraint (2.60) satisfies constraints
(2.57) through (2.63). This results in the following observation:
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Figure 2.4: (a) two link network and (b) cell representation

Figure 2.5: Demand case (I)

Proposition 7. Z∗ ≤ Z̄∗.

2.6.3 Demonstration and analysis

This section presents the SO DLR model results on a small corridor example and a larger grid network.
The DLR results are compared with the fixed-lane results. The SO DLR problem was solved using the AMPL
programming interface to the CPLEX solver.

2.6.3.1 Two link demonstration

The SO DLR model is initially demonstrated on a simple two-link example in order to closely analyze the
relationship between dynamic lane allocation and dynamic traffic demand patterns. Both links are of length 650 m
with a free flow speed of 50 kph. Each link has two lanes with a capacity of 1800 vehicles/hour/lane. Figure 2.4
illustrates the demonstration network.

Using a time increment of 6 seconds, the each link is comprised of 8 cells with N = 13.2 vehicles and Q = 3
vehicles. We examine four demand cases and compare the DLR and fixed lane SODTA results. Demand case I is
illustrated in Figure 2.5.

In case (I), the vehicle flow is much higher in one direction. In the traditional fixed lane network, this situation
will result in congested conditions. The SODTA model considered 30 time steps, or 3 minutes of simulation. Demand
for the first ten time steps was assumed to be d13,14(t) = 10 vehicles and d16,15(t) = 3 vehicles respectively. The
demand follows a uniform departure time profile. The DLR model resulted in a total travel time of 5166 seconds
and 18 time increments for all vehicles to exit the network. The fixed-lane approach was higher with a total travel
time of 6834 seconds and 23 time-increments for all vehicles to exit.

Figure 2.6 shows a detailed representation of the lane configuration for pairs of cells. Each vertical column
represents the four lanes that are shared by a pair of cells. The green shows that a lane is assigned to the first cell in
the pair, while the red represents a lane assignment to the second cell in the pair. For example, under pair (13,15),
all four lanes are assigned to cell 13 until time period 7. In demand case I, the vehicle flow was unbalanced and
therefore a majority of the lanes were able to be utilized by the direction with a higher volume of flow. Also note
that when there is no vehicle demand for the cell or cell connector, the lane is assigned arbitrarily.

In the second case, the flow from both directions is more equal, as Figure 2.7 shows. This is a common case
for congested network corridors, even during peak hours. Demand for the first ten time steps was assumed to be
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Figure 2.6: Lane configuration in demand case (I)

Figure 2.7: Balanced demand case (II–IV)

d13,14(t) = 9 vehicles and d16,15(t) = 5 vehicles.
In the fixed lane case, the model requires 16 time periods for all the flow to exit the network while the DLR

model requires 20 time-increments. The total travel time in the fixed case was 7230 seconds and in the DLR case
was 6756 seconds. Again, the DLR model was able to reduce the total travel time. However, because there were
more vehicles from both directions, the reduction was not as great.

Demand case III examines the impact of time dependent demand, which an important consideration for
network operators. In this case, the total vehicle demand is the same (90 vehicles/3 minutes) but the departure
times are different. In this scenario, the departure time are more spaced out and we assume d13,14(t) = 18 vehicles
for 0 ≤ t ≤ 24 and d16,15(t) = 10 vehicles for 60 ≤ t ≤ 84.

Both the fixed-lane and the DLR models require 25 time periods for all vehicles to exit the network. However,
the total travel time in the fixed case was 9084 seconds and in the DLR case was 7488 seconds.

In addition, Figure 2.8 shows the detailed lane configuration in demand case III. This demand scenario may
be particularly conducive to dynamic lane allocation because the first wave of demand from (13,14) had sufficient
time to exit the network before the second wave of demand from (16,15) entered the network.

Finally, in Table 2.1 we examine the peak demand case where the total demand at each departure time is
no longer uniform.

The total travel time for the fixed case is 8958, while the total travel time for the SO DLR is 8718. The
vehicles exited the network in 22 time-steps versus 18 time-steps. Table 2.2 summarizes the results from the four
demand cases. Additionally, Table 2.2 presents the results for the case in which only two of the four lanes are
available to change directions as DLR1. This would ensure that for all time periods, each direction has at least one
lane available which could be another possible dynamic lane configuration.

Finally, we examined a 30 minute CTM simulation period, which is 300 time steps. We loaded demand at
the same rate (9 and 5 vehicles per time step respectively) for 15 minutes, or 150 time steps. In this case, we placed
a constraint that required that there be at least one lane in each direction during all times periods (called DLR1).
There was a total of 1,350 vehicles between (13,14) and 750 between (16,15).

The DLR solution assigned 3 lanes to the direction with a greater volume of vehicles and then switched
to a 2 lanes in each direction configuration after 108 time increments. This relatively static assignment of lanes is
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Figure 2.8: Lane configuration in demand case (III)

Table 2.1: Peak departure pattern demand

Time (14, 13) (16, 15)
0 5 0
6 15 0
12 10 0
15 30 0
24 30 0
30 0 5
36 0 5
42 0 20
48 0 18
54 0 2

Total 90 50

Table 2.2: Summary of results for the two-link network

Total Departure # departure Fixed DLR DLR1

demand profile periods (s) (s) (s)
I 100, 30 Uniform 10 7464 5796 5796
II 90, 50 Uniform 10 7230 6756 6756
III 90, 50 Uniform 5 9084 7488 8220
IV 90, 50 Peak 5 8958 8718 8718
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Figure 2.9: Grid network with four OD pairs

expected because of the uniform demand profile. If the demand were to arrive in more of a heavy-slow pattern, we
would expect there to be more changes in lane configuration as more capacity was switched to the favored direction
of travel.

The total travel time in the fixed case was 108.9 hours. The DLR model reduced the travel time to 69.4
hours, which represented 36% of the travel time.

2.6.3.2 Grid network demonstration

Finally, this work presents the results for the SODLR model on a demonstration network with a grid structure
and multiple origin-destination (OD) pairs. A grid network results in additional paths available between each OD
and may have a significant impact on the performance of dynamic lane management. Furthermore, the additional
constraint (2.49) is necessary to ensure that the total demand between each origin-destination is maintained.

Figure 2.9 shows the demonstration network with four zones (i.e., A, B, C, D) that act as both origins and
destinations. The OD pairs considered are A–D, D–A, B–C, and C–B with a demand of 3300 vph, 300vph, 2700
vph, and 600 vph, respectively. Links have identical properties and the same as the previous example (i.e., two lanes
available in the fixed case, a free flow speed of 50 kph and length of 650 m). In this network, we expect each OD pair
to have three primary paths through the network. The majority of demand will favor the most direct path through
for each OD, but as congestion increases, the paths on the outside links will become more favorable.

We explore three different demand cases, similar to the two link example, and each case has the same amount
of total demand. Case I has a uniform departure profile for ten departure time periods. Case II features a peak
pattern of departure over five time periods, while Case III has a more pronounced peak over three departure time
periods. The peak periods were chosen such that the departure time periods for opposing OD pairs (i.e., A–D and
D–A) were overlapping.

Table 2.3 shows the results for the three demand cases on the grid shaped demonstration network. The total
demand is shown for OD pairs (A–D, D–A, B–C, C–B). Table 2.3 shows the results for the fixed case where there
are required to be two lanes in each direction for all time periods and the SODLR case, where the lane management
can be optimized. In each case, the reduction in total travel time is between 12–15%. This is a significant reduction
for the relatively short simulation period shown and suggests that dynamic lane reversal may be able to significantly
reduce travel time. However, for the case where the demand is overlapping in all directions, the reduction in total
travel time may be less.

2.7 Dynamic lane reversal on a single link

Section 2.6 presented a MILP formulation for the SO DLR problem. However, in practice SO routing
requires an impractical level of control over individual vehicles. Even with AVs, travelers may be unwilling to follow
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Table 2.3: Summary of results for the grid network demonstration

Demand Departure # departure Fixed DLR Decrease
case profile periods (min) (min)

Uniform 83, 8, 68, 15 10 238.74 200.95 15.8%
Medium peak 83, 8, 68, 15 5 261.09 227.65 12.8%

High peak 83, 8, 68, 15 3 279.18 245.55 12.0%

Figure 2.10: Example of bottleneck lane configuration

proscribed routing. Furthermore, the MILP is computationally intensive even for small networks. Therefore, it is
valuable to study DLR under the assumption of DUE behavior.

In this section we study the optimal DLR policy for a single link when sending and receiving flows at the
upstream and downstream ends are known. Although this level of knowledge is still not completely realistic, this is
useful for developing theory about the DLR problem. Furthermore, the lane manager may be able to communicate
with other lane and intersection managers across the city to acquire sending and receiving flows for a limited time
horizon. Section 2.8 studies DLR policies for a single link with stochastic demand and downstream supply. Overall
this section focuses on policies from a single link perspective for computational tractability, which is nevertheless
demonstrated to improve total system travel time on a city network in Section 2.9.

Without the additional constraints of the SO formulation, we again refer to cell occupancies as ni(t) and
cell transition flows as yi(t). Since we focus on a single pair of links [a, b] and [b, a], recall that C is the set of cells
on [a, b].

2.7.1 Motivation

We first motivate the discussion with a demonstration of the challenges in finding an optimal DLR policy.
A näıve approach might consider the objective of maximizing flow on a per time step basis, i.e. at t, choose lanes
to max

∑
i∈C

(
yi(t) + y←−

i
(t)
)
. This objective is favorable because it exhibits the optimal substructure characteristic for

constructing a dynamic programming algorithm. However, consider two parallel but opposite directional links with
capacity 1200vph per lane, with 4 lanes between them, 4 cells, and 4800vph demand in each direction for a limited
time. Then the lane configuration shown in Figure 2.10, maximizes flow initially but results in a bottleneck in the
middle of the link. Therefore, an optimal policy must consider future evolution of flows.

2.7.2 Integer program

Because näıve methods for DLR policies may reduce flow, we formulate the DLR problem for a single link
as an IP. We then analyze this IP to derive some theoretical results about the solution that inspire our heuristic in

Section 2.8. To be consistent with the cell notation, let cells 0 and
←−−−−
|C|+ 1 be source cells connected to cells 1 and

←−
|C|,

respectively. Because we assume demand and supply for the pair of links under consideration are deterministic in this
section, we model the upstream and downstream links as point queues on source and sink cells. (This assumption

is relaxed in Section 2.8.) Let the number of vehicles entering the queues on 0 and
←−−−−
|C|+ 1 at time t be given by

d0(t) and d←−−−|C|+1
(t). Then the queues of vehicles waiting to enter the link at time T are

T∑
t=0

(
d0(t)− y|C|(t, L)

)
and
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T∑
t=0

(
d←−−−|C|+1

(t)− y←−
0

(t, L)
)

, the differences between upstream demand and vehicles that entered the pair of links.

For the downstream ends, let cells |C|+ 1 and
←−
0 be sink cells connected to cells |C| and

←−
1 with receiving

flows are R|C|+1(t) and R←−
0

(t). Denote by y0(t) flow entering cell 1 and by y←−−−|C|+1
(t) flow entering cell

←−
|C|. We

consider the objective of maximizing link throughput. Let L∗ be an optimal solution to the following IP:

max Z(L) =

T∑
t=0

ξt
(
y|C|(t, L) + y←−

1
(t, L)

)
(2.65)

s.t. yi(t, L) = min {Si(t, L), Ri+1(t, L)} ∀i,←−i ∈ C,∀t ∈ [0, T ]

Si(t, L) = min {ni(t), QLi(t)} ∀i,←−i ∈ C,∀t ∈ [0, T ]

Ri(t, L) = min
{
QLi(t),

w

v
(NLi(t)− ni(t))

}
∀i,←−i ∈ C,∀t ∈ [0, T ]

Li(t) + L←−
i

(t) ≤ ` ∀i ∈ C,∀t ∈ [0, T ]

|Li(t)− Li(t+ 1)| ≤ 1 ∀i ∈ C,∀t ∈ [0, T ]

|Li(t)− Li+1(t+ 1)| ≤ 1 ∀i ∈ C,∀t ∈ [0, T ]

Li(t) ∈ Z+ ∀i ∈ C,∀t ∈ [0, T ]

yi(t, L) ≥ 0 ∀i,←−i ∈ C,∀t ∈ [0, T ]

where ξ ∈ (0, 1] is a discount factor to discourage delayed throughput. ξ < 1 penalizes delaying throughput to later
time steps. ξ < 1 is necessary for analyses for which T →∞, as ξ = 1 would result in Z(L)→∞ as T →∞.

Cell transition flows and vehicle movement may be specified for the single link under consideration because
it is assumed that vehicles will move forward if possible. However, if multiple links were to be considered, the IP
would have to include vehicle route choice.

Z(L) as defined in the IP (2.65) maximizes discounted flow through the single link under consideration.
This IP does not directly apply to traffic networks because of queue spillback. However, the DLR policy problem
for a single link is sufficiently complex to require heuristics when used with DTA. Solving the IP for a network
would introduce additional complexity in the form of route choice and intersection conflicts. Therefore, we restrict
our attention to flow on a single link. In Section 2.9.3, we show that the single link heuristic yields significant
improvements for a city network.

Proposition 8. The IP (2.65) has at least one feasible solution if for all cells i ∈ C,

(i) Li(0) + L←−
i

(0) ≤ `

(ii) |Li+1(0)− Li(0)| ≤ 1

(iii) |L←−−
i+1

(0)− L←−
i

(0)| ≤ 1

(iv) NLi(0) ≥ ni(0)

(v) NL←−
i

(0) ≥ n←−
i

(0)

Proof. From Proposition 6, there exists a solution satisfying the DLR constraints on the number of lanes at each
cell-time for t ≥ 0. The feasibility of flow propagation constraints follows from CTM.

The conditions for Proposition 8 correspond to the constraints of the IP (2.65) at t = 0.
Although solving the IP (2.65) yields the optimal DLR policy for a single link, it is not sufficient for network

analyses. The single-link model does not consider queue spillback effects because demand waiting to enter the link
is modeled as point queues. Furthermore, solving this IP for every link in a city network is not tractable, especially
when UE route choice is taken into consideration. Therefore, the remainder of this section develops structure and
intuition about the single-link IP. This structure is used to construct an effective heuristic in Section 2.8.
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𝐿𝑖 𝑡  

Figure 2.11: Flow through a single cell

𝑦𝑖 𝑡 ≤ 𝑄𝐿𝑖 𝑡  

𝑦𝑖+1 𝑡 ≤ 𝑄𝐿𝑖 𝑡  

𝐿𝑖 

𝐿𝑖  

𝐿𝑖+1 

𝐿𝑖+1 

Figure 2.12: Flow between a pair of cells

2.7.3 Bottlenecks

This section further explores the creation of bottlenecks on the links by allowing y0(t) + y←−−−|C|+1
(t) > Q`

demand to enter in one time step. As seen in Section 4.1, bottlenecks can adversely affect the objective of maximizing
total discounted flow through the link. In Proposition 9, we prove that creating a bottleneck is not necessary for
optimality.

Intuitively, total flow between any pair of parallel opposing cells is restricted by the capacity and the number
of lanes. Lemmas 1 and 2 formally show this, and are used in the proof of Proposition 9.

Lemma 1. For all L ∈ LT and i ∈ C, yi(t, L) + y←−
i

(t, L) ≤ Q`.

Proof. Since yi(t, L) ≤ QLi(t) and y←−−
i+1

(t, L) ≤ QL←−
i

(t), and from constraint (2.40), yi(t, L) + y←−−
i+1

(t, L) ≤ QLi(t) +

QL←−
i

(t) ≤ Q`.

Lemma 2. For all L ∈ LT and i ∈ C, yi(t, L) + y←−−
i+1

(t, L) ≤ Q`.

Proof. yi(t, L) ≤ QLi(t) and y←−−
i+1

(t, L) ≤ QL←−
i

(t), but Li(t) + L←−
i

(t) ≤ ` by constraint (2.40). Therefore yi(t, L) +

y←−−
i+1

(t, L) ≤ QLi(t) +QL←−
i

(t) ≤ Q`.

Lemmas 1 and 2 state that total flow through a cell or between a pair of cells in any one time step is limited
to Q` because only ` lanes are available at a single cell, illustrated in Figures 2.11 and 2.12, respectively. This is
used as the basis for a general result about bottlenecks:

Proposition 9. Suppose that there exists an i ∈ C, j ≥ i, t such that yi(t, L
∗) + y←−

j
(t, L∗) ≥ Q`. Then there exists

an L′ ∈ LT with Z(L′) ≥ Z(L∗) and yi(t, L
′) + y←−

j
(t, L′) ≤ Q`.

Proof. By induction on j − i. The proof is split into two cases: whether the difference between i and j is even or
odd.

Basis: j = i: by Lemma 1, flow through cell i is limited to Q`, thereby limiting the future reward. j = i + 1:
by Lemma 2, flow through cell i is limited to Q`, thereby limiting the future reward.

Inductive step: Suppose j − i = n + 1 (with n + 1 ≥ 2). If yi(t, L
∗) + y←−

j
(t, L∗) > Q`, then such an L′ exists

by the inductive hypothesis applied at i+ 1,
←−−−
j − 1, t+ 1 (with (j − 1)− (i+ 1) = n− 1).

Proposition 9 notes that if in L∗, two cells i and j at some time t have yi(t, L
∗) + y←−

j
(t, L∗) > Q`, then some

alternate policy L′ with yi(t, L
′) + y←−

j
(t, L′) ≤ Q` is also optimal. Note that this applies for flow entering in opposite
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directions at the time step, or for flow entering and flow already on the link. This allows restrictions to be placed
on the solution. For instance, in a pair of links with 4 lanes total, if it is optimal to assign 3 lanes to one direction
in one time step and entering flow exceeds 2Q, then it is optimal to assign 3 lanes to succeeding cells in succeeding
time steps to allow that flow to reach the end of the link.

2.7.4 Partial lane reversal

A major modeling decision in the above formulation is deciding lane direction at the cell level, as opposed
to the entire link. From Proposition 9, L1(t) + L←−|C|(t) > ` is not necessary for optimality. However, the opposite,

where L1(t) + L←−|C|(t) < `, could be beneficial to add additional turning lanes for exiting vehicles. To prevent queue

spillback for one turning movement from interfering with another until vehicles exit, additional turning lanes longer
than one cell could also improve flow. Although lane reversals to improve short-term flow at the end of the link may
not be optimal in the long term, a discount factor of ξ < 1 encourages giving preference to exiting flow due to the
total discount of at least ξ|C| from the minimum time required to traverse the link. Proposition 10 demonstrates that
under certain conditions, a partial lane reversal on cell |C| will improve the total discounted flow through the link.

Symmetric conditions apply to cell
←−
1 . These conditions are likely to occur at some time step for many networks.

Proposition 10. If

(i) L∗|C|(t) ≤ L
∗
|C|(t− 1)

(ii)
t∑

t′=0

d←−−−|C|+1
(t)−

t−1∑
t′=0

y←−−−|C|+1
(t, L∗) ≤ Q

(
L∗←−
|C|

(t)− 1

)

(iii) n←−|C|(t) ≤ Q
(
L∗←−
|C|

(t)− 1

)
(iv) n|C|(t, L

∗) ≥ R|C|+1(t) > QL∗|C|(t)

(v) ξ < 1

then there exists an L′ ∈ LT with Z(L′) > Z(L∗).

Proof. Construct L′ as follows: L′i(t) = L∗i (t) and L′←−
i

(t) = L∗←−
i

(t) for all i ∈ C and t′ ∈ [0, t], except that L′←−
|C|

(t) =

L∗←−
|C|

(t) − 1 and L′|C|(t) = L∗|C|(t) + 1. L′ is feasible because of condition (i). Because of conditions (ii) and

(iii) removing a lane from
←−
|C| does not restrict flow. Then for all i ∈ C and t′ ∈ [0, t], yi(t

′, L′) ≥ yi(t
′, L∗)

and y←−
i

(t′, L′) ≥ y←−
i

(t′, L∗). Furthermore, because of condition (iv), y|C|(t, L
′) > y|C|(t, L

∗). From condition (v),
Z(L′) > Z(L∗).

Condition (i) in Proposition 10 ensures feasibility of adding a lane to |C|. Conditions (ii) and (iii) state

that the numbers of vehicles in cells
←−−−−
|C|+ 1 and

←−
|C| are sufficiently small that removing a lane from

←−
|C| will not

obstruct flow. Finally, condition (iv) states that the number of vehicles in |C| and the receiving flow on |C|+ 1 are
greater than the capacity allocation from L∗, and thus adding a lane to |C| will result in y|C|(t, L

′) > y|C|(t, L
∗)

when moving flow later is discounted in accordance with condition (v). Condition (v) is necessary because it rewards
reducing delays, and adding a temporary extra turning lane is designed to reduce delays. With ξ = 1, there might
be no difference in objective from providing an extra turning lane instead of forcing some vehicles to wait until the
next time step.

2.7.5 Stability

Because the objective function in the IP (2.65) maximizes discounted flow through the link, the optimal
solution without a discount has a superstable property: if any policy prevents queues from growing to infinity as
T → ∞, then L∗ is such a policy. First, we bound the queue lengths when L∗ is used. Let d̂(L) be the sum of the
queue lengths at the end of the time horizon, T , for policy L ∈ LT . Then

d̂(L) =

T∑
t=0

((
d0(t)− y|C|(t, L)

)
+
(
d←−−−|C|+1

(t)− y←−
1

(t, L)
))

(2.66)
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Proposition 11. Let T ≥ 0, L ∈ LT , and ξ = 1. Then d̂(L) ≥ d̂(L∗).

Proof. From the objective function with ξ = 1,

T∑
t=0

((
y|C|(t, L

∗)
)

+
(
y←−

1
(t, L∗)

))
≥

T∑
t=0

((
y|C|(t, L)

)
+
(
y←−

1
(t, L)

))
(2.67)

Therefore

d̂(L∗) =

T∑
t=0

((
d0(t)− y|C|(t, L∗)

)
+
(
d←−−−|C|+1

(t)− y←−
1

(t, L∗)
))

≤
T∑
t=0

((
d0(t)− y|C|(t, L)

)
+
(
d←−−−|C|+1

(t)− y←−
1

(t, L)
))

= d̂(L) (2.68)

Denote by (LT ) = (LT : LT ∈ LT , T ∈ Z+) a sequence of feasible policies where every T ∈ Z+ is mapped to
a policy LT ∈ LT . Similarly, denote by (L∗T ) a sequence of optimal policies to the IP (2.65). For any sequence of

policies (LT ), the resulting remaining queue lengths also form a sequence
(
d̂(LT )

)
. Obviously,

(
d̂(LT )

)
is bounded

below as d̂(LT ) ≥ 0 for any LT ∈ LT . However
(
d̂(LT )

)
may not be bounded above (and if it is bounded, the

sequence may not converge). Nevertheless, we can use such sequences to establish the superstability of (L∗T ).

Proposition 12. Let ξ = 1, and suppose that there exists a sequence of feasible policies (LT ) and a ζ ∈ R+ such

that
(
d̂(LT )

)
is bounded by ζ (i.e. for all T ∈ Z+, d̂(LT ) ≤ ζ). Then

(
d̂(L∗T )

)
is also bounded by ζ.

Proof. For any T , d̂(L∗T ) ≤ d̂(LT ) by Proposition 11. Since d̂(LT ) ≤ ζ, d̂(L∗T ) ≤ ζ.

Proposition 12 states the superstable property: if some sequence of feasible policies (LT ) results in bounded queue
lengths, then (L∗T ) also has bounded queue lengths. However, these stability results require that ξ = 1, i.e. that
delaying exiting flow has no effect on the objective, as long as flow exits before T . This is due to the relationship
between the queue length and the objective function. When a discount is used, inequality (2.67) becomes

T∑
t=0

((
ξty|C|(t, L

∗)
)

+
(
ξty←−

1
(t, L∗)

))
≥

T∑
t=0

((
ξty|C|(t, L)

)
+
(
ξty←−

1
(t, L)

))
(2.69)

which only yields

T∑
t=0

((
d−1(t)− ξty|C|(t, L∗)

)
+
(
d←−−−|C|+1

(t)− ξty←−
1

(t, L∗)
))

≤
T∑
t=0

((
d−1(t)− ξty|C|(t, L)

)
+
(
d←−−−|C|+1

(t)− ξty←−
1

(t, L)
))

(2.70)

Inequality (2.70) shows how a policy L∗ for ξ < 1 may not be optimal for bounding queue length. As a counterex-
ample, consider a scenario in which the policy may shift lanes to cells 0 through |C| to allow more vehicles on the

link to exit, or shift lanes to cells
←−
|C| through

←−
0 to allow more queued vehicles to enter (and exit |C| time steps

later). For sufficiently small ξ, the optimal policy will prioritize vehicles already on the link because they can exit

sooner, although this may result in a longer queue for entering cell
←−
|C| at the end of the time horizon.

Although ξ = 1 is necessary for superstability to hold, ξ < 1 does not necessarily prevent the optimal policy
from bounding queues for some demand scenarios. However, L∗ cannot be guaranteed to bound queues if ξ < 1. The
choice of discount factor is similar to the capacity-delay tradeoff for traffic signals, where longer cycle lengths increase
both capacity and delay. As ξ increases, the optimal policy prioritizes capacity more than delay. ξ = 1 maximizes
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capacity but also removes any penalty for delaying vehicles. On the other hand, as discussed in Section 2.7.4, ξ < 1
is a necessary condition for adding extra turning lanes to increase the objective function in some scenarios.

The stability discussion also demonstrates some weaknesses of the IP approach. Besides requiring perfect
information about demand, the IP also is solved for a fixed, finite time horizon. The solution results in a policy
optimized for a specific demand scenario. Because it is an IP, minor changes to the demand could result in major
changes to the optimal policy. In the next section, we study DLR with stochastic demand as a Markov decision
process (MDP). The resulting heuristic policy is more robust and tractable than the solution to this IP.

2.8 Dynamic lane reversal with stochastic demand

Although perfect information about demand yields ideal scenarios and corresponding theoretical results, in
reality acquiring perfect information for arbitrary time horizons (such as the entire AM peak) requires knowledge
of both vehicle route choice and departure times. Changes in either would potentially require solving the entire
model again for some subinterval of time. Therefore, developing a DLR policy for stochastic supply and demand
is also valuable. From the perspective of the link manager at time t, we assume that the change in demand d0(t),
d←−−−|C|+1

(t) and supply R|C|+1(t), R←−
0

(t) for the next time step are known, but future demand and supply are given

by stochastic processes. In general, upstream sending flow at t + 1 is not independent of upstream sending flow at
t because vehicles that do not enter at t will wait for the next time step. Similarly, if downstream receiving flows
are limited by congestion at time t, there is a higher probability they will be limited by congestion at time t + 1.
Since all vehicles are in communication with the link manager, we assume that for all i ∈ C, ni(t) and n←−

i
(t) are

deterministic. Therefore, we consider the following infinite-horizon MDP with state space S, control space U, and
one-step rewards g(t):

• The state at time t is the cell occupancies and number of lanes. Therefore, the state space is

S= [0, N`]2|C| × Z2
+ × [0, `]2|C| (2.71)

The integer 2|C|-vectors of [0, N`]2|C| are the possible combinations of cell occupancies because N` is the
maximum occupancy of any single cell, and there are |C| cells in each direction. Z2

+ is the possible lengths

of the queues of vehicles waiting to enter the links. The integer 2|C|-vectors of [0, `]2|C| are the possible lane
configurations.

• The control is how many lanes are assigned to each cell. Therefore,

U⊂ [0, `]2|C| (2.72)

The control space is limited by constraints (2.40) through (2.45) to ensure that vehicles do not change lanes
more than once per time step, and that each cell has enough lanes that vehicles in the cell have sufficient
physical space.

• The one-step rewards are given by the objective function to the IP:

g(t) = y|C|(t, L) + y←−
1

(t, L) (2.73)

where transition flows y|C|(t, L) and y←−
1

(t, L) are determined by equation (2.34).

• The state transitions are determined by entering demand and transition flows. Entering demand is d0(t) and
d←−−−|C|+1

(t). Transition flows are described by equation (2.34) for CTM. The transition flows are affected by the

number of lanes assigned to each cell.

• The objective is to find a policy L∗ of lane assignments that maximizes the long-run expected reward.

With a countable state space and finite action space, the MDP has an optimal stationary policy. Unfortu-
nately, solving this MDP is fairly difficult. Due to the simulation-based CTM state, solving it analytically encounters
similar issues to solving DTA with CTM analytically. Computational methods for solving MDPs, based on dynamic
programming, are polynomial in the state space. However, the state space is intracatble due to the curse of dimen-
sionality. For instance, a typical 0.5 mile, 4 lane pair of links with free flow speed 30 miles per hour and jam density
120 vehicles per mile has 10 cells in each direction, and each cell could contain up to 24 vehicles. This alone results
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in a state space of 4.01× 1027 elements. Choosing out of 5 possible lane configurations (0 through 4) per cell in one
direction results in a further orthogonal 9.8× 106 possibilities.

Based on this complexity, it would be ideal to derive theoretical results for the MDP similar to the analyses
in Section 2.7. Propositions 8 and 11 can be extended to the MDP with similar proofs. However, Proposition 9 does
not have a direct counterpart in the stochastic case. Consider a pair of links with 2 lanes in each direction, 900 vph
capacity per lane, expected 900 vph demand in each direction, time step of ∆t, and ξ = 1. If, due to randomness,
3600∆t demand in direction 1 appears at time t, based on expected future demand assigning 3 lanes to direction 1 at
time t is a maximum throughput policy. If at times t+ 1 through t+ 5, 3600∆t demand also appears in direction 2,
to maximize throughput a bottleneck on the link should be created in direction 1 as the potential reward in direction
2 is greater.

2.8.1 Heuristic algorithm

Therefore, instead of attempting to solve this MDP computationally, we use the analytical structure devel-
oped in Section 2.7 to inspire a saturation-based heuristic. Hausknecht et al. [49] briefly discuss a theorem on DLR
with respect to saturation, but it assumes stationary, constant flow and does not include downstream receiving flow
limitations. We use their method as a heuristic for the stochastic demand, CTM model to determine expected satu-
ration levels for two links [a, b] and [b, a]. At time t, we first determine the number of lanes per cell, then propagate
flow.

To simplify the possible actions, we choose two modes of control. First, all but the last cell is assigned the

same number of lanes, formally cells 1 through |C| − 1 and cells
←−
|C| through

←−
2 . Although Proposition 9 may not

hold in its most general sense, allowing more than Q` of flow to enter in one time step still cannot increase the
reward. Furthermore, we add the restriction that each direction must always have at least one lane, even if no flow
is presently using it. This prevents flow in one direction from being completely obstructed due to high demand in
the other direction. In most practical scenarios, it is unlikely for one direction to have completely zero demand.

2.8.1.1 Overall lane direction

Inspired by Theorem 1 of Hausknecht et al. [49], this heuristic estimates the difference between demand
and capacity for each direction. If demand exceeds capacity in one direction, and the other direction has unused
capacity, then it may be beneficial to reverse one lane. Since the number of lanes is integer, we choose to reverse a
lane only if shifting Q capacity from one direction to the other is expected to improve flow. Formally, define σλ(t)
as the saturation estimation for direction λ ∈ {1, 2}, where the direction index is assigned arbitrarily. σλ(t) > 0 and
σλ(t) < 0 indicate over- and under-saturation, respectively. To avoid confusion with Li(t), let lλ(t) represent the
number of lanes in direction λ. The initial condition is l1(t− 1) + l2(t− 1) = `. Set

σ1(t) = min


∑

1≤i≤|C|
ni(t) +

∑
0≤t′≤T

E[S−1(t+ t′)],∑
0≤t′≤T

E[R|C|+1(t+ t′)]

−Ql1(t− 1)T (2.74)

and

σ2(t) = min


∑

1≤i≤|C|
n←−
i

(t) +
∑

0≤t′≤T
E[S←−−−|C|+1

(t+ t′)],∑
0≤t′≤T

E[R←−−1
(t+ t′)]

−Ql2(t− 1)T (2.75)

T defines how far ahead into the future the heuristic considers when estimating saturation. A low value of
T will not allow all vehicles to exit, and will result in the heuristic being highly reactive to specific realizations of
supply and demand. Therefore we recommend T be at least the number of cells in the link. On the other hand, a
high value of T might prevent the heuristic from reacting optimally to dynamic congestion.

The minimum term in σλ(t) is the possible expected throughput of the link, accounting for expected upstream
sending flow and constraints of expected downstream receiving flow. The subtracted term is the maximum throughput
possible over T using lanes lλ(t− 1).

If σ1(t) > (Q+ σ2(t))
+

and lane constraints (2.40) through (2.45) allow it, set l1(t) = l1(t − 1) + 1, where
(·)+ = max{0, ·}. Similarly, if σ2(t) > (Q+ σ1(t))

+
and lane constraints (2.40) through (2.45) allow it, set l2(t) =

32



l2(t− 1) + 1. These two conditions cannot both be true because if σ1(t) > (Q+ σ2(t))
+

then σ2(t) < σ1(t), and vice
versa.

2.8.1.2 Additional turning bays

In addition, the last cell can be assigned extra turning lanes to allow more flow to exit, based on Proposition

10. We refer to the number of lanes at the start and end cells of direction 1 as l11(t) and l
|C|
1 (t), respectively.

For direction 2, the number of lanes at the start and end cells are l
←−
|C|
2 (t) and l

←−
1
2 (t), respectively. Initially, set

l11(t) = l
|C|
1 (t) = l1(t) and l

←−
|C|
2 (t) = l

←−
1
2 (t) = l2(t). For direction 1, if l+1(t) ≤ l1(t−1) (to satisfy at most 1 additional

lane per time step), set

σ′11 = min
{
n|C|(t), Q (l1(t) + 1) , R|C|+1(t)

}
−min

{
n|C|(t), Ql1(t), R|C|+1(t)

}
(2.76)

and
σ′21 = min

{
S←−−−|C|+1

(t), Ql2(t)
}
−min

{
S←−−−|C|+1

(t), Q (l2(t)− 1)
}

(2.77)

σ′11 is the difference in flow for the cases of l
|C|
1 (t) = l1(t) + 1 and l

|C|
1 (t) = l1(t), and σ′21 is similarly the

difference in flow for the cases of l
←−
|C|
2 (t) = l2(t)− 1 and l

←−
|C|
2 (t) = l2(t). If the improvement is sufficient, i.e. if σ′11 > 0

and σ′11 > σ′21, then set l
|C|
1 (t) = l1(t) + 1 and l

←−
|C|
2 (t) = l2(t)− 1. An analogous operation is performed for direction

2.

2.8.1.3 Simulation algorithm

This heuristic is part of the Simulate procedure in Algorithm 1. Every time step, we use the above heuristic
to determine the number of lanes in each direction for each pair of parallel cells using equations (2.74) through (2.77).
Then, we calculate transition flows using equations (2.34) through (2.36), and propagate flow according to equation
(2.33). We repeat this each time step until all vehicles have exited. The simulation is illustrated in Figure 2.13.
DLR adds the step of deciding lane directions before propagating flow. The remainder of the simulation is the same
as conventional CTM.

2.8.2 Demonstration

To demonstrate the effectiveness of the above heuristic, we performed a suite of tests on a single pair of links
with varying combinations of stationary demand. Each link was 0.4 miles long, had 2 lanes, 1200 vph capacity, 30
mph free flow speed, 15 mph backwards wave speed, and arrivals were Poisson each time step based on demand. A
time step of 6 seconds was used for CTM (as used by [118]), and the lookahead parameter T was set to 40 time
steps. Due to randomness in the demand, each scenario was simulated 100 times for 1 hour, and average results are
presented. Figure 2.14 graphs the difference in throughput between DLR and a fixed lane configuration of 2 lanes in
each direction.

Figure 2.14 demonstrates that in asymmetric demand scenarios where the total demand is less than the
total link capacity including lanes in both directions, the DLR heuristic tends to improve over the fixed base lane
configuration. Although this is not surprising, these results are important for several reasons.

First, although contraflow lanes would achieve similar results in some of the demand scenarios considered,
they are difficult to implement due to human drivers. When AV intersection controllers are in use, DLR may be
implemented on every link, and this demonstrates some of the benefits of doing so.

Second, this heuristic responds particularly well to scenarios in which one direction is slightly oversaturated
and the other is slightly undersaturated, but reversing a lane would not improve the total flow. For example, consider
a link with 4 lanes, with 1200vph capacity per lane, and with demand of 2700vph in one direction and 1500vph in
the other. With 2 lanes in each direction, 300vph of demand will not be served, but this is also true for a 3–1 lane
configuration. DLR allows frequent changing between 2–2 and 3–1 configurations, allowing that additional 300vph
to use the link. The proposed heuristic switches automatically based on the queues of vehicles waiting to enter.

Finally, this DLR heuristic was not observed to perform significantly worse than a fixed lane configuration.
In several demand scenarios the average throughput of DLR was slightly worse than that of fixed lanes. However,
the decrease was two orders of magnitude less than the potential improvement. Overall, these results suggest that
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Figure 2.13: Cell transmission model simulation with dynamic lane reversal

while this heuristic may not be the optimal policy for DLR, in many cases it improves over a fixed lane configuration,
and it will probably not be much worse. Therefore, this heuristic is worth consideration on larger networks.

2.9 Dynamic lane reversal on networks

Although the heuristic developed in Section 2.8 proved effective on single link bottlenecks with stationary
demand, the ultimate goal is to apply DLR to larger networks with the additional variables of intersection constraints
and DUE routing. Therefore, we incorporate the heuristic into DTA, presented in Algorithm 1.

2.9.1 Determining expected sending and receiving flows

The saturation definitions in equations (2.74) and (2.75) use expected demand, which depends on traveler
route choice. To determine this endogenously, each link stores expected sending and receiving flows per assignment
interval (AST). In DTA, ASTs are used to reduce the computational complexity of routing demand. Typically,
each iteration a single shortest path is found for every origin-destination-AST (ODT) tuple. For DLR, we also use
ASTs as the aggregation level for expected sending and receiving flows because it corresponds to the path assignment
aggregation. Because changes in route choice affect expected sending and receiving flows, each iteration, the expected
values per link are updated based on average observations from the simulation. Average upstream sending flows for
link [a, b] are calculated as the average number of vehicles wanting to enter [a, b]. (For general networks, this requires
disaggregation of sending flows of upstream links by destination link). Receiving flows are more difficult to calculate
because of intersection constraints on crossing flow. Instead, we used the average exiting flow as the expected
receiving flow for the heuristic. For congested links this is an accurate measure because exiting flow is bounded by
receiving flows. For uncongested links, DLR is not necessary anyways.

2.9.2 Dynamic traffic assignment algorithm

The first step of Algorithm 1 is to determine which links can be paired for DLR. We paired together any
links [a, b] and [b, a] with the same length and free flow speed. In practice, some pairs of opposite and parallel links
are separated by a median or divider. We assume that for AVs, such dividers are not necessary for safety purposes.
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Algorithm 1 Dynamic lane reversal in dynamic traffic assignment

See Algorithm 1 for Simulate procedure

1: procedure Initialization
2: for each link [a, b] do
3: if there exists a link [b, a] with the same free flow speed and length then
4: Pair [a, b] and [b, a] together for DLR
5: end if
6: end for
7: for m = 1 to M do
8: Add 1

M of unassigned vehicles to the network
9: Path-generation(1)

10: Simulate
11: end for
12: end procedure
13:

14: procedure Method of successive averages
15: for m = 1 to M do
16: Path-generation( 1

m )
17: Simulate
18: end for
19: end procedure
20:

21: procedure Path-generation(λ)
22: for each ODT (r, s, t), find shortest path π∗rst do
23: for each vehicle v traveling from r to s departing within t do
24: Assign v to π∗rst with probability λ
25: end for
26: end for
27: end procedure

Algorithm 1 Dynamic lane reversal in dynamic traffic assignment (continued)

28: procedure Simulate
29: for t = 0 to ∞ do
30: for each link [a, b] do
31: if [a, b] is paired with [b, a] then
32: Determine lane assignment for [a, b] and [b, a]
33: end if
34: end for
35: for each link [a, b] do
36: Propagate flow through [a, b]
37: Update expected sending and receiving flows
38: end for
39: end for
40: end procedure
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Figure 2.15: Downtown Austin network

We also did not have specific data on which pairs of links had dividers or not. However, if such dividers are used in
practice, they would prevent DLR from being applied.

For the first iteration, expected sending and receiving flows are not known, so a partial demand initialization
[60] is used to both improve convergence and provide initial inputs to DLR. DLR is embedded in the simulation step
of DTA, as illustrated by Figure 2.13. Every time step, lane assignments are chosen using the heuristic in Section
2.8. After each simulation, expected sending and receiving flows are recorded. This definition of DLR uses values
from only the last iteration. However, because the number of vehicles moved continuously decreases through MSA,
the change in the DLR policy gradually decreases as well.

2.9.3 City network results

To demonstrate the tractability and effectiveness of our proposed heuristic, we tested it on the downtown
Austin network, shown in Figure 2.15, which has 62836 trips over 2 hours, 171 zones, 546 intersections, and 1247
links in the AM peak. CTM was used with a time step of 6 seconds and an AST duration of 15 minutes. DLR
was implemented on all pairs of parallel and opposite direction links with the same speed and length. As much
of the network is a downtown grid, DLR was implemented on most links in the network. Because DLR is most
applicable when all vehicles are AVs, the conflict region model [58] with FCFS priority was used for intersections. To
fully explore the impact of our proposed DLR heuristic, we did not include the capacity improvements from reduced
reaction times in these results. In Chapter 4 we will study the effects of combining DLR, pressure-based intersection
control, and capacity improvements from AVs.

The demand is completely deterministic. However, because route choice changes through the process of
solving for dynamic user equilibrium, determining the demand for individual links in the network would require
forward simulation. Due to the computational cost of simulating many possible lane direction scenarios, it is easier
to model link-specific demand as a random variable.

To demonstrate our DLR heuristic, we solved DTA for two scenarios: current (fixed) lane configuration, and
DLR. We then compared the travel times at UE for both scenarios. To avoid skewing results by different levels of
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Figure 2.16: Convergence of dynamic lane reversal on downtown Austin

Table 2.4: Total system travel time

Scenario TSTT (hr)
Fixed lanes 8420.966

DLR heuristic 6588.828

convergence, both scenarios were solved to the same cost gap of 2% of total system travel time.
Convergence of DTA with DLR is demonstrated in Figure 2.16. The partial demand initialization resulted

in a relatively small initial gap. Around 4–5%, the cost gap percent oscillated, which was probably due in part to
DLR. However, after iteration 9 the cost gap steadily decreased, suggesting it found a local equilibrium. With the
addition of DLR, DTA required 8.16 minutes to solve on an Intel Xeon CPU at 3.07 GHz. This makes it tractable
for study on large city networks.

Our heuristic was developed for a single link, and the results in Section 2.8.2 show its effectiveness. However,
the network level introduces route choice and queue spillback, neither of which are considered in our analysis of DLR
policy for single link flow. The results presented here could be further improved by including network effects.

Table 2.4 shows the total system travel time (TSTT) for both fixed lanes and when the DLR heuristic was
used. The DLR heuristic resulted in an improvement of 21.8% over fixed lanes. This demonstrates the potential
benefits of using DLR during peak hour demand. As this is the AM peak, most of the demand is headed towards
the downtown region, shown in Figure 2. The extra capacity afforded by DLR helps alleviate the congestion caused
by the asymmetric use of right-of-way. On average, distance traveled by the same vehicle was observed to decrease
by 23.9% when DLR was used. This suggests that greater capacity on shorter distance routes increased their utility
in DUE routing.

Figure 2.17 shows the average improvement in travel time from DLR for vehicles at different departure times.
Vehicles departing later receive the greatest benefit because those vehicles experience a more congested network, and
DLR alleviates much of the congestion. Overall, these results demonstrate that the DLR heuristic is effective at
improving efficiency in congested large city networks.

This particular test network contains both freeways on the east and west boundaries and a detailed downtown
region. (Some links in downtown are two-way, while others are one-way and do not have a counterpart for DLR).
Vehicles traveling shorter distances are more likely to take arterials or the downtown grid, whereas vehicles traveling
longer distances are more likely to take freeways and downtown roads due to the geometry of the network. Figure
2.18 demonstrates that vehicles traveling between 1–2 miles and 5+ miles in the fixed lane configuration experienced
similar reductions in travel times. This suggests that this DLR heuristic is more effective for arterials than restricted
access freeways because vehicles traveling longer distances have a greater potential for reductions in travel time. This
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Figure 2.17: Average reduction in travel time at different assignment intervals

could be due to the limited number of lanes on exit ramps; DLR would not be able to add extra lane capacity to
these ramps. As with the VISTA DTA simulator [118], the queueing model allows queues for these ramps to block
entire cells. Surprisingly, vehicles traveling 3–4 miles experienced a significantly lower reduction in travel time. This
suggests further study into the effect of DLR on DUE routing could be useful. However, regardless of the distance,
vehicles experienced average reductions in travel time, which suggests this heuristic consistently improves over the
fixed lane configuration.

2.10 Conclusions

To provide a framework for studying the effects of AVs on city networks, this section developed a shared road
DTA model for human and autonomous vehicles. A multiclass CTM was presented for vehicles traveling at the same
speed with capacity and backwards wave speed a function of class proportions. A collision avoidance car following
model incorporating vehicle reaction time iwas used to predict how reduced reaction times might increase capacity
and backwards wave speed. These models are generalized to an arbitrary number of classes because different AVs
may be certified for different reaction times. These models also use continuous flow so that DTA models built on
continuous flows may incorporate these multiclass predictions.

We also developed a cell transmission model with variable number of lanes in space and time consistent with
the kinematic wave theory of traffic flow to model DLR. We explored and developed a MILP model based on the
multi-destination SODTA [61] that propagates traffic using the cell transmission model. The number of lanes in each
cell is explicitly considered as a decision variable, allowing for real time network design in response to time-varying
travel demand. Results illustrate the importance of accounting for time-varying demand profiles when exploring the
DLR concept. However, due to the integer representation of lanes, this approach will face significant computation
challenges when using traditional optimization techniques. The model presented here motivates the possibility of
DLR, but a number of simplifications were necessary, which could be the subject of future research. This model could
also be compared with contraflow lanes (reversing the direction of a lane for the entire peak period) to determine
the benefits of DLR over existing technology.

We then focused on a single link and considered the scenarios of known and stochastic demand. When
demand is known, we demonstrated that a solution algorithm should consider future demand and receiving flows
and formulated DLR as an IP. We derived theoretical results about the optimal solution(s), noting that using lane
reversals to create a bottleneck on a link is never necessary for optimality when demand is known, and proving that
the optimal solution will stabilize queues if they can be stabilized.

Because demand is often not known perfectly at arbitrary times in the future, we formulated the DLR
problem with stochastic demand as a MDP. The MDP was analytically difficult to solve because it is built on a DTA
model, and the curse of dimensionality led to computational intractability. Nevertheless, we developed a heuristic
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Figure 2.18: Average reduction in travel time from DLR with respect to vehicle miles traveled.
The ith bin corresponds to vehicles traveling between i and (i+ 1) miles.

based on saturation estimates that was demonstrated to work well on a single bottleneck link at various combinations
of stationary demand. We then presented an algorithm for using the heuristic in dynamic traffic assignment, and
tested it on a city network. This converged to an equilibrium and resulted in a 21.8% reduction in TSTT.
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3 Node model of reservation-based intersection control

3.1 Introduction

The computer precision and communications abilities of AVs admit new intersection behaviors with the
potential to improve traffic flow, such as reservation-based control [28, 30]. Run by a computerized intersection
manager, reservations divides each intersection into a grid of space-time tiles to monitor conflicts. Vehicles must
communicate a request to occupy specific space-time tiles to the intersection manager, which accepts reservations
under the condition that two vehicles cannot occupy the same space-time tile. Fajardo et al. [37] and Li et al. [63]
demonstrated that reservations can reduce delay over optimized traffic signals.

Since intersection managers are forced to reject many reservations to prevent conflicts, an important question
is how to decide which reservations to reject. Early studies used a FCFS policy in which reservations are prioritized
according to the time of the request. Later studies considered priority for emergency vehicles [29] and using auctions
to determine priority [13,80,81,101]. Shahidi et al. [82] also considered batching reservations to improve over FCFS.
However, the range of strategies for deciding which vehicles move when potential conflicts exist is arbitrarily large.
Previous work has focused on priority-based resolution of conflicting reservation requests. Depending on the strategy,
it may be optimal for the intersection manager to aggregate requests, then choose a non-conflicting subset according
to some objective. To study such strategies, a more general model is necessary.

One major issue with reservations is the computational tractability of simulating vehicle movements through
the grid of tiles. Smaller tiles results in greater intersection utilization but correspondingly greater computational
requirements. Reservations in its original form is therefore intractable for solving DTA. The problem of modeling
reservations in DTA has been addressed by two recent papers: Zhu & Ukkusuri [115] proposed a conflict point
simplification, which focuses only on the intersections between turning movement paths in the grid of tiles. However,
as we will discuss in Section 3.3.1, intersections with a large number of lanes and turning movements would have a
correspondingly large number of conflict points, limiting the computational efficiency.

Alternately, Levin & Boyles [58] proposed to aggregate the tiles into larger conflict regions constrained by
capacity. While effective for DTA, they did not fully justify using conflict regions instead of conflict points or tiles.
In addition, their priority function for resolving conflicts does not directly correspond to an objective function for the
intersection policy. Therefore, this chapter improves over the work of Levin & Boyles [58] through two objectives:

1. Provide justification for using the conflict region model to approximate reservations. To accomplish this, we
begin by formulating the conflict point simplification [115] as an IP for DTA. By aggregating conflict points
for tractability we derive an IP for the conflict region model [58].

2. Create more system-efficient policies for reservation-based control. The fairness-based FCFS policy is poten-
tially suboptimal for typical policy goals such as maximizing intersection flow. The unspecified objective
function of the conflict region IP admits arbitrary system policies for moving vehicles across the intersection.
We propose a polynomial-time heuristic for this NP-hard IP and study pressure-based objective functions that
are effective at reducing total travel time on a city network.

3.1.1 Contributions

The contributions of this chapter are as follows: we present an IP for the conflict point simplification of the
reservation-based model. For tractability, we aggregate conflict points into conflict regions and derive a corresponding
IP. Because the objective is unspecified, this results in a reservations model that admits arbitrary strategies for moving
vehicles across a reservation-controlled intersection. This IP may also be used as a framework for DTA models of
reservations. Since this IP is NP-hard, we propose a greedy polynomial-time heuristic. Finally, we demonstrate the

41



(a) Accepted       (b) Rejected 

Figure 3.1: Tile-based reservation protocol [37]

potential utility of the IP — and our heuristic — through an objective function that increases intersection efficiency
on a city network.

3.1.2 Organization

The remainder of this chapter is organized as follows: First, Section 3.2 discusses previous literature on
reservations, reservation policies, and backpressure and P0. Then, Section 3.3 derives the conflict region model as an
IP and Section 3.4 presents a greedy heuristic. Section 3.5 explores scenarios in which signals perform better than
reservations. Section 3.6 adapts backpressure and P0 for reservations, and Section 3.7 presents results. We conclude
in Section 3.8.

3.2 Literature review

The tile-based reservation protocol proposed by Dresner & Stone [28, 30] operates through an intersection
manager agent communicating wirelessly with individual vehicles. The intersection manager divides the intersection
into a grid of space-time tiles, illustrated in Figure 3.1. Vehicles request a reservation from the intersection manager,
which simulates the vehicle’s desired path through the grid. If no conflicts occur, the reservation may be accepted.
Otherwise, the reservation of one or more of the conflicting vehicles must be rejected. Vehicles must know their
arrival time at the intersection to request to enter the intersection at a specific time.

3.2.1 First-come-first-serve policy

A major question for reservation controls is which vehicle’s reservation should be accepted when requests
conflict. Dresner & Stone [28,30] suggested prioritizing on a FCFS basis for fairness. Studies comparing reservations
with signals [37,63] focused on FCFS and found that FCFS could reduce delays beyond optimized signals. However,
as we will show in Section 3.5, in some situations signals will perform better than FCFS-based reservations.

FCFS is a fairness-based method for accepting reservations that has been used in most previous studies.
When a vehicle requests a reservation, the intersection manager accepts it if it does not conflict with previously
accepted reservations. Otherwise, it is rejected, and the intersection manager advises a later possible time [37].
Equivalently, the vehicle is delayed until it can safely make its desired turning movement.

Although simple, the definition of FCFS results in some important properties that are exploited in the
paradoxes of reservation-based control in Section 3.5:

1. Vehicles are prioritized by when they first requested a reservation, independent of external costs imposed on
other vehicles. For instance, vehicles making left and right turns impose different conflict separation require-
ments on intersection traffic, but the type of turning movement does not affect FCFS priority. This is exploited
in Section 3.5.1.1.
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Figure 3.2: Conflict region representation of four-way intersection

2. Reservation request time may not be the same as time spent queued or other intuitive measures. Vehicles
cannot request a reservation unless they can execute it. Therefore, vehicles in a queue, or at the back of a
platoon, may not request a reservation until they are able to enter the intersection. A road with more lanes
may correspondingly obtain a greater share of the intersection capacity because the vehicle at the front of each
lane can request a reservation. Also, vehicles on a long low-traffic road may be able to request a reservation
long before reaching the intersection, because in free-flow conditions their arrival time at the intersection is
known. This is exploited in Section 3.5.1.2.

3. If one vehicle’s request is accepted, other requests that do not conflict may also be accepted. This may result
in vehicles moving in an order that is different from the order of their reservation requests.

For instance, in the four-approach intersection in Figure 3.2, suppose there are 3 vehicles, each at the front of
their lane: vehicle 1 requests to move north-south through the intersection, vehicle 2 requests to move east-west,
and vehicle 3 requests to move south-north (in that order). Vehicle 1’s reservation is accepted due to priority.
Vehicle 2’s reservation is rejected due to conflict with vehicle 1. Vehicle 3’s reservation is then accepted because
it does not conflict with vehicle 1. Vehicles 1 and 3 move at the same time, and vehicle 2 moves after.

3.2.2 Alternative reservation policies

The question of vehicle priority admits a wide range of potential policies. Dresner & Stone [29] suggested
giving higher priority to emergency vehicles, although other traffic already typically yields the right-of-way to them.
Shahidi et al. [82] proposed batching reservations to avoid the fairness attribute of FCFS from dominating intersection
use. Studies by Schepperle & Böhm [80,81], Vasirani & Ossowski [100,101], and Carlino et al. [13] demonstrated that
using auctions for priority can in some cases reduce delay beyond that of FCFS for all vehicles, not just high-bidding
vehicles. Intersection auctions are an interesting development for the area of congestion pricing because intersection
pricing opens up the possibility of tolling every link, which can potentially yield SO routing under UE behavior [5].
Auctions also introduce the possibility of vehicles paying other vehicles for the delays caused to them. From the
perspective of traffic management policy, one significant result from the work on auctions is demonstrating that
optimal strategies for reservations have yet to be identified. Modeling and improving on such strategies is one goal
of this chapter.

One major potential issue for reservations is that its communication complexity restricts usage by human
drivers. Since it is likely that AVs will not be in exclusive use for many decades, extensions that allow humans to
use reservation-based controls have been studied. Dresner & Stone [29, 31] proposed periodically providing a green
light to specific lanes or links for human drivers. Qian et al. [77] extended the reservation system to human-driven
and semi-autonomous vehicles under certain assumptions about path and car-following behaviors, and Conde Bento
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et al. [19] proposed reserving larger sections of the intersection for human-driven vehicles. Such interventions should
be compatible with general reservations strategies by requiring occasional allowances for non-autonomous vehicles.

Optimizing reservations is further complicated by the effects of UE routing, which can produce system
inefficiencies such as the well-known Braess paradox [10]. Network studies of reservations have been complicated by
its computational requirements. Previous network models with reservations have not included traffic assignment, and
were limited in size [48] or forced to reduce the number of tiles for computational tractability at the cost of intersection
efficiency [14]. Zhu & Ukkusuri [115] developed a LP for flow through the conflict point model, albeit with some
further restrictions on conflicting flow. Levin & Boyles [58] developed the conflict region model of reservations for
simulation-based dynamic traffic assignment (SBDTA), which was shown to be tractable for solving SBDTA on large
city networks. For a more general model of reservation-based intersection control, we combine the conflict point and
conflict region approaches by developing a discrete vehicle-based IP for the conflict point model and transforming
its feasible region to achieve the conflict region model.

3.2.3 Pressure-based control

This section first discusses the backpressure policy for communications networks. Then, we review the P0

policy for maximizing intersection throughput with UE route choice.

3.2.3.1 Backpressure policy

The backpressure policy originates from studies of multihop communication networks. Such networks typi-
cally involve packets traveling from some origin node to some destination node with unspecified routing. The seminal
paper of Tassiulas & Ephremides [95] is concerned with developing a policy that is stable for the largest possible
region of demands. A stable policy is a policy in which customer queues at each node remain bounded. Using a
queueing model, Tassiulas & Ephremides [95] proposed a maximum throughput policy based on queue pressure —
the difference between upstream and downstream queues. They proved that choosing the combination of packets
that maximized the relieved pressure at each node resulted in maximum stability. Route choice was determined by
the system at each node based on downstream queue lengths.

As the work of Tassiulas & Ephremides [95] is focused on communication routing, the assumptions and
modeling are not standard to traffic literature. First, they modeled links as point queues without a free flow travel
time. This is because in electronic communications, the transmission speed is typically fast (possibly the speed
of light) relative to node processing speeds. Therefore, their packets are modeled as traversing a link in one time
step. This may be applied to traffic by reversing the nodes and links: vehicles take relatively little time to traverse
an intersection compared with the typical link travel time, and intersection controls determine intersection access.
However, in traffic networks, queues require physical space. Later extensions to finite-buffer queues [41,54] required
a minimum buffer size, which cannot be guaranteed for arbitrary roads. As demonstrated by Daganzo [24], queue
spillback with DUE route choice can create significant congestion issues. Furthermore, traffic queues place first-
in-first-out (FIFO) restrictions on vehicle movement, whereas in communication networks the order of service may
be arbitrary. Finally, Tassiulas & Ephremides [95] adaptively determine route choice in response to queue lengths,
whereas vehicles typically choose routes individually, resulting in DUE behavior. Although tolling can encourage a
system-optimal route choice, the route choices specified by backpressure could change every time step, and current
tolling models have not considered changing route choice at such high frequencies.

Nevertheless, several papers have applied the backpressure policy to traffic intersections. Zhang et al. [112]
proposed a pressure-based algorithm for intersection control that determined the probability of a driver choosing
a specific turning movement based on the difference in the upstream and downstream link queue lengths. This is
challenging to resolve with DUE routing, but Zhang et al. [112] modeled adaptive route choice on a hyperpath,
similar to some stochastic DUE models. Gregoire et al. [44] applied the pressure idea more conventionally with
respect to route choice by using the difference between upstream and downstream queue lengths to choose which
signal phase to activate. Wongpiromsarn et al. [107] also included lack of route control in their adaptation of the
pressure-based algorithm to signal control, and provided an analytical treatment similar to that of Tassiulas &
Ephremides [95]. Under the assumption of infinite queue capacities, they were able to show that their pressure-based
policy maximized throughput. However, practical limitations such as link length require careful choice of the pressure
function to avoid queue spillback. Therefore, Xiao et al. [108] proposed a pressure-releasing policy that accounts for
finite queue capacities. Nonetheless, to more canonically apply the pressure-based routing they assumed that each
turning movement has a separate queue, which is often not realistic.
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A major limitation on signal control is the clearance intervals necessary to separate phases for human
drivers. Some demand scenarios could result in frequent phase switching as the pressure relieved by one phase makes
another phase have relatively higher pressure, and it does not appear that previous work on using backpressure
policies to activate signal phases included lost time penalties in their models. Frequent phase switching for signalized
intersections would result in considerable time lost to clearance intervals. Therefore, we apply the backpressure
policy to reservation-based control, which does not require clearance intervals and has much greater flexibility in
vehicle movements.

3.2.3.2 P0 traffic signal policy

In contrast to the communication network pressure-based approach, the P0 signal control policy by Smith [88]
is designed for traffic intersection control with UE route choice. Smith [87] demonstrated that Webster’s signal policy
could significantly reduce network capacity due to UE route choice, and Smith [89] further derived properties about
signal policies that resulted in a consistent equilibrium. For instance, Webster’s policy and a delay-minimizing policy
induce route choice counter to the objectives of the signal policy. This motivated the P0 policy of Smith [88], which
was also derived from traffic assignment principles later discussed by Smith & Ghali [90]. The problem P0 addresses
is how to allocate green time to each signal phase. P0 uses the principle that low pressure phases receive no green
time to avoid encouraging vehicles to switch to low capacity routes. As specified by Smith & Ghali [90], the pressure
on a phase is the product of saturation flow and link travel delay. This favors links with two properties:

1. Links with high saturation flow have a greater ability to service demand. Providing more green time to high
saturation flow links will encourage drivers to choose links that can better handle the demand.

2. Links with a high delay (due to unsatisfied flow) have a longer queue of demand waiting to be serviced by the
intersection.

Whereas P0 is capacity maximizing, follow-up work by Smith & Van Vuren [91] studied policies that are gradient,
monotone, and/or capacity maximizing with respect to the BPR cost function. Smith & Ghali [90] also provided a
method of modeling P0 signal timing as a static traffic assignment problem. Meneguzzer [69] provided a review of
papers considering signal timing and UE together. Liu & Smith [65] extended this work to a day-to-day bottleneck
model and demonstrate that if the delay formula is non-decreasing and the P0 policy is used for the signal control,
then flow swapping among pairs will achieve equilibrium. Overall, in contrast to the work on backpressure, the work
on the P0 signal policy is much more inclusive of UE route choice effects, and we therefore also consider P0 for
reservations.

3.3 Derivation of conflict region model

This section justifies the conflict region model by deriving it from the conflict point model of reservations in
two steps:

1. In Section 3.3.1, we present a conflict point IP for DTA. This involves replacing continuous time with discrete
time steps. As is typical with SBDTA, vehicles crossing the intersection are assumed to begin and complete
their turning movement within one time step. Therefore, we constrain conflict points by capacity rather than
occupancy.

2. Section 3.3.2 presents the conflict region IP by aggregating conflict points into conflict regions for tractability.

3.3.1 Conflict point model for dynamic traffic assignment

The reservation control policy [28] operates on a grid of tiles in space-time. The tile conflict analysis of
reservations may be simplified through the definition of conflict points [115]. As illustrated in Figure 3.3, the paths
for any two turning movements (i, j) and (i′, j′) first intersect at some point c. Ensuring adequate spacing at c for
vehicles traveling from (i, j) and (i′, j′) will guarantee that no conflict occurs at c or anywhere in the intersection
between vehicles moving from i to j and from i′ to j′. For vehicles uniform in physical characteristics and acceleration
behaviors, these conflict points are fixed. However, in terms of practical implementation, tiles may be required instead
of conflict points to handle vehicles of different shapes and turning behaviors. Nevertheless, in many DTA models
physical uniformity of vehicles is assumed.
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Figure 3.3: Illustration of conflict points between turning movement paths.

Previous work on reservations [37] studied tiles with width as small as 0.25 meters to improve intersection
efficiency. Assuming 3 meter wide lanes, the intersection in Figure 3.3 requires 676 such tiles in space. With 3
turning movements per link, and 4 links, there are a total of 12 paths through the intersection. In the worst case,
in which each turning movement conflicts with all movements from other links, each turning movement has only 9
conflicts, for a total of 108 conflict points. In general, for a rectangular intersection with ℵ lanes along the width and
i lanes along the height, the number of tiles is Θ (ℵi). Assuming vehicles are not permitted to change lanes in the
intersection, the number of turning movements is O(ℵ+ i), and thus the number of conflict points is O

(
(ℵ+ i)2

)
.

Therefore the conflict point model scales worse than the tile model. However, as demonstrated by the analysis of
Figure 3.3, the conflict point model may be significantly more efficient for small intersections. The conflict point
model also admits mathematical programming methods [115].

In their conflict point LP, Zhu & Ukkusuri [115] assume that vehicles cannot simultaneously propagate
through two conflicting lane movements. Depending on the magnitude of the time step, this may or may not be the
most accurate assumption. For sufficiently large time steps allowing adequate spacing, two vehicles from conflicting
turning movements should be able to traverse a single conflict point. That assumption is relaxed in this chapter
through capacity constraints on conflict points.

Let CP be the set of conflict points, and let yv(t) denote whether vehicle v enters the intersection in time
step t. Turning movements from different lanes of the same link may encounter different conflict points as they follow
different paths through the intersection. Therefore, denote by Γ− and Γ+ the sets of incoming and outgoing lanes,
respectively, and let Γ−(v) be the incoming lane for vehicle v.

The sending flow is the number of vehicles that would move if there were no intersection conflicts or con-
straints in the downstream link. Let Si(t) be the sending flow for lane i and S(t) =

⋃
i∈Γ+

Si(t) be the total sending

flow for the intersection in time t. We assume that S(t) includes vehicle order.
In most SBDTA models, vehicles are assumed to begin and complete turning movements within the same

time step. Turning movements spanning multiple time steps are normally not considered. Therefore, instead of
constraining the arrival times of individual vehicles at conflict points, we constrain the total flow through each
conflict point during each time step. This is equivalent to a major difference between micro-simulation and DTA:
in car following models, vehicles decelerate to avoid colliding with the vehicle in front; in DTA, speed decreases as
density increases to model vehicle deceleration to avoid collisions.

The limitation on conflict point flow is a capacity-based restriction. Although this reduces the power of the
model to prevent intersection conflicts, conflicting movements still constrain flow at an aggregate level consistent
with SBDTA flow models. Let δcv ∈ {0, 1} denote whether c ∈ πv, and let Qc be the capacity of conflict point c.
Vehicles from lane i require a spacing headway of 1

Qc(i) where Qc(i) is the capacity reserved for vehicles from lane i
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moving through c. Then the separation constraint is
∑

v∈S(t)

δcv
1

Qc(Γ−(v)) ≤ ∆t, where ∆t is the simulation time step.

This may be written as
∑

v∈S(t)

δcv
Qc

Qc(Γ−(v)) ≤ Qc∆t, which yields the capacity reduction in Levin & Boyles [58]. In

addition, we add a receiving flow constraint for all lanes j:
∑

v∈S(t)

yv(t)δ
j
v ≤ Rj(t), where δjv denotes whether v enters

lane j.
For first-in-first-out (FIFO) movement, assume that SBDTA determines arrival order for discrete vehicles.

Let θ(v) be the time v arrives at the intersection, and let

S̃v(t) = {v′ ∈ SΓ−(v)(t) : θ(v) > θ(v′)} (3.1)

be the set of vehicles that arrived at the intersection before v on the same lane. Then all v′ ∈ S̃v(t) must move before
v due to FIFO, which may be written as

yv(t) ≤ 1−

|S̃v(t)| −
∑

v′∈S̃v(t)

yv′(t)

M
(3.2)

If |S̃Γ−(v)(t)| −
∑

v′∈S̃v(t)

yv′(t) > 0 then at least one vehicle in front of v has not yet moved, and the lane is blocked for

v. These transformation result in the following IP. Note that this program is for every time step t, so t is assumed
fixed.

max Z(y(t)) (3.3)

s.t
∑
v∈S(t)

yv(t)δ
c
v

Qc (Γ−(v))
≤ ∆t ∀c ∈ CP (3.4)

∑
v∈S(t)

yv(t)δ
j
v ≤ Rj(t) ∀j ∈ Γ+ (3.5)

yv(t) ≤ 1−

|S̃v(t)| −
∑

v′∈S̃v(t)

yv′(t)

M
∀c ∈ CP (3.6)

yv(t) ∈ {0, 1} ∀v ∈ S(t) (3.7)

where y(t) is the vector formed by the decision variables yv(t). Z(y(t)) is left unspecified to admit arbitrary objectives.

3.3.2 Conflict region model

For computational efficiency, conflict points may be combined in the model into conflict regions, illustrated
in Figure 3.2. This could result in modeling a conflict between two turning movements that do not intersect, but for
a sufficiently large conflict region it is likely that turning movements would intersect within it. With the aggregation
of conflict points into conflict regions, denoted by the set CR, lanes may similarly be aggregated into links. Thus,
from this point forward, Γ−(v) and Γ+(v) refer to the incoming and outgoing links for vehicle v, respectively. Denote
by Li the number of lanes link i has. The number of lanes affects the FIFO constraint because vehicles cannot enter
the intersection unless they are at the front of a lane. This results in the following IP:

max Z(y(t)) (3.8)

s.t
∑
v∈S(t)

yv(t)δ
c
v

Qc (Γ−(v))
≤ ∆t ∀c ∈ CR (3.9)

yv(t) ≤ 1 +
Q̃Γ−(v)− 1

M
∀v ∈ S(t) (3.10)∑

v∈S(t)

yv(t)δ
j
v ≤ Rj(t) ∀j ∈ Γ+ (3.11)
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yv(t) ∈ {0, 1} ∀v ∈ S(t) (3.12)

where

Q̃Γ−(v)(v) =

Qi − ∑
v∈S̃v(t)

yv(t)



LΓ−(v) −

(
|S̃v(t)| −

∑
v′∈S̃v(t)

yv′(t)

)
LΓ−(v)

 (3.13)

Constraints (3.10) and (3.13) are the generalization of constraint (3.6) for multiple lanes. When a vehicle blocks a
lane due to a rejected reservation, the capacity for vehicles behind is restricted. This is modeled by the function
Q̃Γ−(v)(v), which is the remaining capacity for v as a function of whether vehicles ahead of v moved through the

intersection. The number of lanes available for use for v is LΓ−(v) −

(
|S̃v(t)| −

∑
v′∈S̃v(t)

yv′(t)

)
. Qi −

∑
v∈S̃v(t)

yv(t)

is the remaining capacity of the link, which is reduced proportionally by the number of available lanes remaining.
When Q̃Γ−(v)(v) ≥ 1, then yv(t) = 1 satisfies constraint (3.10). Note that Q̃Γ−(v)(v) < 0 is possible in a sufficiently

large queue. If LΓ−(v) or more vehicles in front of v have not moved, then Q̃Γ−(v)(v) ≤ 0, and v cannot enter the
intersection. Nevertheless, this IP always has a feasible solution. Let Y(t) be the set of feasible solutions to the
conflict region IP for time t.

Proposition 13. Y(t) 6= ∅.

Proof. Consider y(t) = 0. Rj(t) ≥ 0 and Qc∆t ≥ 0 , so constraints (3.11) and (3.12) are satisfied. 1 +
Q̃Γ− (v)−1

M ≥ 0
so constraint (3.9) is satisfied. Therefore 0 ∈ Y(t).

3.4 Discussion

The purpose of this section is to discuss the use of the conflict region IP (Section 3.3.2) in DTA. We begin
by discussing the IP in the context of generic DTA intersection models in Section 3.4.1, and derive some analytical
results in the process.

3.4.1 Intersection modeling in dynamic traffic assignment

As an intersection model for DTA, it is relevant to study the conflict region IP in equations (3.8) through
(3.12) in the context of the requirements for generic DTA intersection models described by Tampère et al. [94]: 1)
general applicability; 2) maximizing flows; 3) non-negativity; 4) conservation of vehicles; 5) satisfying demand and
supply constraints;, and 6) obeying conservation of turning fractions. As stated, the conflict region IP satisfies all
requirements except the invariance principle. We show that the algorithm of Levin & Boyles [58], which satisfies the
invariance principle, creates a feasible solution for the IP, and in Section 3.4.2 we present a heuristic for the general
IP based on that algorithm.

For general applicability, we assume, as with Levin & Boyles [58], that in the absence of other flow, flow
between any (i, j) ∈ Γ− × Γ+ is constrained only by sending and receiving flows. Let Qi be the capacity of link i; if
Qi = Qj , then flow of Qi should saturate the conflict region. This can be satisfied by choosing

Qc = max
(i,j)∈Γ−×Γ+:c∈πij

{min{Qi, Qj}} (3.14)

where πij is the set of conflict regions flow from i to j will pass through. With Qc (Γ−(v)) = Qi, then flow of Qi∆t

through any conflict region c will result in equality on constraint (3.9) because Qc

Qi
Qi∆t = Qc∆t. Constraint (3.9)

can then be written as ∑
v∈S(t)

yv(t)δ
c
v

Qc
QΓ−(v)

≤ Qc∆t ∀c ∈ CR (3.15)

Tampère et al. [94] note that DTA intersection models should maximize flow as drivers will move whenever
possible. In a reservation-based context, vehicles may be prevented from moving even if it is possible for them to
move. However, it is reasonable to assume that many practical intersection strategies will allow a vehicle to move if
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its reservation request does not conflict with the reservation of another vehicle and the downstream link has sufficient
space. To achieve this, the objective function in (3.8) should satisfy the following:

Property 1. For any y(t),y′(t) ∈ Y(t), if for all v ∈ S(t) y′v(t) ≥ yv(t) and there exists a v ∈ S(t) with y′v(t) > xv(t),
then Z (y(t)) < Z (y′(t)).

Objective functions satisfying Property 1 yield the desired characteristic of the solution to the conflict region
IP:

Proposition 14. Let y∗(t) be an optimal solution to the conflict region IP and let Z(·) satisfy Property 1. For any
v ∈ S(t), if y∗v(t) = 0, form y′(t) with x′(t) = y∗(t) except with y∗v(t) = 1. Then y′(t) is not feasible.

Proof. Suppose y′(t) is feasible. Since Z(·) satisfies Property 1, then Z (y′(t)) > Z (y∗(t)), which contradicts y∗(t)
being optimal.

Property 1 can be satisfied by Z (y(t)) = z · y(t) for some z > 0 or more complex functions. It does not,
however, require that the objective is to maximize flow. For instance, FCFS can be modeled through the conflict
region IP:

Proposition 15. The FCFS policy may be modeled through the IP in equations (3.8) through (3.12). Specifically,

there exists an objective function Z(·) satisfying the following: Let θ̂(v) be the reservation time of v. If, for all

v1, v2 ∈ S(t), v1 6= v2 =⇒ θ̂(v1) 6= θ̂(v2) and y∗(t) is chosen by FCFS, then for all y ∈ Y, Z (y(t)) ≤ Z (y∗(t)).

Proof. By induction on |S(t)|. Sort S(t) by reservation request so that for any indices i, j, if i < j then θ̂(vi) < θ̂(vj).
Let t∗ be the reservation time of the last vehicle, and let

Z (y(t)) =

n∑
i=1

M t∗−θ̂(vi)yvi(t) (3.16)

be the objective function. (This satisfies Property 1). We show that

n∑
i=1

M t∗−θ̂(vi)y∗vi(t) ≥
n∑
i=1

M t∗−θ̂(vi)yvi(t) (3.17)

for all y(t) ∈ Y(t), for all 1 ≤ n ≤ |S|.

Base case: If v1 can move, then
1∑
i=1

M t∗−θ̂(vi)x∗vi(t) = M t∗−θ̂(v1) because FCFS prioritizes by request time, and

M t∗−θ̂(v1) ≥
1∑
i=1

M t∗−θ̂(vi)y∗vi(t) for all y(t). If v1 is blocked, then
1∑
i=1

M t∗−θ̂(vi)y∗vi(t) = 0 for all y(t).

Inductive step: If y∗vn+1
= 1 or y∗vi = 0 for all 1 ≤ i ≤ n+ 1, then this holds trivially. The remaining case is that

y∗vn+1
= 0 because of higher priority vehicle(s) blocking its movement, i.e., if yvn+1

= 1 then for some vehicle i < n+1,
yvi = 0.

M t∗−θ̂(vi) >
∑

v∈SΓ−(v),tv>tvi

M t∗−θ̂(v) (3.18)

so
n+1∑
j=i

M t∗−θ̂(vj)y∗vj >

n+1∑
j=i

M t∗−θ̂(vj)y∗vj (3.19)

Then by the inductive hypothesis,
n+1∑
j=i

M t∗−θ̂(vj)y∗vj >
n∑
j=i

M t∗−θ̂(vj)y∗vj .

Proposition 15 proves that the oft-studied FCFS policy falls within the general framework of the IP developed
here. Setting M = ∆t should be sufficiently large, although that may still result in impractically large numbers due
to the exponential. We prove in Proposition 18 that the polynomial-time algorithm of Levin & Boyles [58] can find
the optimal solution to the IP with FCFS objective (3.16).
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The requirement of non-negativity [94] is satisfied because y(t) ≥ 0. Tracking discrete vehicles also satisfies
conservation of flow and of turning fractions. Demand constraints are satisfied by the implicit definition of the set
of sending flow, and supply constraints are explicitly satisfied by constraint (3.11).

The remaining requirement is the invariance principle, which essentially states that the intersection flow
should be invariant to the constraint on sending flow changing from the number of waiting vehicles to the link
capacity. If |Si(t)| < Qi changes to |S′i(t)| = Qi, if one v ∈ S′i − Si has a very high weight in the objective function,
the optimal solution to the conflict region IP may need to include v. Therefore, The invariance principle may not
be satisfied for general objective functions, although it is for some objectives, including FCFS [58]. The invariance
principle can be satisfied by an additional constraint [94], or as a corollary of alternate solution algorithms. For
instance, the conflict region algorithm of Levin & Boyles [58] satisfies the invariance principle. With a modification
to better model FIFO constraints, shown in Algorithm 2, the conflict region algorithm finds a feasible solution to
the conflict region IP. Specifically, L̃i tracks the number of lanes blocked. These are combined in line 26 to satisfy
constraint (3.13).

Proposition 16. The conflict region algorithm (Algorithm 2) produces a feasible solution to the conflict region IP
in equations (3.8) through (3.12).

Proof. For any v ∈ S(t), let V ′ be the set of vehicles considered before v in the loop on line 11. If yv = 1, then v
can move from i to j according to line 19. Line 14 results in yi′j′ being the number of vehicles in v′ moving from i′

to j′. This results in line 26 requiring that Rj ≥ 1 +
∑

v′∈V ′
δjv′yv′(t), so constraint (3.11) is satisfied. For all conflict

regions c that v passes through, line 30 of requires that

Qc ≥
Qc
Qi

+
∑
v′∈V ′

δcv′yv′
Qc

QΓ−(v′)
(3.20)

satisfying constraint (3.9). Constraints (3.10) and (3.13) FIFO are satisfied because vehicles either move through
the intersection or block a lane (line 22). Blocked lanes detract from outflow (line 26) and vehicles are considered
for movement in FIFO order. Finally, constraint (3.12) is satisfied because each vehicle is only considered once in
the loop on line 11.

The conflict region algorithm uses yij(t) to record flows between links i and j. Throughout this dissertation,
y is used to denote flows, whether they are specific to a vehicle or to a cell or link.

Proposition 17. The running time of the conflict region algorithm (Algorithm 2) is
O
(
|CR||S(t)| log |S(t)|+ |Γ−||Γ+|

)
.

Proof. Initialization of V (lines 1 through 9) iterates through each vehicle in S(t) once. Sorting V (line 10) is therefore
O
(
|S(t)| log |S(t)|

)
. Initializing yij(t) requires O

(
|Γ−||Γ+|

)
. Therefore initialization is O

(
|S(t)| log |S(t)|+ |Γ−||Γ+|

)
.

The main loop (lines 11 through 24) iterates through each vehicle at most once, thereby scaling with |S(t)|.
It may add vehicles to V in sorted order, requiring O

(
log |S(t)|

)
time to find the appropriate index. For each vehicle,

the destination link and the conflict regions it passes through is checked once for conflicts in the canMove subroutine,
which is O

(
|CR|

)
. If canMove returns true, the flow through each conflict region is updated, which is also O

(
|CR|

)
.

Therefore, the main loop is O
(
|CR||S(t)| log |S(t)|

)
.

Although the conflict region algorithm produces a feasible solution in polynomial time, it may not be optimal.
It takes as input some priority f(·) to each vehicle, and moves the highest priority vehicle able to enter the intersection.
It does not consider the value of moving a vehicle to allow vehicles behind to cross the intersection sooner. However,
for specific objective functions, such as FCFS, the priority function will result in an optimal solution to the IP.

Proposition 18. The conflict region algorithm, using reservation time as the prioritization (f(v) = θ̂(v)), produces
an optimal solution for the FCFS policy.

Proof. From Proposition 16, the solution created by the conflict region algorithm is feasible. Since vehicles cannot
request a reservation unless they are not blocked from entering the intersection, for any two vehicles v1, v2 ∈ S(t),
θ(v1) < θ(v2) =⇒ f(v1) ≤ f(v2). Therefore, if v1 ∈ V and v2 6∈ V , then (v1) ≤ f(v2). Once at the front of the
intersection, reservations are ordered by f(·) for consideration. Therefore, if the reservation of v1 is rejected, there
must be some v2 with f(v2) ≤ f(v1) blocking the movement of v1, which is the definition of FCFS.
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Algorithm 2 Conflict region algorithm

1: V := ∅
2: for all i ∈ Γ− do
3: Sort Si(t) by arrival time at i
4: Remove first Li vehicles in Si(t) and add them to V
5: L̃i := 0
6: for all j ∈ Γ+ do
7: yij(t) := 0
8: end for
9: end for

10: Sort V by f(v)
11: for all v ∈ V do
12: Let (i, j) be the turning movement of v
13: if canMove(i, j) then
14: yij(t) := yij(t) + 1
15: for all c ∈ CR

ij do

16: yc(t) := yc(t) + Qc

Qi

17: end for
18: Remove first vehicle in Si(t) and add it to V in sorted order
19: yv(t) := 1
20: else
21: yv(t) := 0
22: L̃i := L̃i + 1
23: end if
24: end for

Algorithm 2 Conflict region algorithm (continued)

25: function canMove(i ∈ Γ−, j ∈ Γ+)

26: if Rj(t)−
∑

i′∈Γ−
yi′j(t) < 1 or

(
Qi −

∑
j′∈Γ+

yij′(t)

)
Li(t)−L̃i

Li(t)
< 1 then

27: return false
28: end if
29: for all c ∈ CR

ij do

30: if Qc − yc(t) < Qc

Qi
then

31: return false
32: end if
33: end for
34: return true
35: end function
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3.4.2 Heuristic

Solving general IPs is an NP-hard problem, and it is easy to construct scenarios in which non-integer flows
result in a greater objective value for the conflict region IP. The computational requirements of solving the conflict
region IP on a single intersection per time step are well within the capabilities of current computers due to the
limitations on sending flows, and if arbitrary strategies were deployed in practice, each intersection manager might
solve the IP exactly. For modeling purposes, though, solving many such IPs per simulation, and simulating the
network many times to solve for DUE, is computationally prohibitive. Certain objective functions can lead to
polynomial-time algorithms, such as FCFS. However, this is not sufficient for arbitrary policy strategies. Therefore,
in this section we propose a polynomial-time greedy heuristic for objective functions of the form Z (y(t)) = z · y(t).
(This does not require that z > 0; because it is a greedy heuristic it will move vehicles if their reservation request
does not conflict with other vehicles.) Since yv(t) ∈ {0, 1} for all v ∈ S(t), many potential policy strategies can be
modeled by this type of objective function.

The conflict region IP with objective z ·y(t) is similar to the class of problems known as multiple-constraint
knapsack (MCKS) problems [51]. In general, MCKS problems on the set of sending flow are described as

max z · y(t) (3.21)

s.t. ωh · y(t) ≤ Ωh ∀1 ≤ h ≤ H (3.22)

yv(t) ∈ {0, 1} ∀v ∈ S(t) (3.23)

where vehicles moved are constrained by H resources. Each vehicle consumes some ωhv ≥ 0 of resource h, with Ωh ≥ 0
available for use. The conflict region IP with objective z · y(t) is similar to this form as constraints (3.9) and (3.11)
can be modeled in the form of constraint (3.22). However, constraint (3.10) could have negative coefficients on the
decision variables.

Nevertheless, heuristics for MCKS problems have been studied in great detail, and the similarities are
useful for analyzing the conflict region IP. MCKS problems in general are also NP-hard, and furthermore, no fully
polynomial-time approximation scheme exists [51]. The same proof that MCKS problems are NP-hard may be
applied to the conflict region IP where the number of lanes for each incoming link are sufficiently large to be non-

restrictive. Although pseudo-polynomial time algorithms have been developed for the case in which ωh ∈ Z|S(t)|
+ ,

since the coefficients in constraint (3.9) may not be integral, the computational requirements of such algorithms
are likely still prohibitive. However, greedy heuristics for MCKS problems have also been studied, and the FIFO
constraint can easily be incorporated into a greedy algorithm. The conflict region algorithm of Levin & Boyles [58],
shown in Algorithm 2, is in fact a greedy algorithm limited to a specific class of objective functions. We generalize
it into a heuristic for the conflict region IP with arbitrary objective by including an efficiency ev, which is the value
of moving vehicle v considering its resource consumption. Dobson [27] studied the efficiency function of

ev =
zv

H∑
h=1

ωh
v

Ωh

(3.24)

for the MCKS problem. We propose using vehicle priority f(v) = ev in the conflict region algorithm, and greedily
selecting the vehicle with the greatest efficiency from the set of vehicles able to enter the intersection.

Due to the FIFO constraint on link queues, there exist scenarios in which this heuristic is suboptimal, such
as having a high weighted vehicle behind a low weighted vehicle on a single lane link. For many practical objectives,
such as maximum efficiency, such disparity in vehicle weights is unlikely to occur. The results demonstrate significant
overall improvement when applying this heuristic to city networks for an efficiency objective.

3.4.3 Reservations with mixed traffic

For shared road models, the intersection control policy is an important question. With 100% human vehicles,
optimized traffic signals are the best option available. With 100% AVs, reservations can reduce delay beyond that of
optimized signals [37]. The difficulty is the choice of intersection control policy for shared roads. Dresner & Stone [31]
showed that reservations subsume traffic signals because the signal essentially reserves parts of the intersection. They
propose link- and lane-cycling signals, where each link or lane successively receives full access to the intersection,
and vehicles in other links or lanes may reserve non-conflicting paths. However, blocking out large portions of the
intersection for a signal greatly restricts reservations from other links due to the possibility of conflict, even when
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most vehicles are AVs. As a result, this may not scale well when the proportion of AVs on the road becomes large.
It is also an open question whether link- or lane-cycling signals even outperform optimized traffic signals.

Conde Bento et al. [19] proposed the legacy early method for intelligent traffic management (LEMITM).
LEMITM reserves space-time for all possible turning movements for non-AVs and also increases the safety margins
to allow non-AVs to use the reservation infrastructure. AVs still use conventional reservations, reserving only the
requested path. This may be less efficient than traffic signals at small proportions of AVs because of the extra space-
time reserved to ensure safety. However, as the proportion of AVs increases, LEMITM will devote less space-time
to safety of human vehicles because it is not constrained by protecting turning movements allowed by traffic signals.
As a result, LEMITM may scale at a higher rate. Therefore, LEMITM is used in this dissertation to study how link
and intersection capacity scales with the proportion of AVs.

LEMITM makes two assumptions that we elaborate on here for the purposes of describing the DTA model
of LEMITM.

1. It separates vehicles into two groups: those that can establish digital communications on reservation acceptance
and adherence, and those that cannot. The latter group consists of all non-AVs, although some AVs could
conceivably fall into that group as well. This is possible in practice because current technology can already
determine whether a vehicle is waiting at the intersection for actuated signals. Given that a vehicle is waiting,
the intersection controller need only check whether the vehicle has established digital communications, which
can be determined if vehicles transmit their position to the intersection controller along with reservation
requests.

2. Due to the unpredictably of human behavior, the intersection controller must be able to cancel granted reser-
vations for AVs if a human is delayed in reacting to permission to enter the intersection. Because this DTA
model does not include potential human errors and takes a more aggregate view of the intersection, canceled
reservations are not included in the model.

Most studies on reservation-based controls use micro-simulation and are therefore not computationally
tractable for the number of simulations required to solve DTA. Section 3.3.2 simplified reservations using the idea of
larger conflict regions to distribute intersection capacity and receiving flows to sending flows for compatibility with
general SBDTA models. Although the conflict region model is designed for arbitrary vehicle prioritization, LEMITM
requires the intersection controller to reserve additional space and therefore make additional availability checks. This
section details the modifications to the conflict region algorithm to accommodate LEMITM.

The conflict region model is a polynomial-time algorithm performed at each intersection each time step
to determine intersection movement. Vehicle movement is restricted by capacity of each conflict region it passes
through during its turning movement. The purpose of the conflict region algorithm (Algorithm 2) is to determine
which vehicles move subject to the constraints of sending flow, receiving flow, and conflict region capacity. This
section focuses on the modifications necessary to implement LEMITM.

The conflict region model requires discretized flow because of the priority function. For instance, Dresner
& Stone [28] proposed a first-come-first-serve priority, and Dresner & Stone [29] suggested priority for emergency
vehicles. Modeling such prioritization functions with continuous flow is an open question, so discretized flow is used
instead. These prioritization functions are orthogonal to the LEMITM control policy, although the communications
required for more complex prioritization functions such as auctions may be difficult for human drivers.

Two modifications to the control algorithm presented in Section 3.4 are required to implement LEMITM.
First, for non-AVs, movement from i to j across the intersection requires available capacity for all possible turning
movements from i because the vehicle cannot communicate its destination to the intersection controller. The set of
conflict regions a vehicle leaving link i could pass through is ∪j′∈Γ+CR

ij′ . It is not specific to j because for a human
vehicle, the intersection manager does not know the vehicle’s destination link. Therefore the intersection controller
must check whether all such turning movements have space available. Second, when such a reservation is accepted,
space for all possible turning movements from i must be reserved. Denote by δAV

v ∈ {0, 1} whether vehicle v is
autonomous. The modified CR model is formalized in Algorithm 3.

3.5 Paradoxes of first-come-first-served reservations

This section presents and characterizes several scenarios in which the use of FCFS reservations results in
greater delays than signals. We present three theoretical examples, including a temporarily saturated arterial-local
road intersection to a demonstration that replacing signals with reservations can result in infinite queuing. Overall,
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Algorithm 3 Conflict region algorithm for mixed AV/HV traffic

1: V := ∅
2: for all i ∈ Γ− do
3: Sort Si(t) by arrival time at i
4: Remove first Li vehicles in Si(t) and add them to V
5: L̃i := 0
6: for all j ∈ Γ+ do
7: yij(t) := 0
8: end for
9: end for

10: Sort V by f(v)
11: for all v ∈ V do
12: Let (i, j) be the turning movement of v
13: if canMove(i, j) then
14: yij(t) := yij(t) + 1
15: if δAV

v = 1 then
16: for all c ∈ CR

ij do

17: yc(t) := yc(t) + Qc

Qij

18: end for
19: else
20: for all c ∈ ∪j′∈Γ+CR

ij′ do

21: yc(t) := yc(t) + Qc

Qij

22: end for
23: end if
24: Remove first vehicle in Si(t) and add it to V in sorted order
25: yv(t) := 1
26: else
27: yv(t) := 0
28: L̃i := L̃i + 1
29: end if
30: end for
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Algorithm 3 Conflict region algorithm for mixed AV/HV traffic (continued)

31: function canMove(i ∈ Γ−, j ∈ Γ+)

32: if Rj −
∑

i′∈Γ−
yi′j < 1 or

(
Qi −

∑
j′∈Γ+

yij′

)
Li−L̃i

Li
< 1 then

33: return false
34: end if
35: if δAV

v = 1 then
36: for all c ∈ CR

ij do

37: if Qc − yc(t) < uf
iτv+L

uf
iτHV+L

Qc

Qij
then

38: return false
39: end if
40: end for
41: else
42: for all c ∈ ∪j′∈Γ+CR

ij′ do

43: if Qc − yc(t) < uf
iτv+L

uf
iτHV+L

Qc

Qij
then

44: return false
45: end if
46: end for
47: end if
48: return true
49: end function

Table 3.1: Link parameters for Section 3.5.1.1

Link Free flow Capacity (vph) Demand per time step
travel time(s) (first 2 time steps)

1, 2 18 3600 6 vehicles
3, 4 18 1200 2 vehicles

these results demonstrate that while reservations perform better than traffic signals in certain situations, network-
based analyses are necessary to detect adverse route choices before reservations can be used to replace signals entirely.
In particular, asymmetric intersections (e.g. local road-arterial intersections) can cause several potential issues with
reservation controls.

3.5.1 Theoretical examples

This section presents three examples in which FCFS reservations are less efficient than signals. First, we
show that the fairness of FCFS can increase total vehicle delay for asymmetric intersections. Next, we discuss how
reservations can disrupt platoon progression that is possible through optimally timing signals on a corridor. Finally,
we demonstrate that replacing a signal with a reservation control can lead to arbitrarily large increases in queue size
due to selfish route choice.

3.5.1.1 Greater total delay due to fairness

We first present a simple example of a temporarily oversaturated arterial-local road intersection. Clearly,
some vehicles must be delayed due to crossing conflicts. We show that the fairness goal of FCFS results in greater
total delay. Consider the intersection A shown in Figure 3.4. As described in Table 3.1, links 1 and 2 form a
three-lane arterial with total capacity of 3600 vph. Links 3 and 4 form a one-lane local road with capacity 1200 vph.
Using a time step of 6 seconds, which is typical for the CTM [21,22] used in simulation-based DTA, each time step
six vehicles can move from link 1 to link 2, or two vehicles from link 3 to link 4, or any convex combination. Because
the local road has lower capacity, moving one vehicle from link 3 to link 4 reserves a capacity equivalent to moving
three vehicles from link 1 to link 2.
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Figure 3.4: Network for Section 3.5.1.1

The fairness property of FCFS can be exploited to cause greater delays. Suppose that for the first two time
steps, demand for moving from link 1 to link 2 is six vehicles per time step, and demand for moving from link 3 to
link 4 is two vehicles per time step. There is no demand after two time steps. Intersection A has greater demand
than capacity in the first two time steps. Since the demand is finite, all demand will be served after four time steps,
but some demand will be delayed. Which vehicles are delayed depends on the intersection control, and we show that
the fairness of FCFS reservations is less efficient for the system.

For a traffic signal, the majority of green time may reasonably be given to the major approach — arterial
links 1 and 2. Therefore, the typical pattern of vehicle movement with signals is as follows: during the first two time
steps, six vehicles per time step move from link 1 to link 2. Those vehicles do not experience any delay. During the
next two time steps, two vehicles per time step move from link 3 to link 4. Those vehicles are each delayed by two
time steps, or 12 seconds. This results in a total vehicle delay of 48 seconds.

For FCFS reservations, vehicles are prioritized according to their waiting time. Therefore, the pattern of
vehicle movement is to move three vehicles from link 1 to link 2 and one vehicle from link 3 to link 4 each time
step. This is due to the fairness attribute of FCFS: the queues on links 1 and 3 alternate between having the longest
waiting vehicle. The greater delay results from the fact that when one vehicle moves from link 1 to link 2, two other
vehicles can move with it due to the greater capacity of the arterial. The vehicles moving in time steps 2 and 3 are
each delayed by one time step, and the vehicles moving in time step 4 are delayed by two time steps. This results in
a total vehicle delay of 96 seconds. Note that this delay does not include the additional time required for vehicles to
start moving from a full stop. For signals, vehicles on the arterial need not stop at all, but for FCFS, most of the
vehicles experience some delay and might slow down accordingly.

These results occur despite asymmetric lane configuration. As mentioned in the second property of FCFS
(Section 3.2.1), vehicles at the front of their lane know with certainty their arrival time at the intersection, and can
therefore make a reservation sooner than vehicles behind. Although the arterial has more lanes than the local road,
vehicles on the local road are still able to block vehicles on the arterial.

Previous work by Fajardo et al. [37] and Li et al. [63], which found that FCFS reduced delays beyond
optimized signals, only studied symmetric intersections in which each approach had the same capacities and number
of lanes. This example demonstrates that for asymmetric intersections, FCFS increases total delay for some demand
scenarios. The greater delay results from how signals are likely to delay vehicles on the local road longer to service
vehicles on the arterial. On the other hand, FCFS seeks fairness in waiting time, which results in less delay for some
vehicles on the local road but greater total delay. The fact that only a single simple intersection, with a small and
common demand scenario, is sufficient to increase total delay suggests that this type of situation may be common
when replacing signals with FCFS reservations. Of course, policies besides FCFS may address this issue, and we
discuss these further in Section 3.6.

3.5.1.2 Disruption of platoon progression

This scenario extends the previous example to a two intersection network in which FCFS disrupts signal
progression on an arterial, resulting in greater total delay. Consider the network shown in Figure 3.5 with link
parameters in Table 3.2. The network consists of an arterial (links 1, 2, and 3) intersected by two local roads (links
4 & 5 and links 6 & 7). Demand is as follows: at time 0, six vehicles start traveling the path [1, 2, 3]. At time 6,
two vehicles start traveling the path [6, 7]. Assume that no other demand is present. Therefore, all vehicles will
experience free flow until reaching intersection B, at which point some vehicles must be delayed due to the crossing
conflict.
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Figure 3.5: Network for Section 3.5.1.2

Table 3.2: Link parameters for Section 3.5.1.2

Link Free flow travel time(s) Capacity(vph)
1, 2, 3 12 3600

4, 5, 6, 7 18 1200

When signals are used at A and B, the signals may be timed to allow progression along the arterial. Thus
the six vehicles on path [1, 2, 3] experience free flow whereas the vehicles on path [6, 7] are delayed by 6 seconds, for
a total vehicle delay of 12 seconds.

For reservation controls, vehicles may request a reservation at the next intersection as soon as they can know
their arrival time there. It is reasonable to assume that vehicles will not request a reservation at an intersection until
they enter an incoming link to that intersection, i.e. vehicles on link 1 traveling on path [1, 2, 3] will not request a
reservation at B. There are several reasons why vehicles might do this. First, unforeseen circumstances at intersection
A, such as jaywalking pedestrians, might delay vehicle movement across A. Second, vehicles using adaptive routing
to respond to congestion may not want to commit themselves to a turning movement at B before getting closer
to ascertain traffic conditions on outgoing links of B. Even without this assumption, it is trivial to add additional
demand on link 2 that prevents the vehicles on path [1, 2, 3] from requesting a reservation at B until entering link 2.
Under this condition, we find that reservations increase the total delay.

When reservations are used, the vehicles on path [6, 7] can request a reservation at B at time 6, when they
enter link 6, because the link is at free flow. However, the vehicles on path [1, 2, 3] cannot request a reservation until
time 12, when they enter link 2. With a time step of delay between reservations, any reservation policy that does not
account for future reservation requests — such as FCFS — will grant the requests of vehicles on path [6, 7] because
no conflicts are present at the time those requests are made. Therefore, none of the six vehicles on path [1, 2, 3] can
cross B at time 24. This delays those vehicles by 1 time step, resulting in a total vehicle delay of 36 seconds.

Delaying acceptance of the reservation request until vehicles have moved closer to the intersection may not
completely solve the issue. In practice, more complex reservation policies such as auctions must wait to collect all
requests before making a decision. However, the difference of 6 seconds in submitting reservation requests in this
example could easily be made greater by increasing the length of link 6. Furthermore, vehicles may have to make
late reservation requests due to traffic in front, which reduces the margins the intersection manager has for delaying
acceptance.

If the reservation policy were to anticipate future reservation requests, it could avoid this situation. Traffic
signals can “anticipate” these future requests by timing cycles to allow for progression. Therefore any reservation
policy that operates only on existing reservations, such as FCFS or auctions, will grant vehicles on path [6, 7] the
reservation before vehicles on path [1, 2, 3] have even submitted their request. Another way to handle this type of
situation is to retroactively deny a reservation. This adds complexity to the protocol: the vehicle with a previous
reservation must confirm that it will not execute it. This could be useful to warn vehicles of impending hazards
such as pedestrians or collisions. However, selfish vehicle programming might choose to ignore the retroactive denial
message if used to shift reservation priorities to game the system. Retroactive denial would also introduce potential
safety issues.
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Figure 3.6: Network for Section 3.5.1.3

Table 3.3: Link parameters for Section 3.5.1.3

Link Free flow travel time(s) Capacity(vph)
1 30 2400
2 80 2400
3 60 1200
4 30 2400

3.5.1.3 Arbitrarily large queues due to route choice

In the previous two examples, FCFS caused greater delays due to being less optimized for the network
structure than traffic signals. This example combines that lack of optimization with selfish route choice to cause
potentially infinite queuing. We make the typical assumption of DTA that vehicles choose routes to minimize their
own travel time. This results in a DUE: a route assignment in which no vehicle can improve travel time by changing
routes. This Wardrop equilibrium [105] has been shown to cause paradoxes in which network improvements increase
travel time for all vehicles [10,24]. This scenario is perhaps the most difficult to avoid because to do so requires some
additional delay or toll on the local road, even when there is no conflicting demand from the arterial.

We present a network based on Daganzo’s paradox [24] in which replacing a signal with a FCFS reservation-
based control results in potentially infinite queuing. Consider the four link network shown in Figure 3.6 with link
parameters shown in Table 3.3. Vehicles can take arterial link 2 or local road 3 to travel between B and C. Assume
that turning movements from links 2 and 3 to 4 conflict at C, i.e. 2400 vph may travel from 3 to 4, or 1200 vph from
2 to 4, or any convex combination. Also assume that the diverge at B has sufficient capacity to support any turning
proportion split. Suppose that demand from A to D is 1800 vph. Since link 2 is an arterial, suppose intersection C is
controlled by a signal with considerable delays for vehicle traveling from 3 to 4: the cycle is 60 seconds for movement
from 2 to 4 then 10 seconds for movement from 3 to 4. Because of the average delay of nearly 30 seconds from the
signal for vehicles traveling from 3 to 4, path [1, 3, 4] has an average travel time of around 170 seconds. In contrast,
path [1, 2, 4] has an average travel time of around 140 seconds. Therefore, when all demand takes path [1, 2, 4], it is
an equilibrium, and the network is nearly at free flow.

Now suppose that the signal at C is replaced with a reservation control using the FCFS policy. Because
of the fairness attribute of FCFS, the expected delay for vehicles moving from 3 to 4 is small: they can expect to
alternate with vehicles moving from 2 to 4. Because of this, all demand on path [1, 2, 4] is not an equilibrium, because
path [1, 3, 4] has a travel time that is only slightly higher than 120 seconds — lower than the free flow time of path
[1, 2, 4]. On the other hand, all demand on path [1, 3, 4] is an equilibrium. Vehicles reaching B are presented with
the choice of taking link 2, with its free flow time of 80, or link 3, with its free flow time of 60, and link 3 is always
better. However, the 1200 vph capacity of link 3 creates a queue on link 1. This queue can grow infinitely: if the
demand of 1800 vph continues for an infinite time, all demand on path [1, 3, 4] will still be the equilibrium, which
will result in the queue growing at the rate of 600 vph.

This scenario is similar to Daganzo’s paradox [24] in that queuing before the diverge results in vehicles
choosing the least efficient route for the system. In this example, once vehicles reach the diverge, they find free flow,
or nearly free flow, conditions on both alternative paths. Since link 3 has a much lower free flow time than link 2, all
vehicles choose the shorter link. When signals were in place this choice was discouraged through an artificial delay
placed on vehicles on link 3. With FCFS reservations, the delay is removed in the interests of fairness.

From this example, we make the following conclusions: first, replacing a signal with reservations can, in the
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worst case, result in arbitrarily long queues. Avoiding this type of scenario is difficult because the queuing results
from the choice of control at C. In both scenarios, links 2, 3, and 4 are nearly at free flow. From the local perspective
of intersection C, both signals and reservations at C are managing demand sufficiently. Identifying the congestion
resulting from reservations at C requires a network perspective.

To stabilize this scenario, the control at C must impose some delay on movement from 3 to 4. If vehicles are
given preference by time spent waiting (such as with FCFS) or even by some more system-related objectives such
as maximum flow, the unstable situation results. Furthermore, it is necessary to delay vehicles moving from 3 to 4
even when no vehicles are waiting on link 2. This is contrary to the goal of most reservation policies to maximize
utilization of intersection capacity. This delay could be in the form of waiting time or in a toll placed on movements
from 3 to 4. Previous work on intersection auctions [81] provides the technology necessary for tolling specific turning
movements or microtolling every link.

3.5.2 Realistic networks

Having demonstrated the potential for signals to perform better than FCFS reservations through theoretical
examples, we now investigate such situations in realistic networks. For these studies, we use CTM [21, 22] for
dynamic flow propagation with the conflict region algorithm (Section 3.4, which is consistent with the constraints on
general intersection models of Tampère et al. [94] for reservation-based control. Signals are modeled by calculating
saturation flows for each turning movement proportional to green times. We study three subnetworks of the Austin
regional network based on data from the Capital Area Metropolitan Planning Organization. First, we present an
arterial subnetwork and a highway subnetwork in which signals or merges/diverges outperform reservations. Then,
we compare FCFS reservations to signals on the downtown Austin subnetwork, which includes both signals and
merges/diverges. The positive results for this large network demonstrates the potential benefits of reservations.

3.5.2.1 Arterial subnetwork

Lamar & 38th Street is the intersection between two arterials in Austin, shown in Figure 3.7. It contains
5 signalized intersections and 21 links. The intersections on Lamar (running southwest-northeast) do not have
progression, but the two intersections on 38th Street are timed for it.

Table 3.4 shows TSTT and travel time (TT) per vehicle at different demand scenarios. (These results do not
include the capacity and congested wave speed improvements discussed in Chapter 2.) Traffic signals consistently
outperformed reservations at all demand levels. Reservations appeared to scale somewhat worse with demand as well.
The worst performing links for reservations at 100% demand were along the Lamar arterial. The southwestern region
in particular had high travel times with reservations. It is likely that FCFS reservations allowed vehicles entering
from local roads to delay vehicles traveling along the arterial, as discussed in Section 3.5.1.1. The intersections there
are close together, and reduced intersection capacities granted to the arterial by FCFS may have also resulted in
queue spillback issues.

In addition, the progression on 38th Street was likely disrupted by the use of reservation-based controls.
In particular, in the DTA model vehicles do not request a reservation from an intersection until after entering an
incoming link. The gap between the intersections of Lamar & 38th Street, and Medical Parkway and 38th Street,
is smaller than the length of the Medical Parkway link. This admits scenarios such as the one in Section 3.5.1.2 in
which vehicles on Medical Parkway could place a reservation before vehicles on 38th Street.

Table 3.4: Results on Lamar & 38th St.

Demand Scenario TSTT TT per vehicle
13841 Traffic signals 4060.8 hr 17.60 min
(85%) FCFS reservations 4560.4 hr 19.77 min
14655 Traffic signals 4937.0 hr 20.21 min
(90%) FCFS reservations 5778.5 hr 23.66 min
15469 Traffic signals 6160.6 hr 23.90 min
(95%) FCFS reservations 7189.4 hr 27.89 min
16284 Traffic signals 7159.5 hr 26.38 min

(100%) FCFS reservations 8809.1 hr 32.46 min
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Figure 3.7: Lamar & 38th St.

3.5.2.2 Freeway subnetwork

Most literature has considered replacing traffic signals with reservation-based controls. However, the reser-
vation protocol is general enough to be applied to any intersection. Previous studies such as Hall & Tsao [46]
have considered using autonomous vehicle technologies to improve highway on- and off-ramps. In addition, ramp
metering to reduce freeway congestion has been well-studied in the literature [73], and reservations with AVs would
allow complete enforcement of ramp metering. Therefore, it is likely that researchers will consider using reserva-
tions to control freeway access. In this subsection we present an example on replacing conventional unsignalized
merge/diverge behavior with FCFS reservation controls.

In DTA, we model merging via constraints on the receiving flow. With normal merging behavior, the
receiving flow is distributed among the upstream links by capacity, with leftover receiving flow given to saturated
approaches. With FCFS reservations, receiving flow is distributed according to the vehicle order of request.

The I–35 corridor, shown in Figure 3.8, is a freeway subnetwork with 220 links. (Many of the on- and off-
ramps are difficult to see due to the length of the corridor). All intersections are merges or diverges; none are traffic
signals. Table 3.5 shows travel times at different levels of demand. (These results do not include the capacity and
congested wave speed improvements discussed in Chapter 2.) Merges/diverges consistently outperformed reservations
at all demand scenarios. At low demand, the differences were small, but as demand increased, FCFS scaled much
worse than merges/diverges. An analysis of link travel times found that most of the delays occurred from vehicles
entering the freeway. It is not clear why FCFS reservations made it more difficult for vehicles to enter the freeway.
Possibly the greater number of lanes on the freeway allowed freeway vehicles to submit requests at a greater rate
(vehicles could not submit requests unless they were not blocked from entering the intersection by vehicles in front).
This could be indicative of an asymmetry issue where the three lane freeway intersects with one lane on- and off-
ramps. Based on the long queues for vehicles entering the freeway, it appears that FCFS reservations in this case
skew too much towards freeway traffic and do not provide enough capacity to the on-ramps.

Table 3.5: Results on I–35 corridor

Demand Scenario TSTT TT per vehicle
64025 Merges/diverges 4089.7 hr 3.83 min
(50%) FCFS reservations 6023.4 hr 5.64 min
76830 Merges/diverges 5307.5 hr 4.14 min
(60%) FCFS reservations 11912.9 hr 9.30 min
89635 Merges/diverges 8049.8 hr 5.39 min
(70%) FCFS reservations 23248.8 hr 15.56 min
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Figure 3.8: I–35 corridor
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3.6 Pressure-based policies for intersection control

The examples in Section 3.5 demonstrate that while FCFS is effective in some situations, in other scenarios
a better policy is needed before signals can be replaced with reservations.

3.6.1 Link model

Describing backpressure requires a slightly different link representation than discussed in Chapter 2. Recall
that the traffic network is G = (N,A), where N is the set of nodes, and A is the set of links. Let V be the set of
demand. Each link is divided into cells via CTM. Cells for link a ∈ A have length ufa∆t , where ufa is the free flow
speed of link a and ∆t is the simulation time step. Therefore, vehicles can traverse at most one cell per time step.
Let Γ−i and Γ+

i be the incoming and outgoing cells for i, respectively. Each cell is a FIFO queue of vehicles. Although
the hydrodynamic theory defines flow for continuous space and time, CTM approximates the hydrodynamic theory
by constraining flow between cells. As ∆t → 0, the solution to CTM approaches the solution to the hydrodynamic
theory. CTM is commonly used for large-scale or practical applications when solving the hydrodynamic theory
exactly is not tractable.

3.6.1.1 Cell flow dynamics

Our CTM formulation differs somewhat from that of Daganzo [21, 22] due to the need to track individual
vehicles. Let ni(t) be the set of specific vehicles, which will be necessary for defining which vehicles move at each
time step. Let Si(t) ⊆ ni(t) be the sending flow — the set of vehicles in cell i at time t that would leave i if there
were no downstream constraints. Let Ri(t) ∈ R+ be the receiving flow of cell i at time t – the number of vehicles
that would enter if connected to a source of infinite demand. Let yvij(t) ∈ {0, 1} indicate whether vehicle v ∈ ni(t)
moves from cell i to cell j at time t. We extend yvij(t) from intersection movements to movements between cells. If
yvij(t) = 1, v moves from i to j at t. v will not move from i to j unless j ∈ pv, which is important for intersection
dynamics. Flow between i and j is further constrained: v cannot leave i at t unless v ∈ Si(t). Also, the total flow
into j cannot exceed Rj(t). Formally, ∑

i∈Γ−j

∑
v∈Si(t)

yvij(t) ≤ Rj(t) (3.25)

for all cells j. Also,
|Si(t)| ≤ Qi∆t (3.26)

where Qi is the capacity of cell i, and

Rj(t) = min

{
Qj∆t,

wj
uf
j

(Nj − |nj(t)|)

}
(3.27)

where uf
j is the free flow speed, wj is the congested wave speed, and Nj is the maximum occupancy of cell j.
Vehicle movement is also constrained by the FIFO behavior of cell queues. Vehicles cannot exit if blocked by

a vehicle in front. Finally, flow between links may be constrained by intersection conflicts. Let yij(t) denote a vector
of vehicle movements for vehicles in Si(t). Let Yn(x(t)) denote the set of feasible vehicle movements across node
n ∈ N at t when cell occupancies are given by the vector n(t). Yn(n(t)) is constrained by sending flow, receiving
flow, path constraints, intersection conflicts, and FIFO behavior.

Each yij(t) ∈ Yn(t) is an action that may be taken for moving flow. Let S(t) be a vector of sending flows
and Y(n(t)) be a vector of feasible movements across all nodes at time t. A policy determines which vehicles are
moved when the sending flow is S(t).

The state of this system evolves according to conservation of flow:

nj(t+ 1) =nj(t) ∪ Vj(t) ∪

 ⋃
i∈Γ−j

{
v ∈ Si(t) : yvij(t) = 1

}
/

 ⋃
k∈Γ+

j

v ∈ Sj(t) : yvjk(t) = 1

 (3.28)
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where Vj(t) ⊆ V is the set of vehicles departing from cell j at time t.
Flow between two cells on a link (as opposed to flow across an intersection) is clearly defined by the CTM

[21,22] in accordance with the kinematic wave theory. Recall that vehicles on each cell are stored in a FIFO queue.
CTM defines the quantity of flow, and a corresponding number of vehicles from the FIFO queue are moved. Therefore,
for cells i, j on the same link, Yij(t) = 1. Flow between two cells across an intersection may have more possibilities
due to the intersection conflicts.

3.6.2 Backpressure policy for reservations

We adapt the backpressure policy [95] for the traffic network. Due to DUE route choice (Section 3.5.1.3), we
cannot prove that this is a maximum throughput behavior. Nevertheless, results on a city network show significant
improvement over the FCFS policy.

3.6.2.1 Traffic network as constrained queuing system

A major difference between communications networks and traffic networks is that in traffic networks, con-
gestion creates regions of high-density, slower-moving traffic. Communications networks are essentially point queues,
and the size of the queue does not affect link travel times. After a review of the communications network of Tassiulas
& Ephremides [95], we show that our CTM traffic network is similar to the constrained queueing systems that they
studied. Each cell is a point queue, and shockwaves in traffic flow are modeled through cell transition flows. This
model results in many queues — including multiple queues per link. Still, flows between cells within a link are simple
to handle because the feasible region is determined exactly by cell transition flows. Of course, this relies on the
CTM approximation to the kinematic wave theory; the kinematic wave theory itself is continuous and can be solved
in continuous space [110, 111]. Nevertheless, CTM is commonly used in large-scale DTA models, so using CTM to
adapt the backpressure policy is reasonable.

Although this cell model is equivalent to a communications network, there are several issues that prevent
proving that backpressure maximizes throughput. First, queue sizes are bounded due to network geometry, and
previous work on communications networks has required large queue sizes to ensure stability [41,54]. While arbitrary
queue sizes are possible in computer storage, road lengths are not so arbitrary. Second, communications networks do
not have FIFO behavior. Due to different destinations, FIFO behavior at intersections limits the feasible region of
the control policy. For instance, a left-turning vehicle could block a right-turning vehicle behind it, even though the
right-turning vehicle could otherwise move through the intersection. Finally, communications network policies assume
route choice is controlled by the system. However, in traffic networks, vehicles typically choose routes individually,
and DUE route choice can reduce efficiency.

Section 3.5.1.3 presented a counterexample to stabilizing the network via a decentralized policy. Therefore,
it is not possible to prove that any decentralized pressure-based policy, including backpressure, is throughput optimal
for a network under UE route choice. It is true that previous work on applying backpressure [44, 107,108, 112] were
able to prove that backpressure was stable, if demand allowed it. However, they assumed that turning proportions
remained fixed, which is not true under DUE behavior [87]. The counterexample in Section 3.5.1.3 used DUE route
choice to create a situation in which the network can be stabilized, but will not be stabilized under a decentralized
pressure-based policy.

3.6.2.2 Maximum throughput heuristic

We adapt the backpressure policy of Tassiulas & Ephremides [95] to the CTM network. We cannot prove that
backpressure maximizes throughput, but the insights of backpressure control are used for this heuristic. Backpressure
is an algorithm executed each time step that determines intersection vehicle movements. Algorithm ?? gives a formal
description of the backpressure policy. As with the algorithm of Tassiulas & Ephremides [95], backpressure consists
of three stages. Stage 1 selects the weights on each vehicle based on cell queues. Stage 2 decides the combination
of vehicles to move given the vehicle weights. Note that the decision of which vehicles to move can be separated by
intersection: a system-wide controller is not necessary. However, computing the vehicle weights in Stage 1 requires
communication of queue lengths between neighboring intersections.

For any node n, let Γ−n and Γ+
n be the sets of incoming and outgoing cells, respectively. Also let Γ−v,n and Γ+

v,n

be the incoming and outgoing cells for vehicle v at n, respectively. To simplify the notation, let yvn(t) = yv
Γ−v,n,Γ

+
v,n

(t)

denote whether v moves through n at t.
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The key insight is in the calculation of the pressure terms Dv
n(t) for each vehicle v at node n at time t.

For communications networks, this is simply the queue size because queues are unbounded. A key requirement of
Tassiulas & Ephremides’s proof [95] is that Dv

n(t) can become arbitrarily large as the queue grows. However, cell
queues are bounded, so setting Dv

n(t) = |nΓ−v,n
(t)| does not provide sufficient pressure. Instead, we define a congestion

region of connected congested cells, and sum the occupancies of all cells in the congestion region.

Stage 1 This stage determines the vehicle weights Dv
n(t) for each vehicle v. Since the queue at cell j could be

bounded, to achieve unbounded pressures we must consider cells behind j. Even link queue lengths might be too
small to provide sufficient pressure [41, 54]. Define Cj to be the set of congested cells leading up to j. Cj is defined
recursively as

Cj = {j} ∪
{
i ∈ Γ−j′ : j′ ∈ Cj and |nj(t)| > Qj∆t

}
(3.29)

This can be explained intuitively as follows: Cj is the set of congested cells containing queued vehicles that might
use cell j. We define cell j to be congested if nj(t) > Qj∆t, which means that not all vehicles in j can exit in a single
time step. The queue at j is always considered, so j ∈ Cj . If j is not congested, Cj = j. If j is congested, then Cj
is the set of contiguous congested cells leading up to and including j. If the network is sufficiently congested, then
Cj will include one or more centroid cells, which have unbounded queues. The pressure from the queues from the
centroid cell(s) will result in arbitrarily large pressure, which is one of the key features of the backpressure policy.

Let pij(t) be the proportion of vehicles in cell i that have cell j in their path. Clearly, pjj(t) = 1, and for
any cell i preceding j on the same link, pij(t) = 1 also. When queue spillback is present and i is on a different link
than j, pij(t) < 1 is possible.

Define the queue length for cell j at time t, Qj(t) to be

Qj(t) =
∑
i∈Cj

|ni(t)|pij(t) (3.30)

Qj is the number of vehicles in the congested region Cj waiting to use cell j. Now define Dv
n(t) as follows:

Dv
n(t) =

(
QΓ+

v,n
(t)− QΓ−v,n

(t)
)

min
{
QΓ+

v,n
, QΓ−v,n

}
(3.31)

Dv
n(t) is the product of the difference in queue lengths for cells Γ−v,n and Γ+

v,n and the maximum flow rate between
Γ−v,n and Γ+

v,n. This product is taken directly from Tassiulas & Ephremides [95]. Note that when Γ+
v,n is a sink

cell, QΓ+
v,n

= ∞ and QΓ+
v,n

(t) = 0 by definition. The difference is used because moving vehicles onto a congested

cell (if possible) is intuitively less efficient than moving vehicles onto uncongested cells. Dv
n(t) does not depend on

properties of v besides the path of v. The vehicle index is retained for vector notation; let D(t) be the vector of
vehicle-specific weights.

Stage 2 Find a vehicle movement vector y∗(t) satisfying the following:

y∗(t) ∈ arg max
y(t)∈Y(t)

{D(t) · y(t)} (3.32)

Note that this can be solved for individual intersections because the choice of flows at a single intersection does not
affect the feasible flows for other intersections at the same time step.

Stage 3 If y∗vn (t) = 1, then vehicle v is moved from Γ−v,n to Γ+
v,n at t. Otherwise, v remains in Γ−v,n. This flow is

feasible because y∗(t) ∈ Y(t).

Remarks Note that Stages 1 and 2 only need to be computed for incoming and outgoing cells at nodes. For flow
between two cells on the same link, there is only one feasible solution as defined by the CTM transition flows [21,22].

Stage 2 requires the solution of an integer program, which is NP-hard. For reservation-based intersection
control, vehicles may be allowed to move individually, which could result in a large feasible region. |Yn(t)| is
O
(
2|Sn(t)|). For tractability, we use the polynomial-time greedy heuristic of Section 3.4.2 to find a decent solution.

In calculating the efficiency, we set z(t) = D(t) in equation (3.24).
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3.6.2.3 A note on practical implementation

One potential concern is how to implement the backpressure policy in practice. CTM is itself an approxima-
tion to the hydrodynamic theory, and defining the policy in terms of cell queues may not seem completely realistic.
However, as ∆t→ 0, the predictions of CTM approach those of the hydrodynamic theory. Therefore, the calculation
of the intersection queue length from the queues in contiguous congested cells becomes the length of the queues on
intersection approaches. The size of these queues may be determined through loop detectors.

A second issue with implementation is calculating the total length of queues across queue spillback. In the
backpressure, we assumed that we know vehicle routes, and whether they will use any given cell. In practice, vehicle
routes may not be known, even for autonomous vehicles. Queues specific to a link could be estimated by turning
fractions when queue spillback is present. However, these turning fractions may change over time due to DUE route
choice.

Our traffic network model also assumes that centroid queues will grow arbitrarily large if demand is suf-
ficiently high. Realistically, travelers will probably choose to depart later if queues are backed up to their origin.
However, when demand is modeled as elastic, boundedness of queue length is not an effective measure of stability.

Algorithm 4 Backpressure policy

1: for all a ∈ A do
2: Let j be the end cell of a
3: Set Cj = Find congested region(j)
4: for all v ∈ nj(t) do
5: Qj(t) :=

∑
i∈Cj

|ni(t)|pij(t)

6: end for
7: end for
8: for all n ∈N do
9: for all v ∈ Sn(t) do

10: f(v) :=
(
QΓ+

v,n
(t)− QΓ−v,n

(t)
)

min
{
QΓ+

v,n
, QΓ−v,n

}
11: end for
12: Conflict region algorithm(n)
13: end for
14:

15: procedure Find congested region(j)
16: Cj := {j}
17: if |nj(t)| > Qj(t) then
18: for all i ∈ Γ−j do
19: Cj := Cj∪ Find congested region(i)
20: end for
21: end if
22: return Cj
23: end procedure

3.6.3 P0 policy for reservations

The backpressure policy is from a model where routing is determined by the system [95] and the counterex-
ample to stability (Section 3.5.1.3) shows that DUE route choice could prevent stability. In the worst case, policies
relying on local information could result in unbounded queues despite a stabilizable demand. Therefore, we also
adapt the P0 policy [88, 89] to reservations for comparison. P0 is an algorithm run at each time step, described
formally in Algorithm 5. P0 was designed to maximize network capacity under UE route choice. However, proving
that P0 maximizes capacity in the simulation-based CTM is difficult because link travel times are not continuous
with respect to inflow or demand. P0 also uses a congestion-increased pressure term, but the pressure is based on
link travel times rather than queue lengths.

P0 was designed for a model using link performance functions for delay. Specifically, P0 assumes that the
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travel time τa for link a ∈ A is of the form

τa = τ f
a + fa

(
ωa + µaQ̂a

)
(3.33)

where τ f
a is the free flow travel time, fa(·) is the delay function, ωa is the demand for the link, Q̂a is saturation flow,

and µa is the proportion of red time. For phase k at node n ∈ N let Akn ⊆ A be the set of links given green time.
For a link travel time of this form, the resulting pressure ρkn for phase k is then

ρkn =
∑
a∈Ak

n

Q̂afa

(
ωa + µaQ̂a

)
(3.34)

Applying this to DTA requires evaluating the function fa(·), which is determined through simulation in DTA.
However, previous travel times are observable. Let τ̄a(t) be the expected travel time for link a at time t, based on
estimates from vehicles that traversed a. Then we create an estimate of fa(·) at t, f̄a(t), by taking

f̄a(t) = τ̄a(t)− τ f
a (3.35)

We also replace saturation flow Q̂a with capacity Qa. In practice, these may not be equivalent since many static
models assume that link flows can exceed the saturation flow at the cost of high delay. However, capacity is the flow
constraint parameter for DTA.

We also adapt this to reservation-based intersection control, meaning that pressure is specified for specific
vehicles rather than phases. Since the pressure is based on the link travel time, let a−1

v,n ∈ A be the incoming link
for vehicle v at node n. (This differs from the incoming cell because the pressure for P0 is based on the link travel
time, not the cell travel time). This results in the following pressure Pvn(t) for vehicle v at node n at time t using
the P0 policy:

Pvn(t) = Qa−1
v,n

(
¯τa−1
v,n

(t)− τ f
a−1
v,n

)
(3.36)

Pvn (t) favors links with high capacity and/or with a high delay (travel time beyond the free flow time). Delay should
greatly increase as the queue length increases.

Define the vector of pressures to be P(t) for all waiting vehicles. The objective is then to find

y∗(t) ∈ arg max
y(t)∈Y(t)

{P(t) · y(t)} (3.37)

As with the backpressure policy, this can be determined locally for individual intersections. We also approximately
solve equation 3.37 using the greedy heuristic of Section 3.4.2. To calculate the efficiencies, we set z(t) = P(t) in
equation (3.24).

Algorithm 5 P0 policy

1: for all n ∈N do
2: for all v ∈ Sn(t) do

3: f(v) := Qa−1
v,n

(
¯τa−1
v,n

(t)− τ f
a−1
v,n

)
4: end for
5: Conflict region algorithm(n)
6: end for

3.7 Experimental results

We compared four types of intersection controls — traffic signals and reservations with FCFS, backpressure,
and P0 — on the downtown Austin network, shown in Figure 2.15. The network has 171 zones, 546 intersections,
and 1247 links. Data was from the Capital Area Metropolitan Planning Organization. The DNL used CTM with a
6s time step, and the conflict region model for reservation-based intersection control. Traffic signals were modeled
by simulating phases and changing the capacity of turning movements proportional to green time at each time step.
Flow was discretized and individual vehicles were tracked. We used the method of successive averages [60] to solve
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Table 3.6: Intersection control results on downtown Austin network

Demand Intersection policy TSTT (hr) Avg. TT per vehicle (min)
43965 Traffic signals 8552.2 11.67
(70%) FCFS 4276.6 5.84

Backpressure 3974.0 5.42
P0 4003.1 5.46

50290 Traffic signals 10771.5 12.9
(80%) FCFS 5550.4 6.62

Backpressure 4819.7 5.74
P0 4897.6 5.84

56592 Traffic signals 13776.0 14.61
(90%) FCFS 7116.0 7.55

Backpressure 6016.1 6.38
P0 6285.6 6.66

62847 Traffic signals 16971.6 16.20
(100%) FCFS 9334.2 8.91

Backpressure 7815.5 7.46
P0 8397.1 8.01

Results for signals and FCFS differ slightly from other reported numbers for the same network because the discrete vehicle trips were

recreated from a dynamic trip table, resulting in some stochasticity in the demand.

DTA to a 1% gap for all scenarios. To demonstrate robustness, we considered demand levels from 70% to 100% at
10% increments.

Table 3.6 compares the travel times for all four intersection control policies at different demand levels.
Reservations using all policies (including FCFS) consistently had much lower TSTT than traffic signals. Although
Section 3.5 discussed several situations in which FCFS reservations would increase delay compared with signals, there
are also scenarios (such as symmetric intersections) in which FCFS is likely to reduce delay [37,63]. Both backpressure
and P0 made significant improvements over FCFS as well. This is not surprising because FCFS does not prioritize
links with higher demand, which could cause queues to build up and spillback on such links. Backpressure also
consistently performed slightly better than P0. This is probably because backpressure is more responsive to current
traffic conditions than P0. P0 was developed for a model with link performance functions, in which travel times
could be easily calculated. However, in simulation-based DTA, travel times are determined by simulation. Therefore,
high travel times were only observed after vehicles had exited the link, which delayed the effect of queuing on the
P0 prioritization. In contrast, backpressure prioritized based on queue lengths at the current time. Therefore,
backpressure responded faster and more dynamically to congestion and queueing.

3.8 Conclusions

This chapter developed and optimized a simplification of tile-based reservations [28] for autonomous vehicles.
We first formulated an IP for the conflict point transformation of tile-based reservations [115]. After transforming
the IP for use in SBDTA, the spacing constraints were found to naturally reduce to capacity limitations on each
conflict point. For computational tractability on large networks, we aggregated conflict points into conflict regions,
resulting in a model similar to that of Levin & Boyles [58] formulated as an IP. This admits arbitrary objective
functions and can therefore be used to optimize the order that vehicles cross the intersection for a more general class
of policies. Since IPs in general are NP-hard, we derived theoretical results about the conflict region algorithm [58].
It solves the IP for the FCFS objective, and admits a polynomial-time greedy heuristic based on the MCKS problem
for general objective functions.

To motivate optimization of reservations, this chapter presented a variety of scenarios in which traffic signals
and merges/diverges outperformed reservations. We studied three theoretical situations using the different attributes
of FCFS reservations to increase delays. One example showed that decentralized reservation policies could create a
Daganzo paradox [24] situation due to DUE route choice. We also presented two realistic networks from Capital Area
Metropolitan Planning Organization data in which traffic signals or merges/diverges outperformed reservations.

Finally, we adapted the backpressure [95] and P0 [88, 89] policies for reservation-based intersection control
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in dynamic traffic assignment. Neither can be proven to stabilize the network because they are both decentralized
policies. Nevertheless, results on the downtown Austin network showed that backpressure and P0 performed signif-
icantly better than the first-come-first-served policy, which has been used in most previous work on reservations.
Therefore, although backpressure and P0 are not throughput-optimal, they provide a better alternative to existing
policies.
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4 Applications

4.1 Introduction

Most previous studies of AVs have relied on microsimulators to capture AV behavior differences, but micro-
simulation is not tractable for large network analyses. Carlino et al. [14] simplified the reservation controls to
simulate a city network, but the capacity of the reservation mechanism was reduced and they did not include route
choice. Ideally, analyses of large networks would be based on DTA, which includes the effects of selfish route choice.
Chapter 2 developed a multiclass version of the CTM [21,22] with a corresponding car following model that predicts
increases in capacity and backwards wave speed as reaction-time decreases, and Chapter 3 developed a conflict region
simplification of the reservation protocol that is tractable for DTA. The purpose of this chapter is to use the resulting
DNL and DTA models to study how AVs affect congestion and travel demand on larger networks.

4.1.1 Improved road efficiency

First, we study how increasing market penetration of AVs affects freeway, arterial, and downtown network
traffic. Since previous studies have relied on microsimulation, network size was limited by the computational intensity.
Therefore, it is both novel and relevant to practitioners to study how AVs might affect traffic before including changes
to travel demand.

4.1.2 Empty repositioning trips

With regards to travel demand, Levin & Boyles [57] created a four-step model including empty repositioning
to the origin as a modal alternative to parking for home-to-work trips. Results indicated that the significant addi-
tional vehicular demand offset increased road efficiency, resulting in a net increase in congestion. They found that
empty repositioning increased the number of travelers choosing to drive, and combined with the return trips from
repositioning, resulted in nearly twice as many total vehicular trips.

For policymakers, the results of Levin & Boyles [57] raise the question of why to permit repositioning trips
at all. However, their model was not very realistic as it relied on a STA model to predict congestion. Their model
could be improved in several ways:

1. Because the model is based on STA, different departure times were not included. By definition, empty reposi-
tioning from home-to-work trips should depart later (after the traveler arrived at work). The later departure
times might result in an extended morning peak as opposed to a more concentrated one with greater conges-
tion [56].

2. The model did not include the potential benefits from reservation-based intersection control. Having more AVs
on the road could improve intersection efficency, which is a major bottleneck in downtown networks.

3. The link capacity model — how AVs improve link capacity — was preliminary and could be improved by the
work in Chapter 2

4.1.3 Shared autonomous vehicles

An even more radical change in travel behavior is the use of SAVs instead of personal vehicles. SAVs
are a fleet of autonomous SAVs that provide low-cost service to travelers, possibly replacing the need for personal
vehicles. Previous studies [11,34] assuming that all travelers used SAVs found that each SAV could service multiple
travelers, reducing the number of vehicles needed in the SAV fleet. Although 100% SAV use is unlikely to occur in
the near future, previous results suggest great potential benefits when 100% SAVs becomes viable. Strategies such
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as preemptive relocation of SAVs for expected demand [34] or dynamic ride-sharing [35] are additional options for
improving service.

However, a major limitation of previous studies is that many relied on custom software packages with un-
specified or unrealistic congestion models [11,34,35,92] and/or grid networks [34,35]. Although these were important
studies for technology demonstration purposes, for accurate comparisons with personal vehicle scenarios a common
traffic flow model is necessary. This chapter develops a framework compatible with existing traffic simulation models.
This framework allows practitioners to integrate SAVs into their current traffic models to evaluate whether to fund
public fleets of SAVs.

This framework admits a DNL model of SAVs using CTM [21, 22]. We compare SAVs using heuristics
for vehicle routing and dynamic ride-sharing based on previous work [34, 35] against personal vehicle scenarios.
(Heuristics are used because the vehicle-routing problem is NP-hard [96].) The framework allows us to study SAV
behaviors using the DNL model developed in Chapters 3 and 2.

4.1.4 Contributions

The contributions of this chapter are as follows:

1. We analyze the effects of reservation controls and increased capacity from AV technologies on freeway and
arterial networks using DTA. We studied a variety of congested subnetworks and drew conclusions that can
be generalized to other locations. For most scenarios, reservations improved over traffic signals for arterial
networks (and the freeway network that used signals to control access), but were not effective at replacing
merges/diverges. Reduced reaction times, resulting in reduced following headways and increased capacity,
improved travel times for all scenarios. We also studied the downtown Austin network, which includes many
route choice options, and found that the combination of these AV technologies could reduce travel times by
78%.

2. We present a four-step model with departure time choice, using DTA, to study how AVs affect travel demand.
Link capacity increases and reservation-based intersection control are included in DTA, and empty repositioning
to the origin (as opposed to parking) is modeled as a mode choice using a nested logit model. We use this model
to study how empty repositioning trips affect traffic on the downtown Austin city network during the morning
peak. From a policy perspective, we demonstrate two important conclusions: empty repositioning trips can
improve traffic by encouraging travelers to adopt AVs. Also, in the scenario that all travelers have AVs, empty
repositioning results in higher vehicular demand and therefore greater congestion. Taken together, these results
suggest that allowing empty repositioning trips is worth consideration despite the increase in vehicle trips.

4.1.5 Organization

The remainder of this chapter is organized as follows. Section 4.2 discusses literature on planning models
and SAVs. Section 4.3 studies how AVs affect arterial, freeway, and downtown networks. The effects of repositioning
trips are modeled in Section 4.4. In Section 4.5, we develop a framework for implementing SAVs in general traffic
simulators, and perform a case study using our DNL model. Section 4.6 presents our conclusions.

4.2 Literature review

First, we review the literature on planning models in Section 4.2.1, which is relevant to our study on empty
repositioning trips. Then, we review work on SAVs in Section 4.2.2 in anticipation of our SAV model.

4.2.1 Planning and forecasting

Forecasting in practice has been based on the four-step planning model [68] for decades. The four-step
model traditionally uses STA, although DTA admits more accurate predictions of flow propagation and more detailed
models of AV intersections. 90% of practitioners would like to incorporate DTA into their planning analyses [15], and
previous studies [32,76,98] have replaced STA with DTA by using average travel times for feedback and an exogenous
departure time profile to disaggregate demand by assignment intervals. However, modeling departure time choice is
critical for this chapter because the distribution of vehicular trips — both from travelers and for empty repositioning
— determines the level of congestion. Vovsha et al. [103] considered a time-dependent mode choice model, but
still use a fixed time distribution profile, which is a major issue with DTA planning models [75]. Most time profile
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literature focuses on simultaneous route and departure time choice (SRDTC) [38, 62, 117], which typically exclude
the trip distribution and mode choice of four-step models and are focused on short-term behavior. For instance,
Szeto & Lo [93] and Han et al. [47] studied SRDTC models with cell-based DTA and elastic demand. However, trip
distribution and mode choice also predict transit ridership, which may decline significantly with AVs [57]. Levin et
al. [59] proposed a time-varying trip distribution based on the arrival time penalty function [102] which addresses
the DTA integration issue by adding a time index to the rest of the four-step model.

Activity-based modeling (ABM) [6] is a relatively recent alternative to the traditional four-step model that
may be more effective at modeling empty repositioning trips. In addition to avoiding parking costs, empty reposi-
tioning can make an AV available to other household members, and the benefits of household car sharing are better
modeled through ABM. However, integrating ABM with DTA requires more study, particularly in the feedback
of DTA travel times to ABM. Furthermore, the four-step model is well established among metropolitan planning
organizations for long-range predictions. Therefore, this chapter uses the four-step model.

4.2.2 Shared autonomous vehicles

Multiple studies have investigated the possibility of using a fleet of SAVs to reduce reliance on personal
vehicles and improve mobility and safety [33]. Fagnant & Kockelman [34] estimated that one SAV could provide
service to around eleven travelers on a grid network approximation of Austin, Texas with most travelers waiting at
most 5 minutes for pick-up, although vehicle travel time increased. Fagnant & Kockelman [35] incorporated dynamic
ride-sharing, and found that it could offset the additional vehicle travel time. However, only 10% of personal trips
of Austin were included. Further studies on different cities have supported indications that a smaller fleet of SAVs
could provide service to all travelers. Burns et al. [11] studied a centrally dispatched SAV system in three different
urban and suburban environments. Their findings indicated that a much smaller fleet of SAVs could provide service
to all residents with acceptable waiting times. Also, a slightly reduced fleet of taxicabs could improve on wait times
and vehicle utilization in Manhattan, New York. Spieser et al. [92] found that a SAV fleet one-third the size of the
personal vehicle fleet was sufficient for providing service to Singapore travelers.

Although the results of previous studies are encouraging, this chapter addresses some traffic modeling lim-
itations of previous studies. All of them used custom simulation-based models, with many relying on grid-based
networks. Many of the traffic congestion models were unrealistic; Fagnant & Kockelman [36] used MATSim [4],
but many other studies did not specify the model or used fixed travel times. Section 4.5.3 demonstrates that SAVs
could significantly increase congestion. Accurate congestion modeling is necessary to evaluate whether replacing
personal vehicles with SAVs improves traffic. Furthermore, custom simulations would be difficult for practitioners to
integrate into their existing traffic models. To address these limitations, this chapter presents an event-based frame-
work that may be implemented on top of many simulation-based traffic models. We demonstrate this framework by
implementing it in a DTA simulator and comparing SAV results with those from DTA.

4.3 Effects of autonomous vehicles on network traffic

This section presents analyses on arterial (Section 4.3.1), freeway (Section 4.3.2), and downtown (Section
4.3.3) networks using the multiclass CTM of Chapter 2 to propagate flow in DTA. The key features of these results are
the multiclass comparison of human and autonomous vehicles, and the analysis of how reservations compare to signals.
The fundamental diagram changes with space and time in response to the proportion of AVs in each cell. When
combined with discrete vehicles, the fundamental diagram varies significantly between cells and time steps despite
an overall fixed proportion of AVs. Reservation-based intersection control also exhibited unusual characteristics.
Contrary to the results of Fajardo et al. [37] and Li et al. [63], reservations performed worse than signals in many
scenarios due to suboptimal vehicle priority. In addition, Braess [10] and Daganzo [24] showed that the increased
link capacity due to AVs does not necessarily result in improved network performance.

The arterial and freeway networks do not have multiple available routes, so all improvements are due to
AV technologies. However, the downtown networks include many alternate routes, which admits paradoxes in which
capacity improvements increase congestion due to selfish route choice [10, 24]. The reaction times of AVs was set to
0.5 seconds, which significantly increases capacity (Figure 2.2). Smaller reaction times might be more realistic of
automation, but could result in backwards wave speed exceeding free flow speed, causing technical issues with the
cell transmission model. For all experiments, we recorded the TSTT as well as the average travel time per vehicle.
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Lamar & 38th Street Congress Avenue

Figure 4.1: Arterial networks

4.3.1 Arterial networks

We first present results on two arterial networks, shown in Figure 4.1. The first arterial network, Lamar
& 38th Street, contains the intersection between the Lamar & 38th Street arterials, as well as 5 other local road
intersections. This network contains 31 links, 17 nodes and 5 signals with a total demand of 16,284 vehicles over a
4 hour time period. We also studied Congress Avenue in Austin, with a total of 25 signals in the network, 216 links
and 122 nodes with a total demand of 64,667 vehicles in a 4 hour period. These arterial networks used fixed-time
signals for controlling flow along the entire corridor. These networks were chosen for this experiment because they
are among the 100 most congested networks in Texas, which is useful for studying how AVs affect congestion. By
changing the demand on these networks, our analyses can be generalized to less congested networks.

Travel time results are given in Tables 4.1 and 4.2. In the Lamar & 38th Street network, the reservation
protocol significantly decreased travel times for a 50% demand simulation as compared to traffic signals at 50%
demand; however, once the demand was increased to 75%, reservations began increase travel times relative to signals.
This is most likely due to the close proximity of the local road intersections. On local road-arterial intersections,
the fairness attribute of FCFS reservations, could give greater capacity to the local road than would traffic signals.
Because these intersections are so close together, reservations likely induced queue spillback on the arterial. The
longer travel times might also be influenced to reservations removing signal progression on 38th Street. In high
congestion, FCFS reservations tended to be less optimized than signals for the local road-arterial intersections. On
the other hand, in low demand, intersection saturation was sufficiently low for reservations to reduce delays.

The Lamar & 38th Street network responded well to an increase in the proportion of AVs with dramatic
decreases in travel times, due to the AV reaction times. At 85% demand and at 25% AVs, the total travel time was
reduced by 50%, and when all vehicles were AVs, the total travel time was reduced by 87%. As demand increased,
the improvements from reduced reaction times also increased. At 50% demand, reduced reaction times decreased
travel time by 44%, whereas at 100% demand, reduced reaction times decreased travel time by 93%. The effect of
greater capacity improved as demand increased because as demand increased, the network became more limited by
intersection capacity. At low congestion (50% demand), signal delays dominated travel times because reservations
made significant improvements. At higher congestion, intersection capacity was the major limitation, and therefore
reduced reaction times were of greater benefit.

Congress Avenue responded well to the introduction of reservations, showing decreases in travel times at all
demand scenarios. These improvements are due to the large amount of streets intersecting Congress Avenue, each
with a signal not timed for progression. The switch to reservations therefore reduced the intersection delay. However,
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Table 4.1: Lamar & 38th Street results

Intersections Demand Proportion of TSTT Travel time per
AVs (hr) vehicle (min)

Signals 50% 0% 421.6 3.11
Signals 50% 100% 237.2 1.75

Reservations 50% 100% 157.8 1.16
Signals 75% 0% 2566.7 12.61
Signals 75% 100% 372.7 1.83

Reservations 75% 100% 2212.5 10.78
Signals 85% 0% 3890.2 16.86
Signals 85% 25% 2097.2 9.09
Signals 85% 50% 504.8 2.19
Signals 85% 75% 477.8 2.07
Signals 85% 100% 476.8 2.07

Reservations 85% 100% 4472.8 19.39
Signals 100% 0% 7043.1 25.95
Signals 100% 100% 526.6 1.94

Reservations 100% 100% 8678.7 31.98

Table 4.2: Congress Avenue results

Intersections Demand Proportion of TSTT Travel time per
AVs (hr) vehicle (min)

Signals 50% 0% 1366.1 2.54
Signals 50% 100% 1220 2.26

Reservations 50% 100% 821.5 1.52
Signals 75% 0% 4306.1 5.33
Signals 75% 100% 1957.1 2.42

Reservations 75% 100% 1545.1 1.91
Signals 85% 0% 8976.8 9.8
Signals 85% 25% 3661.4 4
Signals 85% 50% 3303.3 3.61
Signals 85% 75% 2936.2 3.21
Signals 85% 100% 2956 3.23

Reservations 85% 100% 2934 3.2
Signals 100% 0% 21484.4 19.93
Signals 100% 100% 4038.2 3.75

Reservations 100% 100% 8673.6 8.05
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Figure 4.2: Freeway networks

the switch to reservations could result in greater demand on this arterial. We include the effects of route choice in
the downtown Austin network (Section 4.3.3).

AVs also improved travel times and congestion due to reduced reaction times. At 85% demand, even a 25%
proportion of AVs on roads decreased travel times by almost 60%. This increased to almost 70% when all vehicles
were AVs. As with Lamar & 38th Street, as demand increased, the improvements from AV reaction times also
increased. For example, at 50% demand, 100% AVs decreased travel time by about 10%, but at 100% demand,
using all AVs reduced the travel time by nearly 82%. The reduced reaction times did not improve as much as the
reservation protocol, except for the 100% demand scenario. This indicates that at lower demands, travel time was
primarily increased by signal delay, but was still improved by AV reaction times.

Overall, these results consistently show significant improvements from reduced reaction times of AVs at
all demand scenarios. As shown in Figure 2.2, reducing the reaction time to 0.5 seconds nearly doubles road and
intersection capacity. However, the effects of reservations were mixed. At low congestion, traffic signal delays had a
greater effect on travel time, and in these scenarios reservations improved. Reservations also improved when signals
were not timed for progression (although this may be detrimental to the overall system). However, as seen on Lamar
& 38th Street, at high demand reservations performed worse than signals, particularly around local road-arterial
intersections.

4.3.2 Freeway networks

Next, we studied three freeway networks, shown in Figure 4.2. The first freeway network is the I–35 corridor
in the Austin region which includes 220 links and 220 nodes with a total demand of 128,051 vehicles within a 4 hour
span. (Due to the length, the on- and off-ramps are difficult to see in the figure.) All intersections are off-ramps or
on-ramps. The I–35 network is by far the most congested of the freeway networks and one of the most congested
freeways in all of Texas, especially in the Austin region. We also studied the US–290 network in the Austin region
with 97 links, 62 nodes, 5 signals and a total demand of 11,098 vehicles within 4 hours. Finally, we studied the Mopac
Expressway in the Austin region with 45 links, 36 nodes, and 4 signals with a total demand of 27,787 vehicles within
4 hours. This network includes a mix of merging and diverging ramps and signals which allows some interesting
analyses. This network was chosen due to the large number of signals around the freeway. All freeway networks are
also among the 100 most congested roads in Texas.

Results for the freeway networks are presented in Tables 4.3, 4.4, and 4.5. Although there were some observed
improvements in travel times for US–290 using reservations, the improvements were modest. For I–35 and Mopac,
reservations made travel times worse for all demand scenarios. Most of the access on US–290 is controlled by signals,
which explains the improvements observed when reservations were used there. Reservations seem to have worked
more effectively with arterial networks, probably because on- and off-ramps do not have signal delays. Therefore the
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Table 4.3: I–35 results

Intersections Demand Proportion of TSTT Travel time per
AVs (hr) vehicle (min)

Signals 50% 0% 3998.9 3.75
Signals 50% 100% 3893.3 3.65

Reservations 50% 100% 3975.2 3.73
Signals 75% 0% 10087 6.3
Signals 75% 100% 5934.2 3.71

Reservations 75% 100% 9861.1 6.16
Signals 85% 0% 16127.7 8.89
Signals 85% 25% 16023.5 8.83
Signals 85% 50% 15944.3 8.79
Signals 85% 75% 14545.3 8.02
Signals 85% 100% 14101.6 7.77

Reservations 85% 100% 16084.7 8.87
Signals 100% 0% 31611.7 14.81
Signals 100% 100% 9063.3 4.25

Reservations 100% 100% 30211.3 14.16

potential for improvement from reservations is smaller.
Overall, greater capacity from AVs reduced reaction times improved travel times in all freeway networks

tested, with better improvements at higher demands. Reduced reaction times improved travel times by almost 72%
at 100% demand on I–35. On US–290 and I–35, as with the arterial networks, the improvement from AV reaction
times increased as demand increased. This is because freeways are primarily capacity restricted. On Mopac, reaction
times had a smaller impact, but the network overall appeared to be less congested.

We also analyzed several groups of links and nodes in depth. Links and nodes were chosen to study how
reservations affected travel times at critical intersections, such as high demand on- or off-ramps. For these specific
links, we compared average link travel times between 120 and 135 minutes into the simulation, at the peak of the
demand. We compared human vehicles, AVs with signals, and AVs with reservations at 85% demand, which resulted
in moderate congestion. In the I–35 network, very few changes in travel times for the critical groups of links were
observed from the different intersection controls.

The differences seemed to be greater in the US–290 corridor with more overall improvements in critical
groupings of links near intersections. Interestingly, the largest improvements in travel times going from traffic signals
to reservations occurred at queues for right turns onto the freeway. A possible explanation for this result is that
making a right turn conflicts with less traffic than going straight or making a left turn. Although signals often
combine right-turn and straight movements, reservations could combine turning movements in more flexible ways.
Although larger improvements in travel times occurred at the observed right turns, improvements at left turns were
also observed. Because US–290 has signals intermittently spaced throughout its span, vehicles are frequently stopping
for signal delays. Using the reservations system, the flow of traffic is stopped less frequently, reducing congestion. The
use of AVs rather than HVs also helped travel times but by less than reservations. In most cases, using reservations
instead of signals doubled the improvements resulting from using AVs. Reservations appear to have a positive effect
on traffic flow and congestion in networks (freeway and arterial) that use signals to control intersections.

4.3.3 Downtown network

Downtown Austin, shown in Figure 2.15, contains the downtown grid, several major arterials, and part of
I–35 on the east side. Overall, it has 171 zones, 546 intersections, 1247 links and 62836 trips. Network and demand
data was from the Capital Area Metropolitan Organization for the AM peak.

This is an useful test network because flow in the downtown grid is primarily restricted by intersections.
Unlike the previous two subnetworks, downtown Austin contains different route options for vehicles. This admits
scenarios like the Braess [10] and Daganzo [24] paradoxes, and the paradox of Section 3.5.1.3. We considered
two scenarios: first, using traditional intersections (traffic signals and merges/diverges), and second, replacing all
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Table 4.4: US–290 results

Intersections Demand Proportion of TSTT Travel time per
AVs (hr) vehicle (min)

Traditional 50% 0% 557.8 6.03
Traditional 50% 100% 547.5 5.92

Reservations 50% 100% 505.4 5.47
Traditional 75% 0% 845.7 6.1
Traditional 75% 100% 827.7 5.97

Reservations 75% 100% 759.8 5.48
Traditional 85% 0% 997.6 6.35
Traditional 85% 25% 952 6.06
Traditional 85% 50% 945.3 6.01
Traditional 85% 75% 942.5 6
Traditional 85% 100% 939.8 5.98

Reservations 85% 100% 860.6 5.47
Traditional 100% 0% 1518.5 8.21
Traditional 100% 100% 1108.8 5.99

Reservations 100% 100% 1014.1 5.48

Table 4.5: Mopac results

Intersections Demand Proportion of TSTT Travel time per
AVs (hr) vehicle (min)

Traditional 50% 0% 373.9 1.61
Traditional 50% 100% 363.6 1.57

Reservations 50% 100% 409.9 1.77
Traditional 75% 0% 576.6 1.66
Traditional 75% 100% 554.9 1.6

Reservations 75% 100% 616.1 1.77
Traditional 85% 0% 667.9 1.7
Traditional 85% 25% 651.1 1.65
Traditional 85% 50% 647.8 1.65
Traditional 85% 75% 645.2 1.64
Traditional 85% 100% 644.1 1.64

Reservations 85% 100% 698.7 1.77
Traditional 100% 0% 1288.3 2.78
Traditional 100% 100% 752.1 1.62

Reservations 100% 100% 825.4 1.78
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Table 4.6: Results on downtown Austin

Intersections Demand Proportion of TSTT Travel time per
AVs (hr) vehicle (min)

Traditional 100% 0% 18040.2 17.23
Traditional 100% 25% 13371.4 12.77
Traditional 100% 50% 11522.3 11
Traditional 100% 75% 9905.1 9.46
Traditional 100% 100% 8824.7 8.43

Reservations 100% 100% 3984.3 3.8

intersection controls with FCFS reservations. To compare traditional intersections and reservations, we first solved
DTA using the method of successive averages. Both scenarios were solved to a 2% gap.

Table 4.6 shows the results from solving DTA on downtown Austin. We tested a variety of AV proportions.
Despite the increased travel time observed around the Lamar & 38th St. intersection in the subnetwork, FCFS
reservations decreased overall travel time significantly.

Flow through the downtown grid is primarily limited by intersection conflicts. The travel time reductions
due to FCFS were similar for each demand scenario, but exhibited a distinct decreasing trend. At 70% demand,
FCFS reservations reduced travel time by 58.4%. At 85% demand, the decrease was 56.1%, and at 100% demand,
the decrease was 51.4%. At lower demands, intersections are less saturated, and more of the intersection delay is due
to vehicles waiting for a green phase at a undersaturated intersection. FCFS can perform better than signals in these
undersaturated scenarios by allowing vehicles on conflicting turning movements (Fajardo et al., 2011). However, as
the demand increases, intersection saturation also increases, and FCFS reservations has less room to improve over
signals. As intersection saturation increases, FCFS reservations are also more likely to break progression (as in the
example in Section 3.5.1.2) and/or cause queue spillback.

The examples in Section 3.5.1.1 and 3.5.2.1 rely on temporary over-saturation on asymmetric intersections
to induce greater delays. When undersaturated, FCFS reservations can allow all vehicles to move whereas signals
could still delay vehicles as they wait for a green phase. Also, the downtown grid has few asymmetric intersections.
Furthermore, with many parallel links, user equilibrium route choice could encourage vehicles to avoid high delay
intersections. FCFS reservations can break progression and/or cause queue spillback, as seen in Sections 3.5.1.1 and
3.5.2.1. However, when considering user equilibrium behavior in the downtown grid, vehicles will avoid congested
routes due to their higher travel times, and seek less saturated intersections. Unless a paradox like that of Section
3.5.1.3 occurs, reservations are likely to outperform signals when the intersection is undersaturated, and route choice
in grid networks distributes demand away from high delay intersections.

Overall, these city network results suggest that despite the potential issues described in Section 3.5, reser-
vations can significantly reduce congestion due to intersections. Previous studies have compared signals with reser-
vations on single intersections, or small groups of intersections, but not on a city network with user equilibrium
behavior. Table 4.6 shows that even FCFS reservations have great potential to reduce city congestion, and optimized
reservations are likely to further improve travel times.

4.3.4 Discussion

Overall, we conclude that reservations using the FCFS policy have great potential for replacing signals.
However, in certain scenarios – local road-arterial intersections that are close together, and at high demand – signals
outperform FCFS reservations. This might be improved by a reservation priority policy more suited for the specific
intersection. However, reservations were detrimental when used in place of merges/diverges. Since merges/diverges do
not require the same delays as signals, reservations have limited ability to improve their use of capacity. Furthermore,
the FCFS policy could adversely affect the capacity allocation. Therefore, FCFS reservations should not be used in
place of merges/diverges, but other priority policies for reservations might be considered.

The capacity increases due to reduced reaction times improved travel times significantly on all networks.
Furthermore, regardless of the intersection control, intersection bottlenecks mostly benefited from increased capac-
ity. These capacity increases arise from permitting AVs to use computer reaction times to safely reduce following
headways. Although this might be disconcerting to human drivers in a shared-road scenario, the potential benefits
demonstrated here are a significant incentive.
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4.4 Potential benefits of empty repositioning trips

4.4.1 Planning model

This section presents a four-step planning model with feedback, using DTA to predict travel times. Sec-
tion 4.4.1.1 describes in detail the AV behaviors considered in this model and potential policy issues with their
implementation. Then, Section 4.4.1.4 formalizes the planning model.

4.4.1.1 Autonomous vehicle behaviors

We consider three types of AV-specific behaviors that may be subject to regulation or require infrastructure
investments:

1. Empty repositioning trips. After dropping off a passenger, AVs can make empty trips to avoid parking at
the destination or make the vehicle available to other household members. Although such behavior potentially
results in two vehicle trips per passenger trip, the net impact of such repositioning on the traffic network
could be positive. Repositioning trips are likely to travel in the opposite direction than most person-trips.
For instance, in the morning peak, while most people would be traveling to the downtown region, AVs on
repositioning trips would be leaving downtown to park elsewhere. Repositioning trips are also likely to depart
near work start times, when people arrive at work. Therefore the impact on peak hour person-trips seeking
to arrive before work begins may be small. Levin & Boyles [57] found that repositioning trips cause modest
increases traffic congestion in a static model. Including departure times may reduce the predicted congestion.

Repositioning trips could also reduce traffic in areas of high workplace density. Searching for parking accounts
for 34% of congestion in urban areas [85], and repositioning trips do not need to park. This reduces parking-
related congestion because fewer vehicles are searching for parking and more parking spots are available for
travelers choosing to park.

However, allowing repositioning trips may be controversial from a policy perspective. Empty trips (or trips
without a certified driver) require that the AV be responsible for safety in any incidents that may occur.
Currently AVs are only permitted to drive on public roads under the supervision of a test driver. Nevertheless,
greater confidence in AV safety is necessary to implement control procedures such as reservations that require
computer precision, so empty repositioning trips are a considerable but not guaranteed possibility.

2. Reduced following headways. Computer reaction times will allow AVs to follow behind vehicles at reduced
distances, increasing link capacity. These reduced reaction times have primarily been studied in microsimulation
[52, 84]. For tractability, we use the multiclass CTM from Chapter 2 to predict the flow of mixed AV/human
vehicle traffic

3. AV-specific intersection control policies. Dresner & Stone [28, 30] introduced reservation-based inter-
section control, which uses the greater precision and communication complexity to reduce intersection delay
beyond optimized signals [37]. Although reservations may be combined with signals for shared roads [31], it
was only an improvement over signals at high proportions of AVs. However, accelerating the adoption of AVs
by permitting behaviors such as empty repositioning trips for travelers may allow reservation-based intersection
control to be effectively used sooner.

This section models empty repositioning trips, increased link capacity, and reservation-based intersection control in
DTA. As in Levin & Boyles [57], we model the choice between parking at the destination or repositioning to the
origin as a mode choice via a nested logit model (Figure 4.3). The first level models the choice between transit
and using a personal vehicle, and the second level (for personal vehicles) models the choice between parking and
repositioning. The resulting model can study how empty repositioning affects traffic when departure times and AV
traffic efficiency are accounted for.

4.4.1.2 Cost function

The four-step DTA planning model is based on the work of Levin et al. [59] with modifications for AV
behavior. The generalized cost function incorporates the arrival time penalty [59] for endogenous departure time
choice with the addition of fuel and parking costs to capture the trade-offs between mode options of parking,
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Figure 4.3: Nested logit model

repositioning, and transit. The arrival time penalty part of the generalized cost function, common to all modes, is

cm,time
rst (t) = αtmrs + β

(
tpref
rs − (tmrs + t)

)+
+ γ

(
(t+ tmrs)− tpref

rs

)
(4.1)

where (·)+ = max{0, ·}, tmrs is the shortest path travel time from r to s departing at t, tpref
rs is the preferred arrival

time for trips from r to s, α is the disutility per unit of in-vehicle travel time (IVTT), and β and γ are the penalties
for early and late arrival, respectively. We use t for travel time and t for departure times because in DTA, departure
times are typically aggregated into larger ASTs whereas average travel time can be any positive real number.(

tpref
rs − (tmrs + t)

)+
and

(
(tmrs + t)− tpref

rs

)
are the early and late times, respectively. The preferred arrival

time is specific to the origin-destination (O-D) pair. Therefore, the cost function (4.1) admits variations such as
preferred arrival time being the work start time at the destination.

Mode-specific travel costs include other monetary fees, so α, β, and γ are chosen to convert travel, early,
and late time, respectively, into monetary units. Transit (denoted TR) requires a transit fee ςTR

rst for travel from r to
s departing at t, which requires travel time of tTR

rst for transit:

cTR
rst = cTR,time

rst (tTR
rst ) + ςTR

rst (4.2)

The parking mode (PK) (where the traveler parks the car at the destination) includes both the parking fee ςPK
s

and the fuel cost ς fuel per fuel consumed Frst. Minimum-fuel routing (ecorouting) has been studied in static traffic
assignment through fuel consumption estimation functions [39] that are monotone increasing with respect to flow [57].
However, ecorouting in DTA with user equilibrium behavior admits more complex fuel consumption models, and
is still an open question. Therefore Frst refers to the fuel consumed on the shortest travel time path from r to s
departing at t. The minimum travel time when driving is denoted by tDR

rst . The parking mode cost function is as
follows:

cPK
rst = cDR,time

rst

(
tDR
rst

)
+ ςPK

s + ς fuelFrst (4.3)

where DR denotes driving a personal vehicle (and either parking or repositioning).
Repositioning trips (RP) replace the parking cost with the additional fuel cost of the return trip, which

departs at t+ tDR
rst :

cRP
rst = cDR,time

rst

(
tDR
rst

)
+ ς fuelFrst + ς fuelFsr(t+tDR

rst)
(4.4)

Repositioning trips do not incur a travel time cost on the repositioning leg because no travelers are in the vehicle.
Note that the fuel cost term Fsr(t+tDR

rst)
assumes that the repositioning trip is from s to r departing at t+ tDR

rst .
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4.4.1.3 Fuel consumption

To determine fuel costs, this section builds on the model of Levin et al. [55] to estimate trip fuel consumption.
From CTM, vehicle speeds in each cell are estimated based on the time spent in the cell. Accelerations are estimated
from the differences between cell-specific speeds. Speed and acceleration are used as inputs to road power equations
[86] that determine the total power required of the engine. The power required by the wheels is the sum of four
parts:

Pwheel = (Paero + Proll + Pgrade + Paccel)
+

(4.5)

=

(
1

2
ρκDAu

3 + κRRmgu+ mgeu+ kmgau

)+

(4.6)

where Paero, Proll, Pgrade, Paccel are the power components necessary to overcome aerodynamic resistance, rolling
resistance, road grade, and to provide the required acceleration, respectively. ρ is the density of air, κD is the
aerodynamic drag coefficient, A is the frontal area, κRR is the rolling resistance coefficient, m is the vehicle mass, a
is the acceleration, u is the vehicle speed, g is the acceleration due to gravity, e is the road grade (%), and k is the
rotational inertia.

Using an engine efficiency model [86], the wheel power required is converted to engine power:

Pactual = Pengine + Pengine loss (4.7)

Engine power is the sum of wheel power, drive loss, and accessory power

Pengine = Pwheel + Pdrive loss + Paccessory+ (4.8)

= Pwheel +
1− etrans

etrans
(Pwheel + mkau) + Paccessory (4.9)

and engine loss is defined by

Pengine loss =
1− eengine

eengine
Pengine (4.10)

where etrans and eengine are the efficiencies of the transmission and engine, respectively. Each time step of the CTM
simulation, we calculate Pactual based on speed and acceleration estimations. Fuel consumption is estimated using
36.44 kW/gal as the energy content of gasoline [1].

4.4.1.4 Four-step planning model

We refer to McNally [68] for a detailed discussion of the steps of the four-step model. Let Z be the set
of zones. Trip generation typically uses a regression on survey data to determine productions Pr and attractions
As for all r, s ∈ Z. For this section, we assume that the productions and attractions are given. The remaining
three steps are performed iteratively in a feedback loop to adjust trip and mode choice in response to traffic network
conditions. This iterative process is illustrated in Figure 4.4 [59]. Departure times are grouped into a set of
assignment intervals T. Then trip distribution determines ODT specific demand Vrst proportional to productions,
attractions, and a monotone decreasing friction function φ(·) on the minimum travel cost of any mode, denoted
crst = min

{
cPK
rst , c

RP
rst , c

TR
rst

}
:

Vrst = ηrµsPrAsφ(crst) (4.11)

where µs and ηr are adjusted iteratively to

µs =
As∑

r∈Z

∑
t∈T

Vrst
(4.12)

ηr =
1∑

s∈Z

∑
t∈T

[µsAsφ(crst)]
(4.13)

to ensure consistency with total productions and attractions. Consistency requires that for all s ∈ Z,
∑
r∈Z

∑
t∈T

Vrst =

As and for all r ∈ Z,
∑
s∈Z

∑
t∈T

Vrst = Pr. The assignment interval index with the incorporated arrival time penalty
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results in endogenous departure time choice [59].
Mode choice is determined by a nested logit function (Figure 4.3) as in Levin & Boyles [57] to avoid a dispro-

portionate number of travelers choosing personal vehicle modes, due to the independence of irrelevant alternatives
property of the multinomial logit model. The outer logit model chooses between transit and driving, and the inner
logit chooses between parking and repositioning trips. Formally,

VTR
rst =

exp
(
ψTR − cTR

rst

)
min

{
exp

(
−cPK

rst

)
, exp

(
ψRP − cRP

rst

)}
+ exp

(
ψTR − cTR

rst

)Vrst (4.14)

VPK
rst =

exp
(
−cPK

rst

)
exp

(
−cPK

rst

)
+ exp

(
ψRP − cRP

rst

) (Vrst − VTR
rst

)
(4.15)

VRP
rst = Vrst − VTR

rst − VRP
rst (4.16)

where ψm is the alternative specific constant for mode m and ψPK is set to 0 because only relative differences are
relevant. When repositioning trips are not allowed, VPK

rst = Vrst − VTR
rst .

To determine travel times for each mode, we solve DTA. DTA itself has received considerable attention in
the literature; for a review see Chiu et al. [15]. To model AVs, DTA must be augmented with multiclass link flow
(Chapter 2) and reservation-based intersection control (Chapter 3).

4.4.1.5 Feedback process

Trip distribution and mode choice depend on travel costs from DTA, and travel costs themselves depend on
vehicle trips. Therefore the latter three steps of the four-step model are performed in a feedback loop (Figure 4.4).
The method of successive averages [8,45] is used for the feedback process. Evaluation of convergence is necessary to
understand how the planning framework performs over multiple iterations. Pool et al. [76] and Levin et al. [59] used
the root mean squared error (RMSE) [8] to measure convergence. The RMSE is defined as

εRMSE =

√√√√√ ∑
(r,s,t)∈(Z2×T)

(Vrst(i+ 1)− Vrst(i))
2

|Z2 × T|
(4.17)

where Vrst(i) is the demand from r to s departing at t at the ith iteration of the four-step model. A gap function
might be a more useful measure of convergence. However, four-step planning with integrated DTA models is still an
open area of research, and an appropriate gap function has yet to be determined.

4.4.2 Experimental results

This section uses the downtown Austin network with 88 zones, 634 nodes, 1574 links, 62836 trips, and 84 bus
routes, to compare the impacts of different combinations of permitted behaviors. The preferred arrival times were
fixed per destination and sampled from a normal distribution with a mean of 8:30am and a standard deviation of 15
minutes. In the lack of more specific data, parking costs were set at 5$ per node per day. (There was no parking
cost for repositioning).

Our results show the following:

1. When travelers own AVs to make repositioning trips (and use conventional vehicles when parking at the
destination), allowing repositioning trips can decrease congestion due to the efficiency of AVs.

2. When all travelers use AVs, regardless of whether they park or reposition to the origin, the congestion caused
by allowing repositioning trips is still less than the congestion using 100% conventional vehicles.

In addition, the results discuss useful measures for evaluating the effects of AV behaviors on the roads and demonstrate
the importance of DTA in predicting the impact of repositioning trips. However, the results are specific to the
downtown Austin network and may differ for other cities depending on topology and transit options. The framework
presented in Section 4.4.1 may be used to determine the best policies for specific cities.
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Figure 4.4: Four-step planning model with endogenous departure time choice [59]
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Figure 4.5: Convergence of the four-step model

4.4.2.1 Convergence

First, the convergence of the proposed framework is verified. Levin et al. [59] demonstrated that the four-
step model without any AV behaviors converges to the expected solution. Figure 4.5 shows that when all three AV
behaviors (link capacity improvements, reservation-based intersection control, and repositioning trips) were used,
then the four-step model similarly converged. Similarly, DTA converged for each scenario, although the convergence
pattern was not monotone (Figure 4.6). Computation times on an Intel Xeon processor at 3.47 GHz averaged
19.8 minutes per iteration. After 15 iterations, requiring less than 5 hours for this city network, a high degree of
convergence was achieved.

4.4.3 Mixed traffic

We first show that in a mixed traffic scenario, allowing repositioning trips can decrease congestion by en-
couraging use of AVs. We study three mode options in the mixed traffic environment:

1. Drive a conventional vehicle and park at the destination.

2. Drive an AV and reposition to the origin (if repositioning trips are allowed).

3. Transit (bus).

This scenario models the transition period from conventional vehicles to AVs. Travelers who plan to reposition
purchase AVs, but travelers who plan to park still use conventional vehicles. If repositioning trips are not allowed,
all travelers choose between transit and driving a conventional vehicle and parking at the destination.

Overall, average travel times per vehicle trip decreased from 14.75 minutes to 10.01 minutes when reposi-
tioning was allowed (Table 4.7). This decrease occurred despite a massive increase in vehicular demand. The total
number of vehicle trips (including empty repositioning trips) increased from 57550 when repositioning trips were not
allowed to 86777 with repositioning allowed (Table 4.7). The increase was primarily due to repositioning demand
requiring two vehicle trips instead of one. In addition, transit demand decreased slightly when repositioning was
allowed, from 5377 to 4744 total trips (Table 4.8). A major cause of this reduction is the lack of parking cost when
the repositioning mode is used. Nevertheless, transit demand decreased more at later departure times — past 8:15am
(Figure 4.7). At later times, a greater proportion of active vehicles were repositioning trips returning to the origin.
The higher proportion of AVs also decreased travel congestion, making transit a relatively less efficient option.

The peak hour distributions were surprisingly similar with and without repositioning trips (Figure 4.8).
Vehicular demand peaked at around 8:15am with and without repositioning, although allowing repositioning trips
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Table 4.7: Overall travel times for vehicle trips

Scenario Repositioning Total travel Average travel time Total
allowed? time (hr) per vehicle (min) vehicles

Mixed traffic no 14143.2 14.75 57550
yes 14483.0 10.01 86777

100% AVs no 4670.8 4.77 58736
yes 11103.9 7.27 91638

skewed the distribution slightly to the right. Repositioning trips were assumed to depart immediately after the
traveler arrived at his or her destination. Therefore, most of the additional vehicular demand is the return leg of
repositioning trips for travelers that departed early. Because of the similarity in the vehicular demand distributions,
conventional and autonomous vehicles were sharing the road during most of the peak period. Therefore, the observed
decrease in average travel times is due to the greater efficiency of AVs.

To study how repositioning affected the peak period, we also compared average link speed ratios at different
times. The speed ratio for link l at time t, ũl(t), is defined as follows:

ũl(t) =
ūl(t)

uf
l

(4.18)

where ūl(t) is the average observed speed on link l at time t and uf
l is the free flow speed of link l. Figures 4.9 and

4.10 show the speed ratios for the mixed traffic scenarios without and with repositioning, respectively. We grouped
the links into three categories for comparison: local roads, arterials and collectors, and freeways.

For much of the peak period (7:00am to 9:00am) the speed ratios were very similar with and without

Table 4.8: Total transit demand

Scenario Repositioning allowed? Total transit demand
Mixed traffic no 5377

yes 4744
100% AVs no 4511

yes 3930
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Figure 4.8: Vehicle trip distribution for the mixed traffic scenario
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Figure 4.9: Average link speed ratios for mixed traffic without repositioning

repositioning. Local roads had the highest speed ratio, likely because the low speed limit and capacity of local roads
meant that most local road traffic was for centroid access. Freeway links were moderately congested because the
freeway corridor is a highly used route for downtown access. Arterial and collector links, which make up most of the
downtown region, had a relatively low speed ratio due to intersection delays.

The speed ratios exhibited a surprising pattern after 9:00am. Despite the additional vehicular demand from
repositioning trips returning to the origin (Figure 4.8), speed ratios were actually higher with repositioning. This is
because with repositioning, after 9:00am a high proportion of traffic on the roads was AVs returning to the origin.
Without repositioning, traffic after 9:00am was travelers still trying to reach work due to congestion. Therefore,
allowing repositioning trips could actually reduce the duration of the peak hour congestion.

4.4.3.1 All autonomous vehicle traffic

The mixed traffic scenario of Section 4.4.3 is ultimately likely to be temporary. Eventually, most vehicles in
use will be autonomous. Although allowing repositioning trips in the mixed traffic scenario could decrease congestion
by encouraging AV use, it is important to study the congestion resulting from allowing repositioning after all vehicles
are autonomous. Therefore, we considered a 100% AV scenario with the following mode choices:

1. Drive an AV and park at the destination.

2. Drive an AV and reposition to the origin (if repositioning trips are allowed).

3. Transit (bus).

This differs from the mixed traffic scenario in that travelers who park at the destination still use an AV with the
corresponding traffic efficiency improvements. Since all vehicles were autonomous, intersections were controlled by
reservations (Chapter 3) instead of traffic signals.

Table 4.7 shows that for the 100% AV scenario, average travel times increased from 4.77 minutes to 7.27
minutes when repositioning was allowed. This is due to the significant increase in the total vehicular demand from
58736 trips to 91638 trips. Part of the increase in vehicular demand was due to the decrease in transit demand
(Table 4.8), again because repositioning avoids parking costs. Unlike in the mixed traffic scenario, the decrease in
transit demand was fairly steady across all departure times due to the reduced congestion (Figure 4.12). As with
the mixed traffic scenario, the shape of the vehicular demand distribution remained similar when repositioning is
allowed (Figure 4.11). Therefore, the existing network infrastructure was able to handle the higher demand from
repositioning trips with acceptable level of service due to the greater capacity and intersection efficiency from AVs.
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Figure 4.10: Average link speed ratios for mixed traffic with repositioning
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Figure 4.11: Vehicular demand distribution for the 100% AV scenario
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Figure 4.12: Transit demand distribution for the 100% AV scenario

Nevertheless, Table 4.7 shows that the level of service with repositioning trips and 100% AVs is still better than in
the mixed traffic scenarios.

Average link speed ratios with 100% AVs differed considerably from the mixed traffic scenarios. Congestion
on local roads was much lower, and local roads had very little congestion after 9:15 AM. Similarly, arterial and
collector road delays were significantly reduced because intersections were controlled by reservations instead of traffic
signals. However, freeway congestion remained similar because merges/diverges were little improved by reservations.

When repositioning trips were not allowed, speed ratios exhibited a significant increase around 9:15 AM.
This increase was much more pronounced in the 100% AV scenario than in the mixed traffic scenario. Due to the
reduced congestion from 100% AVs, most vehicles could exit by 9:00 AM (which was the latest preferred arrival
time). Therefore, little demand remained after 9:00 AM. When repositioning was allowed, a significant number of
vehicles were still returning to the origin after 9:00 AM, so speed ratios were lower. However, congestion steadily
decreased from 9:15 AM to 9:45 AM. Therefore, allowing repositioning unsurprisingly extended the duration of the
peak hour congestion when all vehicles were AVs. However, overall congestion was still lower than in any of the
mixed traffic scenarios.

4.4.3.2 Policy implications

From the perspective of a policymaker, repositioning trips has several advantages: repositioning can be
beneficial to travelers by allowing them to share vehicles with their household. Also, repositioning can reduce the
amount of parking required downtown. Repositioning comes at a cost, though — every traveler using repositioning
creates two vehicle trips instead of one. This results in large increases in the number of vehicle trips.

However, AVs are also more efficient than conventional vehicles. Section 4.4.3 shows that the greater efficiency
of AVs can reduce congestion when repositioning encourages travelers to purchase AVs. Although repositioning
resulted in many more vehicle trips, the additional demand was more than offset by the improved efficiency. In fact,
allowing repositioning trips could reduce the duration of the peak hour congestion. Most of the traffic on the road
at later times could be AVs repositioning to parking instead of travelers departing late to avoid earlier congestion.
Even after all travelers switch to AVs (Section 4.4.3.1), the congestion caused by allowing repositioning trips is less
than congestion with 100% conventional vehicles. Therefore, policymakers should consider allowing repositioning
trips because repositioning could accelerate adoption of AVs and correspondingly reduce congestion.
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Figure 4.13: Average link speed ratios for 100% AVs without repositioning
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Figure 4.14: Average link speed ratios for 100% AVs with repositioning

89



4.5 A general framework for modeling shared autonomous vehicles

This section presents a framework for modeling SAVs behavior in the DNL model. SAV behaviors differ
from personal vehicle travel as follows:

• With personal vehicles, each traveler drives a vehicle from the origin to the destination, then is assumed to
park at the destination. Travelers choose routes to minimize their own travel time, resulting in a DUE in which
no vehicle can improve travel cost by changing routes.

• With SAVs, all travelers are serviced by SAVs, and no personal vehicles are used. When travel demand is
ready to depart, an SAV drives to the origin, takes the traveler to the destination, and then becomes available
to service other demand. This may result in some empty repositioning trips to reach travel demand, but the
total number of vehicles on the road may be reduced.

Mixed scenarios of SAVs and personal vehicles are more general and realistic. However, it is not yet known how to
incorporate SAV behaviors into DTA with personal vehicles.

Naturally, SAV behavior raises cost and security issues. SAVs are essentially a fleet of driverless taxis, and
replacing personal vehicles with taxis is not cost-effective for most travelers. However, because SAVs are driverless,
the cost of travel is much less and is more similar to the costs of vehicle ownership [36]. SAVs may also raise security
concerns due to their vulnerability to hacking. However, security issues with SAV implementation are outside
the scope of this dissertation. Complete replacement of personal vehicles by SAVs has been studied by previous
work [35, 36], and the purpose of this section is to improve the accuracy of such models. The contributions of this
section are as follows:

1. We propose an event-based framework for implementing SAVs in existing traffic models. This can be adapted
for macro-, meso-, or micro-scopic flow models. Our results show that SAVs can cause significant congestion,
so using realistic traffic flow models is necessary for accurate estimations of SAV level of service. Therefore,
future work on SAVs should consider using this framework or others to incorporate realistic network models.

2. We demonstrate this framework by studying congestion when SAVs are used to service all travelers, using CTM
to propagate flow. We also describe and study a heuristic for dynamic ride-sharing on the downtown Austin
city network and compare it with personal vehicle results from DTA.

3. We compare SAV scenarios (including dynamic ride-sharing), with personal vehicle scenarios. Overall, results
show that a smaller SAV fleet can service all travel demand in the AM peak. However, some SAV scenarios also
increased congestion because of the additional trips made to reach travelers’ origins. Therefore, it is important
to model congestion when studying SAVs to attain realistic estimates of quality of service. Furthermore, SAVs
may be less effective than previously predicted for peak hour scenarios. Nevertheless, SAVs with dynamic
ride-sharing provided service comparable to personal vehicles.

4.5.1 Shared autonomous vehicle framework

This section presents a general framework for dynamic simulation of SAVs to admit the latest developments
in traffic flow modeling and SAV behavior. The framework is built on two events that can be integrated into most
existing simulation-based traffic models. The purpose of this framework is to encourage future studies on SAVs to
make use of existing traffic models for effective comparisons with current traffic conditions. As the case study will
demonstrate, replacing personal vehicles with SAVs for the same number of travelers could increase congestion. To
determine whether SAVs are beneficial, it is therefore necessary to compare SAV and personal vehicle scenarios in
the same traffic model.

This section discusses the key events defining this framework and the types of responses they warrant.
However, the specific responses depend on the dispatcher logic, and for generality this framework does not require
specific dispatcher behaviors. Section 4 discusses the dispatcher logic used in our case study, including dynamic
ride-sharing.

This framework is based on a traffic simulator operating on a traffic network. The network has a set of SAVs
V that provide service to the travel demand D. Note that D is in terms of person trips, not vehicle trips, since
travelers will be serviced by SAVs. The integration of the framework with the traffic simulator is illustrated through
the simulator logic in Figure 4.15, with simulator time t and time step ∆t. Events and responses are indicated with
double lines; the remainder is the standard traffic simulator. The simulation steps are grouped into three modules:
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Output: Departing 

travelers

Figure 4.15: Event-based framework integrated into traffic simulator

1) demand; 2) SAV dispatcher; and 3) traffic flow simulator. The remainder of this section discusses these modules
in greater detail.

4.5.1.1 Demand

The demand module introduces demand into the simulation. At each time t, the demand module outputs the
set of travelers that request a SAV at t. (This does not include waiting travelers.) The demand module of existing
traffic simulators may be adapted for this purpose, with the caveat that the demand is in the form of travelers, not
personal vehicles. If new demand appears at t, this triggers the corresponding event: a traveler calls a SAV.

Because SAV actions are triggered by a traveler calling a SAV, this framework admits a very general class
of demand models. The major requirement is that demand must be separated into packets that spawn at a specific
time with a specific origin and destination. Although this section primarily refers to demand as individual travelers,
these packets could also represent a group of people traveling together. Demand cannot be continuous over time
because that would trigger a very large number of events. However, in our case study demand and traffic flow are
simulated at a timestep of 6 seconds, which is demonstrated to be computationally tractable for city networks.

As a result, this framework can handle both real-time and pre-simulation demand generation. Real-time
demand may be randomly generated every simulation step, triggering the event of a traveler calling a SAV when the
demand is created. For models with dynamic demand tables, each packet of demand spawns at its departure time
and calls a SAV then. In addition, if demand is assumed to be known prior to its departure time, SAVs may choose
to preemptively relocate before the traveler appears. However, this requires that travelers plan ahead to schedule a
SAV before they depart. A less restrictive assumption is that the productions at each zone are known, and SAVs may
preemptively relocate in response to expected travelers. This requires less specific information about the traveler,
and trip productions are usually predicted by metropolitan planning organizations.
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4.5.1.2 SAV dispatcher

This framework assumes the existence of a central SAV dispatcher that knows the status of all SAVs and can
make route and passenger assignments. With the range of wireless communication available today, the existence a
central dispatcher is a reasonable assumption for SAVs. However, if desired the dispatcher logic could also be chosen
to simulate SAVs making individual decisions on their limited information.

The SAV dispatcher module determines SAV behavior, including trip and route choice, parking, and passen-
ger service assignments. The dispatcher operates as an event handler responding to the events of a traveler calling a
SAV or a SAV arriving at a centroid, and takes as input the event details. The dispatcher is responsible for ensuring
that all active travelers are provided with SAV service.

The output of the dispatcher are the SAV behaviors in response to the event. These include SAV vehicle
trips (which are passed to the traffic flow simulator), passenger pick-up and drop-off, and parking SAVs that are
not needed. At any given time, each SAV is either parked at a centroid or traveling. If a SAV is parked, its exact
location must be known.

This framework is event-based, meaning that SAV actions are assigned when one of the following events
occurs:

1. A traveler calls a SAV.

2. A SAV arrives at a centroid.

The first event is triggered in response to demand departing (or requesting to depart), and the second is in response
to a SAV completing its assigned trip. These can be implemented in most simulation-based frameworks. Instead
of a traveler departing by creating a personal vehicle, the traveler calls a SAV. When a SAV completes travel on a
path (which should end in a centroid), this also triggers an event so the simulator can check for arriving or departing
passengers at that centroid and assign the SAV on its next trip.

A traveler calls a SAV When a traveler d ∈ D calls a SAV, the dispatcher should ensure that the demand will
be satisfied by a SAV. This could occur in several ways:

1. If an empty SAV v ∈ V is parked at d’s origin, the dispatcher might assign v to immediately pick up d.

2. If an empty SAV v ∈ V is parked elsewhere, the dispatcher may assign v to travel to d’s origin. In this case, the
dispatcher might choose to wait to optimize the movement of SAVs. For instance, Fagnant & Kockelman [34]
use a heuristic to move SAVs to a closer waiting traveler rather than the first waiting traveler. The dispatcher
might also change the path of a traveling SAV to handle the demand.

3. If a SAV v ∈ V is inbound to d’s location, the dispatcher might assign v to service d if possible. However, the
dispatcher should consider v’s estimated time of arrival (ETA). If v’s ETA results in unacceptable waiting time
for d, the dispatcher may also send an empty SAV to d to reduce waiting time.

Regardless of the conditions chosen for each action, the dispatcher must ensure that the demand will be handled.

A SAV arrives at a centroid When a SAV v ∈ V arrives at a centroid i ∈ Z, it has finished its assigned trip.
This should result in two types of actions. First, if v is carrying any travelers destined for i, they should exit v.
Second, the dispatcher should assign v to park at i or depart on another trip. There are several possibilities for this
assignment:

1. If v still has passengers, it should continue to the next destination. If ride sharing is allowed and the capacity
of v permits it, other passengers at i may wish to take v to reduce their waiting time.

2. If v is empty, and a traveler d ∈ D is waiting at i for a SAV, it is reasonable to assign v to accept d. v may
then proceed directly to d’s destination or, if dynamic ride-sharing is allowed, to another centroid to pick up
another passenger.

3. If no travelers are waiting at i and v is empty, the dispatcher might assign v to pick up a traveler at a different
centroid.

4. The dispatcher could also assign v to wait at i until needed for future demand, contingent on parking availability.
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5. Finally, the dispatcher might assign v to preemptively relocate to handle predicted demand.

The conditions given above are reasonable but may not be necessary. Optimizing the assignment of actions for the
existing and predicted demand could use the possible actions in different ways. For example, v might be assigned
to park at i to wait for the expected demand even if v is already carrying passengers. This optimization problem is
similar to the class of vehicle routing problems, which are NP-hard. Therefore, solving this optimization is outside
the scope of this dissertation, but later sections will present a heuristic.

4.5.1.3 Traffic flow simulator

The traffic flow simulator takes as input SAV trips and their departure times and determines the arrival
times of SAVs at centroids. The primary output of the simulator is to trigger the event that an SAV arrived at a
centroid at the appropriate time.

Because the SAV framework is built on the events of a traveler calling a SAV, and a SAV arriving at
a centroid, the framework admits many flow propagation models. The major requirement is that the model be
integrated into simulation. After departing, a SAV travels along its assigned path until reaching the destination
centroid, at which point it triggers the arrival event. Therefore, the framework must track the SAV travel times to
determine arrival times, but its travel time may be evaluated by a variety of flow models. For instance, the travel
time could be set as a constant or through link performance functions. SAV movement may also be modeled through
micro- or meso-simulation. Any stochasticity in the traffic flow model is compatible with this framework because
the SAV triggers the event only after it arrives at its destination. Note that this framework is compatible with other
vehicles on the road affecting congestion through link performance functions or simulation-based flow propagation.

Therefore, this SAV framework can be implemented with existing traffic models by modifying them to trigger
demand and centroid arrival events. To demonstrate this flexibility, the case study in Section 4.5.2 implements this
framework on the dynamic network loading model developed in Chapters 3 and 2.

4.5.2 Case study: framework implementation

This section describes the implementation of the SAV framework on a cell transmission model-based traffic
simulator. Although Section 4.5.1 discussed how to implement SAVs in existing traffic simulators, the responses of
the dispatcher to events were not specified for generality. The purpose of this section is to describe the specific traffic
flow simulator and dispatcher logic used in our case study, including the heuristics for dynamic ride-sharing. Results
using this implementation are presented in Section 4.5.3.

This case study assumes that all vehicles are SAVs: travelers do not have personal vehicles available. This
was chosen to study the feasibility of switching to an entirely SAV-based travel model. Furthermore, a mix of SAVs
and personal vehicles would complicate the route choice. Finding routes for personal vehicles would require solving
DTA, and the many simulations needed to solve DTA would add computation time and complexity to the theoretical
model.

4.5.2.1 Demand

This case study used personal vehicle trip tables from the morning peak to determine SAV traveler demand.
Each vehicle trip was converted into a single traveler trip with the same origin, destination, and departure time.
Although some of these vehicle trips may encompass multiple person trips, that information was not available.
Furthermore, multiple persons using the same vehicle would likely use the same SAV. Therefore, it would only affect
situations in which SAV capacity was a limitation, such as dynamic ride-sharing.

For each trip, the demand module creates a traveler at the appropriate time. Although the demand is fixed,
the SAV dispatcher is not programmed to take advantage of demand information. The dispatcher only responds to
demand when a traveler was created.

In reality, travelers have more choices available. They could request a SAV in advance, specify time windows
for departure or arrival, or change their departure time in response to expected travel times.

4.5.2.2 Traffic flow simulator

The traffic flow simulator uses the CTM and flow-density relationship developed in Chapter 2. Because
all vehicles are SAVs, intersections were controlled using the reservation-based protocol of Dresner & Stone [28, 30]
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for AVs. For computational tractability, the simulator used the conflict region node model of reservation-based
intersection control of Chapter 3.

CTM has been used in, and allows direct comparisons with, large-scale mesoscopic DTA simulators [118].
DTA models [15] typically assume that route choice is based on driver experience. Each vehicle individually seeks
its shortest route, resulting in a DUE. DTA algorithms typically consist of three steps, performed iteratively, to
find a DUE assignment [60]. First, shortest paths are found for all origin-destination pairs. Then, a fraction of
demand is assigned to the new shortest paths. Finally, travel times under the new assignment are evaluated through
a mesoscopic flow model such as CTM.

Although DUE is based on the analytical STA models, it requires further study to be formulated for SAV
behavior due to stochasticity in the SAV trip table. We assume that the SAV dispatcher does not know travel
demand or SAV travel times perfectly. Therefore, the list of free SAVs at any given time is stochastic, which results
in uncertainty in which SAV will be used to service new demand.

Therefore, we use a DNL-based route assignment. Let πrs be the path stored by the dispatcher for travel
from r to s. When a SAV departs to travel from r to s, it is assigned to the stored path πrs. During simulation,
when t ≡ 0 mod ∆T, where ∆T is the update interval, πrs is updated to be the shortest path from r to s based
on average link travel times over the interval [t−∆T, t). Our experiments use ∆T= 1 minute. Note that the path
update interval (∆T= 1 minute) is different from the traffic flow simulation time step (∆t = 6 seconds).

4.5.2.3 SAV dispatcher

This section describes the specific logic used to assign SAVs in our case study. Although this is only a
heuristic for the vehicle routing problem of servicing all travelers, vehicle routing problems in general are NP-hard
and solving them in real time is unrealistic. Instead, we describe reasonable behaviors that SAVs could choose.

A traveler calls a SAV When a traveler d ∈ D calls a SAV at centroid i ∈ Z, the dispatcher first checks whether
there are any SAVs already enroute to i. If a SAV enroute to i is free, or will drop off its last passenger at i, and its
ETA at i is less than 10 minutes away, that SAV is assigned to service d. This is to reduce congestion resulting from
sending more SAVs. (As Section 5 will demonstrate, moving SAVs more frequently can result in a net travel time
increase while decreasing waiting times due to congestion.) If there are multiple travelers waiting at i, travelers are
serviced in a FCFS order — with some exceptions for dynamic ride-sharing. Therefore, we look at the ETA of the
SAV that would be assigned to d, if one exists.

Otherwise, we search for the parked SAV that is closest (in travel time) to i. If it could arrive sooner than
the ETA of the appropriate enroute SAV, it is assigned to travel to i to provide service to d. This is a FCFS policy:
the traveler that requests a SAV first will be the first to get picked up, even if the SAV could sooner reach a traveler
departing later. Although Fagnant & Kockelman [34] initially restricted SAV assignments to those within 5 minutes
of travel to improve the system efficiency, FCFS is also a reasonable policy for dispatching SAVs. If all SAVs are
busy, then d is added to the list of waiting travelers W.

A SAV arrives at a centroid If a SAV v ∈ V is free after reaching centroid i ∈ Z (either because v is empty, or
because v drops off all passengers at i), and there are waiting travelers at i, then it is assigned to carry the longest
waiting traveler. Note that v may not be the same SAV that was dispatched to that traveler. Due to stochasticity in
the flow propagation model, it is possible that the order of arrival of SAVs may differ. However, there is no significant
difference between two free SAVs in terms of carrying a single traveler. Therefore, we assign them to travelers in
FCFS order.

If v still has passengers after reaching i (which is possible when dynamic ride-sharing is permitted), then v
is assigned to travel to the next passenger’s destination. However, travelers waiting at i have the option of entering
v if it makes sense for their destination. This is discussed further in Section 4.5.2.4.

If v is free after reaching i and no demand is waiting at i, then v is dispatched to the longest-waiting traveler
in W. If multiple SAVs become free at the same time, the one closest to the longest-waiting traveler in W will be
sent. If W is empty, then v will park at i until needed. We assume for this study that centroids have infinite parking
space, as there are no personal vehicles in this network. However, it would be possible to model limited parking by
assigning v to travel somewhere else if parking was not available at i.

94



4.5.2.4 Dynamic ride-sharing

We also consider the possibility of dynamic ride-sharing. Following the principle of FCFS, we give precedence
to the longest-waiting traveler. However, we allow other passengers to enter the SAV if they are traveling to the
same, or a close destination. Specifically, suppose that the SAV v ∈ V is initially empty, and the longest-waiting
traveler at i ∈ Z is d0, traveling from i to j ∈ Z. If there is another traveler d1 also traveling from i to j, then d1

may take the same SAV. If there is a traveler d2 traveling from i to k ∈ Z, and there is room in the SAV, d2 will
also take the same SAV if the additional travel time is sufficiently low. Let tij be the expected travel time from i to
j. Then d2 will take the SAV if tij + tjk ≤ (1 + ε)tik. Otherwise, d2 will wait at i. If d2 decides to take the SAV,
then any other waiting travelers at i also traveling from i to k may enter the SAV. Although this violates FCFS, this
is permitted because it does not impose any additional travel time on the SAV.

This offer is extended, in FCFS order, for all travelers waiting at i until v is full. For instance, suppose
a passenger d3 departing after d2 is traveling from i to l ∈ Z. Because of FCFS, v must service d2 first, but if
tij + tjk + tkl ≤ (1 + ε)til, then d3 will still take SAV v from i.

The logic is slightly different when v arrives at i already carrying a passenger. In that case, precedence is
given to all passengers already in v because they have been traveling. However, travelers in i may enter v — at the
back of the queue — if the additional travel time is less than ε of the direct travel time.

The problem of dynamic ride-sharing is a vehicle routing problem with all SAVs. In general, vehicle routing
problems can admit solutions in which a SAV picks up several passengers before dropping any off. The heuristic in
this case study is more limited due to complexity, although that behavior could certainly be implemented within
this framework. In practice, due to the necessity of tractability when solving vehicle routing problems in real-time
in response to demand, similar simple heuristics are likely to be used. Even with this restricted form of dynamic
ride-sharing, the benefits over non-ride-sharing SAVs are significant, as shown in Section 4.5.3.

4.5.3 Case study: experimental results

We performed several sets of experiments to study how SAVs (Sections 4.5.3.2 and 4.5.3.3) perform relative to
personal vehicles (Section 4.5.3.1), and how the dynamic ride-sharing heuristic affects performance. Our experiments
were performed on the downtown Austin network, shown in Figure 2.15. The centroids are significantly disaggregated
for this downtown region, so we did not include intra-zonal trips in the trip table. The data was provided by the
Capital Area Metropolitan Planning Organization.

This is only a subnetwork of the larger Austin region, which has 1.2 million trips. This subnetwork was
used because computation times were around 30–40 seconds per scenario on an Intel Xeon running at 3.33 GHz
(implemented in Java), allowing many scenarios to be studied. However, many trips bound for the downtown grid
originate from outside the subnetwork region. We approximated them as arriving from one of the subnetwork
boundaries.

Initially, SAVs were distributed proportionally to productions: centroid i ∈ Z started with

|Vi| = |V|
Pi∑

i′∈Z
Pi′

(4.19)

parked SAVs. Fagnant & Kockelman [34] used a seeding run to determine the minimum number of SAVs necessary
to service all travelers. However, a seeding run may have biased the number of SAVs to be lower. Instead of a seeding
run, we performed sensitivity analyses to study how increasing numbers of SAVs affected level of service. In some
scenarios (such as dynamic ride-sharing) we observed that fewer numbers of SAVs performed better due to lower
congestion. In other scenarios, greater numbers of SAVs improved service. The following charts contain experiments
using between 1000 and 60,000 SAVs, with increments of 500. For some scenarios, the range was reduced to numbers
of SAVs that could provide service to all travelers within 6 hours because service was limited by having too few SAVs
or too much congestion.

4.5.3.1 Personal vehicles

For comparison, we also considered two personal vehicle scenarios on the downtown Austin network:

1. All travelers drive personal non-autonomous vehicles. This represents current traffic conditions, and shows

2. All travelers use personal AVs, and use AV capacity and intersection improvements. This is an alternative to
SAVs in which travelers own the AVs.
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Table 4.9: Results from personal vehicle scenarios

Scenario Avg. travel time Vehicle miles traveled
Personal conventional vehicles 15.24 min 146096 mi
Personal autonomous vehicles 4.12 min 142455 mi

For the private vehicle scenarios, we assumed that travelers chose routes to minimize their own travel time, resulting
in a DUE. Therefore, we used DTA to find route choice for personal vehicle scenarios.

One potential issue with comparing these personal vehicle scenarios with SAVs is the different methods
used for route choice. For personal vehicles, we assumed DUE behavior, and for SAVs, we assumed DNL behavior
determined by the SAV dispatcher. DUE is widely accepted for modeling personal vehicle behavior [15]. DNL was
used for SAVs because the SAV dispatcher is modeled to react to travel demand as it appears. Therefore, to handle
stochastic demand, the SAV dispatcher should rely on current rather than historical traffic conditions in its route
assignments. (Furthermore, a traffic assignment problem has not been formulated for SAVs, and consequently it is
not known how to solve DTA for SAVs.)

Results from personal vehicle scenarios are shown in Table 4.9. Overall, when using personal vehicles with
traffic signals, travelers experienced an average travel time of 15.24 minutes. When signals were replaced with
reservation controls, average travel times were reduced to 4.12 minutes. Since the adoption of reservation controls
may be difficult or inefficient if a significant proportion of personal vehicles are not autonomous, both personal
vehicle scenarios may be reasonable for comparison against SAVs. We assume that if SAVs were to replace all
personal vehicles, reservation controls would be used.

4.5.3.2 Shared autonomous vehicles

The initial SAV scenario did not include dynamic ride-sharing. Figure 4.16 shows travel time results with
17,500 to 60,000 total SAVs available. Fewer numbers of SAVs were found to be insufficient to service the 2 hours
of travel demand after 6 hours. Greater numbers of SAVs reduced both waiting time and in-vehicle travel time.
With more SAVs, more vehicles were available near traveler origins, and fewer empty repositioning trips reduced
congestion.

As the number of SAVs increased, waiting time decreased consistently, although with diminishing returns.
With 39,500 or more SAVs, average waiting times were below 1 minute. Waiting times approached 0 because SAVs
were assumed to be initially distributed according to trip productions. Therefore, with 62,836 or more SAVs, waiting
times would be 0. Of course, one of the goals of SAVs is to reduce the total number of vehicles in [34].

Because the demand is from the AM peak, much of the waiting time results from SAVs carrying travelers
to the downtown region then making an empty repositioning trip to the next traveler’s origin. However, waiting
times were only 10.3 minutes with 17,500 SAVs. With 25,500 or more SAVs, average waiting times were less than 5
minutes. These average waiting times could be acceptable to travelers.

The average IVTT was higher than the personal vehicle scenarios at low numbers of SAVs. This shows that
a small SAV fleet requires many empty repositioning trips to service travelers. The empty repositioning trips result
in greater demand and therefore congestion. This is particularly relevant for peak hour scenarios, which result in the
greatest number of empty repositioning trips because most trips are to or from the central business district. SAV
models that do not include realistic travel time predictions would not be able to predict the congestion caused by a
small SAV fleet.

This AM peak hour scenario required far more SAVs than 1 per 9.3 travelers [36]. 1 SAV could replace
at most 3.6 personal vehicles, and total travel time was significantly higher there. SAV fleet size is likely to be
determined by peak hour demand because peak hour travel patterns are the most difficult to serve with SAVs.

However, with only 22,000 SAVs, the average IVTT was less than the personal non-AV scenario of 15.24
minutes (Table 4.9). The average IVTT never decreased below 9.8 minutes — higher than the 4.12 minutes of the
personal AV scenario, but small enough to be feasible for travelers. This was probably due to the route choice
heuristic used in this scenario. Personal AVs used DUE behavior, whereas SAVs did not. Better heuristics for SAV
routing could therefore decrease the IVTT further for SAVs. Still, the average IVTT was not substantially higher
than the personal AV scenario.

Vehicle miles traveled (VMT) and empty VMT — miles traveled while not carrying any passengers —
decreased at the same rate as the number of SAVs increased (Figure 4.16). This indicates that the difference was
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primarily due to less repositioning trips to pick up the next traveler, rather than changes in route choice. It is
intuitive that as the number of SAVs increased, the average distance between a waiting traveler and the nearest (in
travel time) available SAV would decrease. The average passenger miles traveled was consistently 2.27 miles.

4.5.3.3 Dynamic ride-sharing

Dynamic ride-sharing greatly affected level of service for travelers as shown in Figure 4.17. With dynamic
ride-sharing, 1000 SAVs were actually sufficient to service all demand. Each SAV could carry up to 4 passengers,
although they would travel with less if no travelers were waiting. However, because most trips were to the central
business district, SAVs could easily combine trips because traveler destinations were relatively close. Surprisingly,
optimal service was provided with just 2000 SAVs, or a ratio of 1 SAV to 31.4 travelers. This is significantly higher
than the 1 SAV to 9.3 travelers [36] although of course here each SAV was probably carrying 3 to 4 passengers.

The least average total travel time was 6.46 minutes with 2000 SAVs, comparable with the 4.12 minutes
with the personal AV scenario (Table 4.9). 5.41 minutes was due to IVTT, with 1.04 minutes due to waiting time.
These travel and waiting times might be further reduced with a better heuristic for dynamic ride-sharing. Therefore,
with such a low travel time, SAVs with dynamic ride-sharing could be an effective replacement for personal AVs.
Furthermore, the size of the SAV fleet used is so small relative to the number of travelers that full replacement might
be feasible. The cost per traveler are also likely to be significantly reduced due to car-sharing and the lack of driver.
Further study in different demand scenarios and on different networks is needed, but this result suggests that SAVs
could be a cost-effective form of paratransit with a high level of service.

Waiting times were consistently low with 2000 or more SAVs. This is probably because most travelers had
relatively close destinations, so ride-sharing was frequently used. Strangely, IVTT peaked at 17.54 minutes with
11,000 SAVs. This was likely because SAVs did not wait around for ride-sharing with later-departing travelers.
Therefore, the 11,000 SAVs made more trips, carrying fewer travelers per trip, and increased congestion. Figure
4.18 shows that passenger miles traveled increased as the number of SAVs increased because ride-sharing was used
less. With greater than 11,000 SAVs, travel times decreased because less empty repositioning trips were needed,
decreasing vehicle demand. VMT, and empty repositioning miles traveled, was highest around 14,500 SAVs (Figure
4.17). With our heuristic, a fleet of between 5500 and 17,500 SAVs was less efficient than a smaller fleet. Therefore,
future work on SAVs should study more effective heuristics for the dynamic ride-sharing problem.

4.5.3.4 Discussion

This section presented an event-based framework for implementing SAV behavior in existing traffic simulation
models. The framework relies on two events: travelers calling SAVs, and SAVs arriving at centroids, that are
orthogonal to traffic flow models. This allows comparisons with personal vehicle scenarios through solving traffic
assignment in the same simulator. We implemented this SAV framework on a CTM-based DNL simulator as well
as a heuristic approach to dynamic ride-sharing. Then, we studied replacing personal vehicles with SAVs in the
downtown Austin network with AM peak demand. Most SAV scenarios resulted in greater congestion due to empty
repositioning trips to reach travelers’ origins.

Using SAVs without dynamic ride-sharing resulted in higher travel time than personal AVs. These levels
of service appear to be lower than predicted by previous studies. Furthermore, a much larger SAV fleet size was
needed for the AM peak. Although this chapter used heuristics to solve the vehicle routing problem, finding an
optimal solution in real-time in response to demand is impractical because the vehicle routing problem is NP-hard.
Furthermore, previous studies also used similar heuristics. Therefore, these results demonstrate the importance of
using realistic traffic flow models to study the additional congestion resulting from SAVs, and comparing SAVs with
personal vehicles with a common traffic flow model. This chapter also provides the framework to integrate SAV
behavior into such models.

However, dynamic ride-sharing was highly effective at reducing congestion by combining traveler trips.
Interestingly, ride-sharing had the best travel times when the number of SAVs was small (2000 SAVs providing
service to 62,836 travelers), and these travel times were comparable or improved over personal vehicle scenarios.
This shows that with effective routing heuristics and the right fleet size, SAVs could replace personal vehicles as
paratransit or individual taxis.
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Figure 4.16: Travel time and VMT for the base SAV scenario
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Figure 4.17: Travel time and VMT for the dynamic ride-sharing scenario
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Figure 4.18: Passenger miles traveled for the dynamic ride-sharing scenario

4.6 Conclusions

This chapter is the first study using the cell transmission model to study the effects of reservation-based
intersection control and reduced following headways for AVs on large networks. In addition, we used the network-level
simulations to study travel demand behavior as well.

4.6.1 Effects on freeway, arterial, and downtown networks

Section 4.3 studied several arterial and freeway networks among the 100 most congested roads in Texas to
study how AVs affected congestion on different types of roads. For arterial regions, reservations were beneficial in
some situations but not in others. On Congress Avenue, a long arterial without progression, reservations improved
travel times. However, on Lamar & 38th Street, reservations gave greater priority to vehicles entering from local
roads. Since intersections were so close together, this created queue spillback and greater congestion from using
reservation controls. This was due to the FCFS policy: vehicles were prioritized according to how long they had
been waiting. In contrast, signals allowed more freedom in capacity allocation, and were optimized to give arterials a
greater share of the capacity. On freeway networks, the effects of reservations were again mixed. On US–290, which
uses signals to control access, reservations were an overall improvement. In other freeway networks, reservations
were worse than merges/diverges. In the downtown Austin grid network, reservations resulted in great reductions in
travel times.

The negative results for FCFS reservations are surprising considering the work of Fajardo et al. [37] and Li
et al. [63]. However, the major issue with FCFS reservations is that FCFS allocates capacity in different proportions
and at different times than signals. On arterials, in high demand this resulted in greater capacity given to local
or collector roads. Furthermore, the lack of consistent timing for reservations disrupted progression along arterials,
increasing queues and causing queue spillback at high demand.

Overall, we conclude that reservations using the FCFS policy have great potential for replacing signals.
However, in certain scenarios local road-arterial intersections that are close together, and at high demand signals
outperform FCFS reservations. This might be improved by a reservation priority policy more suited for the specific
intersection. However, reservations were detrimental when used in place of merges/diverges. Since merges/diverges do
not require the same delays as signals, reservations have limited ability to improve their use of capacity. Furthermore,
the FCFS policy could adversely affect the capacity allocation. Therefore, FCFS reservations should not be used in
place of merges/diverges, but other priority policies for reservations might be considered.

The capacity increases due to reduced reaction times improved travel times significantly on all networks.
Furthermore, regardless of the intersection control, intersection bottlenecks mostly benefited from increased capac-
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ity. These capacity increases arise from permitting AVs to use computer reaction times to safely reduce following
headways. Although this might be disconcerting to human drivers in a shared-road scenario, the potential benefits
demonstrated here are a significant incentive.

4.6.2 Empty repositioning trips

Section 4.4 constructed a four-step planning model, using DTA, to determine how AVs making empty
repositioning trips would affect AM peak traffic. We used the endogenous departure time choice planning model
of Levin et al. [59] to determine dynamic travel demand. Using a nested logit model, travelers chose between
three mode options: transit, drive and park at the destination, and drive and empty reposition to their origin.
Empty repositioning trips increase the total number of personal vehicle trips. However, we also included two traffic
improvements resulting from AVs: first, reduced following headways from AVs result in capacity increasing with the
proportion of AVs on the road, modeled through the multiclass CTM (Chapter 2). Second, when all vehicles are
AVs, reservation-based intersection control [28,30] is used in place of traffic signals, modeled in DTA by the conflict
region node model (Chapter 3)

We used this model to study how repositioning trips affected AM peak traffic on the downtown Austin city
network. We considered two scenarios:

1. Only travelers choosing repositioning trips used AVs — all other travelers used human-driven vehicles. Inter-
sections were controlled by traffic signals, but AVs proportionally improved capacity (Section 2.4).

In this scenario, allowing repositioning trips decreased average travel times. The additional vehicle trips from
repositioning departed later than many home-to-work trips, so the vehicular demand at any point in time was
not significantly higher. Congestion was reduced because of the greater link efficiency from having a significant
proportion of AVs on the road.

2. All vehicle trips used AVs. Intersections were controlled by reservations [28,30], and link efficiency was greatly
increased due to AV reaction times(Section 2.4).

In this scenario, allowing repositioning trips increased average travel times. This was expected because reposi-
tioning increased the total vehicular demand without adding any benefits (since all vehicles were already AVs).
However, the average travel time was much less than current conditions (all human-driven vehicles, without
repositioning).

We conclude that in the early stages of AV adoption, empty repositioning trips could improve traffic by
encouraging travelers to switch to AVs. Furthermore, after all vehicle trips use AVs, the traffic congestion with
empty repositioning trips is still significantly better than current conditions due to the greater efficiency of AVs.
Therefore, allowing empty repositioning trips to increase AV adoption will not result in unreasonable congestion
after all vehicles are AVs.

4.6.3 Shared autonomous vehicles

Section 4.5 presented an event-based framework for implementing SAV behavior in existing traffic simulation
models. The framework relies on two events: travelers calling SAVs, and SAVs arriving at centroids, that are
orthogonal to traffic flow models. This allows comparisons with personal vehicle scenarios through solving traffic
assignment in the same simulator. We implemented this SAV framework on a cell transmission model-based dynamic
traffic assignment simulator as well as a heuristic approach to dynamic ride-sharing. Then, we studied replacing
personal vehicles with SAVs in the downtown Austin network with AM peak demand. Most SAV scenarios resulted
in greater congestion due to empty repositioning trips to reach travelers’ origins.

Using SAVs without dynamic ride-sharing resulted in higher travel time than personal AVs. These levels
of service appear to be lower than predicted by previous studies. Furthermore, a much larger SAV fleet size was
needed for the AM peak. Although this chapter used heuristics to solve the vehicle routing problem, finding an
optimal solution in real-time in response to demand is impractical because the vehicle routing problem is NP-hard.
Furthermore, previous studies also used similar heuristics. Therefore, these results demonstrate the importance of
using realistic traffic flow models to study the additional congestion resulting from SAVs, and comparing SAVs with
personal vehicles with a common traffic flow model. This chapter also provides the framework to integrate SAV
behavior into such models.

However, dynamic ride-sharing was highly effective at reducing congestion by combining traveler trips.
Interestingly, ride-sharing had the best travel times when the number of SAVs was small (2000 SAVs providing
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service to 62,836 travelers), and these travel times were comparable or improved over personal vehicle scenarios.
This shows that with effective routing heuristics and the right fleet size, SAVs could replace personal vehicles as
paratransit or individual taxis.
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5 Conclusions

5.1 Summary of contributions

This dissertation developed a complete dynamic traffic assignment (DTA) model of autonomous vehicle (AV)
behavior. This model consists of new link and node models of AV technology for DTA simulation. We used this
model on several networks to study how AV technology might affect traffic congestion.

5.1.1 Link model

The link model considered two aspects of AV technology: first, we anticipate that AVs will have lower reaction
times than human drivers, allowing them to safely reduce following headways. Reduced following headways increase
capacity [52,67,99] and stability of traffic flow [79], and can be active at any market penetration of AVs. Therefore,
we developed a multiclass cell transmission model (CTM) [21, 22], a discrete approximation of the kinematic wave
theory of traffic flow [64, 78], to predict traffic flow at space and time-varying proportions of AVs. The multiclass
CTM admits a trapezoidal fundamental diagram that changes at each cell-time. We also developed a car following
model based on safe following distance, which yielded a fundamental diagram function that admits any proportion
of AVs. As the AV proportion increases, the capacity and backwards wave speed correspondingly increase.

We also considered dynamic lane reversal [49] technology. We developed a CTM in which the number of lanes
can change per cell-time. (As dynamic lane reversal is only usable with full AV market penetration, the CTM for
dynamic lane reversal admits the fundamental diagram scaling from AV reaction times). We formulated additional
constraints on the number of lanes due to the potential forced lane changing behavior.

We then studied two methods of optimizing DLR. First, we presented a mixed integer linear program for
DLR with system optimal behavior, based on the linear program for system optimal DTA [61, 116]. However, since
system optimal routing may be too restrictive an assumption even for AVs, we also studied a single-link DLR problem
for use within user equilibrium routing. We derived analytical results for when the demand is known perfectly, and
used these to inspire a heuristic for when demand is stochastic.

5.1.2 Node model

The node model approximates tile-based reservations [28, 30] by replacing constraints on simultaneous tile
occupancy with capacity constraints on larger conflict regions. We formulated this node model as an integer program
per intersection and per time step with unspecified objective function. To justify the conflict region model, we first
formulated an integer program for the conflict point simplification [115], then aggregated conflict points into larger
conflict regions. We then derived some analytical results about the integer program. The conflict region model is
based on sending and receiving flows, and can therefore be combined with most mesoscopic link flow models [94].

Since integer programs are in general NP-hard, we proposed a polynomial-time heuristic. To motivate the
utility of our integer program, we presented several theoretical and realistic network examples in which the first-
come-first-served (FCFS) policy (which has been studied in many previous papers [37, 63]) increases delay beyond
traffic signals. In particular, we found that a decentralized reservation policy could create a Daganzo paradox [24].
This prevents proving the stability of decentralized pressure-based policies. However, pressure-based policies could
still improve over existing policies. We adapted the backpressure [95] and P0 [88,89] policies to reservations. Results
on a city network indicated significant improvements over both traffic signals and FCFS.

5.1.3 Applications

Having developed a dynamic traffic simulation, we applied it to freeway, arteral, and downtown Austin
networks at different levels of demand to predict how AVs might affect congestion. We included the effects of
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reduced reaction times and reservation-based intersection control with FCFS policy. We observed that the effects of
reduced reaction times scaled well with the proportion of AVs, and made freeways and arterials much more efficient.
FCFS reservations performed similarly at low demand levels. However, at higher demands, FCFS reservations
sometimes performed worse than optimized signals. FCFS gave less capacity to major arterials and also did not
provide progression. That resulted in queue spillback on the arterial and higher congestion. However, on downtown
Austin, with many alternate routes in the downtown grid, FCFS reservations were still effective because vehicles
could avoid high-delay intersections.

5.2 Future work

With AV technologies still under development, and many existing or proposed AV technologies not included
in the models in this dissertation, there are many avenues for future work. We will discuss future work for link and
node models, and applications.

5.2.1 Link models

The multiclass CTM was limited to congested wave speeds that did not exceed free flow speed. However,
connected vehicle technologies could result in smaller reaction times and correspondingly larger congested wave
speeds. Larger congested wave speeds would necessitate that the CTM cell length be determined by the congested
wave speed due to the Courant-Friedrich-Lewy condition [20]. This would introduce numerical errors into the
uncongested regime. An alternative is to create a multiclass link transmission model (LTM) [110, 111]. Because
LTM does not discretize space, it admits higher congested wave speeds without introducing numerical errors into
shockwave propagation. Along those lines, the car following model assumed that capacities and congested wave
speeds were determined by vehicle reaction times. In reality, micro-simulation models of AV and CV technologies
are more complex, and could be used to create a more accurate fundamental diagram.

The initial models of DLR demonstrated significant improvements in TSTT. However, finding the optimal
DLR policy is still an open question. The MILP for SO DLR was limited to small networks due to computational
requirements, and assumed SO route choice. UE route choice is more realistic. However, the model of DLR for
even a single link had a large number of variables and possible states. Solving DLR to optimality on a single link
will therefore require more theoretical analysis and simplification. Alternatively, approximate dynamic programming
methods could be studied to improve the DLR policy. Since DLR affects network route choice, solving DLR for a
single link is not enough; DLR policies should be studied with respect to the entire network.

5.2.2 Node models

Reservations are now well-known in the literature, and it is likely that reservations or some form of intersec-
tion control taking advantage of AV technologies will eventually be implemented in practice. Reservations greatly
expand the feasible region of intersection movements. However, the conflict region model is not a fully accurate
model of reservations because it does not enforce conflict region ordering of vehicle movements, and instead con-
strains conflict regions only by capacity. Of course, micro-simulation or conflict point ordering is intractable for
DTA, but there may exist an alternative simplification that is more accurate. Section 3.5 demonstrated the necessity
of optimizing reservations before implementing them, and it is clear that optimizing reservations for city networks is
still an open question.

The ideal solution is a decentralized control policy that provably stabilizes any demand that can be stabilized.
Previous work has created stable pressure-based traffic signal policies [44, 107, 108, 112]. However, Section 3.5.1.3
shows that any completely decentralized policy will fail when considering DUE route choice. Therefore, any optimal
policy must account for conditions at other intersections in the network. Of course, optimally controlling reservations
over an entire city network is a difficult problem, and therefore will require considerable work to address it.

5.2.3 Applications

There are many potential applications of the dynamic network loading model. Planning organizations will
find the model useful for predicting future traffic patterns and infrastructure needs. Before that happens, though,
there are many calibration and testing questions remaining. This dissertation presented results on five arterial,
freeway, and downtown networks, but a larger sample could be used to more fully study how AVs affect different
types of roads. The models themselves have parameters that must be calibrated, such as the perception reaction time,
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and these calibrations will require observing and measuring AV technologies. The mesoscopic models should also be
compared with micro-simulation models of reservations, (cooperative) adaptive cruise control, and platooning.

Even less is known about travel behavior with AVs because travelers currently do not have access. Empty
repositioning trips are likely to occur in some form, as in current Uber and taxi repositioning to reach new customers.
However, traveler preferences for repositioning or parking may depend on accessibility or other factors not considered
in this dissertation. For repositioning to alternate parking, such parking need not be at the traveler’s home, but could
be constructed near high-attraction destinations to reduce the length of empty repositioning trips. Determining where
to construct these alternative parking spaces is a network design problem on the four-step planning model. Shared
autonomous vehicles (SAVs) could further change travel demand patterns by reducing personal vehicle ownership.
Still, complete replacement of personal vehicles is likely unrealistic, so models combining SAVs and personal vehicles
should be developed. A major question is how to model route choice behavior in these scenarios, as SAVs choose
routes via a large-scale dial-a-ride problem whereas personal vehicles still follow user equilibrium route choice. Once
a combined model is created, studying traveler mode choices between SAVs and personal vehicles is an important
question as Uber and other mobility-on-demand services start adopting AVs.
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A Abbreviations

Abbreviation Definition
ABM activity-based modeling
ACC adaptive cruise control
AST assignment interval
AV autonomous vehicle
CTM cell transmission model
CV connected vehicle
DLR dynamic lane reversal
DNL dynamic network loading
DTA dynamic traffic assignment
DUE dynamic user equilibrium
FCFS first-come-first-served
FIFO first-in-first-out
IP integer program
IVTT in-vehicle travel time
HV conventional (human-driven) vehicle
LEMITM legacy early method for intelligent traffic management
LP linear program
LTM link transmission model
MCKS multiple-constraint knapsack problem
MDP Markov decision process
MILP mixed integer linear program
OD origin-destination tuple
ODT origin-destination-AST tuple
RMSE root-mean-squared error
SAV shared autonomous vehicle
SBDTA simulation-based DTA
SO system optimal
SRDTC simultaneous route and departure time choice
STA static traffic assignment
TSTT total system travel time
TT travel time
UE user equilibrium
VMT vehicle miles traveled
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B Notations

Notation Definition
A set of links
As attractions for s ∈ Z

α disutility per unit of in-vehicle travel time
a vehicle acceleration
β penalty for early arrival
C set of cells

C̃ set of all cells in network
Cj set of congested contiguous cells leading up to cell j

C̃R ⊂ C̃ set of source cells

C̃S ⊂ C̃ set of sink cells
cmrst cost of mode m for ODT (r, s, t)

cm,time
rst (t) travel time component of cost for mode m for ODT (r, s, t)
δcv indicates whether vehicle v uses conflict point (region) c
δAV
v indicates whether vehicle v is autonomous
D set of traveler demand
D safe following distance
Dv

n(t) backpressure term for vehicle v at node n at time t
d vehicle length
drs(t) demand from r to s departing at t

d̂ queue length for a link
E set of cell connectors
εRMSE root-mean-squared error
Frst fuel consumption for ODT (r, s, t)
Γ− set of predecessors
Γ+ set of successors
G= (N,A) traffic network
γ penalty for late arrival
g(t) one-step costs for the DLR MDP
K jam density
k vehicular density
km vehicular density of class m ∈M

Li(t) number of lanes for cell i at time t
` maximum number of lanes
M set of vehicle classes
M a large positive constant (for linearization of the IP)
N set of nodes
N maximum cell occupancy
ni(t) vehicles in cell i at time t
nmi (t) vehicles in cell i at time t of class m ∈M

P̃ set of all pairs of parallel opposite cells
Pvn(t) P0 pressure term for vehicle v at node n at time t
Pr productions for r ∈ Z

π∗rst shortest path from r to s departing at t
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Notation Definition
πv path for vehicle v
φ(·) friction function
ψm alternative specific constant for mode m
Qj(t) queue length for cell j at time t
Q capacity
q vehicular flow
qm vehicular flow of class m ∈M

Ri(t) receiving flow for i at time t
S state space for the DLR MDP
Si(t) sending flow for i at time t
ςTR
rst transit fee for ODT (r, s, t)
ςPK
s parking fee for destination s
ς fuel cost per unit fuel
T set of ASTs
∆T path update horizon for SAV dispatcher
T time horizon
τ reaction time
∆t time step
t time index
tpref
rs preferred arrival time for trips from r to s
U control space for the DLR MDP
u vehicle speed
uf free flow speed
V set of vehicular demand
Vrst vehicle demand specific to ODT (r, s, t)
V set of SAVs
W list of waiting travelers
w congested wave speed
∆x spatial discretization
ξ discount factor
x location in space along a link
Y(t) set of feasible solutions to the conflict region IP at time t
yi(t) flow from cell i to cell i+ 1 at t
ymi (t) flow of class m ∈M from cell i to cell i+ 1 at t
Z⊆N set of zones
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portsysteme, 2008.

[5] Beckmann, M., McGuire, C., and Winsten, C. B. Studies in the economics of transportation. Tech.
rep., 1956.

[6] Bhat, C. R., and Koppelman, F. S. Activity-based modeling of travel demand. In Handbook of Trans-
portation Science. Springer, 1999, pp. 35–61.

[7] Blumberg, M., and Bar-Gera, H. Consistent node arrival order in dynamic network loading models.
Transportation Research Part B: Methodological 43, 3 (2009), 285–300.

[8] Boyce, D. E., Zhang, Y.-F., and Lupa, M. R. Introducing” feedback” into four-step travel forecasting
procedure versus equilibrium solution of combined model. Transportation Research Record (1994), 65–65.

[9] Brackstone, M., and McDonald, M. Car-following: a historical review. Transportation Research Part F:
Traffic Psychology and Behaviour 2, 4 (1999), 181–196.
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