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NOMENCLATURE 

 

)(̂⋅   : Estimate of )(⋅  

[ ]T   : Transpose of [ ]  
[ ]⋅E   : The operation of taking the expected value of [ ]⋅  
( )⋅w   : Process noise sequence 

( )⋅v   : Measurement noise sequence 

( )⋅X   : State vector 

( )⋅Y   : Measured output vector in the presence of noise 

Q  : Covariance of the process noise sequence 

0R   : Covariance of the measurement noise sequence 

( )⋅R   : Covariance of the state vector 

( )⋅e   : Estimation error, )(ˆ)()( kYkYke −=  

exp  : The exponential operator 

det  : Determinant 

)1|(ˆ −kkY  : The estimated value of Y(k) at time instant k given the data up to k-1 

( )⋅U   : Input vector 

( )⋅θ   : Parameter vector 
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22.1 INTRODUCTION 

Modeling the dynamical properties of a system is an important step in analysis and design 

of control systems. Modeling often results in a parametric model of the system which contains 

several unknown parameters. Experimental data are needed to estimate the unknown 

parameters. 

Electric machines are now widely used in electric/hybrid vehicles. To identify appropriate 

model structures of these machines and estimate the parameters of the models become an 

important part of the automotive control design.  

Generally, the parameter estimation from test data can be done in frequency-domain or 

time-domain. Since noise is an inherent part of the test data, which may cause problems to 

parameters estimation, we will first study the effects of noise on frequency-domain parameter 

estimation. To examine this issue, we will study the identification of synchronous machine 

parameters from noise-corrupted measurements. Then, we will show how the time-domain 

maximum likelihood technique can be used to remove the effect of noise from estimated 

parameters. The models and the procedures to identify the parameters of synchronous, 

induction, and switched reluctance machines using experimental data will be presented. 

 

22.2 CASE STUDY: THE EFFECTS OF NOISE ON FREQUENCY-DOMAIN 

PARAMETER ESTIMATION OF SYNCHRONOUS MACHINE 

22.2.1 PROBLEM DESCRIPTION 

A solid-rotor machine consists essentially of an infinite number of rotor circuits. However, 

in practice, only a three-rotor-winding or a two-rotor-winding model is used in estimating 

machine parameters from test data. Experience gained in modeling of many machines shows 

that neither the second nor the third order model structure can be an exact mathematical 

representation of a machine. 

In estimating the parameters of a system, one question needs to be answered. If the 

assumed model structure is correct, then can one obtain a unique estimate of the parameters 

from noise-corrupted frequency response data? The answer to this question cannot be found 

from measurements, since the measurements are made on a machine with a complex, high 

order rotor circuit, with unknown structure and unknown parameters. 

If one assumes a model structure and then proceeds with estimating its parameters from 

actual measurements, then the structural error and the effect of noise in the measurements will 

result in inaccurate parameters. Therefore, it will not be clear whether the discrepancy 

between the simulated model response and the measured response is due to the effect of noise 

on the parameters, inadequacy of the assumed model structure, or both. Therefore, the 

structural identification problem and the parameter estimation problem should be studied 

separately. There is a need to show that the measurements noise will not corrupt the estimated 

parameters when the parameters of an assumed structure are estimated from the frequency 

response measurements. 

In this section, a third order machine model with known parameters is simulated and then 

the data are noise-corrupted using a known noise distribution. The objective is to estimate the 

parameters of this model from the noise-corrupted data and evaluate the estimated parameters 

by comparison with the known parameters. 
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(b) q-axis circuit 
 

Figure 22.1   SSFR3 Equivalent Circuit Structures 

 

22.2.2 PARAMETERS ESTIMATION TECHNIQUE 

In the literature the second order model of synchronous machine is referred to as SSFR2 

and the third order model as SSFR3. These notations will be used in this section.  It is 

generally assumed that the synchronous machine d-axis and q-axis circuit structures can be 

represented by the SSFR3 or the SSFR2 models. The SSFR3 model is shown in Figure 22.1. 

The SSFR2 model structure can be obtained from the SSFR3 model by reducing the number 

of rotor body circuits from two to one and also assuming that Lf2d, which reflects the leakage 

flux effect, is zero. The standard circuit model structure can be obtained by assuming that 

Lf12d is also negligible. 

 

23.2.2.1 Estimation of d-axis Parameters from the Time Constants 

The transfer functions of the d-axis SSFR3 equivalent circuits are: 

)1)(1)(1(

)1)(1)(1(
)(

654

321

sTsTsT

sTsTsT
KsL dd +++

+++
=    (22.1) 

)1)(1)(1(

)1)(1(
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654

87

sTsTsT

sTsT
GssG d +++

++
=     (22.2) 

Using an assumed value of armature resistance, Ra, the Ld(s) is calculated from the 

operational impedance, Zd(s) =- Vd(s) / Id(s), and sG(s) is calculated from Ifd(s) / Id(s) when 

the field is short-circuited. 

The equations which relate the circuit parameters to the time constants can be obtained 

from Equations 22.1 and Equation 22.2. These equations are described in terms of the  
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Table 22.1   Definitions for D-Axis Circuit Unknowns and Knows 

Unknown 

Circuit 

Parameters 

 

Unknown 

Vector x  

 

Known  

Constants 

 

Known 

Vector y  

adL  1x  1L  0y  

dfL 12  2x  dK  1y  

dR1  3x  321 TTT  2y  

dL1  4x  323121 TTTTTT ++  3y  

dfL 2  5x  321 TTT ++  4y  

dR2  6x  6541 TTT  5y  

dL2  7x  656454 TTTTTT ++  6y  

fdR  8x  654 TTT ++  7y  

fdL  9x  dG  8y  

-  
87TT  9y  

-  
87 TT +  10y  

 

unknown vector x  (i.e., the circuit parameters) and the known vector y , as defined in Table 

22.1. 

The vector y  is estimated from the measured frequency response data of transfer 

functions. The time constants are estimated by using a curve-fitting technique described in 

references [15,16,20]. The functional form of the vector y  which relates to the circuit 

parameters (i.e., the vector x ) can be derived using MACSYMA [21], a computer-aided 

symbolic processor. These relationships are complex and nonlinear, and can be written as: 

0),()( =++= iiii yxgyxf ζ     (22.3) 

where i = 1, … , 10. 

Details of these equations are given in Appendix A. In general, these ten equations are 

nonlinear in nature and are not consistent with each other. This is due to the noise ζ  
imbedded in vector y . Because of the nonlinearity of these equations, a closed form solution 

for vector x  may not be possible, and a numerical technique such as Newton-Raphson 

method may have to be used to solve these equations iteratively. Moreover, these are a 

redundant set of equations, ten equations with nine unknown parameters. Because of the 

inconsistency of these equations, multiple solutions will be obtained depending on which 

equation is ignored. 

If the measured frequency response data are noise free (i.e., iζ  = 0, i =1, …, 10.), then 

equations A.1 through Equation A.10, given in Appendix A, would be consistent, and a 

unique solution will be obtained regardless of the equation which is ignored. 

The set of nonlinear equations, 0)](),...(),([)( 1021 == xfxfxfxF , can be solved by 

updating x  as: 

,1 KKK xxx ∆+=+  K = 0, 1, 2 …    (22.4) 

where 
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until the residuals are smaller than a predetermined error ε (i.e., ε≤)( K

i xf ). 

The Newton-Raphson solution is formulated by discarding one equation from the set 

described by equations (A1) through (A10). This is necessary because there are only nine 

independent equations out of the ten equations. Since for noisy data, these ten equations are 

inconsistent, a multiple solution set is obtained, with the solution depending on which 

equation is ignored. 

Before the iterative approximation can be carried out, a good initial estimate if the 

unknown vector x  is essential for convergence to a solution. In this study, the initialization of 

the unknown vector x  is performed by using the method developed by Umans [15]. In his 

method, Equation (A8) (See Appendix A) is discarded and the remaining nine equations are 

solved for the nine parameters. 

 

22.2.2.2   Estimation of q-axis Parameters 

The q-axis transfer function of the SSFR3 equivalent circuit can be written as: 

)1)(1)(1(
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Using an assumed value of armature resistance, Ra, the Lq(s) is calculated from the 

operational impedance, Zq(s) =- Vq(s) / Iq(s). The q-axis parameters can be determined from a 

consistent set of linear equations (see reference [15]) which relate the Lq(s) transfer function’s 

time constants to the equivalent circuit parameters. 

 

22.2.3 STUDY PROCESS 

For the purpose of this study, synthetic frequency response data were created using the 

Monticello generating unit SSFR3 model parameters derived by Dandeno [11]. The frequency 

response data so developed were then corrupted with a uniformly distributed noise of zero 

mean and varying degrees of signal to noise ratios. Following relationship were used in 

creating the noise-corrupted data: 

1)()(
~

η+= sZsZ dd      (22.7) 

2)()(
~

η+= sZsZ qq      (22.8) 

3)()(
~

η+= ssGsGs      (22.9) 

where )(
~
sZ d , )(

~
sZ q , and )(

~
sGs  represent the noise-corrupted data, and 1η , 2η , and 3η  

represent noise. 

The noise-corrupted )(
~
sLd  and )(

~
sLq  data were then developed using the following 

relationships: 
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where Ra is the armature resistance originally used in creating the synthetic data. 

Following this, the required d-q axes transfer functions were computed based on the 

nonlinear least square curve-fitting techniques developed by Marquardt [20]. Both magnitude 

and phase angle data were used in estimating the time constants. Monticello generator 

parameters, corresponding to the SSFR3 model structures, were then recalculated using the 

Newton-Raphson method discussed earlier. The same model structure was retained so that 

any discrepancy observed in the recalculated values of the machines parameters, could be 

specifically ascribed to the noise introduced in the synthetic data. 

 

22.2.4 ANALYSIS OF RESULTS 

For the purpose of evaluating the effect of noise on estimated parameters of the 

Monticello machine used as the study machine, various uniformly distributed noise sequence 

were used with zero mean and with signal to noise ratios (S/N) varying from 3100:1 to 250:1, 

where S/N = (Σ(signal)2/(noise)2)1/2. 
To assess the appropriate level of S/N ratio that should be considered in the study, an 

effort was made to roughly estimate the level of S/N ratio normally achievable in a SSFR 

field test. For this purpose, noise-corrupted synthetic data of the Monticello generator with 

S/N ratios ranging from 3100:1 to 250:1 were plotted and compared with the corresponding 

data acquired during the August 1984 test on Rockport Unit #1. This is a 1300 MW cross-

compounded unit owned and operated by the American Electric Power Company. 

Figure 22.2 shows the Ld(s) magnitude and phase plots of the Rockport field test data and 

the noise-corrupted synthetic data of the Monticello generator with S/N ratio of 3100:1. The 

two sets of plots are similar, showing similar noise effects. Plots corresponding to S/N ratio of 

250:1 were found to be too noisy, but because of space constrains are not included in this 

section. However, to evaluate the full impact of measurement noise, some results pertaining to 

such noisy data are also provided in this section. 

22.2.4.1   D-axis Parameter Estimation 

Table 22.2 shows estimated values of the d-axis transfer function time constants of the 

Monticello machine corresponding to various degrees of S/N ratios. 

Results obtained indicate that because of the noise in the synthetic data, an error is 

introduced in the estimated values of the transfer function time constants. Moreover, the 

magnitude of the error increases significantly as the S/N ratio deteriorates (i.e., noise level is 

higher) from 3100:1 to 250:1. 

The transfer function time constants corresponding to S/N ratio of 3100:1 were then used 

to estimate the d-axis machine parameters. For this purpose, the nonlinear set of equations 

(A1-A10) was solved using the Newton-Raphson method. As indicated earlier, these are a 

redundant and inconsistent set of equations with the number of unknowns being one less than 

the number of equations. Therefore, to obtain the solution, one of the equations has to be 

discarded. However, the authors of this chapter feel that there are no obvious reasons for 

discarding any particular equation. Therefore, in this study, an effort was made to solve the 

sub-sets of equations obtained by discarding one equation at a time. 

Results presented in Table 22.3 indicate that by using this approach, four solution sets are 

obtained even when the S/N ratio is as high as 3100:1. In this case, the same solution set was 
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                  (a) Ld(s) Magnitude                                            (b) Ld(s) Phase 

Figure 22.2   Ld(s) Magnitude and Phase Plots of Field Test and Synthetic Noise-Corrupted Data 

 
Table 22.2   Estimated Values of d-axis Transfer Function Time Constants with Ra=0.02 p.u. 

 
 

obtained when Equation A.2-A.7 were discarded one at a time; no solution could be obtained 

when Equation A.1 was discarded. 

A study of Table 22.3 indicates that some of the parameters in these solution sets differ by 

as much as 130%. In particular, the value of the generator field winding inductance (Lfd) in 

solution set 2 differs from its original value by as much as 42%. This means that for the same 

value of Rfd, the d-axis transient short circuit time constant will differ significantly from the 

original value. 
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Table 22.3   Estimated Values of d-axis Machine Parameters with S/N Ratio 3100:1 and  
Ra = 0.02 p.u. 

 

 

 

An effort was also mage to estimate the accuracy of each of these solution sets. For this 

purpose, frequency response data were created corresponding to each of the four solution sets. 

Data so obtained were compared with the noise-corrupted synthetic data of the Monticello 

machine. Accuracy was measured in terms of the Mean Error and the RMS Error which are 

defined as follows: 

Mean Error = ∑
=

n

K

Ke
n 1

)(

1
 

RMS Error = ∑
=

n

K

Ke
n 1

2

)(

1
 

where, 

n =  Number of data points 

e(K) = (Value of the noise-corrupted synthetic data at the Kth frequency) – (Value of the 

created data corresponding to a particular solution set at the Kth frequency) 

 

Results presented in Table 22.4 indicate that each of the solution sets is quite accurate; 

Mean error and RMS error of each solution set are quite small. 

Therefore, it may be observed that by using frequency analytical techniques, multiple 

solution sets are obtained with each of the solution set being quite accurate. However, 
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Table 22.4   D-axis Mean and RMS Errors of Estimated Frequency Response with  
S/N Ratio of 3100:1 and Ra = 0.02 p.u. 

 
 
 

 
                         (a) Ld(s) Variation                                         (b) sG(s) Variation 
Figure 22.3   Monticello Synthetic Noise-Corrupted and Estimated Variation of  Ld(s) and 
sG(s) with Frequency 

 

estimated values of some of the machine parameters may differ significantly from the 

corresponding values in the other solution sets. In view of this, it may sometimes be difficult 

to choose a solution from the multiple solution sets. 

Figure 22.3 shows the noise-corrupted synthetic data plots of Ld(s) and sG(s) generated 

from the original values of the Monticello machine parameters given in Table 3. These plots 

are superimposed the frequency response data generated from the estimated values of the 

machine parameters shown in the solution set 1 in Table 3. The two sets of plots overlap each 

other almost completely. This confirms a high degree level of accuracy can be shown to exist 

for the other solution sets. 

For each of the transfer function time constant sets shown in Table 22.2, corresponding to 

d-axis machine parameters were estimated. The machine parameters obtained by discarding 

Equation number A.8 are presented in Table 22.5. It may be noted that Equation A.8 

corresponds to the equation discarded by Umans in reference [16]. 

The purpose of obtaining these parameters by discarding only one particular equation is to 

specifically study the impact of noise in the test data while circumventing the multiple 

solution set issue.  
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Table 22.5   Estimated Values of D-Axis Machine Parameters with Ra = 0.02 p.u. and Discarding 
Equation A.8 

 
 

A study of Table 22.5 indicates that as the S/N ratio deteriorates, estimated values of some 

of the machine parameters vary significantly. In particular, for the case of S/N ratio of 250:1, 

values of Lad, Lf2d and Lfd become unrealistic. This is primarily because noise in the test data 

introduces error in the estimated values of the transfer function time constants. This error is 

then amplified during the process of estimating machine parameters from the sub-set of 

Equations A.1-A.10. 

During this study, an effort was also made to assess sensitivity of the estimated values of 

the machine parameters, to the error in the value of armature resistance Ra used in deriving the 

operational inductance Ld(s) from the operational impedance Zd(s) data. 

The value of Ra is generally calculated from the low frequency asymptote of the Zd(s) or 

Zq(s) data (i.e., )(0 sZLimR dsa >−= ). However, experience shows that the data resolution is 

very poor in the low frequency range. Therefore, calculated value of Ra is bound to have 

certain degree of error. This will be true to some extent when Ra is measured directly with the 

help of a sensitive bridge circuit. 

In view of the above fact, the machine parameters were estimated for two sets of values of 

Ra, i.e., 0.02 p.u. and 0.0201 p.u.. The corresponding results obtained are presented in Tables 

22.5 and 22.6. 

A study of Table 22.6 shows that when the value of Ra is 0.0201 p.u. instead of 0.02 p.u., 

the machine parameters estimated become unrealistic even when then S/N ratio is as high as 

3100:1. Lad, which can be measured quite accurately with the help of a number of well-

established testing procedures, is approximately 60% higher than the original value used for 

generating the synthetic data. The value of Lfd is negative, which is totally unrealistic. 

Similarly, a negative value of R2d cannot be justified. 

Therefore, these results clearly show that estimated values of the machine parameters are 

very sensitive to the value of Ra. Even a 0.5% error in Ra could result in unrealistic estimation 

of the machine parameters. 
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Table 22.6   Estimated Values of D-Axis Machine Parameters with Ra = 0.0201 p.u. and Discarding 
Equation A.8 

 
 

 

 

It may be noted that noise, inherent in the test data, is a random process and cannot be 

removed. In practice, one can only remove unwanted signals, which are not part of the system 

to be modeled, by using filters (hardware or software filters). Therefore, to minimize the 

effect of noise, the analytical technique used should be robust and should not be affected by 

noise. 

A study of the q-axis parameters estimation gives similar results as above. 

 

 

22.2.5 CONCLUSIONS 

 

Based on the results of this study, it is concluded that: 

1) Noise, which is inherently present in the field test data, has significant impact on 

the synchronous machine parameters estimated from the SSFR test data using 

curve-fitting techniques. 

2) Multiple solution sets for the machine parameters are obtained depending upon the 

equation ignored from the set of relevant equations. In some cases the solution may 

not even converge. 

3) Estimated values of the machine parameters are very sensitive to the vales of 

armature resistance used in the data analysis. Even a 0.5% error in the value of 

armature resistance could result in unrealistic estimation of the machine parameters. 

4) A technique should be developed which provides a unique physically realizable 

machine model even when the test data are noise-corrupted. This problem is studied 

in the next section. 
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22.3  MAXIMUM LIKELIHOOD ESTIMATION OF SOLID-ROTOR 

SYNCHRONOUS MACHINE PARAMETERS 

 

22.3.1 INTRODUCTION 

In the previous section, it was shown that multiple parameter sets will be obtained when 

the transfer functions of a solid-rotor synchronous machine are estimated from noise-

corrupted, frequency-domain data and then, the machine parameters are computed from the 

estimated machine transfer function’s time constants. Moreover, the estimated machine 

parameters are very sensitive to the value of the armature resistance used in the study. 

In this section, a time-domain identification technique is used to estimate machine 

parameters. The objective is to show that the multiple solution set problem encountered in the 

frequency response technique can be eliminated if the time-domain estimation data are 

generated from the d-q axis transfer functions estimated for the SSFR test data. The maximum 

likelihood (ML) estimation technique is then used to estimate the machine parameters. 

The ML identification method has been applied to the parameter estimation of many 

engineering problems [25-30]. It has been established that the ML algorithm has the 

advantage of computing consistent parameter estimates from noise-corrupted data. This 

means that the estimate will converge to the true parameter values as the number of 

observations goes to infinity [29-30]. This is not the case for the least-square estimators which 

are commonly used in power system applications. 

 

 

22.3.2 STANDSTILL SYNCHRONOUS MACHINE MODEL FOR TIME-DOMAIN 

PARAMETER ESTIMATION 

 

22.3.2.1  D-Axis Model 

Assuming that the d-axis rotor body can be represented by two damper windings (i.e., 

SSFR3), the standstill discrete d-axis model of a round rotor machine is given by [19]: 

)()()()()()1( kwkUBkXAkX dddd ++=+ θθ    (22.12) 

)1()1()1( +++=+ kvkXCkY d     (22.13) 

where 









=

1000

0001
dC  

[ ]Tfdddd iiiiX 21=  

[ ]fdd iiY = , [ ]dvU =  

[ ]fdfddddfdddfadd LRLRLLRLL ,,,,,,,, 2221112=θ  

 

In addition, ( )⋅w and ( )⋅v  denote the process noise and measurement noise respectively. It 

is assumed that 
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[ ] 0=wE ,  [ ]TwwEQ =       (22.14) 

[ ] 0=vE ,  [ ]TvvER =0       (22.15) 

[ ][ ] [ ]00 =XE , [ ]TXXEP =0      (22.16) 

  

22.3.2.2   Q-Axis Model 

Assuming that the q-axis rotor body can be represented by three damper windings, the 

standstill discrete q-axis model is given by: 

)()()()()()1( kwkUBkXAkX qqqq ++=+ θθ   (22.17) 

)1()1()1( +++=+ kvkXCkY q    (22.18) 

where 

[ ]0001=dC  

[ ]Tqqqq iiiiX 321=  

[ ]qiY = , [ ]qvU =  

[ ]qqqqqqaqq LRLRLRL 332211 ,,,,,,=θ  

 

The initial value of the state and statistics of measurement noise are described by Equation 

22.14 through Equation 22.16. The computations of )(),(),(),( qqqqdddd BABA θθθθ from the 

continuous time-domain representation are described in [19], and the explicit parameterization 

in terms of dθ  and qθ  are shown in Appendix B. 

In this study, the effect of noise on parameter estimation is studied by using the simulated 

noisy data of a known model structure for parameter identification. The identification problem 

is to estimate the parameter vector dθ  and qθ from a record of the time-domain sequence of di , 

fdi , qi , dv  and qv . 

 

 

22.3.3 EFFECT OF NOISE ON THE PROCESS AND THE MEASUREMENT 

 

Figure 4 shows the block diagram of the effect of noise on the process and the 

measurements. The model, which mathematically describes the process, is subjected to the 

deterministic input at each time instant k. Nature also subjects the process to a random input 

sequence ( )⋅w . The sequence ( )⋅w  is designated as the process noise sequence. It is assumed 

to be Gaussian with zero mean and covariance matrix ( )⋅Q . The covariance matrix Q gives a 

measure of the intensity of the process noise on the model. A high value of the covariance 

matrix Q corresponds to a noisy process. The reason for introducing the measurement noise 

sequence ( )⋅v  is that in physical problems, the measurements are inherently subjected to errors.  
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Figure 22.4   Block Diagram Representation of Measurement and Process Noise 

 

The signal conditioning equipment and sensors introduce measurement noise, which is 

random. The measurement errors ( )⋅v  are assumed to be independent and Gaussian with zero 

mean value and a known covariance matrix 0R . It is further assumed that the sequence ( )⋅w , 

( )⋅v , and X(0) are independent. 

Let us denote the variance of ( )⋅1v  and ( )⋅2v  by 2

1v
σ  and 2

2v
σ . Also let ( )⋅1v  and ( )⋅2v  

represent the measurement noise of di  and fdi . The assumption that ( )⋅1v  and ( )⋅2v  are 

independent ensures that measurement of di  will not introduce additional uncertainty (i.e., 

measurement noise) in the measurement of fdi . This assumption is not completely true. For 

example, the use of shunt resistances for current measurements will introduce its own 

uncertainty in the process variables to be measured. In this book, however, it is assumed that 

measurement errors are independent; therefore the covariance ( )⋅R  is a diagonal matrix, and 

the diagonal elements represent the variance of the measurement errors. Note that the standard 

deviations of measurement errors represent the percent errors associated with the sensors. The 

accuracy of the sensors may be known from the “manufacturer data” or from carefully 

controlled experiments on the sensors themselves. 

The initial covariance 0R  is constructed from the knowledge of sensor errors, and it 

represents a measure of the prior confidence in the sensors to produce accurate measurements. 

Strictly speaking, two experiments performed on the same process will not result in identical 

measurements. Therefore, the covariance of the estimation error is calculated as part of 

Kalman filter [26-30] for estimating the machine states and then the parameters. The 

covariance of the estimation error is defined as 

)(ˆ)()(

))(),(()(

kYkYke

kekeCOVkR

−=

=
    (22.19) 

 

22.3.4 MAXIMUM LIKELIHOOD PARAMETER ESTIMATION 

Consider the system described by the linear difference Equations 22.12 and 22.13 or 22.17 

and 22.18. To apply the maximum likelihood (ML) method, the first step is to specify the 

likelihood function [26-30]. The likelihood function )(θL , where θ  represents dθ  or qθ , is 

defined as  

∏
=

−


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Model  

Eq.(12) or (17) 

(process) 

 
Measurement 
Model  
Eq.(13) or (18) 

(process) 

( )⋅X  ( )⋅Y
( )⋅U

( )⋅w

( )0X ( )⋅v
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where ( )⋅e , ( )⋅R , N and m denotes the estimation error, the covariance of the estimation error 

(see Equation 22.19), the number of data points, and the dimension of Y, respectively. 

Maximizing )(θL  is equivalent to minimizing its negative log function, which is defined 

as: 

[ ] )2log(
2

1
))(det(log

2

1
)()()(

2

1
)(

)(log)(

11

1 πθ

θθ

mNkRkekRkeV

LV

N

k

N

k

T ++=

−=

∑∑
==

−   (22.21) 

The vector θ  (i.e., dθ  or qθ ) can be computed iteratively using Newton’s approach 

[27,31]: 

θθθ
θ

∆+=

=+∆

oldnew

GH 0
     (22.22) 

where H and G are the Hessian matrix and the gradient vector of  )(θV . They are defined by: 

θ
θ

θ
θ

∂
∂

=
∂

∂
=

)()(
2

2 V
G

V
H    (22.23) 

The H and G matrices are calculated using the numerical finite difference method as 

described in [24,30]. 

To start iterative approximation of θ , the covariance of estimation error )(kR (see Eq. 

(19)) is obtained using the Kalman filter theory [25-29]. The steps are as follows: 

 

1. Initial conditions: The initial value of the state is set equal to zero. The initial 

covariance state matrix 0P  is assumed to be a diagonal matrix with large positive 

numbers. Furthermore, assume an initial set of parameter vector θ . 
 

2. Using the initial values of the parameters vector θ , compute the matrices A, B, and 
C for d or q-axis. 

 

3. Compute estimate )1|(ˆ −kkY  from )1|(ˆ −kkX : 

)1|(ˆ)1|(ˆ −=− kkXCkkY     (22.24) 

 

4. Compute the estimation error of )(kY : 

)1|(ˆ)()( −−= kkYkYke     (22.25) 

 

5. Compute the estimation error covariance matrix )(kR : 
TCkkPCRkR ⋅−⋅+= )1|()( 0    (22.26) 

 

6. Compute the Kalman gain matrix: 
1)()1|()( −⋅⋅−= kRCkkPkK T

   (22.27) 
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Figure 22.5   Block diagram of Maximum Likelihood Estimation 

 

 

 

7. Compute the state estimation covariance matrix at instant k and k+1: 

QAkkPAkkP

kkPCkKkkPkkP

T +⋅⋅=+

−⋅⋅−−=

)()|()()|1(

)1|()()1|()|(

θθ
  (22.28) 

 

8. Compute the state at instant k and k+1: 

)()()|(ˆ)()|1(ˆ

)()()1|(ˆ)|(ˆ

kUBkkXAkkX

kekKkkXkkX

⋅+⋅=+

⋅+−=

θθ
  (22.29) 

 

9. Solve Eq. (22) for θ∆  and compute the new θ  such that 
maxmin θθθ ≤≤ new      (22.30) 

 

10. Repeat steps 2 through 9 until )(θV  is minimized. 

 

The above mechanism for maximum likelihood estimation is illustrated in Figure 5. A 

model of the system is excited with the same input as the real system. The error between the 

estimated output and the measured output is used to adjust the model parameters to minimize 

the error (maximize the likelihood). This process is repeated till the cost function )(θV  is 
minimized. 

 

 

22.3.5 ESTIMATION PROCEDURE USING SSFR TEST DATA 

 

The machine parameters estimated from the frequency-domain data are very sensitive to 

the value of the armature resistance used in deriving the operational inductance Ld and Lq data 
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[22]. However, the values of Lad and Laq provided by manufactures are quite accurate. In our 

estimation of rotor body circuit parameters, the manufacturer’s specified values of Lad and Laq 

will be utilized to decide the appropriate value for armature resistance. The θmin and θmax (e.g., 
Lad,min and Lad,max) are selected within %15±  of the values supplied by the manufacturers. The 

rotor body circuit parameters are constrained to be greater than zero. The steps are as follows: 

 

1. Estimate the value of aR : 

)(lim 0 ωω jZR da →=  

2. Compute the operational inductance Ld and Lq data using the measured frequency 

response data or Zd and Zq. 

3. Fit very high-order transfer function to Ld(s) and Lq(s) data of step 2 and sG(s) 

transfer function [22]. 

4. Compute the step-response of the transfer function of step 3. 

5. Use the ML identification technique to estimate the machine parameters as a 

constraint minimization problem. 

 

As indicated in the previous section, the transfer function’s time constants are very 

sensitive to the value of Ra. If the initial value of Ra is not accurately estimated, then this may 

not give a minimum value of )(θV . Therefore, it is suggested that the constraint ML 

identification process be repeated for another value of Ra until )(θV  is minimized. 

This problem of iterating with different values of Ra occurs only when the time-domain 

data are generated from the SSFR test data. If the time-domain data are directly measured, all 

parameters can be estimated without going through the above iterative procedure. 

It may be noted that accurate results will be obtained by this approach, because in step 3 

high order transfer functions can be fitted to the Ld(s), Lq(s), and sG(s) data. In the classical 

frequency response technique, only the third- or second-order transfer functions are used. 

Therefore the estimated transfer functions will not accurately represent the SSFR data in the 

subtransient region [11]. Furthermore, as indicated in the previous section, multiple parameter 

sets will be obtained when the machine parameters are estimated using the classical SSFR 

technique. Note that the use of higher order transfer functions, in the classical SSFR technique, 

will result in a larger set of nonlinear and inconsistent equations (see Appendix A) which 

cannot be accurately solved for the machine parameters. However, the proposed approach can 

be used to obtain an accurate and unique estimation of machine parameters. 

 

 

22.3.6 RESULTS 

 

The machine parameters are estimated from the time-domain data, which are computed by 

using the estimated transfer functions. The transfer functions are estimated from the noise-

corrupted SSFR data as described in previous section. The signal-to-noise ratio of 3100:1 

(where S/N =[Σ(signal)2/(noise)2]1/2) is used in this study. The noise sequence used is a 
normally distributed random variable with zero mean. 

To obtain a record of the time-domain data, the step response of the estimated d-q axis 

transfer functions [1] is computed. The input step voltage is defined as 
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     (22.31) 

The input signals to be applied to the transfer functions can be chosen without any 

constraints. The step voltage signals are used because of their rich frequency contents. This 

input signal excited all the estimated transfer function modes. The time-domain data of ( )⋅di , 

( )⋅fdi  and ( )⋅qi  are computed using the input step defined by Eq. (31). The variance of the 

process noise is assumed to be negligible, and its signal-to-noise ratio is very high. The 

signal-to-noise ratio of measurement noise is 3100:1. This measurement noise was introduced 

in the SSFR data. 

The ML estimation is used to estimate the machine parameters. The results are given in 

Table 22.7 for d-axis, and in Table 22.8 for q-axis. The parameters Lad, Laq, and Rfd were 

initialized at 15% below their original values. Since the ranges of these variables are known, 

the initial values of these parameters are quite reasonable. However, since a priori knowledge 

of the rotor body circuits’ parameters is much less precise, they are initialized arbitrarily. 

 
Table 22.7   Maximum Likelihood Identification of D-Axis Parameters 

 
 

Table 22.8   Maximum Likelihood Identification of Q-Axis Parameters 
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The estimated parameters can be evaluated by comparing the mean and RMS errors of the 

id(t), ifd(t), and iq(t) for both methods; namely, the SSFR method as stated in previous section 

and by the ML method. 

It is established [29,30] that the ML method gives unique solution even when the data are 

noise-corrupted. The unique estimated values of the d-q axis parameters obtained in this study 

are given in Tables 22.7 and 22.8. 

Figures 22.6-22.8 show that the time domain simulated responses of id(t), ifd(t), and iq(t) 

respectively as step voltage are used as input in the d- and q-axis models of the Monticello 

machine. In each figure, three sets of responses are plotted. One of the responses corresponds 

to the original set of parameters of the Monticello machine, estimated in [11]. The remaining 

two sets of responses correspond to the parameters estimated by the ML and SSFR methods. 

 

 
Figure 22.6   Monticello GS, Original and Estimated id(t). 

 
 

Figure 22.7   Monticello GS, Original and Estimated ifd(t). 

 
 

Figure 22.8   Monticello GS, Original and Estimated iq(t). 
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Table 22.9   Mean and RMS Error Comparisons of D-Axis and Q-Axis Time-Domain Response 

 
 

 

 

A study of these figures and Table 22.9 shows that for the same set of synthetic SSFR data, 

the d-axis results obtained by using the ML method are more accurate; and the q-axis results 

are the same for both methods. However, it can be shown that if an actual measured set of 

SSFR test data is used, the q-axis results of the ML method will also be more accurate. This is 

because, with the ML method, transfer functions higher than third order will represent the 

measured data more closely. Using higher order transfer functions will provide more accurate 

results both in the d- and q-axis parameters. It should be noted that the synthetic SSFR data 

used in this study were created from the SSFR3 model provided in [11]. Therefore, the 

transfer functions estimated to represent the noise-corrupted synthetic data could only be of 

third order. 

 

The proposed approach can also be applied directly to measured standstill time test data. 

The standstill test data can be obtained by closing a suitable DC source across the stator 

windings while the field winding is short-circuited [6] so as to introduce a step change in 

voltage. The rotor position and stator connections are the same as SSFR testing procedures 

described in [6,11]. The ML technique can be used to estimate the armature, field and rotor 

body parameters directly from the measured standstill test data. 

 

 

22.4 MODELING AND PARAMETER IDENTIFICATION 

        OF INDUCTION MACHINES 

 

Induction motors are used in automotive applications, either as stand-alone propulsion 

systems (electric vehicles) or in combination with an internal combustion engine (hybrid 

electric vehicles). Accurate knowledge of the induction motor model and its parameters is 

critical when field orientation techniques are used. The induction motor parameters vary with 

the operating conditions, as is the case with all electric motors. The inductances tend to 
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saturate at high flux levels and the resistances tend to increase as an effect of heating and skin 

effect. Temperature can have a large span of values, load can vary anywhere from no-load to 

full load and flux levels can change as commanded by an efficiency optimization algorithm. It 

could then be expected that the model parameters also vary considerably. 

 

22.4.1 MODEL IDENTIFICATION 

 

Although there are many models to describe induction motors, some are highly complex 

and not suitable to be used in control. The authors will only concentrate on the models that 

can be used in induction motor control. Also, since modern induction motor control is field 

oriented, d-q models will be analyzed.  An excellent presentation on available model types 

can be found in [34]. The classical induction motor model (used in most control schemes) has 

identical d and q axis circuits, as shown in the Figure 22.9. Since the classical model is a 

fourth order system with 6 elements of storage (inductances) the model can be reduced to a 

simpler model without any loss of information [34]. 

 

The notations represent: 

qsds
vv ,  : stator voltages in stationary reference frame 

qsds
ii , : currents in stationary reference frame 

qrdr λλ ,  : rotor fluxes in stationary reference frame 

lL , Lm:  magnetizing and leakage inductance (r for rotor s for stator) 

rs RR ,  :  stator, rotor resistance 

rω  :  synchronous and mechanical frequency (rad/s). 

 

The transformation combines the leakage inductances in a single inductance. This 

schematic is preferred for control applications and is called the Γ model (the classical model 
is denoted as the T model). Depending on whether a stator flux or rotor flux controller is 

sought the leakage inductance can be placed in the stator or in the rotor. The transformation is 

meant to have Lm’ be equal either to Ls or Lm of the classical model. Figure 22.10 shows the 

reduced model for rotor flux oriented (RFO) control. 

Vds

Rs Lls

Lm

Llr Rr
ω λr qr

p drλp dsλ

 

Vqs

Rs Lls

Lm

Llr Rr
ω λr dr

p qrλp qsλ

 
Figure 22.9   Equivalent circuits in d-q stationary 
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Rs

Vqs

Ll

Lm


Rr

ω λr dr

Rs

Vds

Ll

Lm


Rr

ω λr qr

 
Figure 22.10   Reduced equivalent circuits in d-q stationary for RFO 
control 

   

 

Although more complicated models, used in performance analysis, transient stability and 

short circuit studies exist, their complexity (expressed in the number of differential equations 

used in the model) makes them unattractive for control purposes. The known variations of the 

classical model are derived by allowing parameter variations and by representing core losses. 

Although all parameters are known to vary with the operating conditions, the effect of the 

variation of the leakage inductances is usually neglected. The magnetizing inductance is 

shown to vary as a function of the magnetizing current, rotor flux, or input voltage. The stator 

and rotor resistances are mainly affected by the rotor temperature and skin effect. In steady 

state models, core losses are typically represented as a resistance in parallel with the 

magnetizing inductance. However, by doing so the order of the model increases by two and 

adversely affects the control task. In literature, there are two trends to avoid this problem. One 

consists in adding the core loss resistance in parallel with the rotor resistance. The other, [34] 

adds an R-L branch in both d and q axis and supplies it with the voltage created by the rotor 

flux of the corresponding axis. Then the differential terms associated with this branch are 

neglected to maintain the order of the system. A third method consists in adding the core loss 

resistance in series with the magnetizing inductance. 

 

Figure 22.11 shows the induction motor model used in this work in stationary reference 

frame. The core loss branch is added to account for both stator and rotor core losses. Since the 

core loss resistance is much larger than the rotor resistance, it will be neglected in this part of 

modeling. The following basic equations of induction machine can be derived: 

 

 

J

T

J

B
ii

dt

d L
r

dsqrqsdr

r −−





 −= ωλλµ

ω
    (22.32) 
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Rs
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Lm
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ω λr dr
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Vds
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Lm

Rr
ω λr qr
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Figure 22.11   Induction motor models in stationary reference frame 
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where: 

m

r

R L

R

T
=≡

1
η : inverse of the rotor time constant 

s

m

L

L
−≡ 1σ : leakage coefficient 

lL

1
≡β : inverse of leakage inductance 

l

rs

L

RR +
≡γ : inverse of the stator time constant 

mls LLL += : stator inductance 

pn  : number of poles pairs 

 

The electromagnetic torque expressed in terms of the state variables is: 
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


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dsqrqsdr
e iiJT λλµ         (22.37) 

where: 

J

np≡µ : constant 

J : inertia of the rotor  

eT  : electromagnetic torque ( mN ⋅ ) 

 

In synchronously rotating reference frame, the motor equations can be expressed as: 

J
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where: 

e
qs

e
ds vv ,  : stator voltage in synchronous reference frame 

e
qs

e
ds ii , : currents in synchronous reference frame 

rλ  : rotor flux in synchronous reference frame 

and the expression for torque is given by:  
e
qsre iJT ⋅⋅= λµ                  (22.43) 

 

 

22.4.2 PARAMETER ESTIMATION 

 

There are many parameter estimation techniques for the induction motor. Depending on 

the type of tests performed on the motor, the testing methods could be classified as: 

 

Off site methods: test the motor separately from its application site [36-42]. The motor is 

tested individually, in the sense that it is not necessarily connected to the load it is 

going to drive or in the industrial setup it is going to operate in. The most common 

such tests are the no-load test and the locked-rotor test. The advantage of the above 

methods is their simplicity. However, these tests usually represent poorly the real 
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operating conditions of the machines (for example, they lack the effect of PWM 

switching on the machine parameters). 

On site and off line methods: these tests are performed with the motor already connected 

in the industrial setup and supplied by its power converter [35,43-47]. These tests 

are usually meant to allow the tuning of the controller parameters to the unknown 

motor it supplies and are also known as self-commissioning. As they are convenient 

for the controller manufacturer (one control program could work for different 

motors), they usually are less precise than the individual tests. 

On-line methods: some parameters are estimated while the motor is running on-site [48-

52,55]. These methods are concerned usually with rotor parameters (Lm and Rr or the 

time constant, Tr) and assume that the other parameters are known. These methods 

usually perform well only for a good initial value of the parameter to be determined 

and for relatively small variations (within 10%). 

 

The purpose of this section is the development of an induction motor model with 

parameters that vary as a function of operating conditions. The development is on-site and 

off-line. While stator resistance is measured through simple DC test, the leakage inductance, 

the magnetizing inductance and the rotor resistance are estimated from transient data using a 

constrained optimization algorithm. Through a sensitivity analysis study, for each operating 

condition, the parameters to which the output error is less sensitive are eliminated. The 

parameters are estimated under all operating conditions and mapped to them (e.g. analytical 

functions relating parameters to operating conditions are created). A correlation analysis is 

used to isolate the operating conditions that have most influence on each parameter.  A core 

loss resistance models core losses. This resistance is estimated using a power approach and 

Artificial Neural Networks. No additional hardware is necessary. The same power converter 

and DSP board that controls the motor in the industrial setting is used to generate the signals 

necessary to model the motor. Therefore, phenomenon related to operation (for example 

PWM effects) is captured in modeling.  

 

22.4.2.1   Estimation of stator resistance 

The estimation of the stator resistance was carried out through a DC test, as shown in 

Figure 22.12. The resistance can be calculated as: 

c

ca
S

I

VV
R

−
⋅=

3

2
           (22.44) 

Va

Vb

Vc

Ic

Rs

Rs
Rs

 
Figure 22.12   Circuit for stator resistance 
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Figure 22.13   Stator resistance as a function of temperature 

 

To capture the effect of temperature on the stator resistance, the following sequence of 

testing was used: 

- at each test, the motor was run with an increased load; 

- the stator resistance test was performed immediately after the motor stopped. 

The temperature of the stator winding was also measured. The temperature dependency of 

the stator resistance is shown in the Figure 22.13. 

 

 

22.4.2.2   Estimation of Ll, Lm, and Rr 

 

Transient data was used to determine Lm, Ll and Rr. The data consisted in small 

disturbance in the steady state operation of the IM by stepping the supply voltage with 10%. 

The tests encompass a wide variation of frequency, supply voltage and load: 

 

- the frequency was varied from 30 Hz to 80 Hz in steps of 10 Hz, 

- the supply voltage was varied from 10% to 100% of the rated voltage value in steps of 

10% for each frequency, 

- the load was varied from no-load to maximum load in 8 steps. 

 

A total of 290 data files were obtained. The estimation was performed using a constrained 

optimization method available in Matlab (‘constr’).  Figure 22.14 shows the block diagram of 

the estimation procedure.  
 

 

The induction motor model can be expressed in state space form as: 

BUAXX +=&           (22.45) 

and the output equation is: 

XCY ⋅=           (22.46) 
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Figure 22.14   Estimation block diagram 
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The initial conditions for the model were established as: 

[ ]Trqqrdsqs iiX λλ ˆˆ
)0()0(=      (22.50) 

The error between model and measurements was calculated as: 
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where  ^ -  estimated values 
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The constrained optimization function is used to minimize the error function by modifying 

the parameter vector, :  

[ ])0()0(
ˆˆ
drqrlrm LRL λλθ =      (22.52) 

The values of stator resistance were based on temperature measurements. The initial 

values of the fluxes are not normally included in the parameter vector since they can be 

calculated from the initial conditions of the currents at steady state. However, these currents 

are noise corrupted and their measurement error will propagate into the calculation of the 

initial values of the flux. Furthermore, since flux equations have a large time constant, the 

initial condition error would influence the flux observation over the entire transient 

measurement (the self-correction of an otherwise convergent flux observer [57] will not have 

the time to correct the initial condition error) and will yield erroneous parameter estimates.  

The authors observed that the parameter vector modification increased the rate of 

convergence of the algorithm. Constraints on Rr, Ll, and Lm were imposed as 10% of the rated 

value for the lower bound and 300% for the upper bound. For λd(0) and λd(0) the constraints 
were imposed as +/_ 200% of the saturation value (0.5 Wb). 

 

22.3.3 SENSITIVITY ANALYSIS 

 

Since an output error estimation method is used, there is no theoretical guarantee that the 

parameters will converge to their actual values. Therefore it is necessary to study the effect of 

each parameter on the total error. It is obvious that those parameters with little effect on the 

total error will be more prone to estimation errors than parameters that affect it more. For any 

data point, the error can be expressed as: 

)ˆsin(ˆ)sin()( ϕωϕω +⋅−+⋅= tItItE      (22.53) 

At steady state, the squared error per period is: 
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The sensitivity of the squared error to a parameter (y) can be expressed as: 
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For the proposed model, the steady state current (complex form) can be expressed as: 
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and I and ϕ are the module and phase angle of I
r
. 

The sensitivity analysis was conducted for a slip ranging from 0 to 10% (larger values of s 

are unobtainable at steady state) and a frequency from 20 Hz to 100Hz. The rated values of 
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the parameters were used. Figure 15 shows a comparison of sensitivity for Rr, Lm and Ll at 60 

Hz. Figure 22.16-22.18 represent the sensitivity of each individual parameter for different 

frequencies and slips. It can be seen that the sensitivity of the error to Ll or Rr is low at low 

slip. Large errors can be introduced at low slip since their effect on the error is small. A limit 

of 2% on the slip was imposed on the slip values. The Ll and Rr estimates below this value are 

discarded. For large values of the slip the sensitivity of the error to Lm decreases to 0. Lm 

estimates for slip values larger than 2% were discarded. 

 
 

 
Figure 22.15   Sensitivity of error to parameters as a function of slip at 60 Hz 

 

 
Figure 22.16   Sensitivity of error to Ll as a function of slip at different frequencies 
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Figure 22.17   Sensitivity of error to Lm as a function of slip at different frequencies 

 

 
Figure 22.18   Sensitivity of error to Rr as a function of slip at different frequencies 

 

 

Observation 

The concept of sensitivity of the currents (error) to the parameters can be extended to 

more classical induction motor tests: in the no-load test, only Lm is estimated whereas in the 

locked rotor test Rr and Ll are estimated. 

 

22.4.4 PARAMETER MAPPING TO OPERATING CONDITIONS 

 

The model proposed here is dependent on the operating conditions. Up to this point, the 

parameters of the motor were estimated for various operating conditions. The purpose of this  
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Table 22.10 Correlation between parameters and operating conditions 

Parameter e
dsi  e

qsi  Is Ws 

Lm -0.9287 0.0167 -0.6652 0.3473 

Rr 0.1543 0.8061 0.8023 0.5485 

Ll -0.3212 -0.4264 -0.7135 0.0177 

 

 

section is to find the relation of the parameters to the operating conditions in a form that 

allows for use in a control environment. However, in order to be able to define an operating 

condition or to relate (map) a parameter to a condition, a correlation analysis is necessary.  

This establishes the “strong” and “weak” dependencies of parameters to operating variables. 

The variables for the correlation study are selected intuitively as: 

 

e
qs

e
ds ii , – the stator currents in synchronous reference frame 

Is – the stator current (peak value) 

ws- slip frequency 

 

It could be argued that temperature is also a factor in this mapping. However, since the 

only temperature measurement available was the stator temperature (and was used for stator 

resistance calculation) it was not used in this correlation study. The correlation between two 

variables (in this case one variable is a parameter (y) and the other a operating condition 

variable (x)) can be defined as: 

( )

yx

N

k
kk

yx

yyxx
N

C
σσ

∑ −−
−

= =1
,

))((
1

1

       (22.57) 

where  yx,  are the mean of x and y respectively and yx σσ ,  are their standard deviations. Table 10 

shows the results of the correlation:  

 

 

Mapping consists in expressing the parameters of the motor as analytical functions of the 

operating conditions. The selection of the variables describing the operating conditions is 

based on the correlation study. 

 

22.4.4.1 Magnetizing inductance, Lm 

A strong correlation was observed between Lm and 
e
dsi . Lm clearly saturates with an 

increase in edsi . A second order polynomial was used to represent the dependency of Lm to 
e
dsi  

in the saturated region. 

32

2

1)( kikikiL e
ds

e
ds

e
dsm +⋅+⋅=        (22.58) 

Figure 22.19 shows a comparison between the polynomial and the results of the 

estimation. 
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Figure 22.19   Lm as function of 
e
dsi  

 

 
 

Figure 22.20   Ll as function of Is 

 

22.4.4.2 Leakage inductance, Ll 

 

A strong correlation was also observed between Ll and Is. Ll saturates with an increase in 

Is. A linear approximation was used to represent the dependency of Ll to Is and is shown in 

Figure 22.20. 

 

54)( kIkIL ssl +⋅=            (22.59) 

 

22.4.4.3 Rotor resistance, Rr 

 

It can be safely assumed that the rotor resistance varies as a function of two factors: slip 

frequency (through skin effect) and rotor temperature (immeasurable). However, Table 10 

shows a correlation between Rr and ws but also 
e
qsi . The correlation is shown in Figure 22.21.  
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Figure 22.21 Rr as function of 
e
qsi  

 

The correlation is due to the fact that both slip frequency and temperature are proportional to 

e
qsi . It was observed that the Rr(

e
qsi ) correlation holds only if the motor runs for a few minutes 

at a certain operating condition, to allow for temperature to reach a steady state. A sudden 

variation in eqsi  would not determine a sudden change in Rr if slip frequency remains constant 

since temperature does not change as fast. Therefore, the Rr(
e
qsi ) relation can only be used at 

steady state. 

In order to establish the influence of slip frequency on Rr, a test similar to a locked rotor 

was used. The difference was that the rotor was not mechanically locked, but the voltages 

were small enough that the rotor would not move. The frequency was varied between 5 Hz 

and 120 Hz (1 Hz increments in the 5-10 Hz region and 10 Hz increments for the rest). Prior 

to each series of tests, the motor was run under a loading condition (no-load, medium load 

and full load) to assure heating of the rotor. A temperature sensor was mounted on the stator. 

This sensor was used for an indication when temperature has reached a steady state (for each  

 
Figure 22.22   Rotor resistance as function of slip frequency for different temperatures 
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Figure 22.23   Rotor resistance as function of slip frequency for lower frequencies 

 

loading condition). Figure 22.22 shows the results of the Rr estimation as a function of slip 

frequency (for locked rotor, equal to stator frequency).  Figure 22.23 shows just the 5-10 Hz 

region, which is of more interest for us, since slip rarely exceeds this range. 

 

Observation 1.  Since rotor frequency (slip frequency) influences the values of rotor 

resistance, the locked rotor test must be carried out at a low frequency if the rated value of 

rotor resistance is sought. This is particularly important for squirrel-cage motors in which skin 

effect is present. For example, for the motor used in this research, a locked rotor test at rated 

frequency would yield a value of rotor resistance approximately 3 times higher than real. 

Since rotor temperature measurements are hardly possible, a precise off-line mapping of rotor 

resistance to operating conditions is impossible. However, due to the linearity (within the 

range of interest) of the relation between rotor resistance and slip frequency, an on-line 

observer can be developed.   

The observer is based on the assumptions that the rotor temperature varies much slower 

than the other variables (current, speed etc) and that steady state operating conditions exist 

(e.g. the motor is not in continuous transient). The rotor resistance dependency to slip 

frequency and rotor temperature can be expressed as: 

 

ssr kTRTR ωω ⋅+= 61 )(),(        (22.60) 

in which R1(T) is the influence of temperature (unknown). The coefficient k6 (influence 

of slip frequency) can be estimated off line from the locked rotor tests measurements. At each 

operating condition (steady state), the value of rotor resistance and slip frequency can be 

estimated with an observer, as shown in the next section). Then for each loading condition 

(temperature):  

ssr kTRTR ωω ˆ),(ˆ)(ˆ 61 ⋅−=           (22.61) 

Assuming that temperature changes slowly, at each instant of time, knowing the slip 

frequency allows for the determination of rotor resistance. Each time a steady state condition 

is detected, R1(T) is re-evaluated and rotor resistance calculated as function of slip frequency.  
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Observation 2.  It can be argued that since rotor resistance is estimated, there is no need in 

determining R1(T). This is true while the motor operates at steady state. However, for 

efficiency optimization it is important to predict the variation of rotor resistance prior to a new 

steady state condition. For this case it is important to have the value of R1(T) and predict the 

variation of Rr based on slip frequency. 

 

22.4.5 CORE LOSS ESTIMATION 

 

One should note that since the slip is non-zero for the no-load test and Rr is already known, 

Rc could be theoretically calculated from the parallel resistance of Rr and Rc. However, even 

for most precise speed encoders, the error in calculating a slip approaching zero could 

translate in an order of magnitude of error when calculating Rr /s (s being the slip ess ωω /= ). 

A power-based approach is used for calculating the core resistance.  

 

22.4.5.1   Calculation of rotor losses at frequencies of interest 

 

Use the no-load tests and calculate the rotor power losses for each data set: 
2)cos( ssssrotor IRIVP −= ϕ        (22.62)  

A plot of these losses is shown in Figure 24 for various frequencies.  The losses increase 

with both the frequency and the rotor flux. 
 

22.4.5.2   Calculation of friction and windage losses using ANN 

 

Since core losses are zero when flux is zero, the intersection of the power curves with the 

vertical axis determines the friction and windage losses for a specific frequency. To find the 

friction and windage losses for all frequencies, an ANN was used to map the rotor losses to 

frequency and flux. Multi-layer feed-forward neural networks have often been used in system 

identification studies. These networks consist of a number of basic computational units called 

processing elements connected together to form multiple layers. A typical processing element 

forms a weighted sum of its inputs and passes the result through a non-linear transformation 

 

 
Figure 22.24   Rotor power losses for no-load test 
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 (also called transfer function) to the output. The transfer function may also be linear in which 

case the weighted sum is propagated directly to the output path. The ANN used in this 

research consists of processing elements arranged in three distinct layers. Data presented at 

the network input layer are processed and propagated through a hidden layer, to the output 

layer. Training a network is the process of iteratively modifying the strengths (weights) of the 

connecting links between processing elements as patterns of inputs and corresponding desired 

outputs are presented to the network.  

In this work, the mathematical relationship between the input and output patterns can be 

described as: 

 

),(_ edlossesrotor NP ωλ=          (22.63)         

 

where Nd  is a non-linear neural network mapping to be established. The ANN used in this 

study is shown in Figure 22.25 and consists of 2 processing elements in the input layer, 

corresponding to each variable. A single processing element in the output layer corresponds to 

the losses being modeled. The number of elements in the hidden layer is arbitrarily chosen 

depending on the complexity of the mapping to be learned. A hyperbolic tangent (tanh) 

transfer function is used in all hidden layer elements, while all elements in the input layer and 

output layer have linear (1:1) transformations. 

The back-propagation algorithm is used to train the neural network such that the sum 

squared error, E, between actual network outputs, Ο, and corresponding desired outputs, ζ, is 
minimized over all training patterns µ 

∑ −=
µ

µµζ 2][ OE           (22.64)                      

 

Σ

ω

λr

P ro tor_loss

Input 

layer

H idden 

layer

Output 

layer  
 
Figure 22.25 ANN Model for Protor_losses 
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Figure 22.26 Mapping of rotor losses using ANN 

 

After estimating the non-linear mapping Nd  in terms of the neural network, the network 

output Protor_losses is computed from the 2x1 input vector P according to the following equation: 

 

2112_ )tanh( BBPWWP lossesrotor ++⋅⋅=    (22.65)                       

 

W2 denotes the matrix of connecting weights from the hidden layer to the output layer. W1 

is the weight matrix from the input-layer to the hidden-layer. If there are m processing 

elements in the hidden layer, W2 is of size 1xm, and W1 is of size mxl. Bias terms B2 and B1 are 

used as connection weights from an input with a constant value of one. B2 and B1 denote the 

1x1 and mx1 bias vectors from the bias to the output-layer, and from the bias to the hidden-

layer respectively. The task of training is to determine the matrices W1,  W2, and bias vectors 

B1, B2. The training patterns for the neural network models are composed of the no-load test 

data. Each data set is a vector of λ,ωe and Protor_losses. The results of the mapping are shown in 
Figure 22.26. Friction and windage losses can be calculated for ANN at zero flux. 

 

22.4.5.3 Calculation of core losses 

Core losses for each frequency and flux can be determined by subtracting the friction and 

windage losses and the resistive rotor losses from the rotor losses. 

2
2&_ )(),(),( rrrwfrlossesrotorrcore IRPPP −−= ωλωλω     (22.66) 

where   

)0,()0,(
1

_
2
2& ωω dlossesrotorrrwf NPI

s

s
RP ==

−
=     (22.67) 

Since  

2
2

2
2&

1
rrrrwf IRI

s

s
RP >>

−
= ,  

the last term of the previous equation is neglected.   
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Figure 22.27 Rotor core losses as function of flux and frequency 

 

22.4.5.4 Calculation of core resistance 

For each data point, calculate the core loss resistance as: 

),(

),(
),(

2

2
_

recorer

relossesrotor
rec

PI

P
R

λω

λω
λω

⋅
=       (22.68) 

Map the core loss resistance to flux and frequency using ANN. The procedure is similar to 

the rotor loss mapping. Figure 27 presents the results of the mapping. 

 

 

22.4.6 MODEL VALIDATION 

 

22.4.6.1 Steady state- power input 

In order to validate the model at steady state, tests encompassing the entire range of 

operation of the induction motor were used. The frequency of the motor was varied from 30 to 

70 Hz. The supply voltage was varied from 10% to 100% of rated. For each voltage and 

frequency entry, the load was varied from zero to maximum value. For all data sets, input 

power was measured and compared to the input power calculated using measured voltage and 

speed and the model. Figure 22.28 shows the results of the comparison.  

 

22.4.6.2 Dynamic 

The model was used to predict the transient performance after an input voltage 

disturbance. Figures 22.29-22.31 present the results in terms of the stationary reference frame 

currents. The measured and estimated currents are represented on the same graph (measured – 

solid line and estimated -dotted line). 

A second type of tests consisted in transient behavior when starting the motor. The start-

up currents (measured and simulated) are shown in Figures 22.32-22.33 in synchronous 

reference frame. Figure 22.32 represents the results when variable parameters were used; 

whereas Figure 22.33 represents the results when rated (fixed) parameters were used. 
 

 



    Keyhani, Lu, and Proca 487

 
Figure 22.28 Measured and calculated input power 
 

 
Figure 22.29 Model validation for large disturbance test at low frequency  
 

 

22.4.7 CONCLUSIONS 

 

A systematic procedure for induction motor modeling was developed in this chapter. The 

model includes the effects of inductance saturation (both for magnetizing and leakage 

inductance) and the effects of the core losses. It is also shown that there is a variation of rotor 

resistance as a function of slip frequency. The leakage inductance, magnetizing inductance 

and rotor resistance are estimated from transient data information using a constrained 

optimization method. Sensitivity analysis is employed to show that error sensitivity to  
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Figure 22.30 Model validation for large disturbance test at medium frequency 

 

 

 
 
Figure 22.31 Model validation for large disturbance test at high frequency 

 

 

parameters varies as a function of slip. The analysis eliminates parameters with that yield low 

sensitivity. Analytical functions are used to map the parameters to operating conditions. Core 

losses are estimated using a power approach. ANN are used to map the total rotor losses (iron  
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Figure 22.32 Transient response for start-up from zero speed 
 

 

 
 

Figure 22.33 Transient response for start-up from zero speed with rated fixed parameters 

 

 

losses, friction and windage losses) to flux and frequency. The core losses are obtained by 

subtracting the rotor losses at zero flux (generated by the ANN) from the rotor loss surface. 

The model is validated using tests covering various operating conditions. For steady-state 

validation, the model is shown to correctly predict the power input of the motor. For dynamic 

validation, input voltage disturbance tests and start-from-zero tests were employed. The 

model correctly predicted both tests. 
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22.5 MODELING AND PARAMETER IDENTIFICATION OF SWITCHED 

RELUCTANCE MACHINES 
 

22.5.1 INTRODUCTION 

Switched reluctance machines (SRM) have undergone rapid development in hybrid 

electric vehicles and other automotive applications over the last two decades. This is mainly 

due to the various advantages of SRMs over the other electric machines, such as simple and 

robust construction, and fault-tolerant performance. 

In most of these applications, speed and torque control are necessary. To obtain high 

quality control, a proper model of SRM is often needed. At the same time, to increase 

reliability and reduce cost, sensorless controllers (without rotor position/speed sensors) are 

preferred. With the rapid progress in microprocessors (DSP), MIPS (Million Instructions Per 

Second) - intensive control techniques such as sliding mode observers and controllers [57] 

become more and more promising. An accurate nonlinear model of the SRM is essential to 

realize such control algorithms. 

The nonlinear nature of SRM and high saturation of phase winding during operation 

makes the modeling of SRM a challenging work. The flux linkage and phase inductance of 

SRM change with both the rotor position and the phase current. Therefore the nonlinear 

model of SRM must be identified as a function of the phase current and rotor position. Two 

main models of SRM have been suggested in the literature – the flux model [58] and the 

inductance model [59]. In the latter one, “the position dependency of the phase inductance is 

represented by a limited number of Fourier series terms and the nonlinear variation of the 

inductance with current is expressed by means of polynomial functions” [59]. This model can 

describe the nonlinearity of SRM inductance quite well. We will use this model here. 

Once a model is selected, how to identify the parameters in the model becomes an 

important issue. Finite element analysis can provide a model that will be subjected to 

substantial variation after the machine is constructed with manufacturing tolerances. 

Therefore, the model and parameters need to be identified from test data. As a first step, the 

machine model can be estimated from standstill test using output error estimation (OE) or 

maximum likelihood estimation (MLE) techniques. This method has already been applied 

successfully to identify the model and parameters of induction and synchronous machines. 

Furthermore, during online operation, the model structures and parameters of SRMs may 

differ from the standstill ones because of saturation and losses, especially at high current. To 

model this effect, a damper winding may be added into the model structure, which is in 

parallel with the magnetizing winding. The magnetizing current and damper current are 

highly nonlinear functions of phase voltage, rotor position, and rotor speed. They are not 

measurable during operation, and are hard to be expressed with analytical functions. Neural 

network mapping are usually good choices for such tasks [62-64]. A 2-layer recurrent neural 

network has been adopted here to estimate these two currents, which takes the phase voltage, 

phase current, rotor position and rotor speed as inputs. When the damper current is estimated 

and damper voltage is computed, the damper parameters can be identified using output error 

or maximum likelihood estimation techniques. 

In this section, the procedures to identify an 8/6 SRM parameters from standstill test data 

are presented after an introduction to the inductance model of SRM. Then a 2-layer recurrent 

neural network is constructed, trained and applied to identify the damper parameters of SRM 

from operating data. Model validation through online test is also given, which proves the 

applicability of the proposed methods. 
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Figure 22.34   Inductance model of SRM at standstill 

 

 

22.5.2 INDUCTANCE MODEL OF SRM AT STANDSTILL 

 

The inductance model of switched reluctance motor is shown in Figure 34. The phase 

winding is model as a resistance (R) in series of an inductance (L). 

Since the phase inductance changes periodically with the rotor position angle, it can be 

expressed as a Fourier series with respect to rotor position angle θ: 

∑
=

θ=θ
m

k

rk NkiLiL
0

cos)(),( ,     (2269) 

where Nr is the number of rotor poles, and m is the number of terms included in the Fourier 

series. High order terms (H.O.T.) can be omitted without bringing significant errors. 

In [59], The authors suggest using the first three terms of the Fourier series (m=3), but 

more terms can be added to meet accuracy requirements. 

To determine the coefficients )(iLk  in the Fourier series, we need to know the 

inductances at several specific positions. Use )(iLθ  to represent the inductance at position θ, 
which is a function of phase current i and can be approximated by a polynomial: 

∑
=

θθ =
k

n

n

niaiL
0

,)( .      (22.70) 

where k is the order of the polynomial and na ,θ  are the coefficients of polynomial. In our 

research, k = 5. 

For an 8/6 machine, Nr=6. When θ=0 is chosen at the aligned position of phase A, then 
θ=30 is the unaligned position of phase A. Usually the inductance at unaligned position can 
be treated as a constant. 

constL =030
       (22.71) 

 

22.5.2.1   Three-term inductance model 

 

If three terms are used in the Fourier series (m=3), then we can compute the three 

coefficients 0L , 1L , and 2L from 00
L (aligned position), 015

L (midway position), and 

030
L (unaligned position). Since 
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Or in separate form: 

])(
2

1
[
2

1
000 153000 LLLL ++= ,  

 

)(
2

1
00 3001 LLL −= ,           (22.74) 

 

])(
2

1
[
2

1
000 153002 LLLL −+= . 

 

22.5.2.2   Four-term inductance model 

 

If Four terms are used in the Fourier series (m=4), then we can compute the four 

coefficients 0L , 1L , 2L , and 3L  from 00
L (aligned position), 010

L , 020
L , and 030

L  (unaligned 

position). Since 
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Or in separate form: 
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22.5.2.3   Five-term inductance model 

 

If Five terms are used in the Fourier series (m=5), then we can compute the five 

coefficients 0L , 1L , 2L , 3L , and 4L  from 00
L (aligned position), 05.7

L , 015
L (midway 

position), 05.22
L , and 030

L (aligned position). Since 
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Or in separate form: 
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22.5.2.4   Voltages and Torque Computation 

 

Besides inductance, the phase winding also contains resistance (R). A simple model 

structure of phase winding is shown in Figure 22.34.  

Based on the inductance model described above, the phase voltage equations can be 

formed and the electromagnetic torque can be computed from the partial derivative of 

magnetic co-energy with respect to rotor angle θ. They are listed here: 
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22.5.3 PARAMETER IDENTIFICATION FROM STANDSTILL TEST DATA 

 

22.5.3.1   Standstill test configuration 

 

The basic idea of standstill test is to apply a short voltage pulse to the phase winding with 

the rotor blocked, record the current generated in the winding, and then use maximum 

likelihood estimation to estimate the resistances and inductances of the winding. By 

performing this test at different current level, the relationship between inductance and current 

can be curve-fitted with polynomials. 

The experimental setup is shown in Figure 22.35. An 8/6 SRM is used in this test. Before 

testing, the motor is rotated to a specific position (with one of the phase windings aligned, 

unaligned, or at other positions) and blocked. A DSP system (dSPACE DS1103 controller 

board) is used to generate the gating signal to a power converter to apply appropriate voltage 

pulses to that winding. The voltage and current at the winding is sampled and recorded. Later 

on, the test data is used to identify the winding parameters. 

When all the test data are collected, MLE is used to identify the winding parameters (R 

and L). The results of identification are validated with the test data: the voltages measured at  
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Figure 22.35   Experimental setup 
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Figure 22.36   Validation of model for standstill test 

 

standstill test are applied to the SRM model and the current responses are compared with the 

measured currents. From Figure 22.36, the estimated current (dotted curve) matches the 

measured current (solid curve) very well. This proves that the estimated parameters are quite 

satisfactory. 

 

22.5.3.2   Standstill test results 

The motor used in this test is an 8/6 SRM. Tests are performed at several specific 

positions for current between 0~50 ampere. The inductance estimation and curve-fitting 

results at aligned, midway, and unaligned position are shown in Figure 22.37-22.39 (Results 

are obtained using Matlab/Simulink®). 
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Figure 22.37   Standstill test results for inductance at 0o  
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Figure 22.38   Standstill test results for inductance at 15 o  

 

 

The results show that the inductance at unaligned position doesn’t change much with the 

phase current and can be treated as a constant. The inductances at midway and aligned 

position decrease when current increases due to saturation.  

A 3-D plot of inductance shown in Figure 22.40 depicts the profile of inductance versus 

rotor position and phase current. 

At theta = 0 and 60 degrees, phase A is at its aligned positions and has the highest value of 

inductance. It decreases when the phase current increases. At theta = 30 degrees, phase A is at 

its unaligned position and has lowest value of inductance. The inductance here keeps nearly 

constant when the phase current changes. 

 In Figure 22.41, the flux linkage versus rotor position and phase current based on the 

estimated inductance model is shown. The saturation of phase winding at high currents is 

clearly represented. At aligned position, the winding is highly saturated at rated current. 
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Figure 22.39   Standstill test results for inductance at 30 o 

 

 
Figure 22.40   Standstill test result: nonlinear phase inductance 

 

 

22.5.4 INDUCTANCE MODEL OF SRM FOR ONLINE OPERATION 

For online operation case, especially under high load, the losses become significant. There 

are no windings on the rotor of SRMs. But similar as synchronous machines, there will be 

circulating currents flowing in the rotor body and makes it works as a damper winding. 

Considering this, the model structure may be modified as shown in Figure 22.42, with dR  

and dL  added to represent the losses on the rotor.  

The phase voltage equations can be written as: 
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where i1 and i2 are the magnetizing current and damper current.  
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Figure 22.41   Flux linkage at different currents and different rotor positions 
 

 
 
Figure 22.42   Model structure of SRM under saturation 

 

 

It can be re-written in state space form as: 
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21 iiY += ,  

  

]11[=C , and 0=D . 

 

The torque can be computed as follows (notice that L is the magnetizing winding): 
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During operation, we can easily measure phase voltage V and phase current 21 iii += . But 

we cannot measure the magnetizing current (i1) and the damper winding current (i2). Let’s 

assume that the phase parameters R and L obtained from standstill test data are accurate 

enough for low current case. And we want to attribute all the errors at high current case to 

damper parameters. If we can estimate the exciting i1 during online operation, then it will be 

very easy to estimate the damper parameters. This is described in later sections. 

 

 

22.5.5 TWO-LAYER RECURRENT NEURAL NETWORK FOR DAMPER CURRENT ESTIMATION 

 

22.5.5.1   Structure of Two-layer Recurrent Neural Network 

 

During online operation, there will be motional back EMF in the phase winding. So the 

exciting current i1 will be affected by: 

 

Phase voltage V, 

Phase current i, 

Rotor position θ, and 
Rotor speed ω. 
 

To map the relation ship between i1 and V, i, θ, ω, the neural network structure shown in 
Figure 22.43 is used. It is a two-layer recurrent neural network.  

 

The first layer is the input layer. The inputs of the network are V, i, θ, ω (with possible 
delays). One of the outputs, the current i, is also fed back to the input layer to form a recurrent 

neural network.  

The second layer is the output layer. The outputs are i (used as training objective) and i1.  

A hyperbolic tangent sigmoid transfer function – “tansig()” is chosen to be the activation 

function of the input layer, which gives the following relationship between its inputs and 

outputs: 
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Figure 22.43   Recurrent neural network structure for estimation of exciting current 
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A pure linear function is chosen to be the activation of the output layers, which gives: 

 

211,22 baLWn +⋅=
  

2221 )( nnpurelinay ===            (22.89) 
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3332 )( nnpurelinay ===
.          (22.90) 

After the neural network is trained with simulation data (using parameters obtained from 

standstill test). It can be used to estimate exciting current during on-line operation. When i1 is 

estimated, the damper current can be computed as 

 

12 iii −= ,          (22.91) 

and the damper voltage can be computed as 

 

RiVV ⋅−=2 ,          (22.92) 

 

then the damper resistance Rd and inductance Ld can be identified using output error or 

maximum likelihood estimation. 
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22.5.5.2   Training of Neural Network 

The data used for training is generated from simulation of SRM model obtained from 

standstill test.  

First, from standstill test result, we can estimate the winding parameters ( R  and L ) and 

damper parameters ( dR  and dL ). The dR  and dL  got from standstill test data may not be 

accurate enough for online model, but it can be used as initial values that will be improved 

later.  

Second, build an SRM model with above parameters and simulate the motor with 

hysteresis current control and speed control. The operating data under different reference 

currents and different rotor speeds are collected and sent to neural network for training. 

Third, when training is done, use the trained ANN model to estimate the magnetizing 

current (i1) from online operating data. Compute damper voltage and current according to 

Equations 22.91 and 22.92. Then estimate dR  and dL  from the computed V2 and i2 using 

output error estimation. This dR  and dL  can be treated as improved values of standstill test 

results. 

Repeat above procedures until dR  and dL  are accurate enough to represent online 

operation (it means that the simulation data matches the measurements well). 

In our research, the neural network can map the exciting current from and V, i, θ, ω very 
well after training of 200 epochs. 

 

22.5.6 ESTIMATION RESULTS AND MODEL VALIDATION 

The parameters for damper winding are successfully estimated from operating data by 

using the neural network mapping described above.  

To test the validity of the parameters obtained from above test, a simple on-line test has 

been performed. In this test, the motor is accelerated with a fixed reference current of 20 

ampere. All the operating data such as phase voltages, currents, rotor position, and rotor speed 

are measured. Then the phase voltages are fed to an SRM model running in Simulink, which 

has the same rotor position and speed as the real motor. All the phase currents are estimated 

from the Simulink mode and compared with the measured currents. In Figure 22.44, the phase 

current responses are shown. The dashed curve is the voltage applied to phase winding; the 

solid curve is the measured current; and the dotted curve is the estimated current. An enlarged 

view of the curves for phase A is shown in Figure 22.45. It is clear that the estimation 

approximates to the measurement quite well.  

To compare online model with standstill one, we compute the covariance of the errors 

between the estimated phase currents and the measured currents. The average covariance for 

standstill model is 0.9127, while that for online model is 0.6885. It means that the online 

model gives much better estimation of operating phase currents. 

 

22.5.7 Conclusions 

During online operation, the exciting current i1 changes with phase voltage V, rotor 

position θ, and rotor speed ω. The relationship between them is highly nonlinear and cannot 
be easily expressed by any analytical equation. The neural network can provide very good 

mapping if trained correctly. This makes it a good choice for such a task.  

Once the NN is trained, it can estimate the exciting current from inputs very quickly, 

without solving any differential equations that is necessary in conventional methods. So it can  
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Figure 22.44  Validation of model with on-line operating data 
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Figure 22.45   Validation of model with on-line operating data (Phase A) 

 

be used for online parameter identification with no computational difficulties. This method 

has been successfully applied to synchronous machines and induction machines [62,64,65]; it 

can be applied to SRMs as well. 

This section presents the idea and procedure to use artificial neural network to help 

identify the resistance and nonlinear inductance of SRM winding from operating data. First 

the resistance and inductance of the magnetizing winding are identified from standstill test 

data. Then a 2-layer recurrent neural network is setup and trained with simulation data based 

on standstill model. By applying this neural network to online operating data, the magnetizing 

current can be estimated and the damper current can be computed. Then the parameters of the 

damper winding can be identified using maximum likelihood estimation. Tests performed on 

a 50-ampere 8/6 SRM show satisfactory results of this method. 
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APPENDIX A 

 

 

The complex nonlinear equations which relate the d-axis SSFR3 model parameters with 

the time constants of the corresponding transfer function can be concisely written as: 

 

0),()( =++= iiii yxgyxf ζ
     

   

where i = 1, … , 10. 

 

Vector x  and y  are defined in Table 22.1. iζ  represents the noise associated with each 

element iy . This is because noise is inherently present in the test data. 

 

The above set of nonlinear equations can be expanded as: 

 

   0)( 11011 =++−= ζxyyxf      (A.1) 

    

   074125922 )[()( yxxxxxxyxf +++−=  

   075127912 )()( yxxxxxxxx ++++  

   049125 )( yxxxxx +++  

   74125909512 )()( xxxxxxyxxxx +++++  

   49125715292 )()( xxxxxxxxxxx ++++  

   ])/[(] 863109521 xxxxyxxxx ++  

   02 =+ ζ       (A.2) 

 

   041259633 )([)( yxxxxxxyxf +++−=  

   0512609126 )()( yxxxxyxxxx ++++  

   1926412596 )( xxxxxxxxxx ++++  

   07125935126 )( yxxxxxxxxxx +++++  

   091253 )( yxxxxx +++  

   91253712593 )()( xxxxxxxxxxx +++++  

   071248 )( yxxxxx +++  

   05128041258 )()( yxxxxyxxxxx +++++  

   4125871248 )()( xxxxxxxxxx ++++  

   ])/[(] 863105218 xxxxyxxxx ++  

   
03 =+ ζ
      (A.3) 
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APPENDIX B 

 

The differential equations of the standstill d- and q-axis circuit model (see Figure B1), 

assuming the field winding is short-circuited, can be written as: 

D-axis: 

ddad piRv λ+−=       (B.1) 

ddd piR 1110 λ+=       (B.2) 

ddd piR 2220 λ+=       (B.3) 

fdfdfd piR λ+=0       (B.4) 

where p : d / dt 

)()( 21 ddfdaddadld iiiLiLL ++++−=λ       (B.5) 

)()()( 212211121 fdddfdfddaddddfadd iiLiiiLiLLL ++−++++=λ   (B.6) 

fddffdddfdfddaddddfdfadd iLiiLiiiLiLLLL 21121222122 )()()( +++−+++++=λ  

           (B.7) 

ddfdddfdddadfdfddfdfadfd iLiiLiiiLiLLLL 22211221212 )()()( +++−+++++=λ  

           (B.8) 

 

aR lL

di

dfL 12 dfL 2 fdL fdR

fde

fdi

dV adL
dL1

dR1

dL2

dR2

di1 di2

---- ++++
qωλ

 

(a) d-axis circuit 

aR lL

qi

qV aqL qL1

qR1

qL2

qR2

qi1 qi2

qL3

qR3

qi3

----++++
dωλ

 

(b) q-axis circuit 

 
Figure 22.B1   SSFR3 Model Structures 
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Defining: 

 

[ ]Tfdddd iiiiX 21=  

 

[ ]dvU =  

 

Equation B.1 to B.8 can be written as the following: 

 

DUXGXF dddd += )()( θθ &      (B.9) 

 

where dtdXX /=&  

 

[ ]TD 0001=  
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Now Equation B.9 can be rewritten as: 

 

DUFXGFX dddddd )()()( 11 θθθ −− +=&  

UBXA dd +=        (B.10) 

where 

)()(1 ddddd GFA θθ−=  

DFB ddd )(1 θ−=  

 

The discrete dynamic representation of Equation B.10 is 

 

)()()()()1( kUBkXAkX dddd θθ +=+     (B.11) 
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The derivation of discrete system matrices, )( ddA θ  and )( ddB θ , from continuous system 

matrices, )( ddA θ  and )( ddB θ , is given in reference [19]. 

 

Q-axis: 

qqaq piRv λ+−=        (B.12) 

 

qqq piR 1110 λ+=        (B.13) 

 

qqq piR 2220 λ+=        (B.14) 

 

qqq piR 3330 λ+=        (B.15) 

 

where p : d / dt 

)()( 321 qqqaqqaqlq iiiLiLL ++++−=λ     (B.16) 

 

)()( 32111 qqqaqqaqqq iiiLiLL −+++=λ     (B.17) 

 

)()( 31222 qqqaqqaqqq iiiLiLL −+++=λ     (B.18) 

 

)()( 21333 qqqaqqaqqq iiiLiLL −+++=λ     (B.19) 

 

[ ]Tqqqq iiiiX 321=  

 

[ ]qvU =  

 

Equation B.12 to B.19 can be put into the form of 

 

DUXGXF qqqq += )()( θθ &      (B.20) 

where dtdXX /=&  
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Now Equation B.20 can be rewritten as: 

 

DUFXGFX qqqqqq )()()( 11 θθθ −− +=&  

UBXA qq +=        (B.21) 

where 

 

)()(1 qqqqq GFA θθ−=  

 

DFB qqq )(1 θ−=  

The discrete dynamic representation of Eq. (B21) is 

 

)()()()()1( kUBkXAkX qqqq θθ +=+     (B.22) 

 

The derivation of discrete system matrices, )( qqA θ  and )( qqB θ , from continuous system 

matrices, )( qqA θ  and )( qqB θ , is given in reference [19]. 

 

 

 


