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Preface

Scilab (http://www.scilab.org) is a free open-source software package for scientific com-
putation. It includes hundreds of general purpose and specialized functions for numerical
computation, organized in libraries called toolboxes that cover such areas as simulation,
optimization, systems and control, and signal processing. These functions reduce consid-
erably the burden of programming for scientific applications.

One important Scilab toolbox is Scicos. Scicos (http://www.scicos.org) provides
a block-diagram graphical editor for the construction and simulation of dynamical sys-
tems. Scilab/Scicos is the only open-source alternative to commercial packages for dy-
namical system modeling and simulation packages such as MATLAB/Simulink and MA-
TRIXx/SystemBuild. Widely used at universities and engineering schools, Scilab/Scicos
is gaining ground in industrial environments. This is due in part to the creation of an
international consortium in 2003 that a number of large and small companies have joined.
The consortium is responsible for providing well-tested and documented releases for vari-
ous platforms and coordinates the development of the core product and toolboxes, which
is done by research groups, in particular, at INRIA1 and ENPC.2 Currently there are over
10,000 monthly Scilab downloads from http://www.scilab.org alone.

Scilab includes a full user’s manual, which is available with search capabilities in a
help window. All commands, their syntax, and simple illustrative examples are given.
While very useful in finding out the details of a particular command, this manual does not
provide a tutorial on the philosophy of either Scilab or Scicos. Nor does it address how to
use several of these commands together in the solution of a technical problem.

The objective of this book is to provide a tutorial for the use of Scilab/Scicos with a
special emphasis on modeling and simulation tools. While it will provide useful information
to experienced users, it is designed to be accessible to beginning users from a variety of
disciplines. Students [33] and academic and industrial scientists and engineers should find
it useful. The discussion includes some information on modeling and simulation in order to
assist the reader in deciding which simulation tools might be most useful to them. Every
software environment has its special features, some would say quirks, that experienced
users automatically take into account but often prove confusing to beginning users. We
have tried to point these out where appropriate.

The book is divided into two parts. The first part concerns Scilab and includes a
tutorial covering the language features, the data structures and specialized functions for
doing graphics, importing and exporting data, interfacing with external routines, etc. It

1 Institut National de Recherche en Informatique et en Automatique
2 Ecole Nationale des Ponts et des Chaussées
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also covers in detail Scilab numerical solvers for ODEs (ordinary differential equations) and
DAE’s (differential-algebraic equations). Even though the emphasis is placed on modeling
and simulation applications, this part provides a global view of the product.

The second part is dedicated to modeling and simulation of dynamical systems in Sci-
cos. Scicos provides a block-diagram editor for constructing models. This type of modeling
tool is widely used in industry because it provides a means for constructing modular and
reusable models. This part contains a detailed description of the editor and its usage,
which is illustrated through numerous examples. It also covers advanced subjects such as
constructing new blocks and batch simulation. Code generation and debugging are other
topics covered. Finally, a new extension of Scicos is discussed. This extension allows the
use of components described by the Modelica (http://www.modelica.org) language.

There have been several previous books concerning Scilab. Most of these have been in
French [18, 3, 2, 1, 25] and dealt with earlier versions of Scilab, as in [16]. This book is
unique in a number of ways. It is the first to deal with the new Scilab 3.1 version. This
book is also the first to focus on simulation and modeling. It is also the first to put a major
emphasis on Scicos and discuss Scicos in depth.

The source of all the examples presented in this book can be downloaded from
http://www.scicos.org.

Finally, a large number of people have supported us in many ways. We would especially
like to thank our wives, Gail Campbell and Homa Nikoukhah, and our parents, Aline and
René Chancelier, for their support in this and everything else we do.

Steve Campbell
Jean-Philippe Chancelier
Ramine Nikoukhah



Contents

Part I Scilab

1 General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 What Is Scilab? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 How to Start? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 First Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 Line Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.4 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Typical Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Scilab on the Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Introduction to Scilab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Scilab Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Matrix Construction and Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.3 Boolean Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.4 Polynomial Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.5 Sparse Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.6 Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.7 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Scilab Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.1 Branching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.2 Iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.3 Scilab Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.4 Debugging Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 Input and Output Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.1 Display of Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.2 Formatted Input and Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.3 Input Output in Binary Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.4 Accessing the Host System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3.5 Graphical User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4 Scilab Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.4.1 Basic Graphing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.4.2 Graphic Tour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.4.3 Graphics Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



VIII Contents

2.4.4 Scilab Graphics and LATEX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.4.5 Old Graphics Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.5 Interfacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.5.1 Linking Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.5.2 Writing an Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.5.3 Dynamic Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3 Modeling and Simulation in Scilab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.1 Types of Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.1.1 Ordinary Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.1.2 Boundary Value Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.1.3 Difference Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.1.4 Differential Algebraic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.1.5 Hybrid Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.2 Simulation Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.2.1 Ordinary Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.2.2 Boundary Value Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.2.3 Difference Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.2.4 Differential Algebraic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.2.5 Hybrid Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.1 Comments on Optimization and Solving Nonlinear Equations . . . . . . . . . . . 107
4.2 General Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.3 Solving Nonlinear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.4 Nonlinear Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.5 Parameter Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.6 Linear and Quadratic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.6.1 Linear Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.6.2 Quadratic Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.6.3 Semidefinite Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.7 Differentiation Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.7.1 Higher Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.1 Modeling and Simulation of an N -Link Pendulum . . . . . . . . . . . . . . . . . . . . . 125

5.1.1 Equations of Motion of the N -Link Pendulum. . . . . . . . . . . . . . . . . . . 126
5.1.2 Generated Code and Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.1.3 Maple Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.2 Modeling and Simulation of a Car . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.2.1 Basic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.2.2 Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.2.3 Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.2.4 Scilab Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.2.5 Simulation Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.3 Open-Loop Control to Swing Up a Pendulum . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.3.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.3.2 Control Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.3.3 Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.3.4 Implementation in Scilab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145



Contents IX

5.4 Parameter Fitting and Implicit Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.4.1 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.4.2 Scilab Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Part II Scicos

6 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7 Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
7.1 Construction of a Simple Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.1.1 Running Scicos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
7.1.2 Editing a Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
7.1.3 Diagram Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
7.1.4 Changing Block Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.2 Symbolic Parameters and Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
7.3 Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.3.1 Placing a Super Block in a Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
7.3.2 Editing a Super Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.4 Save and Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
7.4.1 Scicos File Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
7.4.2 Super Block and Palette . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.5 Synchronism and Special Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

8 Scicos Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
8.1 Activation Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

8.1.1 Block Activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
8.1.2 Activation Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

8.2 Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
8.3 Always Active Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
8.4 Constant Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
8.5 Conditional Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

9 Scicos Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
9.1 Block Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

9.1.1 External Activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
9.1.2 Always Activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
9.1.3 Internal Zero-Crossing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

9.2 Blocks Inside Palettes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
9.3 Modifying Block Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
9.4 Super Block and Scifunc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

9.4.1 Super Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
9.4.2 Scifunc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

9.5 Constructing New Basic Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
9.5.1 Interfacing Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
9.5.2 Computational Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
9.5.3 Saving New Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

9.6 Constructing and Loading a New Palette . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207



X Contents

10 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
10.1 Predator Prey Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
10.2 Control Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
10.3 Signal Processing Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
10.4 Queuing Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
10.5 Neuroscience Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
10.6 A Fluid Model of TCP-Like Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
10.7 Interactive GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

11 Batch Processing in Scilab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
11.1 Piloting Scicos via Scilab Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

11.1.1 Function scicosim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
11.1.2 Function scicos simulate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

11.2 Data Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
11.2.1 Context Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
11.2.2 Input/Output Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
11.2.3 Global Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

11.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
11.4 Steady-State Solution and Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

11.4.1 Scilab Function steadycos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
11.4.2 Scilab Function lincos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

12 Code Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
12.1 Code Generation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
12.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

12.2.1 Continuous-Time Activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
12.2.2 Synchronicism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

12.3 A Look Inside . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
12.4 Some Pitfalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
12.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

13 Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
13.1 Error Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

13.1.1 Block Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
13.1.2 Errors During Numerical Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
13.1.3 Other Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

13.2 Debugging Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
13.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

13.3.1 Log File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
13.3.2 Animation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

14 Implicit Scicos and Modelica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
14.2 Internally Implicit Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
14.3 Implicit Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

14.3.1 Scicos Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
14.3.2 Scicos Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
14.3.3 Block Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

14.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277



Contents XI

A Inside Scicos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
A.1 Scicos Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

A.1.1 Main Editor Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
A.1.2 Structure of scs m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

A.2 Scicos Complier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
A.2.1 First Compilation Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
A.2.2 Second Compilation Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
A.2.3 Structure of %cpr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
A.2.4 Partial Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

A.3 Scicos Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

B Scicos Blocks of Type 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
B.1 Type 5 Block for the Bouncing Ball Example . . . . . . . . . . . . . . . . . . . . . . . . . 293
B.2 Animation Block for the Cart Pendulum Example . . . . . . . . . . . . . . . . . . . . . 294

C Animation Program for the Car Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

D Extraction Program for the LATEX Graphic Example . . . . . . . . . . . . . . . . 301

E Maple Code Used for Modeling the N-Link Pendulum . . . . . . . . . . . . . . . 303

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309



Part I

Scilab
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General Information

1.1 What Is Scilab?

There exist two categories of general scientific software: computer algebra systems that
perform symbolic computations, and general purpose numerical systems performing nu-
merical computations and designed specifically for scientific applications. The best-known
examples in the first category are Maple, Mathematica, Maxima, Axiom, and MuPad. The
second category represents a larger market dominated by MATLAB. Scilab, which is free
open-source software, belongs to this second category.

Scilab is an interpreted language with dynamically typed objects. Scilab runs, and is
available in binary format, for the main available platforms: Unix/Linux workstations (the
main software development is performed on Linux workstations), Windows, and MacOSX.
MacOSX users can also install Scilab using fink. Compiling Scilab from the source code is
also possible and is fairly straightforward.

Scilab was originally named Basile and was developed at INRIA as part of the Meta2
project. Development continued under the name of Scilab by the Scilab group, which was
a team of researchers from INRIA Metalau and ENPC. Since 2004, Scilab development
has been coordinated by a consortium.

Scilab can be used as a scripting language to test algorithms or to perform numerical
computations. But it is also a programming language, and the standard Scilab library
contains around 2000 Scilab coded functions. The Scilab syntax is simple, and the use
of matrices, which are the fundamental object of scientific calculus, is facilitated through
specific functions and operators. These matrices can be of different types including real,
complex, string, polynomial, and rational. Scilab programs are thus quite compact and
most of the time are smaller than their equivalents in C, C++, or Java.

Scilab is mainly dedicated to scientific computing, and it provides easy access to large
numerical libraries from such areas as linear algebra, numerical integration, and opti-
mization. It is also simple to extend the Scilab environment. One can easily import new
functionalities from external libraries into Scilab by using static or dynamic links. It is
also possible to define new data types using Scilab structures and to overload standard
operators for new data types. Numerous toolboxes that add specialized functions to Scilab
are available on the official site.

Scilab also provides many visualization functionalities including 2D, 3D, contour and
parametric plots, and animation. Graphics can be exported in various formats such as Gif,
Postscript, Postscript-Latex, and Xfig. In addition to Scilab’s user interface functions,
the Scilab Tcl/Tk interface can be used to develop sophisticated GUI’s (Graphical user
interfaces).
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Scilab is a large software package containing approximately 13,000 files, more than
400,000 lines of source code (in C and Fortran), 70,000 lines of Scilab code (specialized
libraries), 80,000 lines of online help, and 18,000 lines of configuration files. These files
include

• Elementary functions of scientific calculation;
• Linear algebra, sparse matrices;
• Polynomials and rational functions;
• Classic and robust control, LMI optimization;
• Nonlinear methods (optimization, ODE and DAE solvers, Scicos, which is a hybrid

dynamic systems modeler and simulator);
• Signal processing;
• Random sampling and statistics;
• Graphs (algorithms, visualization);
• Graphics, animation;
• Parallelism using PVM;
• MATLAB-to-Scilab translator;
• A large number of contributions for various areas.

1.2 How to Start?

1.2.1 Installation

Scilab is available for downloading at http://www.scilab.org. The procedure for in-
stalling Scilab depends on the operating system (Windows, MacOSX, Linux, or Unix),
and information can be found on the website. The user has the choice between installing
the binary version (if one is available for the host system) and compiling the source ver-
sion. To compile the source version, the host system must be equipped with appropriate
C and Fortran compilers. For the Windows operating system, a Visual C++ compiler suf-
fices because an f2c (Fortran-to-C) translator is included in the source code. Note that C
and Fortran compilers are already installed on most Linux platforms, and for other Unix
systems, if native compilers are not available, freely available GNU compilers can be used.
On computers running MacOSX there is also the option of installing Scilab using fink.

In this book, SCI designates the directory in which Scilab is installed. We use the
Unix notation for specifying path names. For example, SCI/routines/machine.h is the file
machine.h in the subdirectory routines. Under the Windows operating system, all the
“ / ” should be replaced with “ \ ”.

Even though there are no restrictions on its use, Scilab is copyrighted; see the file
license.txt (English) or licence.txt (French) on the website.

1.2.2 First Steps

Running Scilab opens up a command window; see Figure 1.1. The look of this window
may differ depending on the window manager.

The Scilab command window is an interactive window where the user is invited to
enter a command at Scilab’s prompt (-->). The command must be validated with a car-
riage return, after which Scilab executes the command and returns control to the user by
displaying a new prompt.
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Figure 1.1. Scilab’s main window.

The best way to start exploring Scilab is to run the demos. This can be done by clicking
on the Demos button at the top of the command window (under the Windows operating
system, the Demos button is in the “?” menu). The demos are chosen to present typical
uses of the software and some of its specialized toolboxes.

For each demo, the user can see the corresponding Scilab source code, which shows that
the data types used in Scilab are, for the most part, vectors and matrices. Their usage, very
close to the usual matrix notation, results in compact and readable code. This, and the
fact that there is no need for type declaration, compilation, or memory allocation, makes
Scilab a lot easier to use than low-level languages such as C and Fortran. Just as for any
other interpreted language, however, there is a price to be paid in terms of efficiency. This
could become a factor in some applications.

1.2.3 Line Editor

Limited editing facilities are available in the command window. Besides the usual cut and
paste operations, line editing can be done using control characters as is done in emacs:
Ctrl-b (pressing b while holding the Ctrl key down) for moving the cursor back by one
character, Ctrl-f for moving it forward, Ctrl-a to place the cursor at the beginning of
the command line, and Ctrl-e for placing it at the end. Also Ctrl-k erases the part of
the command line between the current position of the cursor and the end of the line and
saves it in a buffer, and Ctrl-y inserts the content of the buffer at the current position of
the cursor. Previously entered commands can be searched using up and down arrows or
equivalently with Ctrl-p and Ctrl-n.

Under Unix and Linux operating systems, an additional feature is provided for recalling
a previously entered command by typing the beginning of the command line after an
exclamation point, followed by a carriage return.

All the commands entered in Scilab are automatically saved in a file called scilab.hist

in the user’s home directory.
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1.2.4 Documentation

Scilab has a comprehensive online help facility, which can be consulted through the com-
mands help and apropos. To consult the manual page corresponding to a Scilab function,
the command help followed by the name of the function can be used. This opens up a
browser window displaying the manual page in question. The manual page contains a de-
tailed description of the function and a number of examples of its usage. The examples
can be cut and pasted into Scilab’s command window to be executed. The browser, which
can also be accessed by clicking on the help button at the top of the command window,
contains a list of all the functions classified by theme in different chapters (see Fig. 1.2).
The manual page of a function can then be obtained by clicking on its name.

To obtain a list of Scilab functions corresponding to a keyword, the command apropos

followed by the keyword should be used.

Figure 1.2. Help browser window.

The demos are also a good source of inspiration. They present simple examples of
Scilab programming situations frequently encountered by users. The graphics demos, for
example, give an overall picture of what can be done in Scilab as far as visualization is
concerned. The demos’ source codes often provide a good starting point for developing
complex applications.

The demos provide examples for doing graphics, signal processing, systems control,
Scilab simulation (in particular, the famous bicycle example), Scicos simulation, and a lot
more.

1.3 Typical Usage

A typical Scilab user spends most of his time going back and forth between Scilab and
a text editor. For the most part, Scilab programs contain very few lines of instructions,
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Figure 1.3. Graphic window.

thanks to the powerful data types and primitives available in Scilab. These programs can
be written using a built-in editor, which is activated through the Editor menu button or
using the user’s favorite text editor (for example vi or emacs, for which there exists a Scilab
mode, under Unix, and notepad or wordpad under Windows), then loaded into Scilab. This
can be done through the built-in editor menus or using Scilab functions getf and exec

(discussed in Section 2.2), or through the menu File operations.

1.4 Scilab on the Web

The latest release of Scilab, its documentation, and many third-party contributions (tool-
boxes) can be found on the official Scilab home page at

http://www.scilab.org

On this site, a bug and request report system (based on Bugzilla) for Scilab is available:

http://scilabsoft.inria.fr/cgi-bin/bugzilla_bug/index.cgi

There is also a newsgroup dedicated to Scilab:

comp.soft-sys.math.scilab

A specific site devoted to teaching with Scilab is also available at

http://cermics.enpc.fr/scilab/

Finally, the email address scilab@inria.fr can be used for contacting the Scilab group
concerning contributions or simply for asking questions.
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Introduction to Scilab

The Scilab language was initially devoted to matrix operations, and scientific and engi-
neering applications were its main target. But over time, it has considerably evolved, and
currently the Scilab language includes powerful operators for manipulating a large class
of basic objects.

In Scilab, objects are never declared or allocated explicitly; they have a dynamic type
and their sizes can dynamically change according to applied operators or functions. The
following Scilab session illustrates the creation of an object, its dynamic change, and its
deletion. Note that the function typeof returns the type of the object, isdef tests the
presence of the object, and clear destroys it and frees the corresponding memory.

�−→ a= rand(2,3); ← 2x3 random matrix a is created
�−→ typeof(a) ← type of a, constant stands for real or complex matrix

ans =

constant

�−→ a= [a, zeros(2,1)] ← size of a dynamically increases
a =

! 0.2113249 0.0002211 0.6653811 0. !

! 0.7560439 0.3303271 0.6283918 0. !

�−→ a= ’scilab’; typeof(a) ← redefining a through reassignment
ans =

string

�−→ exists(’a’) ← checks if a exists
ans =

1.

�−→ clear(’a’); exists(’a’) ← removing a explicitly from current environ-
ment and verifying that a is gone

ans =

0.
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Available memory for a Scilab session can be controlled through the use of the stacksize
command. It is of course bounded by available dynamic heap memory (allocated memory
through the use of the malloc function). Using Scilab commands who and whos, one can
get the name and size of dynamic objects present in the current session:

�−→ stacksize() ← available memory (number of double) and maxi-
mum number of variables

ans =

! 1000000. 6185. !

�−→ A=rand(1000,1000);

!--error 17

rand: stack size exceeded (Use stacksize function to increase it)

�−→ stacksize(6000000); ← increasing Scilab available memory
�−→ A=rand(1000,1000); ← A is created, note that an expression end-

ing with ; is evaluated without display
�−→ whos(’-name’,’A’); ← get info on variable A

Name Type Size Bytes

A constant 1000 by 1000 8000016

By default, numbers in Scilab are coded as double-precision floats. The accuracy of
double-precision computation is machine-dependent and can be obtained through the
predefined Scilab variable %eps, called the machine precision. %eps is the largest double-
precision number for which 1+(%eps)/2 is indistinguishable from 1.

The set of numbers in Scilab can be extended by adding %inf (infinity) and %nan (not
a number). This is done with the Scilab function ieee:

�−→ ieee() ← get the default floating-point exception mode
ans =

0.

�−→ 1/0 ← 1/0 raises an error in the default mode
!--error 27

division by zero...

�−→ ieee(2) ← using the standard ieee floating-point exception mode
�−→ 1/0 ← 1/0 evaluates now to + ∞

ans =

Inf

�−→ 0/0 ← no error is produced
ans =

Nan

Scilab expressions are evaluated by the scilab interpreter. The interpretor has access
to a large set of functions. Some of these functions are Scilab-coded functions (we shall see
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later that Scilab is a programming language), some are hard-coded functions (C or Fortran
coded). This ability of Scilab to include C or Fortran coded functions means that a large
amount of existing scientific and engineering software can be used from within Scilab.

Scilab is a rich and powerful programming environment because of this large number of
available functions. The users can also enrich the basic Scilab environment with their own
Scilab or hard-coded functions, and moreover this can be done dynamically (hard-coded
functions can be dynamically loaded in a running Scilab session); we shall see how this
can be done later. Thus, toolboxes can be developed to enrich and adapt Scilab to specific
needs or areas of application.

2.1 Scilab Objects

Scilab provides users with a large variety of basic objects starting with numbers and
character strings up to more sophisticated objects such as booleans, polynomials, and
structures. A Scilab object is a basic object or a set of basic objects arranged in a vector,
a matrix, a hypermatrix, or a structure (list).

As already mentioned, Scilab is devoted to scientific computing, and the basic object
is a two-dimensional matrix with floating-point double-precision number entries. In fact,
a real scalar is nothing but a 1× 1 matrix. The next Scilab session illustrates this type of
object. Note that some numerical constants are predefined in Scilab. Their corresponding
variable names start with %. In particular, π is %pi, and e, the base of the natural log, is
%e. Note also that a:b:c gives numbers starting from a to c spaced b units apart.

�−→ a=1:0.6:3 ← a is now a scalar matrix (double)
a =

! 1. 1.6 2.2 2.8 !

�−→ b=[%e,%pi] ← b is the 1x2 row vector filled with predefined values (e, π)
b =

! 2.7182818 3.1415927 !

New types have been added as Scilab has evolved, but the matrix aspect has always
been kept. String matrices, boolean matrices, sparse matrices, integer matrices (int8,
int16, int32), polynomial matrices, and rational matrices are now available in the stan-
dard Scilab environment. Complex structures called lists (list, tlist, and mlist) are also
available. Note also that functions in Scilab are considered as objects as well.

�−→ a= "Scilab" ← a 1x1 string matrix
a =

Scilab

�−→ b=rand(2,2) ← a matrix
b =

! 0.2113249 0.0002211 !

! 0.7560439 0.3303271 !
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�−→ b= b>= 0.5 ← a boolean matrix
b =

! F F !

! T F !

�−→ L=list(a,b) ← a list
L =

L(1)

Scilab

L(2)

! F F !

! T F !

�−→ A.x = 32;A.y = %t ← a structure implemented using mlist

A =

x: 32

y: %t

�−→ a= spec(rand(3,3)) ← eigenvalues: a vector of complex numbers
a =

! 1.8925237 !

! 0.1887123 + 0.0535764i !

! 0.1887123 - 0.0535764i !

It is possible to define new types in Scilab in the sense that it is possible to define objects
whose dynamic type (the value returned by typeof) is user-defined. Scilab operators, for
example the + and * operators, can be overloaded for these dynamically defined types. The
new types are defined and implemented with tlist and mlist primitive types (see Section
2.1.6).

2.1.1 Matrix Construction and Manipulation

As already pointed out, one of the goals of Scilab is to give access to matrix operations
for any kind of matrix types. In this section we highlight general functions and operators
that are common to all matrix types.

A matrix in Scilab refers to one- or two-dimensional arrays, which are internally stored
as a one-dimensional array (two-dimensional arrays are stored in column order). It is
therefore always possible to access matrix entries with one or two indices. Vectors and
scalars are stored as matrices.

Multidimensional matrices can also be used in Scilab. They are called hypermatrices.
Elementary construction operators, which are overloaded for all matrix types, are the

row concatenation operator “;” and the column concatenation operator “,”. These two
operators perform the concatenation operation when used in a matrix context, that is,
when they appear between “[” and “]”. All the associated entries must be of the same
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type. Note that in the same matrix context a white space means the same thing as “,” and
a line feed means the same thing as “;”. However, this equivalence can lead to confusion
when, for example, a space appears inside an entry, as illustrated in the following:

�−→ A=[1,2,3 +5] ← here A=[1,2,3,+5] with a unary +

A =

! 1. 2. 3. 5. !

�−→ A=[1,2,3 *5] ← here A=[1,2,3*5] with a binary *

A =

! 1. 2. 15. !

�−→ A=[A,0; 1,2,3,4]

A =

! 1. 2. 15. 0. !

! 1. 2. 3. 4. !

’ and .’ transpose (conjugate or not)
diag (m,n) matrix with given diagonal (or diagonal extraction)
eye (m,n) matrix with one on the main diagonal
grand (m,n) random matrix
int integer part of a matrix
linspace or “ : ” linearly spaced vector
logspace logarithmically spaced vector
matrix reshape an (m,n) matrix (m*n is kept constant)
ones (m,n) matrix consisting of ones
rand (m,n) random matrix (uniform or Gaussian)
zeros (m,n) matrix consisting of zeros
.*. Kronecker operator

Table 2.1. A set of functions for creating matrices.

Table 2.1 describes frequently used matrix functions that can be used to create special
matrices. These matrix functions are illustrated in the following examples:

�−→ A= [eye(2,1), 3*ones(2,3); linspace(3,9,4); zeros(1,4)]

A =

! 1. 3. 3. 3. !

! 0. 3. 3. 3. !

! 3. 5. 7. 9. !

! 0. 0. 0. 0. !

�−→ d=diag(A)’ ← main diagonal of A as a row matrix
d =
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! 1. 3. 7. 0. !

�−→ B=diag(d) ← builds a diagonal matrix
B =

! 1. 0. 0. 0. !

! 0. 3. 0. 0. !

! 0. 0. 7. 0. !

! 0. 0. 0. 0. !

�−→ C=matrix(d,2,2) ← reshape vector d

C =

! 1. 7. !

! 3. 0. !

The majority of Scilab functions are implemented in such a way that they accept matrix
arguments. Most of the time this is implemented by applying mathematical functions
elementwise. For example, the exponential function exp applied to a matrix returns the
elementwise exponential and differs from the important matrix exponential function expm.

�−→ A=rand(2,2); ← a random matrix (uniform law)
�−→ B=exp(A) ← elementwise exponential
B =

! 1.2353136 1.0002212 !

! 2.1298336 1.3914232 !

�−→ B=expm(A) ← square matrix exponential
B =

! 1.2354211 0.0002901 !

! 0.9918216 1.391535 !

Extraction, Insertion, and Deletion

To specify a set of matrix entries for the matrix A we use the syntax A(B) or A(B,C), where
B and C are numeric or boolean matrices that are used as indices. The interpretation of
A(B) and A(B,C) depends on whether it is on the left- or right-hand side of an assignment
= if an assignment is present.

If we have A(B) or A(B,C) on the left, and the right-hand side evaluates to a nonnull
matrix, then an assignment operation is performed. In that case the left member expression
stands for a submatrix description whose entries are replaced by the ones of the right
matrix entries. Of course, the right and left submatrices must have compatible sizes, that
is, they must have the same size, or the right-hand-side matrix must be a scalar.

If the right-hand-side expression evaluates to an empty matrix, then the operation is a
deletion operation. Entries of the left-hand-side matrix expression are deleted. Assignment
or deletion can change dynamically the size of the left-hand-side matrix.
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�−→ clear A;

�−→ A(2,4) = 1 ← assigns 1 to (2,4) entry of A

A =

! 0. 0. 0. 0. !

! 0. 0. 0. 1. !

�−→ A([1,2],[1,2])=int(5*rand(2,2)) ← assignment for changing a submatrix of A
A =

! 1. 0. 0. 0. !

! 3. 1. 0. 1. !

�−→ A([1,2],[1,3])=[] ← submatrix deletion
A =

! 0. 0. !

! 1. 1. !

�−→ A(:,1)= 8 ← ‘‘:’’ stands for all indices, here all the rows of A
A =

! 8. 0. !

! 8. 1. !

�−→ A(:,$)=[] ← deletion, ‘‘$’’ stands for the last index
A =

! 8. !

! 8. !

�−→ A(:,$+1)=[4;5] ← adding a new column through assignment
A =

! 8. 4. !

! 8. 5. !

When an expression A(B) or A(B,C) is not the left member of an assignment, then it
stands for a submatrix extraction and its evaluation builds a new matrix.

�−→ A = int(10*rand(3,7)); ← int integer part
�−→ B=A([1,3],$-1:$) ← extracts a submatrix using row 1 and 3

and the two last columns of A
B =

! 2. 8. !

! 2. 3. !

When B and C are boolean vectors and A is a numerical matrix, A(B) and A(B,C) specify
a submatrix of matrix A where the indices of the submatrix are those for which B and C

take the boolean value T. We shall see more on that in the section on boolean matrices.
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Elementary Matrix Operations

Table 2.2 contains common operators for matrix types and in particular numerical matri-
ces. If an operator is not defined for a given type, it can be overloaded. The operators in
the table are listed in increasing order of precedence. In each row of the table, operators
share the same precedence with left associativity except for the power operators, which
are right associative.

Operators whose name starts with the dot symbol “.” generally stand for term-by-
term (elementwise) operations. For example, C=A.*B is the term-by-term multiplication of
matrix A and matrix B, which is the matrix C with entries C(i,j)=A(i,j)*B(i,j).

| logical or
& logical and
~ logical not
==, >=, <=, >, < ,<>, ~= comparison operators
+,- binary addition and subtraction
+,- unary addition and subtraction
.*, ./, .\, .*., ./., .\., *, /, /., \. “multiplications” and “divisions”
^,** , .^ , .** power
’, .’ transpose

Table 2.2. Operator precedence.

Note that these operators include many important equation-solving operations such
as least squared solutions. The following calculations illustrate the use of several of these
operators.

�−→ A=(1:3)’ * ones(1,3) ← transpose ’ and usual matrix product *

A =

! 1. 1. 1. !

! 2. 2. 2. !

! 3. 3. 3. !

�−→ A.* A’ ← multiplication tables: using a term-by-term product
ans =

! 1. 2. 3. !

! 2. 4. 6. !

! 3. 6. 9. !

�−→ t=(1:3)’;m=size(t,’r’);n=3;

�−→ A=(t*ones(1,n+1)).^(ones(m,1)*[0:n]) ← term-by-term exponentiation to build
a Vandermonde matrix A(i, j) = tj−1

i
A =

! 1. 1. 1. 1. !

! 1. 2. 4. 8. !

! 1. 3. 9. 27. !

�−→ A=eye(2,2).*.[1,2;3,4] ← Kronecker product
A =
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! 1. 2. 0. 0. !

! 3. 4. 0. 0. !

! 0. 0. 1. 2. !

! 0. 0. 3. 4. !

�−→ A=[1,2;3,4];b=[5;6];

�−→ x = A \ b ; norm(A*x -b) ← \ for solving a linear system Ax=b.
ans =

0.

�−→ A1=[A,zeros(A)]; x = A1 \ b ← underdetermined system: a solution with
minimum norm is returned

x =

! - 4. !

! 4.5 !

! 0. !

! 0. !

�−→ A1=[A;A]; x = A1\ [b;7;8] ← overdetermined system: a least squared
solution is returned

x =

! - 5. !

! 5.5 !

2.1.2 Strings

Strings in Scilab are delimited by either single or double quotes “ ’ ” or “ " ”, which
are equivalent. If one of these two characters is to be inserted in a string, it has to be
preceded by a delimiter, which is again a single or double quote. Basic operations on
strings are the concatenation (operator “ + ”) and the function length, which gives the
string length. As expected, a matrix whose entries are strings can be built in Scilab, and
the two previous operations extend to string matrix arguments as do the usual row and
column concatenation operators. A string is just a 1x1 string matrix whose type is denoted
by string (as returned by typeof).

�−→ S="a string with a quote character <<"’>> "

S =

a string with a quote character <<’>>

�−→ S=’a long string 0... ← ... used to continue on next line
�−→ using continuation ’

S =

a long string using continuation

�−→ S=[’A’,’string’;’2x2’,’matrix’] ← a string matrix
S =
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!A string !

! !

!2x2 matrix !

�−→ length(S) ← length of each string of S in a matrix
ans =

! 1. 6. !

! 3. 6. !

ascii conversion from string to ascii values
execstr send a string to the Scilab interpreter
grep search for occurences of a string in a string matrix
part substring extraction
msscanf scans input from a string according to a format
msprintf builds a string by output according to a format
strindex finds occurrences of strings in a string
string converts data to string
stripblanks remove leading and trailing white (blank) characters
strsubst string substitution in a string matrix
tokens string tokenizer
strcat concatenate string matrix entries
length length of string matrix entries

Table 2.3. Some string matrix functions.

String matrix utility functions are listed in Table 2.3. The next session shows how some
of them can be used.

�−→ A=rand(2,8,’n’); ← Normal law
�−→ A=sign(A); ← just keep the signs
�−→ A=string(A) ← convert to string matrix
A =

!-1 1 1 1 1 1 -1 1 !

! !

!1 1 1 1 -1 -1 -1 1 !

�−→ A=strsubst(A,’1’,’+’); ← string substitution
�−→ A=strsubst(A,’-+’,’-’) ← string substitution
A =

!- + + + + + - + !

! !

!+ + + + - - - + !

The command execstr can be used to evaluate a string as a Scilab expression. The
given string is evaluated using values from the current context. Thus, string matrices
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can be used to build Scilab expressions, which then can be evaluated as if they were
entered interactively in Scilab. An important extra argument ’errcatch’ can be given to
the execstr function in order to supress the Scilab standard error mechanism while the
string is evaluated.

�−→ name =’x’; n=3; val=[45,67,34];

�−→ str = name +string(1:n)+’=val(’ +string(1:n)+’);’ ← a string vector
str =

!x1=val(1); x2=val(2); x3=val(3); !

�−→ execstr(str); ← Scilab evaluation of str
�−→ [x1,x2,x3] ← x1, x2 and x3 are now defined

ans =

! 45. 67. 34. !

2.1.3 Boolean Matrices

A boolean variable can take only the two values “true” T and “false” F. Two predefined
Scilab variables %t and %f respectively evaluate to T and F and can be used to build boolean
matrices, for example through the use of concatenation operations.

Comparison operators (“ == ”, “ > ”, “ >= ”, “ <= ” and “~=”) also give boolean
matrices as the result when their arguments are matrices or one matrix and one scalar.
Logical operators such as “ & ” (and) , “ | ” (or), and “~” (not) can be used as expected
with boolean matrix arguments. The logical function and (resp. or) takes as argument a
single boolean matrix and returns the logical and (resp. or) of the matrix entries.

Boolean matrices are used in Scilab in conjunction with conditional expressions such
as the if and while conditions, which will be described later.

�−→ true=%t; ← define boolean variable
�−→ if true then disp("Hello"), end ← conditional display
Hello

The following Scilab session shows simple instructions involving booleans. We see in
particular that even though matrix booleans are not coded as numbers, they can be used
in numerical computations:

�−→ ~(1>=2)

ans =

T

�−→ %t&%t

ans =

T

�−→ x=-10:0.1:10;
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�−→ y=((x>=0).*exp(-x))+((x<0).*exp(x)); ← automatic boolean-to-scalar conversion
�−→ y=bool2s([%t,%f]) ← explicit boolean-to-scalar conversion
y =

! 1. 0. !

We have mentioned previously that submatrix extraction can be done with boolean
vectors. This is illustrated in the following session, where we also introduce the function
find, which returns the indices of the true entries of a boolean matrix.

�−→ A = int(10*rand(1,7))

A =

! 2. 7. 0. 3. 6. 6. 8. !

�−→ A( A>= 3) = 0 ← indices are given by a boolean matrix A>=5

A =

! 2. 0. 0. 0. 0. 0. 0. !

�−→ I=find(A== 0) ← indices of A entries equal to 0

I =

! 2. 3. 4. 5. 6. 7. !

2.1.4 Polynomial Matrices

Polynomials are Scilab objects. Most operations available for constant matrices are also
available for polynomial matrices. A polynomial can be defined using the Scilab function
poly. It can be defined based either on its roots or its coefficients, as can be seen from the
following Scilab session.

�−→ p=poly([1 3],’s’) ← polynomial defined by its roots
p =

2

3 - 4s + s

�−→ q=poly([1 2],’s’,’c’) ← polynomial defined by its coefficients
q =

1 + 2s

Note that the ’s’ argument in poly specifies the character to be used for displaying
the formal parameter of the polynomial. At initialization, the variable %s is defined to be
the polynomial s.

Polynomials can be added together, multiplied, concatenated to form matrices, etc.,
provided they use the same formal parameter.
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�−→ p+q+1 ← polynomial/constant addition
ans =

2

5 - 2s + s

�−→ [p*q,1] ← matrix polynomial
ans =

! 2 3 !

! 3 + 2s - 7s + 2s 1 !

A polynomial can even be divided by a polynomial, and a polynomial matrix inverted,
but the result, in general, is not a polynomial. It is a rational function, which is another
Scilab object constructed using a list object, as we shall see later.

2.1.5 Sparse Matrices

Many areas of application lead to problems involving large matrices. But very often, large
matrices involved in applications have many zero entries. Thus representations of matrices
where matrix storage is reduced by coding only the nonzero matrix entries have been
developed and are known as sparse matrix representations. Different coding schemes exist
for performing this compression task and some schemes are tailored to specific applications.
In Scilab, the sparse coding of an (m,n) matrix is as follows. A first array of size m contains
pointers to row descriptors. Each row descriptor is coded with two arrays. The first array
contains the column indices of the nonnull row entries, and the second array contains the
associated nonzero values.

Some problems that could not be stored in Scilab memory in full form can be accessible
through the use of sparse storage. As one can imagine, the reduced storage leads to more
complex and slower operations on sparse matrices than on full matrices. The basic function
used for building sparse matrices in Scilab is the sparse function. Note that only numerical
or boolean matrices can be stored as sparse matrices.

�−→ A=sprand(100,100,0.1); ← a (100,100) sparse matrix with 10% of
nonzero values�−→ whos(’-type’,’sparse’) ← check used memory

Name Type Size Bytes

A sparse 100 by 100 13360

�−→ B=full(A);

�−→ whos(’-name’,’B’); ← used memory for the same matrix with a
full implementation

Name Type Size Bytes

B constant 100 by 100 80016

�−→ timer();inv(B);timer() ← CPU time for full matrix inversion
ans =

0.01
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�−→ timer();inv(A);timer() ← CPU time for sparse matrix inversion
ans =

0.28

While useful in illustrating the commands, this example was only 100 × 100, which is
not considered today to be a very large matrix. Also, this matrix was random, and many
sparse matrices, such as those that arise by the discretization of PDEs, are not random.
They have stronger structural properties that can be exploited.

2.1.6 Lists

Scilab lists are built with the list, tlist, and mlist functions. These three functions do
not exactly build lists, but they can be considered to be structure builders in the sense that
they are used to aggregate under a unique variable name a set of objects of different types.
They are implemented as an array of variable-size objects that is not a list implementation.
A type corresponds to each builder function, and they are recursive types (a list element
can be a list).

• If the list constructor is used, then the stored objects are accessed by an index giving
their position in the list.

• If the tlist constructor is used, then the built object has a new dynamic type and
stored objects can be accessed through names. Note also that the fields are dynamic,
which means that new fields can be dynamically added or removed from an occurrence
of a tlist. A tlist remains a list, and access to stored objects through indices is also
possible.

• The mlist constructor is a slight variation of the tlist constructor. The only difference
is that the predefined access to stored objects through indices is no longer effective (it
is, however, possible using the getfield and setfield functions). Also, extraction and
insertion operators can be overloaded for mlist objects. This means that it is possible
to give a meaning to multi-indices extraction or insertion operations. hypermat objects
that implement multidimensional arrays are implemented using mlist in Scilab.

Note that many Scilab objects are implemented as tlist and mlist, and from the
user point of view this is not important. For example, suppose that you want to define a
variable with an extendable number of fields. This is done very easily through the use of
the “.” operator:

�−→ x.color = 4;

�−→ x.value = rand(1,3);

�−→ x.name = ’foo’;

�−→ x ← x is a tlist of type struct (st)
ans =

color: 4

value: [0.2113249,0.7560439,0.0002211]

name: "foo"
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Among Scilab objects coded this way, it is important to mention the rational matrices
and the linear state-space systems, which play important roles in modeling and analysis
of linear systems.

The following session illustrates the use of rational matrices in Scilab (recall that %s is
by default the polynomial s). Note that all the elementary operations are overloaded for
rational matrices.

�−→ r=1/%s ← defining a rational number
r =

1

-

s

�−→ a=[1,r;1,1] ← rational matrix construction
a =

! 1 1 !

! - - !

! 1 s !

! !

! 1 1 !

! - - !

! 1 1 !

�−→ b=inv(a) ← matrix inversion
b =

! s - 1 !

! ----- ----- !

! - 1 + s - 1 + s !

! !

! - s s !

! ----- ----- !

! - 1 + s - 1 + s !

�−→ b.num ← numerator field
ans =

! s - 1 !

! !

! - s s !

�−→ b.den ← denominator field
ans =

! - 1 + s - 1 + s !

! !

! - 1 + s - 1 + s !

A linear state-space system is characterized in terms of four matrices, A, B, C, and
D; we will describe and use these systems later for modeling linear systems. The Scilab
function ssrand defines a random system with given input, output, and state sizes.
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�−→ sys=ssrand(1,1,2) ← defines a linear system
sys =

sys(1) (state-space system:)

!lss A B C D X0 dt !

sys(2) = A matrix =

! - 0.7616491 1.4739762 !

! 0.6755537 1.1443051 !

sys(3) = B matrix =

! 0.8529775 !

! 0.4529708 !

sys(4) = C matrix =

! 0.7223316 1.9273333 !

sys(5) = D matrix =

0.

sys(6) = X0 (initial state) =

! 0. !

! 0. !

sys(7) = Time domain =

c

�−→ sys.A ← extract the A matrix
ans =

! - 0.7616491 1.4739762 !

! 0.6755537 1.1443051 !

Common operations on lists are illustrated in the following example. Note that one
can define an entry starting somewhere other than entry 1, but then the list will create
early places for entries. This is analogous to Scilab automatically setting up a 3×5 matrix
when the instruction A(3,5)=6.7 is entered. Except now, instead of extra zero entries, an
entry called Undefined fills out the earlier positions in the list.

�−→ L=list() ← an empty list
L =

()
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�−→ L(2) = testmatrix(’magi’,3) ← list assignment using L(i)=val. Note that
L(1) does not exist

L =

L(1)

Undefined

L(2)

! 8. 1. 6. !

! 3. 5. 7. !

! 4. 9. 2. !

�−→ L(0) = 34; ← add an element at the begining of list
�−→ L($) = ’X’ ← replace last element
L =

L(1)

34.

L(2)

Undefined

L(3)

X

�−→ L($+1) = ’Y’ ← add an element at end of list
L =

L(1)

34.

L(2)

Undefined

L(3)

X

L(4)

Y

�−→ [a,b]=L([1,3]) ← extraction, we can extract several argument in one call
b =

X

a =
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34.

�−→ L(2)=null(); ← deletion of the second list element

2.1.7 Functions

We have used many Scilab functions in previous examples through function calls without
precisely defining what a function is. A function is known through its calling syntax. For
example, the calling syntax for the sine function sin is the same as that for the hyperbolic
sine function sinh.

There is a small difference between sin and sinh. sin is a hard-coded function (hard-
coded functions are sometimes called primitives) and sinh is a Scilab-coded function (they
are sometimes called macros in Scilab). Thus, sin and sinh do not have the same type.
The answer to typeof will be fptr for sin and function for sinh. But both sin and sinh are
Scilab objects. They have a type, and can be used as variables and function arguments.

A Scilab-coded function can be defined interactively using the keywords function and
endfunction, loaded from a scilab script using exec or getf, or saved and loaded in binary
mode using save and load. In addition, a library of functions can be defined and loaded in
Scilab. At startup, a number of function libraries are loaded, providing a rich set of func-
tions available to the user. The source code of a Scilab-coded functions can be examined
using the fun2string function.

We will discuss the construction of new functions in Scilab later: in Section 2.2.3 we go
over Scilab-coded functions, and in Section 2.5, hard-coded functions are covered. Here,
we look at an elementary example to give a feeling for the syntax.

�−→ function y=foo(x,g) ; y=g(x); endfunction ← a function
�−→ typeof(foo) ← a function is a Scilab object

ans =

function

�−→ foo(%pi,sin) ← functions can be used as function arguments (primitive sin)
ans =

1.225D-16

�−→ foo(%pi,sinh)== sinh(%pi) ← the same with the macro sinh

ans =

T

�−→ v=rand(1,10);

�−→ foo(3,v) ← function call and matrix extraction have the same syntax.
ans =

0.0002211

As with other variables, functions can be removed or masked by assignment. For ex-
ample, if a session starts with the command sin=4, then the sin variable is 4 and no longer
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the sin primitive. However, primitives and scilab functions available through libraries (for
example those provided by Scilab default libraries) are just hidden by this mechanism. If
sin is cleared by the command clear sin, then the sin primitive will return to the current
environment.

�−→ sin = [1,3];

�−→ sin(2) ← the sin primitive is hidden by the defined variable
ans =

3.

�−→ clear sin ← clear the sin variable

�−→ sin(2) ← the sin primitive is found and called
ans =

0.9092974

2.2 Scilab Programming

A Scilab program is a set of instructions to be executed in a specific order. These instruc-
tions can be typed one by one at Scilab’s prompt, but they can also be placed in an ASCII
file (using for example Scilab’s built-in editor) and executed with the Scilab command
exec. Such a file is called a script and may contain function definitions. By convention,
Scilab script file names are terminated with the suffix .sce, but if the script contains only
function definitions, then the .sci suffix is used. In that case the command getf can be
used instead of exec to load the functions.

The file extensions .sci and .sce are just conventions, since Scilab functions exec and
getf do not check file name suffixes. However, in most editors with a Scilab mode, the mode
activation is controlled by the file-name suffix. Under the Windows operating system, a
file can be drag-and-dropped into Scilab. In this case, the file extensions are used to select
appropriate actions such as loading with getf and executing with exec.

It is also possible to execute a script when launching Scilab from a shell window (Unix
or MSDOS), using the calling option scilab -f <script-file-name>. If the script is ter-
minated by the instruction quit, then Scilab will quit at the end of the script execution.
This provides for batch mode execution in Scilab.

When Scilab is launched, a specific script file called scilab.star is executed. This file
contains, in particular, instructions for initializing a number of Scilab variables and loading
various libraries. Then, if there exists a file called .scilab or scilab.ini in the user’s home
directory (the home directory is defined by the environment variable HOME), Scilab executes
it as a script. Finally, Scilab looks in the directory where Scilab is launched and executes
the file .scilab or scilab.ini, if it exists.

Iteration and branching instructions are a fundamental part of programming, so we
begin by looking at these instructions in Scilab.
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2.2.1 Branching

Branching instructions are used to make block execution of code depend on boolean con-
ditions. The simplest form of branching instruction in Scilab takes the following form:

if <condition> then <instructions> end

The block of instructions <instructions> will be executed if the condition (<condition>)
evaluates to a boolean T. Since Scilab is a matrix language, the condition evaluation can
be a boolean matrix or a scalar matrix. If it is a matrix, the condition is considered as a
T boolean only if all the matrix entries are true boolean values or if all the scalar matrix
entries are nonnull. Thus, implicitly <condition> is evaluated as an and(<condition>). The
following session generates the logarithm of a random 3× 3 matrix and checks whether it
is real.

�−→ A=log(rand(3,3)) ;

�−→ if imag(A)==0 then disp(’A is a real matrix ’); end
A is a real matrix

The following syntax is used for the two branch form:

if <condition> then <instructions> else <instructions> end

The first block is executed when <condition> evaluates to T; otherwise, the second block
is evaluated.

�−→ if imag(A)==0 then
�−→ disp(’A is a real matrix ’);

A is a real matrix

�−→ else
�−→ disp(’A is complex’);

�−→ end

A multiple branch version is also available. Successive else statements are coded using
the elseif keyword. Note that there also exists a multiple branch execution instruction
named select, which can be used when execution control depends on a set of predefined
values:

select <expr> ,

case <expr1> then <instructions>

case <expr2> then <instructions>

...

else <instructions>

end

In executing select, the value of the <expr> statement is successively compared to the
values of <expr1>, <expr2>, . . . . As soon as both evaluated expressions evaluate to equal
values (== operator), the execution branches to the associated block. If no equal case is
detected, then the else block, if present, will be executed.
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2.2.2 Iterations

Two iterative control structures exist in Scilab. They are the for loop and the while

iterator. For execution efficiency, one should carefully check to see wether iterative control
structures can be replaced by matrix operations, which usually execute faster.

The for loop syntax is as follows:

for <name>=<expr>

<instructions>

end

The <expr> instruction is evaluated once. Then, the inner block will be iteratively
executed, and at each iteration the <name> variable will take a new value. If the <expr>

instruction evaluation gives a matrix, then the number of iterations is given by the number
of columns, and the loop variable <name> will take as value the successive columns of the
matrix. If the <expr> instruction evaluation gives a list, then the number of iterations is
given by the list length, and the loop variable <name> will take as value the successive
values of the list elements.

A break statement can be present in the <instructions> block of the for loop. If the
break instruction is reached during execution, then the block execution stops and execution
continues beyond the end of the for loop.

The following Scilab session illustrates several aspects of using for, including the dif-
ferences in CPU time when the alternative of using matrix operations exists. This session
uses the function pmodulo(n,i), which returns the remainder upon dividing n by i, n mod
i. The session also uses the timer function to find the CPU time for a computation.

�−→ n=89;

�−→ isprime=%t;

�−→ for i=2:(n-1) ← iterate on integers from 2 to n-1

�−→ if pmodulo(n,i)==0 then isprime=%f; break; end
�−→ end

�−→ isprime ← checks result stored in variable isprime

ans =

T

�−→ n=16778; ← now illustrate difference in CPU time

�−→ timer(); ← start timer

�−→ res=[]; ← want all the divisors of n
�−→ for i=2:(n-1)

�−→ if pmodulo(n,i)==0 then
�−→ res=[res,i]; ← size of vector res increases at each iteration
�−→ end
�−→ end
�−→ t1=timer(); ← CPU time elapsed from last call to timer

�−→ res ← all the divisors of n
ans =

! 2. 8389. !
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�−→ v=2:(n-1); ← speeding up computation using matrix computation
�−→ timer();

�−→ I=find(pmodulo(n,v)==0); ← indices of divisors using find

�−→ res = v(I) ← all the divisors of n
res =

! 2. 8389. !

�−→ t2=timer();

�−→ [t1,t2] ← the CPU time of each example
ans =

! 0.83 0.01 !

The while iterator is especially useful when it is not known ahead of time how many
iterations are to be performed. It has the following syntax:

while <condition>

<instructions>

end

The <instructions> block statements are executed while the <condition> evaluates to
boolean T. As in the if statement, the condition evaluation can be a boolean matrix or
a numerical matrix. If it is a matrix, then <condition> is considered as a T boolean only
if all the matrix entries are true boolean values or if all the matrix entries are nonzero.
If <condition> always evaluates to T, then a break statement will be needed to stop the
<while> loop. The next three examples use the fact that large enough real numbers are
considered to be infinity %inf, which can be compared or added to finite real numbers.

�−→ x=1; while exp(x)<>%inf ; x=x+1; end ← a simple while with a scalar condi-
tion�−→ [exp(x-1),exp(x)]==%inf ← checks result

ans =

! F T !

�−→ x=[1:3]; while exp(x)<>%inf ; x=x+1; end ← a simple while with matrix condi-
tion�−→ exp(x)==%inf ← one entry is %inf

ans =

! F F T !

�−→ x=1;

�−→ while %t ← infinite loop, need a break to quit the while

�−→ if exp(x)== %inf then ← quit the loop when exp(x) equals ∞
�−→ break;
�−→ end
�−→ x=x+1;

�−→ end
�−→ [exp(x-1),exp(x)]==%inf ← checks result

ans =

! F T !
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2.2.3 Scilab Functions

It is possible to define new functions in Scilab. What distinguishes a function from a script
is that a function has a local environment that communicates with the outside through
input and output arguments.

A function is defined using the keyword function followed by its calling syntax, a set
of Scilab instructions, and the keyword endfunction. More precisely, the following form of
syntax is used to define a function:

function [<name1>,<name2>,...]=<name-of-function>(<arg1>,<arg2>,...)

<instructions>

endfunction

When defining a function we have to give the function name (<name-of-function>), the list
of calling arguments (<arg1>,<arg2>,...), and the list of variables that are used to return
values (<name1>,<name2>,...). Note that a function can return more than one value.

Calling a function is done as follows:

<name-of-function>(<expr1>,<expr2>,...)

or

[<v1>,<v2>,...,<vp>]=<name-of-function>(<expr1>,<expr2>,...)

In the first case the returned value is the value of the first returned argument by the
function evaluation. In the second case the p first returned values of the function evaluation
will be copied in the p variables whose names are given by [<v1>,<v2>,...,<vp>].

When a function is called, the expressions given as arguments are first evaluated and
their values are passed to the function evaluation. Thus, Scilab uses a calling by value
mechanism for all argument types. However, if an argument of a calling function instruction
is a variable name and if that variable is not changed in the function evaluation body, then
the variable will not be copied during the function call.

In the evaluation of the body of a function, variable search is performed first in the
local environment of the function evaluation and then in the calling environments. Thus
a variable that is not a calling variable and not locally defined in the function can still
have a value if it is defined in a calling environment. However, the variable in the calling
environment cannot be changed. If an assignment statement involving this variable is used,
then a local copy will be created.

The function body evaluation normally stops when all the <instructions> are executed
or when the flow of instructions reaches a return statement. When function evaluation
stops, the flow of instruction returns to the caller. The returned values <name1>, <name2>,
. . . have the values that they had when the function body evaluation stopped.

The following session gives two examples of defining a function and evaluating it. The
second function defines the factorial function.

�−→ function B=f(A) ← a typical function with one input and one output
�−→ B=string(sign(A));

�−→ B=strsubst(strsubst(B,’1’,’+’),’-+’,’-’);

�−→ endfunction
�−→ f(rand(2,5,’n’) )

ans =
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!- + + + + !

! !

!+ + + + - !

�−→ function y=fact(x) ← a recursive function can be defined: fact calls fact

�−→ if x <= 1 then y=x; else y=x*fact(x-1); end
�−→ endfunction

�−→ fact(4)

ans =

24.

This next script defines several functions and illustrates the rules for searching variable
values when a function is evaluated. This is important but quite technical and can be
omitted for first-time readers.

�−→ function y=f(x); y=2*x; endfunction

�−→ x=90;

�−→ f() ← argument x is not given but exists in the
calling environment. Thus, the calling se-
quence works

ans =

180.

�−→ f(5,7) ← error: two many given arguments
!--error 58

incorrect number of arguments in function call...

arguments are :

x

�−→ [a,b]=f(5) ← error: asking for too many returned arguments
!--error 59

incorrect # of outputs in the function
arguments are :

y

�−→ function y=f(x); z=x; endfunction ← a new definition of f

�−→ y=89;

�−→ z=67;

�−→ w=f(x) ← y is not computed inside f but it has a
value in the calling environment. This is
the returned value

w =

89.

�−→ z ← z was not modified by execution of f
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ans =

67.

�−→ function y=f(); y=x; endfunction

�−→ x=5;

�−→ y=f() ← x is not locally defined: the value of x in the calling environment is used
y =

5.

�−→ function y=f(); x= 2*x; y=x; endfunction

�−→ y=f() ← a local variable x is created
y =

10.

�−→ x=[56,67];

�−→ function y=f(); x(1)= 5; y=x endfunction

�−→ y=f() ← again a local variable x is created leading to a scalar y

y =

5.

As already pointed out, a function that is specified with n calling arguments and p
returned values can be used in a calling statement with fewer than n calling values, and
the number of requested returned arguments can be less than p.

During execution of a function body the actual number of given arguments and the
number of requested outputs are available through the use of the function argn. A state-
ment like [lhs,rhs]=argn() in a function body will return in lhs (resp. rhs) the number
of requested output arguments (resp. the number of given input arguments). The function
writer can take advantage of this for enabling optional argument passing, as shown in
the following example. This example also shows that the function error can be used to
produce an error statement in Scilab.

�−→ function [u,v]=f(x,y)

�−→ [lhs,rhs]=argn()

�−→ if rhs <= 0 then error(’at least one argument must be given’); end
�−→ if rhs <= 1 then y=2; end
�−→ if lhs == 2 then
�−→ u=x; v=y;

�−→ else
�−→ u=x+y;

�−→ end
�−→ endfunction

�−→ [u,v]=f(4)

v =
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2.

u =

4.

If the function defined has n calling arguments, then you do not normally have the
right to call a function with more than n calling arguments. There is one exception, which
is described now. If the last argument of a function definition with n arguments is named
varargin, then the function can be called with more than n arguments. Inside the function
body, the varargin variable will be a Scilab list that contain as elements the values of the
arguments from the nth one to the last one.

�−→ function [l]=f(x,varargin); l = varargin; endfunction
�−→ f(0,1,2) ← varagin is set to list (1,2)

ans =

ans(1)

1.

ans(2)

2.

The same mechanism also exists for the output through the keyword varargout, as
illustrated in the following session.

�−→ function [varargout]=f()

�−→ varargout=list(1,2,3)

�−→ endfunction

�−→ [a,b]=f() ← f can be called with more than 1 output
b =

2.

a =

1.

Changing a variable in a calling environment, as a side effect of a function call, can
sometimes be useful. This is achieved in Scilab through the use of global variables. The
global keyword can be used to declare a global variable. Once a variable is declared global
in an environment its value can be changed from within that environment. For example, a
global(’x’) statement must be present in the body definition of a function if the function
is to be used to modify this global variable x.

�−→ global a; ← a is now a global variable, its default value is []

�−→ isglobal(a) ← just checks . . .
ans =
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T

�−→ function f(); global(’a’); a=int(10*rand(1,4)); endfunction
�−→ f() ← calling f, which contains a global declaration of a
�−→ a ← calling f has changed a

ans =

! 2. 7. 0. 3. !

2.2.4 Debugging Programs

When programming in any language, it is nearly impossible to write large programs with-
out errors. Programming in Scilab is not an exception to this rule. A set of Scilab utilities
helps users detect and correct bugs in their code. In particular, one can interrupt the
execution of Scilab code using the command pause (menu Stop of the Control menu in the
main menu) or using the interruption key code Ctrl-C .

When entering a pause, the Scilab prompt changes, thereby signaling to the user that
the interpreter has entered a pause sequence, and shows the pause level. When a function
is called, its code is executed in a local environment. The same situation occurs when
entering a pause. The current execution flow is stopped and the interpreter is called in
a new local environment. One has to consider that the environments are stacked and
the current environment is at the top of the stack. When entering a function call or a
pause, a new environment is pushed to the top of the stack. When code is executed in the
environment that is at the top of the stack, it has read access to variables from the other
stacked environments and read-write access to the global environment. When a pause is
entered through the use of Ctrl-C, execution stops at the current execution position. Using
whereami (or where), it is possible to detect where the pause has occurred.

It is, however, easier to explicitly insert a pause command in Scilab code or in a function
in order to precisely control where a pause is needed to detect wrong execution of code.
This can be done in an editor by explicitly inserting pause statements.

�−→ a=34;

�−→ function y=f(x); pause; a = %pi; pause; y=g(x); endfunction
�−→ function y=g(x); b = %e ; y=sin(x); pause; endfunction

�−→ f(5)

-1->a ← a pause in f. We can check variables from the stacked environments
ans =

34.

-1->b= 56; ← here we create a variable in the pause environment

-1->resume ← quit the first pause and stop at the second one still in f

-1->a ← the value of a in the local environment of f
ans =

3.1415927
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-1->resume ← quit the pause and stop in the next one in g

-1->exists(’b’,’local’) ← the value of b in g environment
ans =

0.

-1->resume ← go on
ans =

- 0.9589243

�−→ a=g(4); ← stop in g

-1->[y]=resume(456); ← quit the pause environment and copy a
variable in function g environment

�−→ a ← the returned g value is the y value that was set by the resume function
ans =

456.

Leaving the pause mode and ending the debugging is done with the abort command.
Changing function code by inserting pause commands implies that you have to reload

the function code in Scilab each time you change the code. The function setbpt can be
used to do the same task but without changing function code.

In the local environment of the pause, one can check the status of variables, and the
current execution can be resumed with the command resume. Execution flow can also be
interrupted using abort (resp. quit). Execution is then stopped and all the environments
are popped from the stack in the case of an abort command. Just the current environment
is popped in the case of a quit command. (Here, getting something off the stack is called
a pop and putting something on the stack is called a push.)

Step-by-step execution of code or of a function can also be enabled through the use of
the exec command. When a function call is performed with exec, the function is executed
in the current environment and one has to provide values for the function calling arguments
in the current environment before calling exec.

�−→ function y=f1(x)

�−→ y=sin(x).*x

�−→ y = y+2,

�−→ endfunction

�−→ getf(’stepf.sci’,’n’); ← load f1 with getf option ’n’

�−→ x=int(10*rand(1,4)); ← argument of f1
�−→ x=90;

�−→ exec (f1,7) ← single-step execution f1

step-by-step mode: enter carriage return to proceed

>>

y=sin(x).*x

y =

80.4597

>>
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y = y+2,

y =

82.4597

>>

return!

Note that by default, the source code of the function instructions is hidden when getf

is used. In order to see the source code, one has to load the function into the Scilab
environment with the getf command associated with the optional argument ’n’.

Finally, it should be noted that the built-in editor also provides some debugging facil-
ities.

2.3 Input and Output Functions

The default for Scilab commands is to show the results in the command window unless
they create a graphic, and then the default is to show the result in a graphics window.
However, it is often desired to have the result saved in a file or printed on a printer. In
this section we discuss how to control the input and output of different types of data.

2.3.1 Display of Variables

As already seen in previous examples, when a Scilab instruction is followed by a comma
or a line feed, a display of the instruction evaluation result is provided. If instructions are
ended by a semicolon or belong to the body of a function, then no display occurs.

Sometimes one wants values of variables inside of functions to be displayed or output to
a file. Explicit display of the value of a variable, or of the result of an instruction evaluation,
is achieved by the function disp or print. These two functions provide a display similar to
the one obtained automatically in the command window. The first argument of the print

function is used to control the output stream (disp uses the Scilab command window
as output stream). One can use a file name given by a Scilab string or a file descriptor
(returned by the file command). Alternatively one can use the predefined value %io(2),
which stands for the standard output stream in the Scilab command window.

�−→ a=[%pi,4,%inf] ← the result is displayed
a =

! 3.1415927 4. Inf !

�−→ print(%io(2),a) ← using print to display a variable (same as disp)
a =

! 3.1415927 4. Inf !

�−→ print(’a.txt’,a) ← print to file a.txt

print can be used to force the display of variables inside a function during its execution,
as illustrated below:
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�−→ function y=f(x) ; a = 2*%pi, y = x+a, endfunction
�−→ f(2); ← a is not displayed
�−→ function y=g(x) ; a = 2*%pi, print(%io(2),a), y = x+a, endfunction
�−→ g(2); ← force display of a using print

a =

6.2831853

The format used by disp and print for displaying real numbers can be controlled using
the format function.

2.3.2 Formatted Input and Output

Several Scilab functions can used to perform formatted input-output. The functions write
and read are based on Fortran formatted input and output. They redirect input and
output to streams, which are obtained through the use of the function file. They can also
use the standard Scilab input-output streams, which are given by the predefined variables
%io(2) and %io(1).

We will not describe these functions in detail here although they can be quite useful
for interfacing with Fortran software. We will focus here on Scilab functions that emulate
standard C input and output functions. They give access to formatted (ASCII or binary)
input or output on the standard input-output streams, on file streams, and on strings.

mprintf formatted output on standard output stream
mfprintf formatted output in a file stream
msprintf formatted output in a string matrix
mscanf formatted input on standard input stream
mfscanf formatted input in a file stream
msscanf formatted input in a string matrix
fprintfMat scalar matrix output in a file
fscanfMat read a scalar matrix from a file
mgetl input a file as an mx1 string matrix
mputl output a string matrix in a file
mopen open a file stream
mclose close a file stream

Table 2.4. Input-output functions.

The function mopen is a Scilab implementation of the standard C function fopen with
the following syntax:

[fd,err]=mopen(filename, mode, swap)

Here filename is a string that denotes a file name. The mode argument is also a string,
whose length does not exceed three (its default value is ’rb’) that describes the stream
mode to be used. The input stream is obtained with (’r’) and the output stream with
(’w’). Append mode is obtained by adding an (’a’) character, and a bidirectional stream
for input and output is obtained with (’r+’). An added ’b’ character will specify that
streams are to be used in binary mode.
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The mclose function can be used to close opened input or output streams, even the
streams opened with the file command (the number of opened streams is system limited).
It is possible to close all the opened streams using the instruction mclose(’all’).

The formatted input and output functions are very similar to functions provided by
the standard C input-output library. For example, the format specification follows the
format specification of C functions. However, Scilab input-output formatted functions
automatically take care of the matrix aspect of Scilab objects. When using a formatted
output stream, the arguments of the conversion specifiers are searched in the rows of the
Scilab arguments. When using a formatted input it is possible to specify the number of
times the format has to be repeated, for example, up to the end of file. Thus it is possible
using one read instruction to obtain a matrix, or a set of matrices, row after row:

�−→ mprintf(’| %5d | %5.4f |\n’, (1:2)’,[%pi;%e]) ← formatted output
sequentially applied
to rows

| 1 | 3.1416 |

| 2 | 2.7183 |

�−→ function table(A)

�−→ [m,n]=size(A);

�−→ format= "%5.0f |"; ← format for each entry
�−→ format=strcat(format(ones(1,n))); ← repeat the format n times
�−→ format1= part("-",ones(1,5+2));

�−→ format1=strcat(format1(ones(1,n))); ← a string made of ‘‘-’’
�−→ mprintf(format1+’\n’);
�−→ mprintf(’|’+format+’\n’+format1+’\n’,A); ← same format for each

row of A�−→ endfunction

�−→ A=int(20*rand(2,5));

�−→ table(A) ← A dislayed as integer values in a table

-----------------------------------

| 4 | 0 | 13 | 16 | 17 |

-----------------------------------

| 15 | 6 | 12 | 13 | 1 |

-----------------------------------

�−→ S=msprintf(’%d %d \n’,int(20*rand(3,2))); ← using a string matrix as output (S)

�−→ A= rand(4,3);

�−→ fprintfMat(’test’,A); B=fscanfMat(’test’); ← read and write of a constant matrix
in an ascii file�−→ norm(B-A) ← testing the write-read sequence

ans =

0.0000007

�−→ fd=mopen(’test’,’r’); ← opens a file for reading
�−→ L=mfscanf(-1,fd,"%f%f%f") ← scanning a file with the same format

on each row up to end of file
L =

! 0.231224 0.3076090 0.3616360 !
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! 0.216463 0.932962 0.292227 !

! 0.883389 0.214601 0.5664250 !

! 0.6525130 0.3126420 0.482647 !

�−→ norm(L-A) ← note that numerical precision depends on selected format directives
ans =

0.0000007

�−→ mclose(fd); ← close the opened file

The next example describes a formatted input where strings and scalars are mixed in
a file that contains information on some Scicos files. The file mfscanf.dat is the following

An example of reading a file with a separator of type ’[ ]*,[ ]*’

-------------------------------------------------------------------------

CLKIN_f.sci , 98 , 16

CLKINV_f.sci , 91 , 16

CLOCK_f.sci , 116 , 16

CONST_f.sci , 50 , 8

CURV_f.sci , 80 , 12

We now illustrate how to use the function mfscanf to read out separately the numerical
and the string information in this file.

�−→ fd=mopen(’mfscanf.dat’,’r’); ← opens a file in read mode
�−→ mgetl(fd,2); ← bypassing the first two lines
�−→ [n,a,b,c]=mfscanf(-1,fd,’%[^,],%*[, ]%d%*[, ]%d\ n’); ← formatted read

�−→ n ← number of read arguments
ans =

3.

�−→ stripblanks(a)’ ← removing spaces and tranposing string matrix
ans =

!CLKIN_f.sci CLKINV_f.sci CLOCK_f.sci CONST_f.sci CURV_f.sci !

�−→ [b,c] ← numerical values
ans =

! 98. 16. !

! 91. 16. !

! 116. 16. !

! 50. 8. !

! 80. 12. !

�−→ mclose(fd); ← close the opened file stream

2.3.3 Input Output in Binary Mode

Scilab has its own binary internal format for saving Scilab objects and Scilab graphics
in a machine-independent way. It is possible to save variables in a binary file from the
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current environment using the command save. A set of saved variables can be loaded in
a running Scilab environment with the load command. The functions save and load use
a machine-independent binary format. Note that the advantage of the binary mode is
that save and load can be done without any loss of numerical accuracy. For saving and
reloading graphics in a Scilab binary format, the functions xsave, xload can be used (note
that these functions can also be accessed through menus).

It is also possible within Scilab to read and write any binary file through the use of
a set of functions that will be described here. Note that as in the previous section, the
functions described here need a stream as first argument. Input or output streams are
created with the mopen function already described, which is to be used here with a binary
flag (’rb’ or ’wb’).

Functions described in Table 2.5 can be used for binary input-output. The mget and
mput use the mode (little or big “endian”) that was specified by the mopen call, but
it is always possible to disable this default behavior by using the appropriate optional
argument. Full information on each command is found in the online help.

mget binary input
mput binary output
mgetstr string input
mputstr string output
mtell returns current access position for an open stream
mseek changes the access position for an open stream
meof tests the end-of-file indicator

Table 2.5. Binary input-output functions.

In order to produce machine-independent binary input and output, the functions de-
scribed in Table 2.5 always output data using the little endian format. It is possible to
disable this default feature using the swap parameter. If swap is set to 0, then binary input
and output is performed using the native format of the machine executing Scilab. This
can be useful when binary files coming from other software are to be read into Scilab.

A set of functions for input and output of sound files is provided in the directory
SCI/macros/sound in the Scilab main directory. They can be used as programming examples
for the functions listed in Table 2.5.

We conclude this section with a small example dealing with the binary input and
output of a constant matrix.

�−→ x=testmatrix(’magic’,4); ← a 4x4 test matrix
�−→ fd=mopen(’save.dat’,’wb’); ← opens a file for writing in binary

mode (’b’ is useful on windows)
�−→ mput(length(’x’),’i’,fd) ← writes an integer. The length of the string ’x’

�−→ mputstr(’x’,fd) ; ← writes a string ’x’

�−→ mput(size(x,’r’),’i’,fd) ← writes an integer (number of rows)
�−→ mput(size(x,’c’),’i’,fd) ← writes an integer (number of columns)
�−→ mput(x,’d’,fd); ← writes an array of doubles
�−→ mclose(fd); ← closes the file output stream
�−→ clear x;

�−→ fd=mopen(’save.dat’,’rb’); ← opens a file for reading in binary mode
�−→ ls=mget(1,’i’,fd); ← reads an integer
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�−→ name=mgetstr(ls,fd); ← reads a string. The string length is given by ls

�−→ m=mget(1,’i’,fd);n=mget(1,’i’,fd); ← reads two integers m and n

�−→ data=mget(m*n,’d’,fd); ← reads m*n doubles in a vector
�−→ code= msprintf(’%s=matrix(data,%d,%d);’,name,m,n);

�−→ execstr(code); ← reshape the matrix and give it the correct name (i.e, x)
�−→ mclose(fd) ; ← close the file
�−→ and(x == testmatrix(’magic’,4)) ← test

ans =

T

2.3.4 Accessing the Host System

As already noted, formatted and binary inputs and outputs use streams to access or create
files. Streams are created and opened through the command mopen and closed using the
mclose (or through the file command for Fortran-compatible streams). File streams are
opened given a file pathname, which is coded as a Scilab string and can be absolute or
relative. The preferred syntax for file names is the Posix-style syntax (which works on
Windows operating systems as well), i.e., with a slash as directory separator. If neces-
sary, the pathconvert function can be used for pathname translation. Note that a relative
pathname is always considered relative to the Scilab current directory. The name of this
current directory is returned by the function getcwd or pwd and can be changed using the
chdir or cd function. Given a pathname, it is possible to access the information about a
file using the fileinfo function. For example, fileinfo(’foo’)<>[] will evaluate to %t if
file ’foo’ exists. Finally, the list of files in a given directory can be obtained as a vector
string using the commands ls, dir, and listfiles.

It is possible obtain information through global Scilab variables about the running
Scilab program, in particular on the operating system it was built for and the embedded
programs that were used at compilation. For example, the boolean variable %tk can be
used to check wether the current Scilab version is built with interaction with Tcl/Tk (See
also %gtk for Gtk support and %pvm for parallel virtual machine support). MSDOS is a boolean
variable used to check wether the underlying operating system is Windows or a Unix-like
system.

Running a shell script from Scilab is done using unix and related commands unix_g,
unix_s (equivalently host), unix_w, and unix_x. These functions differ from each other in
the way they return the result of the command: in the current Scilab window (unix and
unix_w), in a graphics widget (unix_x), in a Scilab variable (unix_g), or without returned
result (unix_s). Note that contrary to what their names suggest, these commands work on
Unix, Mac, and Windows operating systems.

It is sometimes useful to use the MSDOS variable before using the unix command since
the syntax of shell commands differs between Unix and Windows. This is illustrated in
the following script:

�−→ %tk ← checks wether we have Tcl/Tk support
ans =

T

�−→ MSDOS ← is it a Windows version of Scilab ?
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ans =

F

�−→ if ~MSDOS then
�−→ os=unix_g(’uname’);

�−→ else
�−→ os=’windows";

�−→ end
�−→ os ← Operating system name ?

ans =

Linux

�−→ if MSDOS then
�−→ l=unix_g(’dir sc*.sci’); ← list directory contents
�−→ else
�−→ l=unix_g(’ls sc*.sci’); ← list directory contents
�−→ end
�−→ l

l =

!scalarbase.sci !

! !

!scalarops.sci !

! !

!scalar.sci !

2.3.5 Graphical User Interface

So far, we have described input-output interaction with Scilab through keyboard inter-
action in the Scilab graphics command window or through predefined menus. It is also
possible to interact with Scilab through dialog windows and to create specific dialog win-
dows. We will discuss how to do this here.

Scilab menus (in the command window and in the graphics windows) can be customized
using Scilab commands. addmenu, delmenu, setmenu, or unsetmenu can be respectively used
to add, delete, activate, or deactivate Scilab menus. One can associate a menu han-
dler to a specified menu through a Scilab function. For example addmenu(’foo’) (resp.
addmenu(’foo’,4)) will place a menu button foo in the Scilab command window (resp.
graphics window 4), which when activated will call Scilab function foo (resp. foo_4).

A set of predefined popup dialog windows are also available in Scilab. Some examples
are given in Figure 2.1. The simplest one is x_message, which is used to open a popup
message window. Others are x_choose, which is used to perform a selection in a predefined
list; x_dialog, which opens a dialog to get a response from the user as a Scilab string;
x_choices, which is used to select a set of items each one being chosen through a toggle
list; x_mdialog, which is used for a set of x_dialog-like interactions or for acquiring a
matrix; and xgetfile, which is a dialog used to get a file path.

�−→ rep=x_choose([’S.L.Campbell’,’J.P.Chancelier’,’R.Nikoukhah’],’Authors’);

�−→ x_message([’Well, it’’s time ’;’to get something to eat !’]);
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�−→ chateaux=[’Château Pétrus’,’Château Margaux’,...

�−→ ’Château Talbot’,’Château Belgrave’];

�−→ l1=list(’Wine’,1,chateaux);

�−→ l2=list(’Cheese’,2,[’Rocquefort’,’Ossau’,’Tome de Savoie’]);

�−→ rep=x_choices(’Wine and Cheese menu’,list(l1,l2));

Figure 2.1. Examples of predefined popup dialog windows.

Mouse and key events in graphics windows are returned by xclick and xgetmouse, and
an event handler can be set for a graphics window with the function seteventhandler.

It is possible to build more sophisticated graphics user interfaces by mixing Scilab and
Tcl/Tk code, which can interact through data exchange. This is made possible through a
set of Scilab functions that interact with Tcl/Tk:

• TCL_GetVar, TCL_SetVar are used to exchange numerical data or data coded through
strings.

• TCL_ExistVar is used to check for the existence of a Tcl/Tk variable.
• TCL_EvalStr is used to send a Tcl expression contained in a Scilab string to the Tcl

interpreter for evaluation.
• TCL_EvalFile is used to send to the Tcl interpreter a file name of a Tcl script to be

executed.
• ScilabEval is a Tcl instruction that can be used in a Tcl script. The Tcl string argument

given to ScilabEval is evaluated as a Scilab expression.

We will give a small example of Tcl/Tk window creation with two range controls that
can be used to change two scalar parameters a and b in a surface plot.

The following script defines a function called plot3d_tcl. This function uses global vari-
ables to keep track of two parameters a and b. In plot3d_tcl, calls are made to TCL_GetVar

to get the value of Tcl variables named a and b. Since TCL_GetVar returns a string, a call
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to evstr is made to evaluate the string. If a or b in the Scilab environment differs from
the Tcl/Tk values, then the Scilab values are updated and a surface is drawn. Graphics
will be discussed in more detail in Section 2.4. Here we just note that plot3d will draw a
surface and that the drawing of the surface depends on the two Scilab parameters a and
b. Thus, if a or b is changed at the Tcl/Tk level, then a call to plot3d_tcl will draw a new
surface. Note that a flicker effect will be seen in the graphics window when redrawing is
performed. We will see in Section 2.4 how to avoid this.

function []=plot3d_tcl()

global(’a’,’b’);

a_new=evstr(TCL_GetVar("a"));

b_new=evstr(TCL_GetVar("b"));

if a<>a_new | b<>b_new then
a=a_new ; b = b_new ;

t=linspace(0,2,200);

xbasc();t=linspace(-b*%pi,b*%pi,20);plot3d(t,t,a*sin(t)’*cos(t));

end
endfunction

This function can be checked now with the following, which plots the surface:

�−→ TCL_SetVar(’a’,’3’); ← setting a to 3 in Tcl/Tk
�−→ TCL_SetVar(’b’,’2’); ← setting b to 3 in Tcl/Tk
�−→ plot3d_tcl();

Now we want a dialog window with two range controls in order to change the values
of a and b interactively. This can be done as described in the next Tcl/Tk script.

# tcl/tk script
toplevel .top
wm resizable .top 0 0;
set a 5;
set b 2;
#—————————-
wm title .top {tk test};
global ok wait but;
proc runScilab {bidon} {ScilabEval plot3d tcl()};
#—– top label
frame .top.widtop
label .top.widlabel −text {Surface parameters}
pack .top.widlabel −in .top.widtop −side top −pady 5
#—- a range control for a
frame .top.wid frame2
label .top.widlabel a −text {a}
scale .top.widscale a −variable a −width 8 −state normal −from 1 −to 10 \

−resolution .01 −orient horizontal −width 8 −command {runScilab}
pack .top.widlabel a −in .top.wid frame2 −side left −anchor w −padx 5 \

−expand true
pack .top.widscale a −in .top.wid frame2 −side left −anchor e −padx 5
#—– a range control for b
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frame .top.wid frame3
label .top.widlabel b −text {b}
scale .top.widscale b −variable b −width 8 −state normal −from 1 −to 3 \

−resolution .01 −orient horizontal −width 8 −command {runScilab}
pack .top.widlabel b −in .top.wid frame3 −side left −anchor w −padx 5 \

−expand true
pack .top.widscale b −in .top.wid frame3 −side left −anchor e −padx 5
#——————-
pack .top.widtop −in .top
pack .top.wid frame2 −in .top
pack .top.wid frame3 −in .top
#——————-
raise .top

This is a pure Tcl/Tk script, wich is mostly independent of Scilab except for the
fact that we call the ScilabEval function when a range control is changed. As already
mentioned, ScilabEval is a Tcl function that sends its argument as a Scilab expression to
the Scilab interpreter. Here, as expected, the ScilabEval function will send to the Scilab
interpreter the string ’plot3d_tcl()’. Thus a range control modification will lead to a call
to the plot3d_tcl function.

In order to launch the Tcl/Tk script we use TCL_EvalFile at the Scilab level. A picture
of the Tcl/Tk dialog is provided in Figure 2.2

�−→ TCL_EvalFile("range.tcl"); ← running the Tcl/Tk script from Scilab

For a restricted set of Tcl/Tk dialogs predefined in Scilab and called uicontrols, the
process we have just described can be simplified in the sense that the Tcl/Tk script can be
replaced by a Scilab script using the figure, uicontrol, and uimenu functions. The range
controls used in the previous example are part of this restricted set of Tcl/Tk dialogs. We
will now give the same example of a surface drawing but now managed through uicontrols.
The function plot3d_uicontrol is the function that is activated when a range control (also
called slider in uicontrol manual pages) is changed (this is called a callback), and the
function myuidialog is used to build the Tcl/Tk window with the two sliders and the two
text areas that display the sliders’ values. The two functions share data through global
Scilab variables. A picture of the Tcl/Tk dialog composed with uicontrols is provided in
Figure 2.3

function plot3d_uicontrol()

global(’a_slider’,’a_text’,’b_slider’,’b_text’,’a’,’b’,’activate’,’n_fact’);

if activate == %t then
a=get(a_slider,’Value’)/n_fact;

b=get(b_slider,’Value’)/n_fact;

set(a_text,’String’,’a=’+string(a))

set(b_text,’String’,’b=’+string(b))

t=linspace(0,2,200);

xbasc();t=linspace(-b*%pi,b*%pi,20);plot3d(t,t,a*sin(t)’*cos(t));

end
endfunction
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Figure 2.2. Example of a Tcl/Tk dialog.

function myuidialog()

global(’a_slider’,’a_text’,’b_slider’,’b_text’,’a’,’b’,’activate’,’n_fact’);

n_fact=100; ← scaling because sliders work with integers
activate=%f ; ← delay callback execution
f = figure("Position",[50 50 200 60],"Unit", "pixel");

a_text = uicontrol(f,"Position",[140 10 55 15],"Style","text",...

"String" , "a=5")

a_slider = uicontrol(f, "Position" , [10 10 120 15],..

"Style" , "slider",...

"Min" , 1*n_fact,...

"Max" , 10*n_fact,...

"Value" , 5*n_fact,...

"SliderStep", [1 1],...

"callback" , "plot3d_uicontrol()")

b_text = uicontrol(f, "Position",[140 35 55 15],"Style","text",...

"String" , "b=2")

b_slider = uicontrol(f, "Position" , [10 35 120 15],...

"Style" , "slider",...

"Min" , 1*n_fact,...

"Max" , 3*n_fact,...

"Value" , 2*n_fact,...

"SliderStep", [1 1],...

"callback" , "plot3d_uicontrol()")

activate=%t; ← now we accept callback calls
endfunction
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Figure 2.3. Examples of uicontrol Tcl/Tk dialog.

2.4 Scilab Graphics

There are numerous Scilab graphics commands. A full discussion of them all would be a
book by itself. Instead, we will first introduce some of the more basic graphics commands
that are regularly used in simulation and modeling. Once users can generate the basic
graphs they need, they start to want to do more sophisticated graphics. For these we will
just give some general rules for performing graphics in the subsequent sections and give
an example that illustrates a part of what is possible. Details can be found in the on-line
manual.

2.4.1 Basic Graphing

One of the first things that someone interested in modeling and simulation wants to do is
to generate plots. These plots can be graphs of functions, surfaces, curves, or data. Readers
familiar with other matrix-based environments will have no problem with Scilab graphics.
But readers coming from working with equation-based languages such as MAPLE and
Mathematica will have to think a little bit differently. Scilab offers great control over how
and where the graphics occur and how they look. But all this control can be confusing
at first. In this section we show how to quickly and simply generate some of the more
common types of graphics. The remaining subsections will describe how to modify the
basic graphical output.

The plot2d command generates two-dimensional graphs. Given vectors

x = [x1, . . . , xn] and y = [y1, . . . , yn],

plot2d(x,y) will plot the points {(x1, y1), . . . , (xn, yn)}. There are several options for con-
necting the points, which can be specified using optional calling arguments. The default
in plot2d is to connect them with a straight line. Some of the other most popular alterna-
tives are already coded as plot2d2 , which assumes that the graph is a piecewise constant
function, so it looks like a bar graph; plot2d3, which plots a vertical line up to each point;
and plot2d4, which connects the plotted points with arrows.

By default, plot2d creates a graphics window called Scilab Graphic (0). This window
can be cleared by the command clf or xbasc. Additional calls to plot2d with no clearing
commands or redirection of output will result in all plots being on the same graph (for
Scilab version 3.0 or greater). Axes will automatically be adjusted.

It is of course possible to have many graphics windows at the time in a Scilab session.
A window, which is described by an integer id i, can be selected for drawing by using the
command xset(’window’,i). If the window does not exist, it will be created. Moreover, a
graphics window can be partitioned into subwindows using the command subplot.

Later we will give some of the ways that the appearance of a plot can be altered with
Scilab commands. But it is important to note that it is possible to make many of these
changes using the Edit menu of the graphics window. Merely select Figure Properties.
There is a menu bar at the top labeled Edit properties for:. This will give you menus
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for all the more important properties. The most commonly used ones are probably Axes

and Polyline.
There are a number of ways to control the flow of Scilab output. Here we note that the

Scilab graphics window has a file button. If clicked, it provides an easy way to export the
graph into a number of formats including postscript. Note also that the graphics window
has a zoom button, which allows you to select part of the graph and zoom in on it.

The fact that the graphics routines start with matrices sometimes creates problems.
For example

�−→ tt=0:0.1:3;plot2d(tt,sin(tt));

will generate the graph of sin(t) on the interval [0, 3]. However,

�−→ function y=myf(t);y=sin(t)*sin(t);endfunction;

�−→ tt=0:0.1:3;plot2d(tt,f(tt))

will produce an error message and not the graph of sin2(t). The problem is that the function
myf has to be able to take the vector tt and evaluate it entry by entry. The following code
will generate the graph of sin2(t):

�−→ function y=myf(t);y=sin(t).*sin(t);endfunction

�−→ tt=0:0.1:3;plot2d(tt,f(tt))

Note that the function is defined using elementwise multiplication .* instead of *.
A number of graphs created using the basic versions of plot2d and some of its features

can be found in Chapter 3
Plots of a surface z = f(x, y) can be done in two ways. The scilab command plot3d

works much like plot2d in that it has the syntax plot3d(x,y,z), where x, y, z are vectors.
However, there is also the function fplot3d, which has the basic syntax fplot3d(x,y,f),
where f is an external of the type y=f(x,y). Here x and y determine the grid on which f will
be evaluated. The default for plot3d and fplot3d is for the graph to appear in a graphics
window. Again the window can be exported into a postscript figure file by using one of the
file options. Another useful feature is the 3D Rot. button of the graphics window. If this
button is clicked, then one can click and hold on the figure, rotate using the mouse, and
then click to release the figure. While the viewing point of the figure can also be adjusted
by using optional calling arguments, it is usually easiest to find the best viewing angle by
using the 3D Rot. option. Surface plots can be altered using the Edit menu of the graphics
window just as 2D plots are.

2.4.2 Graphic Tour

We start with a number of scripts to make a tour of Scilab graphics functionalities. Two
graphics styles coexist in Scilab today. But most high-level graphical functions are used
in a similar fashion in both styles, so the examples provided in this first part work with
both, as did the examples of the previous section. We shall later focus on the differences
of the two styles and, in particular, present the object-oriented aspects of the new style.

Parametric Curve Plot in R
3

The parametric plot of (sin(t), t cos(t)/R, t/100) on [−20π, 20π] using a uniform grid of
2000 points with R = 20π is created by
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�−→ t=linspace(-20*%pi,20*%pi,2000);

�−→ param3d1(sin(t),t.*cos(t)/max(t),t/100) ← an R
3 curve (Figure˜2.4)

The graph appears in Figure 2.4. The division by max(t) has the effect of scaling the
second entry so that for any given interval it will have maximum value 1.

Plot a Surface in R
3

The surface plot of z = sinh(x) cos(y) on −π ≤ x ≤ π, −π ≤ y ≤ π is created by

�−→ x=linspace(-%pi,%pi,40); y=linspace(-%pi,%pi,40);

�−→ plot3d(x,y,sinh(x’)*cos(y)) ; ← an R
3 surface (Figure˜2.5)

Note the transpose used on the x.
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Figure 2.4. Parametric plot. Figure 2.5. Surface plot in R
3.

Plot a Vector Field in R
2

The plot of the vector field for the differential equation

ẋ1 = x2 ,

ẋ2 = −x1(1 − x2
1)x2 ,

in the region −1 ≤ x ≤ 1, −1 ≤ y ≤ 1 is created by

�−→ function [xdot]=derpol(t,x);

�−→ xdot=[x(2);-x(1)+(1 - x(1)**2)*x(2)];

�−→ endfunction
�−→ xf= linspace(-1,1,10);yf= linspace(-1,1,10);

�−→ fchamp(derpol,0,xf,yf); ← an R
2 vector field (Figure˜2.6)
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Plot a Histogram

Generating a random vector with a normal distribution, plotting this vector as a histogram,
and then plotting the normal distribution on the same graph is given by the following:

�−→ v=rand(1,2000,’n’);

�−→ histplot([-6:0.4:6],v,[1],’015’,’ ’,[-4,0,4,0.5],[2,2,2,1]); ← a histogram
�−→ function [y]=f2(x); y=exp(-x.*x/2)/sqrt(2*%pi); endfunction;
�−→ x=-6:0.1:6;x=x’;plot2d(x,f2(x),1); ← superimposing an R

2 curve (Figure˜2.7)
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Figure 2.6. A vector field. Figure 2.7. A histogram.

Polar Plot in R
2

The plot in polar coordinates of ρ = sin(2θ) cos(2θ) for 0 ≤ θ ≤ 2π is created by the
following commands:

�−→ theta=0:.01:2*%pi;rho=sin(2*theta).*cos(2*theta);

�−→ polarplot(theta,rho); ← an R
2 curve in polar coordinates (Figure˜2.8)

Plot a Surface Given by Facets in R
3

If a surface in R
3 is parameterized by two variables, then by assigning a grid to these two

variables we can create a surface composed of facets. This is illustrated below.

�−→ function [x,y,z]=f3(alpha,theta)

�−→ x=cos(alpha).*cos(theta);

�−→ y=cos(alpha).*sin(theta);

�−→ z=sinh(alpha);

�−→ endfunction
�−→ alphagrid=linspace(-%pi/2,%pi/2,40);thetagrid=linspace(0,2*%pi,20);

�−→ [x1,y1,z1]=eval3dp(f3, alphagrid, thetagrid); ← building a set of facets
�−→ plot3d1(x1,y1,z1); ← an R

3 surface composed by a set of facets (Figure˜2.9)
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Figure 2.8. A polar plot. Figure 2.9. A surface described by facets.

In the following examples, graphics objects are used explicitly. Thus these examples
work only in the new graphics mode. Note, however, that the graphics functions xrect and
xpoly can also be used in the old graphics mode.

Basic Graphics Functions: xrects

In the next example, each column of rect specifies a rectangle in terms of the coordinates
of its upper left corner, width, and height. Then xrects plots these rectangles with a color
determined by its second input variable.

�−→ xbasc()

�−→ a=get("current_axes"); ← gets a handle on the newly created axes
�−→ a.title.font_size = 4; ← changes the title font size
�−→ a.data_bounds=[0,0;1,1]; ← sets the boundary values for x and z
�−→ xset(’clipgrf’); ← setting a clip zone in the graphic frame
�−→ n=20;

�−→ rects=[rand(1,n);rand(1,n);0.2*ones(1,n);0.2*ones(1,n)];

�−→ xrects(rects,rand(1,n)*20); ← a set of rectangles
�−→ xset(’clipgrf’); ← deactivates the clip zone
�−→ xtitle(’A set of rectangles’); ← (Figure˜2.10)

Graphics handles and their properties will be discussed in the next section.

Basic Graphics Functions: xpolys

xpolys can be used to draw a set of line segments. The next example generates the end-
points of several line segments and then calls xpolys to draw the line segments.

�−→ a=get("current_axes"); ← gets a handle on the newly created axes
�−→ a.axes_visible="off"; ← makes the axes invisible
�−→ a.data_bounds=[-2*cos(%pi/6),0;2*cos(%pi/6),3]; ← sets the boundary values for

x and z�−→ a.box="off";

�−→ theta=[-%pi/6,%pi/2,%pi*7/6,-%pi/6];

�−→ T=[cos(theta);sin(theta)];

�−→ Ts=(1/(1+2*sin(%pi/6)))*rotate(T,%pi);
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�−→ x=[T(1,:);Ts(1,:)]’; y=[T(2,:);Ts(2,:)]’;

�−→ x=[x+cos(%pi/6),x-cos(%pi/6),x];

�−→ y=[y+sin(%pi/6),y+sin(%pi/6),y+1+2*sin(%pi/6)];

�−→ a.thickness=8; ← sets line thickness
�−→ xpolys(x,y); ← draws a set of polylines (Figure˜2.11)

A set of rectangles

Figure 2.10. Drawing rectangles. Figure 2.11. Drawing polygons.

More examples with animations are provided in Section 5.1.2 and Appendix C.

2.4.3 Graphics Objects

In Scilab version 3.1, the new graphics mode is the default graphics mode. The old graphics
mode is still available, and in a Scilab session the user can simultaneously have graphical
windows in both old and new modes.

The two modes share the high-level graphics functions defined in Table 2.6 but differ
in their philosophy. The new graphics mode provides functions for accessing properties of
graphics objects or changing the graphics object hierarchy. In the new graphics mode, it
is not the graphics function calls that are recorded, but rather the state of the graphics is
recorded.

The state of the graphics can be viewed as an instance of an object called a Figure.
A Figure instance can be built by calling graphics functions. It contains in its fields the
graphical hierarchy of objects that compose the displayed figure.

Thus a hierarchy of objects, which are called entities, compose a graphic Figure in-
stance. Each entity has its own fields, which can also be entity instances. For example, the
top-level object is always a Figure that contains a list of Axes (graphics subwindows). An
Axes entity contains in its fields basic graphics objects like Polylines, Arc, . . . . A set of
entities can be grouped using an Aggregation entity.

The main purpose of this new graphics mode is to give the user the possibility to access
each entity in the object’s hierarchy that composes a displayed graphic. By accessing we
mean that the user can set or get object properties, for example the color of a displayed
curve, using Scilab functions set or get. The displayed graphic is automatically updated
to reflect the property changes.

As noted earlier, the properties of graphics objects can be changed through the Edit

menu of graphics windows. This is particularly useful in taking a Scilab-generated figure
and preparing it for use in presentations or publications. Properties such as color and style
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of lines and graphs are found under the properties of Polyline. A slide will adjust the color.
The axis style and labeling are under the properties of Axes.

Thus, from the user point of view, a Figure can be viewed as an instance of a dynamic
tree object. The nodes of the tree are called entities. The user can change the graph by
adding or deleting nodes and changing the node properties. The Scilab name of a node
pointer is a handle.

The two graphics modes can coexist in a Scilab session, but a default mode is set by
the Scilab startup: set("old_style","off"|"on") can be used to set the default mode, and
set("figure_style","new"|"old") can be used to open a graphical window in the specified
mode.

We will now give some examples showing some of the graphics entities in action.
In this first example a graphics window is created, a default scale is set by calling

plot2d, and a rectangle is drawn. In order to change the rectangle’s properties, we first
need to get a handle on it. Since the rectangle is the last drawn object, it is the current
entity of the current graphics window, and in that case r=get("hdl") is the easiest way to
access the rectangle. It is then possible to change the displayed rectangle’s properties.

�−→ a=get("current_axes"); ← get a handle on the newly created axes
�−→ a.data_bounds=[-1,-1;1,1]; ← set the boundary values for x and z
�−→ xrect(0,0,0.5,0.5) ← draw a rectangle
�−→ r=get("hdl"); ← get the current node, i.e, the last created objects
�−→ r ← r is a handle to a Rectangle entity

ans =

Handle of type "Rectangle" with properties:

===========================================

parent: Axes

children: []

mark_mode = "off"

mark_style = 0

mark_size_unit = "tabulated"

mark_size = 0

mark_foreground = -1

mark_background = -2

line_mode = "on"

line_style = 0

thickness = 1

fill_mode = "off"

foreground = -1

data = [0,0,0.5,0.5]

visible = "on"

clip_state = "off"

clip_box = []

�−→ r.fill_mode="on"; ← changing the displayed rectangle’s properties
�−→ r.foreground=5;

�−→ r_line_style=6;

In order to illustrate entities navigation, we can accomplish the same thing as the
previous example in a more complex way by navigating, from node to node, in the graph
of the objects associated with the figure.
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�−→ h=get("current_figure"); ← handle to the default graphic window
�−→ ch = h.children; ← the Axes entities
�−→ ch == get(’current_axes’) ← the same ?

ans =

T

�−→ r1= ch.children; ← graphic entities
�−→ r1== r ← we have found the rectangle again

ans =

T

Since get("current_figure") and get(’current_axes’) are frequently used, they can
be abbreviated as gcf() and gca(). One can also use gdf() and gda() to get a default
figure and default axes, which are undrawn objects that are used as placeholders to store
global default values used in creating respectively a new figure or new axes.

�−→ q=gda(); ← get the default axes
�−→ q.thickness=2; ← default line thickness to 2

�−→ q.grid=[4,4]; ← I want a grid on my plot
�−→ q.font_size=4; ← increase default font size
�−→ x=(0:0.1:2*%pi)’;

�−→ plot2d(x,sin(x),rect=[0,-2,2*%pi,2]);

�−→ xdel();

�−→ sda(); ← reset the default axes to default values
�−→ plot2d(x,sin(x),rect=[0,-2,2*%pi,2]); ← just check it

We have said that through properties one can change the graphical aspect of a displayed
figure. But most of the time we want to set properties for undisplayed objects and only
when all the properties are set to our requested values do we want to see the figure. This
is easy to do since all the graphics entities have a visible property, which can be on or
off. Moreover, we can start a graphics function call sequence by drawlater and end it with
drawnow to control the visibility process. This is illustrated by the following script, which
produces Figure 2.12.

u = %pi*(-1:0.2:1)/2;

v = %pi/2*(-1:0.2:1);

n = size(u,’*’);

x= cos(u)’*exp(cos(v)); ← a surface parameterized by u,v
y= cos(u)’*sin(v);

z= sin(u)’*ones(v);

col=ones(u)’*cos(v); ← a color for each vertex
col=(n-1)*(col-min(col))/(max(col)-min(col))+1; ← rescale colors
drawlater(); ← draw later !
[xx,yy,zz]=nf3d(x,y,z); ← from (x,y,z) to four sided faces
[xx,yy,zzcol]=nf3d(x,y,col); ← change the colors as well
xx=[xx,-xx];yy=[yy,-yy];zz=[zz,zz];zzcol=[zzcol,zzcol]; ← symmetry
a=gca(); ← handle to the current axes
plot3d(xx,yy,list(zz,-zzcol)); ← Let’s do it
f=gcf(); ← handle to the figure
f3d=a.children; ← just one child, it’s our 3d plot



56 2 Introduction to Scilab

f3d.hiddencolor=n; ← set the hidden face’s colors
a.rotation_angles = [55,110]; ← set the view angles
f.color_map= graycolormap(n); ← set the colormap
drawnow(); ← show the result in a graphics window
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Figure 2.12. plot3d with the new graphic.

For those who prefer a graphical interface, keep in mind that an Edit button is available
in the graphics window menu, which when launched opens up Tcl/Tk menus that can be
used to navigate and change graphical object properties.

Tables 2.6, 2.7, and 2.8 summarize the Scilab graphics functions, graphics primitives,
and graphics window primitives respectively.

2.4.4 Scilab Graphics and LATEX

This section is for those interested in inserting Scilab graphics into LATEX documents [23]
(the typesetting system used to produce this book).

Inserting a Scilab graphic in a LATEX document is an easy task since Scilab can export
graphics as Postscript files and there are commands in LATEX to include Postscript files.
Exporting a scilab graphic to Postscript can be, as already noted, achieved through the
File menu of the graphics window, but it is also possible to use the Scilab command xs2eps

(or xs2ps and the program BEpsf) to generate a Postscript file.
However, sometimes one wants to have a figure that is a mixture of Scilab graphics

images and LATEX mathematical expressions. This can require translating the Postscript
strings inserted in a Postscript document to LATEX commands in order, for example, to
get mathematical expressions inserted in a graphic. There exists a LATEX package named
psfrag that facilitates this task. Using psfrag you can substitute strings present in the
Postscript file by LATEX expressions. The idea is to position strings in Scilab graphics
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champ,champ1,fchamp 2D vector fields
contour,fcontour,contour2d,
contourf, fcontour2d 2D Level curves
eval3d,eval3dp,genfac3d 3D utility functions for facets computation
fec 2D plot of a linear function on triangles
geom3d from 3D coordinates to 2D projected ones
grayplot,fgrayplot 2D level curves as filled rectangles
hist3d, histplot histograms
isoview select isometric scales
legends 2D legends
Matplot,Matplot1 2D plot of matrices
param3d,param3d1 3D parametric curves
paramfplot2d animation of 2D parametric curves
plot, plot2d[1-4],fplot2d 2D curves
plot3d,plot3d1,fplot3d,
fplot3d1,plot3d2,plot3d3 surface drawing
polarplot 2D polar curves
Sfgrayplot, Sgrayplot 2D level curves (smoothed with fec)
subplot split graphics window into subwindows

Table 2.6. Graphics functions.

xarc,xarcs draw ellipses and circle
xarrows draw a set of arrows
xaxis axis drawing
xclea clear a rectangular zone
xclip fix a clip zone
xfarc,xfarcs paint ellipses and circle
xfpoly,xfpolys paint polylines
xfrect paint a rectangle
xgrid add a grid on 2D graphics
xnumb draw numbers
xpoly,xpolys draw a polyline
xrect draw a rectangle
xrects draw or paint a set of rectangles
xrpoly draw a regular polygon
xsegs draw a set of segments
xstring,xstringb draw a string
xstringl return the bounding box of a string
xtitle add title to a graphic

Table 2.7. Graphics primitives.

using ASCII tags that can be substituted later by LATEX expressions. For example, in the
following code the string exprlatex can be replaced by the LATEX expression

y =
e−x2/2

√
2π

using the LATEX code

\psfrag{exprlatex}{$y=\frac{e^{-x^2/2}}{\sqrt{2\pi}}$}

This is done by generating the figure in Scilab by
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driver select graphics driver
graycolormap,
hotcolormap, . . .

predefined colormaps

xbasc clears graphics window and recorded graphics
xbasimp sends Postscript graphics to printer
xbasr redraws a graphics window
xclear clears graphics window
xclick,xgetmouse wait for mouse click
xdel delete a graphics window
xend stop a driver session
xget get graphics context values
xgetech get current scale
xgraduate,graduate utility for graduation
xinfo print a string in graphics window information widget
xinit initialize a graphics driver
xlfont add a font to the current driver
xload saved graphics reloader (saved with xsave)
xname give a name to current graphics window
xpause pause
xs2fig,xs2gif,
xs2ppm,xs2ps save a graphics to file in Xfig, gif, ppm, or Postscript format
xsave save graphics in a machine-independent format (use xload to

reload)
xselect raise a graphics window
xset set graphics context values
xsetech fix the current scale
xtape recorded graphics management
winsid return the graphics window’s numbers

Table 2.8. Graphics window primitives.

�−→ v=rand(1,2000,’n’);

�−→ histplot([-6:0.4:6],v,[1],’015’,’ ’,[-4,0,4,0.5],[2,2,2,1]); ← histogram
�−→ function [y]=f2(x); y=exp(-x.*x/2)/sqrt(2*%pi); endfunction;
�−→ x=-6:0.1:6;x=x’;plot2d(x,f2(x),1); ← superposing an R

2 curve
�−→ xstring(2.3,0.2,’exprlatex’); ← adding a string

Then after the Scilab figure is exported, in this case with the name figpsfrag.eps,
the following LATEX commands generate Figure 2.13 in this book:

\begin{figure}

\psfrag{exprlatex}{$y=\frac{e^{-x^2/2}}{\sqrt{2\pi}}$}

\begin{center}

\includegraphics[width=8cm]{code-book/figpsfrag}

\end{center}

\caption{Added \LaTeX\, expression with \tt{psfrag}.}

\end{figure}

There is another solution for Scilab Postscript generated files since they contain, in
the Postscript code, LATEX information about the inserted strings (their positions and
contents). It is easy to write a Scilab function to extract this information in order to use
it at the LATEX level. One such function is xs2latex, provided in Appendix D. Running
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y = e−x2/2√
2π

Figure 2.13. Added LATEX expression with psfrag.

this function, for example with the command xs2latex(0,’figps.ps’), produces two files
figps-ps.eps and figps-tex.tex, which can be inserted in a LATEX document as follows:

\begin{figure}[hbtp]

\begin{center}

\begin{picture}(0,0)

\includegraphics[scale=1.0]{code-book/figps-ps.eps}

\end{picture}

\input{code-book/figps-tex.tex}

\end{center}

\caption{\label{figpslatex}Figure using \verb+xs2latex+.}

\end{figure}

Note that in order to change the default scale, it is not enough just to change scale

in the code. The scale factor also has to be changed in figps-tex.tex by changing the
unitlength.

Using the xs2latex macro, we can produce a figure with embedded LATEX strings and
mathematical expressions as shown in Figure 2.14.

The Scilab code used to produce Figure 2.14 is given below. This code also presents
new graphics primitives in new graphics style:

�−→ t=-%pi:0.05:%pi;

�−→ a=gca();

�−→ a.font_size=5;

�−→ plot2d(t,sin(5*t).*exp(-t/2))

�−→ hl=legend([’$\sin(5 t)\exp(-t/2)$’],4);

�−→ a.title.font_size=5;

�−→ a.x_label.font_size = 5;

�−→ a.y_label.font_size = 5;

�−→ a.auto_ticks=’off’;

�−→ a.box="off";

�−→ a.x_location="middle";

�−→ a.y_location="middle";

�−→ xt=[-%pi,0,%pi];
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x
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−π 0 π

sin(5t) exp(−t/2)

Figure 2.14. Figure obtained with xs2latex.

�−→ a.x_ticks= tlist([’ticks’,’locations’,’labels’],xt,...

["$-\pi$","$0$","$\pi$"]);
�−→ xtitle("","$x$","$y$");

�−→ xs2latex(xget("window"),"figps");

2.4.5 Old Graphics Style

As pointed out earlier, the old graphics style is considered dated and will not be maintained
in the future. However, many examples and contributions to Scilab (the most important
one being Scicos) still use the old graphics style, so we will give a brief presentation of the
old graphics style here.

In the old graphics style, the standard graphics output can be a graphics window,
a Postscript file, or an Xfig file depending on the selected graphics driver. The current
graphics driver is obtained with the driver() function. A driver is selected using the same
function with the desired driver given as a string. For example, driver(’Pos’) selects
Postscript. Alternatively, one can use the function xinit or use the Scilab graphic export
menu that appears under the file button on the Scilab Graphics window.

When the selected driver is the one that redirects output to graphic windows, all Scilab
graphics instructions are recorded sequentially. When a graphics window is resized or when
a zoom is executed, Scilab replays the recorded instructions and produces a new graphic
adapted to the size changes. In the same way, graphics instructions can be replayed after a
driver change. For example, they can be used to obtain a Postscript version of a displayed
graphics window. This can de done explicitly using the function xs2ps.

The default driver associated with a graphics window (the Rec driver) enables the
recording of graphics instructions. Recorded instructions can be replayed using the function
xtape or the function xbasr. Function xbasc can be used to clear the current window and
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to clear the associated recorded graphics instructions. Destroying a graphics window by
clicking or by calling xdel also clears the associated recorded graphics.

It can sometimes be useful to use a graphics window without graphic recording, for
example during animations. This is easily done by switching to the driver X (or W).

The default graphics behavior is that graphics display appears as soon as a graphics
function is called. It is possible to attach a pixmap to a graphics window in order to redirect
graphics outputs to that pixmap. The graphics window is redrawn using the pixmap status
by a user specific command.

The pixmap mode of a graphics window is a window graphics parameter, and each
graphics window has a large set of parameters. They define the graphics context of a
graphics window. Many graphics windows can coexist, but only the graphics context of
the current graphics window can be changed. The ID of the current graphics window (which
is an integer) can be obtained using xget(’window’), and changing the graphics window
is done with xset(’window’,n). The graphic context parameters of the current graphics
window are obtained with the function xget and changed using the function xset.

The pixmap mode can be very useful, in particular for animation, so let us consider
it more carefully. This mode is selected by calling xset(’pixmap’,1). As explained earlier,
when this mode is selected, graphics are directed to a pixmap. The content of the pixmap
is copied to the graphics window when the xset(’wshow’) instruction is executed. The
pixmap used for graphics is cleared by calling wset(’wwpc’). This mode can be used for
graphics animations since it avoids the flicker caused by having to clear a graphics window
before redrawing it. The following script generates a movie of a rectangle that moves and
changes its color pattern.

set old_style on

xsetech(frect=[0,0,10,10])

xrect(0,10,10,10)

n=100;

xset(’pixmap’,1)

driver(’X11’);

for k=-n:n,

a=ones(n,n);

a= 3*tril(a,k)+ 2*a;

a= a + a’;

k1= 3*(k+100)/200;

Matplot1(a,[k1,2,k1+7,9])

xset(’wshow’)

xset(’wwpc’)

end
xset(’pixmap’,0)

The final point concerns scale computations. Graphics functions that aim at drawing
simple objects, for example rectangles xrects, or polylines xpoly, use the current graphics
scale. It is good scilab programming to set a graphics scale before calling such functions
even if no error messages are provided by Scilab if the scales are not set. A current scale is
set each time a high-level graphics function is called, such as plot2d, or when an explicit
call to the function xsetech is used.

The default behavior of high-level functions is to adapt the current graphics scale so as
to remain compatible with previous graphics function calls. But optional parameters can
be used to change this default behavior. This is illustrated by the next example, which
generates the graphs in Figure 2.15 and Figure 2.16.
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�−→ xbasc();

�−→ t=linspace(0,2*%pi);

�−→ plot2d(t,sin(t))

�−→ plot2d(t,sinh(t/%pi)) ← the current scale changes so as to contain the two
graphs (Figure˜2.15)

�−→ [a,b,c,d]=xgetech();

�−→ b ← get the current scale [xmin,ymin,xmax,ymax]

ans =

! 0. - 1. 7. 4. !

�−→ xbasc();

�−→ plot2d(t,sin(t))

�−→ plot2d(t,sinh(t/%pi),strf="000") ← we don’t want to change the current scale
(Figure˜2.16)

�−→ [a,b,c,d]=xgetech();

�−→ b ← get the current scale [xmin,ymin,xmax,ymax]

ans =

! 0. - 1. 7. 1. !
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Figure 2.15. Automatic rescale. Figure 2.16. Using current scale.

2.5 Interfacing

In many areas, especially in modeling and simulation, there are computer programs written
in other languages that we may want to interface with Scilab. Depending on the application
area and the problem, these other programs could be written in C, C++, FORTRAN, etc.
In principle, this interfacing could go either way. For example, we might want a FORTRAN
program to use Scilab or for Scilab to use a FORTRAN program. We shall assume that
the goal is for Scilab to be able to use another program. This section will discuss how this
interfacing is done. There are two somewhat different scenarios in which such a program
is to be used.
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The first scenario is that the outside program is being called from within a Scilab
function. For example, the outside program might return the value of the right-hand side
of the differential equation that we wish to integrate with Scilab’s ordinary differential
solver ode. In that case, the interface is somewhat simpler and is described in Subsection
2.5.1.

In the second scenario we wish to have the given program become a Scilab function
that we want to be able to call and use just like any other built-in Scilab function. This
is discussed in Sections 2.5.2 and 2.5.3 it will often require some knowledge of the C
programming language and the language used by the given external program.

2.5.1 Linking Code

Writing an interface is not always necessary in order to access external code. Suppose,
for example, that you want to create a new Scicos block whose behavior is described by
C-code. You do not need to access your block from the Scilab interpreter since the call
will be performed directly by Scicos’s internal simulator. In this case what you need is
just to link your external code and update the Scilab internal table of dynamically linked
functions. Then Scicos will be able to access the new code.

In fact, most of the Scilab functions that accept an external as argument can use the
dynamic linking facility to access externally coded functions. We note ode, dassl, optim,
and fsolve. Of course, when using this facility the calling sequence of the external function
is constrained by the function it will be passed to. Each external-aware function has its
own imposed calling sequence. There’s also a special Scilab primitive called call, which
can be used to call from the Scilab interpreter a dynamically linked routine that has in its
arguments just integer, double, or character pointers. It can be used for testing external
code. Just as in the previous section, we still have to create a shared library and load it
in Scilab.

Linking external code can be done in two different ways. The function addinter is used
to add new primitives to Scilab and requires the writing of interfaces. The function link

just adds a new entry in the internal Scilab table of external functions. As pointed out
earlier, such entries can be used by some Scilab primitives. Here we will use the link

command through the ilib_for_link encapsulation. We encapsulate the call to dlaswp in
another function to simplify the number of requested arguments:

#include <string.h>
#include "stack-c.h"

extern int C2F(dlaswp)(int *n,double *A,int *lda,int *k1,int *k2,int *ipiv,int *step);

int dlaswp1(double *A,int *m,int *n,int *mipiv,int *ipiv)
{

const int un =1;
C2F(dlaswp)(n,A,m,&un,mipiv,ipiv,&un);

}

We can compile the code using a small Scilab script called builder.sce (a more precise
description of builders is given in Section2.5.3) :

�−→ names=[’dlaswp1’]; // entry points
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�−→
�−→ files = ’dlaswp1.o’; // object files

�−→ flag = ’c’ ;

�−→ ilib_for_link(names,files,[],"c");

generate a loader file

generate a Makefile: Makelib

running the makefile

compilation of dlaswp1

building shared library (be patient)

In the previous code flag=’c’ is just there to specify that the function dlaswp is a
C-coded function. This is used to guess the proper naming convention of entry points. We
load the code in a running Scilab with the generated loader.sce file:

�−→ // generated by builder.sce: Please do not edit this file

�−→ // ------------------------------------------------------

�−→ dlaswp1_path=get_absolute_file_path(’loader.sce’);

�−→ link(dlaswp1_path+’libdlaswp1.so’,[’dlaswp1’],’c’);

shared archive loaded

Link done

Now we can call the newly linked function not directly, but, for example, through
the call function. The call function plays the role of the interface for a small subset of
argument types. For example, we can call dlaswp as follows:

shared archive loaded

Link done

�−→ perm=[1,3,4,3];mp=size(perm,’*’);

�−→ A=eye(4,4);[m,n]=size(A);

�−→ y=call("dlaswp1",A,1,"d",m,2,"i",n,3,"i",mp,4,"i",perm,5,"i","out",1)

y =

! 1. 0. 0. 0. !

! 0. 0. 1. 0. !

! 0. 1. 0. 0. !

! 0. 0. 0. 1. !

The first call argument is the name of the function to be called. It is the name that
was given to the link command as the entry point name. Other arguments from A to "out"

give information on the arguments that are to be passed to dlaswp1. Then the arguments
that follow the keyword "out" give information about returned values.

Each transmitted argument is described by three entries. For example, A,1,"d" means
that the first argument of dlaswp1 is an array of double (precision) that points to the data
of matrix A. The 1 that follows the "out" keyword means that the first returned value is
also the first argument.

To provide a more explicit example, suppose that you want to find a zero of the
nonlinear equation cos(x)x2 − 1 = 0. You can build a Scilab function:
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�−→ function y=f(x)

�−→ y=cos(x)*x^2-1

�−→ endfunction

and using fsolve and the function f as its argument try to find a zero numerically:

�−→ y0=10; y=fsolve(y0,f)

y =

11.003833

�−→ f(y)

ans =

3.819D-14

However, we shall use this problem to illustrate linking. Suppose that the function f

is C-coded (for example for efficiency) and it respects the calling convention of the Scilab
fsolve primitive. One such implementation of f would be the following C-code:

#include <math.h>
void f(int *n,double *x,double *fval,int *iflag)
{

*fval = cos(*x)*(*x)*(*x) − 1;
}

As before, we build and load a shared library using ilib_for_link. Then we pass the
problem to solve to function fsolve by just giving a string that gives the name of the entry
point to use, which in this problem is "f". The result is:

�−→ ilib_for_link(’f’,’f.o’,[],’c’);

generate a loader file

generate a Makefile: Makelib

running the makefile

compilation of f

building shared library (be patient)

shared archive loaded

Link done

�−→ y0=10; y=fsolve(y0,"f")

y =

11.003833

Many other Scilab functions can use C- and Fortran-coded functions directly, including
ode, optim, etc.
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2.5.2 Writing an Interface

The main purpose of this section is to show how to integrate C- compatible functions into
Scilab. Suppose that we want to add new primitives to Scilab that will call external C-
like functions. By C-like functions, we mean functions that can be coded in any language
that remains compatible with C code in terms of linking and calling stack conventions.
Examples include Fortran code and C++ (“extern C”) functions.

We start with two examples that are Fortran-coded functions from the LAPACK li-
brary. [4] The first function is dgetrf, which performs an LU factorization of a given
matrix. Given a m×n matrix A coded as an array of double-precision scalars of size m×n

and an integer array of size Max(m,n), denoted by ipiv, the dgetrf routine performs an
in-place LU factorization of a matrix. In fact, the LU factorization can be done with row
interchanges. The integer array ipiv is here just to retain a coding of the row permutation.
A Fortran subroutine can be called from C code with the convention that all arguments
are transmitted through pointers. Note also that the naming conventions differ slightly
from C to Fortran and are compiler-dependent. We enclose the Fortran name in a C2F(.)

macro call, which will take care of naming conventions. Thus, the calling sequence for
dgetrf from C-code is as follows:

extern int C2F(dgetrf)(int *m,int *n,double *A,int *lda,int *ipiv,int *info);

The second function we want to use is dlaswp. This routine simply applies a permutation
described by an ipiv integer array to a given matrix:

extern int C2F(dlaswp)(int *n,double *A,int *lda,int *k1,int *k2,int *ipiv,int *step);

In order to access these two functions we add two Scilab primitives also called dgetrf

and dlaswp with the following calling syntax:

[LU,perm]=dgetrf(A);

[C]=dlaswp(B,perm);

We still need to write glue code for converting Scilab arguments to C form, calling the
external functions, and back-converting C objects to Scilab returned values. Most of the
time the glue code is written in C and is called an interface, so that an interface is just a
C-function. We need an interface for each function to be included into Scilab.

The two interfaces for dgetrf and dlaswp are as follows:

#include <string.h>
#include "stack-c.h"

extern int C2F(dgetrf)(int *m,int *n,double *A,int *lda,int *ipiv,int *info);

int int dgetrf(char *fname)
{

int l1, m1, n1, mipiv,nipiv=1,lipiv,info;
CheckRhs(1,1);
CheckLhs(1,2);
GetRhsVar(1, "d", &m1, &n1, &l1);
mipiv= Max(m1,n1);
CreateVar(2, "i", &mipiv,&nipiv, &lipiv);
C2F(dgetrf)(&m1,&n1,stk(l1),&m1,istk(lipiv),&info);
if ( info < 0 )
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{
Scierror(999,"%s: argument %d of dgetrf has an illegal value\r\n",

fname,−info);
return 0;

}
else if ( info > 0 )
{

sciprint("%s: U(%d,%d) is exactly zero\r\n",info+1,info+1);
}

LhsVar(1) = 1;
LhsVar(2) = 2;
return 2;

}

#include <string.h>
#include "stack-c.h"

extern int C2F(dlaswp)(int *n,double *A,int *lda,int *k1,int *k2,int *ipiv,int *step);

int int dlaswp(char *fname)
{

int l1, m1, n1, mipiv,nipiv,lipiv,info,un=1;
CheckRhs(2,2);
CheckLhs(1,2);
GetRhsVar(1, "d", &m1, &n1, &l1);
GetRhsVar(2, "i", &mipiv,&nipiv, &lipiv);
mipiv= mipiv*nipiv;
C2F(dlaswp)(&n1,stk(l1),&m1,&un,&mipiv,istk(lipiv),&un);
LhsVar(1) = 1;
return 1;

}

Note that in the two previous interfaces we have used functions, macros, or data from
the interface library (CheckRhs, CheckLhs, GetRhsVar, CreateVar, and LhsVar). The header
file stack-c.h is there to provide macro definitions and prototypes for the interface library
functions.

At first sight, these two functions might seem complex, but most of the time we do
not have to write the full interface from scratch. Picking pieces of code from the examples
provided is the easiest way to write new functions. We won’t describe in full detail all the
functions that are present in the interface library. Rather we will try to give the rules that
are to be followed for writing an interface.

How does the interface work? When at the Scilab level the user enters the command
[LU,perm]=dgetrf(rand(5,5)), the arguments of the dgetrf function are first evaluated and
their resulting values are stored in a stack (the function calling stack) in the order they
appear in the calling sequence. Here we just have one argument; rand(5,5) is evaluated and
the resulting matrix is stored on the calling stack at position 1. The Scilab calling sequence
is also analyzed by the interpreter in order to evaluate how many returned arguments are
expected. Here two returned arguments are expected.

The glue code for dgetrf, here called int_dgetrf, is then called by the interpreted code.
The first job to be performed by the interface is to check that the number of given argu-
ments is correct and that the number of expected returned arguments is also correct. This



68 2 Introduction to Scilab

is performed by CheckLhs and CheckRhs . For example, if the number of given arguments
is outside of the given bounds, then CheckRhs will print an error message and we return
from the interface to the Scilab interpreter with a Scilab error raised.

In the interface each variable present on the stack is characterized by an integer that
is its position on the stack. Calling arguments are, when entering the interface, stored on
the stack from position 1 to n if n is the number of given arguments.

The next job to be performed is to check that each given argument has the expected
type and proper dimensions. If the type is correct, then we need to give a pointer to the
associated argument data. This pointer will be given to the C-function we are interfacing.
The next command,

GetRhsVar(1, "d", &m1, &n1, &l1);

checks that the first given argument is a scalar matrix ("d") and, in case of success, returns
in m1 and n1 the matrix dimensions and in l1 an identifier that can be used to get a pointer
to the double array data (stk(l1)).

Before calling the function dgetrf, we need to allocate space in the Scilab calling stack
for the integer array ipiv, which is to be of dimensions 1\timesMax(m1,n1). The C-code

mipiv= Max(m1,n1);

CreateVar(2, "i", &mipiv,&nipiv, &lipiv);

will create a scalar matrix with the proper size. The "i" is here to say that the array
is to be considered as an integer array. Data access is done through an integer pointer
istk(lipiv). Since the first available position is position 2, we use this position for our
newly created variable.

The calling syntax of CreateVar is the same as the calling syntax of GetRhsVar, but note
that in creating a variable, the dimension parameters are used as input data.

We are now ready to call the function dgetrf. After the call, the Scierror function can
be used to raise a Scilab error and the sciprint function can be used to display warning
messages or other relevant information.

After the call, we want to return the result of the LU factorization, which is stored
in the double array stk(l1), and the coded permutation, which is stored in istk(lipiv).
Notice that in dgetrf the double array stk(l1) is used as both input and output variable.
However, there is no risk in modifying a Scilab input variable since when we are in the
interface GetRhsVar, we do not have direct access to a given argument but only to a copy
of that argument. It is thus safe to modify the m1xn1 values of the double array stk(l1)

and to use this variable as a Scilab return value.
We have checked at the beginning of the interface the number of requested returned

values. At the end we just have to indicate at which location on the stack the returned
arguments are to be found. The syntax LhsVar(i)=j is used to say that the ith value to
be returned is at position j on the stack.

The second variable to be returned is the integer array. Note that by default Scilab
matrices are stored as a double array and that we have used the data of the second variable
as an integer array. Since we have declared that the second variable was an integer array
("i"), Scilab will perform an automatic conversion of the array when returning from the
interface.

All interfaces are based on the same pattern, and a number of examples are available
in the subdirectories of SCI/examples. For example, the files included in the directory
SCI/examples/interface-tour-so give a tour of almost all of the functions that can be
used for interfacing. Note that it is possible, for example, to interface a function that itself
uses a function as a parameter and at the Scilab level we often want to pass a Scilab
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function as an argument. It is also explained how to call the Scilab interpreter within an
interface to compute an intermediate value.

In the MATLAB world, interfaces are known under the name of mexfiles. As explained
in SCI/examples/mex-examples, mexfiles can be emulated in Scilab and can be used as
interfaces for Scilab functions.

2.5.3 Dynamic Loading

Writing glue code is just the first step. In order to use the desired code, we need to
compile the written code as a shared library. Usually this is .so files in Unix and .dll

files in Windows. Then we need to load it in Scilab, and tell Scilab the correspondence
between the interface names and the names of primitives to be added. Since this process
is system-dependent, we have developed Scilab script to hide system-dependent code from
the Scilab user. We have two interface functions that are coded in the two files intdgetrf.c
and intdlaswp.c. Note that there are no limitations or constraints on the number of files
and their names.

Using a text editor, we have to write a small Scilab script named builder.sce. This is
a canonic name and most Scilab users know that running builder.sce is used to set up a
contribution or an interface:

�−→ // This is the builder.sce that must be run from this directory

�−→ ilib_name = ’liblapack’; ← interface library name
�−→ files = [’lapack.o’]; ← objects files
�−→ libs = []; ← other libraries needed for linking
�−→ table =[’dgetrf’, ’int_dgetrf’; ← association table (scilab˙name, interface-name)
�−→ ’dlaswp’, ’int_dlaswp’];

�−→ // do not modify below

�−→ // ----------------------------------------------

�−→ ilib_build(ilib_name,table,files,libs)

Of course, one can use as a model the builder.sce file contained in the directory
SCI/examples/interface-tutorial-so/builder.sce. It can be easily adapted to create a
new interface.

builder.sce provides the following information:

• ilib_name is a string that stands for the library name (a set of interfaces) that we are
building.

• files is a string matrix that gives the object files that are needed to build the li-
brary. Note that the object files are suffixed with .o even under Windows. A unique
builder.sce file is to be built and it should run as well under Unix and Windows.

• libs is a string matrix that gives a list of libraries (shared libraries) that are needed
by the object files. Note that in our example, we are interfacing functions from the
LAPACK library, which is an already loaded Scilab executable. Thus we do not need
to provide object files or libraries for providing the code of the dgetrf and dlaswp

functions.
• table is a string matrix, where the association between a Scilab name and an interface

name is provided. For example, its first line ’dgetrf’, ’int_dgetrf’; indicates that
the Scilab function dgetrf is implemented via the interface int_dgetrf.

Running the builder.sce script from Scilab will create a shared library and a set of
new files.
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�−→ // This is the builder.sce that must be run from this directory

�−→ ilib_name = ’liblapack’; ← interface library name
�−→ files = [’lapack.o’]; ← objects files
�−→ libs = []; ← other libraries needed for linking

�−→ table =[’dgetrf’, ’int_dgetrf’; ← association table (scilab˙name, interface-name)
�−→ ’dlaswp’, ’int_dlaswp’];

�−→ // do not modify below

�−→ // ----------------------------------------------

�−→ ilib_build(ilib_name,table,files,libs)

generate a gateway file

generate a loader file

generate a Makefile: Makelib

running the makefile

compilation of lapack

building shared library (be patient)

Among the created files, the most important one is a new Scilab script called
loader.sce, which can be used when we need to load the shared library in a running
Scilab. The loader.sce uses the Scilab function addinter to load the shared library and
update the primitive table.

In practice, one executes the builder.sce once. Note that when running a builder.sce

script the current Scilab directory must be the directory containing the builder.sce script,
and the library is loaded with the loader.sce script each time we start a new Scilab session.

�−→ // generated by builder.sce: Please do not edit this file

�−→ // ------------------------------------------------------

�−→ liblapack_path=get_file_path(’loader.sce’);

�−→ functions=[ ’dgetrf’;

�−→ ’dlaswp’;

�−→ ];

�−→ addinter(liblapack_path+’/liblapack.so’,’liblapack’,functions);

shared archive loaded

Among the other generated files we note:

• A file named after the library name liblapack.c, called a “gateway” file, is also gen-
erated. It contains the main entry point of the library, which is used by the addinter

function.
• A makefile named Makelib, which is system-dependent and, which can be used to

rebuild the shared library. This makefile can be very useful for debugging purposes
when the shared library build process fails.

We can now test the added primitives:

�−→ exec (’loader.sce’);

shared archive loaded

�−→ A=rand(5,5);



2.5 Interfacing 71

�−→ B=A;

�−→ [LU,perm]=dgetrf(A); ← call dgetrf
�−→ [E]=dlaswp(eye(A),perm); ← apply permutation to identity matrix
�−→ L=tril(LU,-1)+eye(LU);U=triu(LU); ← separate L and U

�−→ if norm(L*U-E*A) > 10*%eps then pause; end ; ← check result
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Modeling and Simulation in Scilab

One of the fundamental problems in many areas of science and engineering is the problem
of modeling and simulation. Scilab provides a large array of tools for developing and
simulating models of several types. For several of these tools it is possible to use them
with abbreviated commands and default values of some parameters. However, to know
how to choose the appropriate tools and how to get the kind of answers desired, it is often
necessary to know something about how the algorithms are set up and what to do if there
are difficulties.

In this chapter we shall describe the types of models that are available in Scilab and
some of the tools available for their simulation. We shall also give some general comments
about how to use the tools and how to choose between the tools.

3.1 Types of Models

3.1.1 Ordinary Differential Equations

One of the most popular types of model is that of ordinary differential equations (ODE)
such as

ẏ = f(t, y). (3.1)

Here y and f may be vector valued, y is a function of the real variable t, and ẏ denotes
the derivative of y with respect to t. System (3.1) is a first-order equation since it involves
only first-order derivatives.

Some models are initially formulated in terms of higher derivatives, but they can always
be rewritten as first-order systems by the introduction of additional variables. The Scilab
tools assume that the differential equation has first been rewritten to be of first order.
The exception to this is boundary value problems, where the numerical methods allow for
higher-order differential equations.

Example 1. The system of second-oder differential equations

ÿ1 = ẏ1 − y2 + sin(t), (3.2a)
ÿ2 = 3ẏ1 + y1 − 4y2, (3.2b)

can be rewritten as



74 3 Modeling and Simulation in Scilab

ẏ1 = y3, (3.3a)
ẏ2 = y4, (3.3b)
ẏ3 = y3 − y2 + sin(t), (3.3c)
ẏ4 = 3y3 + y1 − 4y2. (3.3d)

The differential equation (3.1) generally has a family of solutions. To perform a sim-
ulation, additional information must be provided to make the solution unique. An initial
condition is the value of y at a particular value of t. A boundary condition is when more
than one value of t is involved in the additional conditions. An example of a boundary
condition is y(0) − 2y(π) = 0. We will discuss boundary value problems later.

The basic existence and uniqueness result for differential equations in the form (3.1)
says that if we specify y(t0), and f and fy = ∂f/∂y are continuous functions of t and y
near (t0, y(t0)), then there is a unique solution to (3.1) satisfying the initial condition. The
solution will continue to exist as long as these assumptions hold. Another important fact
is that the more derivatives of f(t, y) that exist and are continuous, the more derivatives
y has.

This may seem to be an esoteric fact, but it actually plays an important role in simula-
tion. The reason is that most simulation tools try to deliver a requested accuracy and the
error estimates are based on assumptions about the number of derivatives of the solutions.
Suppose now that we have a controlled differential equation

ẏ = f(t, y, u(t)) (3.4)

with u(t) a given function. Then even if f has all the derivatives that one wants, y can
have only one more derivative than u. Thus if a control is only piecewise continuous,
so that it has jumps, which often occurs in applications, the solution y will not have a
continuous first derivative at the jumps. This in turn can lead to serious problems with
many numerical tools unless the behavior of u is taken into account when one is requesting
the simulation.

3.1.2 Boundary Value Problems

Boundary value problems (BVP) are differential equations but with the information given
at two or more times rather than at just one time. Two-point boundary value problems
take the general form of

ẏ = f(t, y), t0 ≤ t ≤ tf , (3.5a)
0 = B(y(t0), y(tf )). (3.5b)

If y in (3.5a) is n-dimensional, then there usually need to be n equations in (3.5b) in order
to uniquely determine a solution. However, the theory is more complicated than that for
initial value problems, as illustrated by the next example.

Example 2. Suppose that we have the boundary value problem

ẏ =
(

0 1
−1 0

)
y +

(
0
1

)
, (3.6a)

0 =
(

y1(0)
y2(tf )

)
. (3.6b)

The solution of this differential equation is
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y1 = c1 cos(t) + c2 sin(t) + 1, (3.7a)
y2 = −c1 sin(t) + c2 cos(t), (3.7b)

where c1, c2 are arbitrary constants. The first boundary condition (3.7a) gives c1 = −1.
The second boundary condition (3.7b) then gives that

0 = sin(tf ) + c2 cos(tf ). (3.8)

But (3.8) has a solution for c2 only if cos(tf ) �= 0. Thus we see that the existence of a
solution to this boundary value problem depends on the particular value of tf . Here tf
cannot be π

2 + mπ, where m is an integer.

One of the nice features about ODEs is that the given initial conditions are at one
point. This means that with the numerical methods given below the computation can be
local and move from one step to the next. This makes it easier to solve problems on longer
time intervals or with higher state dimension. With BVP, since the information occurs at
more than one time, it is often necessary to use a more global algorithm that takes into
account the full t interval. This leads to much larger systems of equations that have to be
solved.

3.1.3 Difference Equations

The second major class of models is that of difference equations. These problems occur
when there a quantity whose values are of interest only at discrete-time values or the
values change only at discrete times. Difference equations can occur either because the
process is naturally discrete and only undergoes changes at isolated times or because it
is continuous but our observations occur only at isolated times. Also, many numerical
methods for differential equations actually solve an approximating difference equation.

In difference equations there is an integer variable, which we denote by k. The solution
is a sequence y(k) and it has to solve a difference equation

y(k + 1) = f(k, y(k)), y(k0) = y0. (3.9)

Sometimes it is more natural to think of a sequence of times tk, k ≥ k0, and a difference
equation

z(tk+1) = g(tk, z(tk)), z(tk0) = z0. (3.10)

If the tk are evenly spaced, so that t+1− tk = h where h is a constant, then we can rewrite
(3.10) in the form of (3.9) as follows:

v(k + 1) = g(w(k), v(k)), v(k0) = z0, (3.11a)
w(k + 1) = w(k) + h, w(k0) = tk0 . (3.11b)

Note that v(k) of (3.11a) is the same as z(tk) from (3.10).
For the remainder of this section we will assume that the difference equation is in

the form (3.9). The theory for solutions of difference equations is simpler than that for
differential equations. Given a starting time k0 and a value of y0 that gives the initial
condition y(k0) = y0, the values of y(k) for k > k0 are computed recursively using (3.9)
and will exist as long as (k, y(k)) is in the domain of f .

There is one important difference between the discrete and continuous theories that
is worth mentioning. The uniqueness theorem for differential equations tells us that if
two solutions start at the same time but with different initial values and if the continuity
assumptions on f, fy are holding, then the solutions can never intersect. This is not true
for difference equations.
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Example 3. The difference equation (3.12) is at the origin after two time steps no matter
where it starts at k0:

y(k + 1) =
(

1 −1
1 −1

)
y(k). (3.12)

The difference equations (3.9) and (3.12) are of first order since there is maximal
difference of one in the values of k that are present. Just as systems of differential equations
can always be written as first-order differential equations, difference equations can always
be written as first-order difference equations.

Example 4. The equation (3.13) is of third order since (k + 3) − k = 3:

y(k + 3) = 4y(k + 2) − y(k + 1)y(k). (3.13)

The difference equation (3.13) can be rewritten as a first-order difference equation by
introducing additional variables as shown in (3.14):

y1(k + 1) = y2(k), (3.14a)
y2(k + 1) = y3(k), (3.14b)
y3(k + 1) = 4y3(k) − y2(k)y1(k). (3.14c)

The Scilab tools for working with difference equations assume that they have been
written in first-order form.

3.1.4 Differential Algebraic Equations

Many physical systems are most naturally initially modeled by systems composed of both
differential and algebraic equations [11]. These systems take the general form of

F (t, y, ẏ) = 0 (3.15)

and are often called DAEs.

Example 5. One example of a DAE is a model of a constrained mechanical system where
the constraint is on the position variables. Such a system takes the general form

ẋ = v, (3.16a)
v̇ = G(x, v, t) + Q(x, t)λ, (3.16b)
0 = H(x, t). (3.16c)

System (3.16) is a DAE in y = (x, v, λ). Equation (3.16c) gives the constraints. Also
Q(x, t) = Hx(x, t)T , and Q(x, t)λ gives the force generated by the constraint.

Given a DAE model, there are two options. One option is to try to rewrite the DAE
into an ODE or a simpler DAE. This is usually done by a mixture of differentiation and
algebraic manipulations. The other option is to try to simulate the DAE directly.

The theory for DAEs is much more complex than the theory for ODEs. One problem is
that there will exist solutions only for certain initial conditions that are called consistent
initial conditions. Considerably more detailed information about DAEs is in [11]. Here it
is enough to know two things. First, the structure of the DAE is importan, and second,
there is a nonnegative integer called the index. An ODE is is said to have index zero.



3.1 Types of Models 77

Example 6. The simple system

ẏ1 = y1 − cos(y2) + t, (3.17a)
0 = y3

1 + y2 + et, (3.17b)

is a DAE. From (3.17b) we see that the initial conditions must satisfy y1(t0)3+y2(t0)+et0 =
0, so that only some initial conditions are consistent. This particular example can be
reduced to an ODE by solving (3.17b) for y2 and substituting into (3.17a) to get an ODE
in y1.

Index-one DAE systems occur frequently and are the ones for which Scilab provides
tools. They are also the ones that Scicos is able to solve when they occur in the form of
implicit blocks. Index-one systems in the form (3.15) have the additional property that
{Fẏ, Fy} is an index-one matrix pencil all along the solution and Fẏ has constant rank.
Two important types of index-one DAEs are the implicit semiexplicit and semiexplicit
index-one systems. The implicit semiexplicit index-one systems are in the form

F1(t, y1, y2, ẏ1) = 0, (3.18a)
F2(t, y1, y2) = 0. (3.18b)

Here ∂F1/∂ẏ1 and ∂F2/∂y2 are both nonsingular. We shall sometimes refer to y1 as a
differential variable and y2 as an algebraic variable.

The semiexplicit index-one DAE takes the form

ẏ1 = F1(t, y1, y2) (3.19a)
0 = F2(t, y1, y2) (3.19b)

with ∂F2/∂y2 nonsingular. The DAE (3.17) is semiexplicit of index one. Index-one DAEs
that are not semiexplicit or linear in the derivative terms are called fully implicit.

3.1.5 Hybrid Systems

Many systems involve a mixture of discrete- and continuous-time events. These types of
systems are generally called hybrid systems. The discrete nature of the system can occur
in several different ways. These differences have to be taken into account in the simulation.
The times at which a discrete variable changes value are sometimes called events.

When an event occurs, there may be a change in the differential equations. The state
dimension may also change. It then becomes important to determine new initial conditions.
This is referred to as the initialization problem. Sometimes the event occurs when some
quantity reaches a certain value. For example, in the simulation of a mechanical system,
if contact is made with an obstacle, then the equations change. It thus becomes necessary
for the simulation software to be able to determine when the event occurs. This is known
as root-finding ability.

Even when an event does not change the dimension of the state or the form of the
equations, it can interfere with the error control of the integrator being used unless care
is taken.

The Scicos software described in Part 2 of this book was specifically designed to handle
hybrid systems. The new version released with Scilab 3.0 is able to simulate a variety of
DAE hybrid systems.
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3.2 Simulation Tools

The simulation tools in Scilab generally take three forms. One of these comprises the pri-
mary tools used by knowledgeable users on challenging problems. The second is simplified
versions of the primary tools that are easier to use and are designed for simpler prob-
lems. The third is tools developed for special cases that occur often in certain areas of
science and engineering. We will usually present them in the order of simplified, primary,
specialized.

3.2.1 Ordinary Differential Equations

The primary simulation tool for ordinary differential equations is ode. In order to simulate
a differential equation (3.1), the least that we can give the integrator is the initial time t0,
the initial value y0, and a formula for evaluating f(t, y). When we do this, the software
picks the method and the error tolerances and adjusts the step size to try to meet the
error tolerances. This will often result in many more values of the solution than are needed.
Also, sometimes the value of the solution is desired at time values that are not time values
used in the numerical simulation. Thus the final thing the simplified version needs is a
vector of times at which the value of the solution is desired. The final entry of this vector
is the final time for the integration. Thus the simplified calling sequence for ode is

�−→ y=ode(y0,t0,t,f)

Here f is an external variable or string providing the function f that is the right-hand
side (RHS) of (3.1). If t = [t0, t1, . . . , tn], then y= [y(t0), y(t1), . . . , y(tn)], where y(ti) is
the estimate for the solution at time ti. If t is a single number, then it is the final time
of the integration. In earlier versions of Scilab, the function f could be defined either as a
.sci file or on-line using the deff function. With version 3.0 of Scilab, functions may be
defined on-line using the same syntax as if they were defined in a file. Thus if we wish to
define the function f(t, y) = −y + sin(t, y) on-line, we can just write

�−→ function ydot = f(t,y)

�−→ ydot=-y + sin(t)

�−→ endfunction

Unfortunately, the simple call of ode does not always work. More direct control of the
simulation comes through two methods. One is the expanded or full version of the ode

command. The other uses odeoptions.
In the full version of ode one can choose the method, specify the integration tolerances,

provide the Jacobian if it is needed by the type of method chosen, and set up some other
variables required by some methods. ode provides a standard interface to a number of
solvers, in particular to those in ODEPACK[28, 34, 13].

In choosing the method, several factors need to be taken into account. For problems
with frequent restarts, there are advantages to one step methods such as the Runge–Kutta
formulations over the multistep methods such as the BDF methods and Adams methods.
The order of a numerical method is an indication of the error relative to the step size.
Thus a fourth-order method would be expected to have error proportional to h4 (assuming
that a constant step h is used, and the steps are sufficiently small). On the other hand,
multistep methods, for a given order, often require less computation. Some problems are
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referred to as stiff. There are lots of definitions of a stiff differential equation, but we will
take stiff to mean that if one had an explicit method, then the step sizes would have to be
reduced to ensure stability of the error propagation rather than to get the desired accuracy.
Stiffness is often caused by large negative eigenvalues. Generally, implicit methods can take
bigger time steps than explicit methods on stiff problems. Higher order is usually desirable.
However, for implicit methods the higher the order, the smaller the stability region. This
means that the higher-order method might have to take smaller steps than expected. This
is especially true for problems that have highly oscillatory solutions. In addition, it does
not make sense to go to high order if the equations, or input functions, do not have enough
continuous derivatives.

The previous comments only touch on some of the issues involved in the choice of
numerical method. Our experience has been that when the simple call does not work, then
it is often better to alter the atol and rtol and use odeoptions, which is described shortly,
rather than altering the method. The exception is with DAEs as discussed later.

The full calling sequence of ode is either of

[y,w,iw]=ode([type],y0,t0,t [,rtol [,atol]],f [,jac] [,w,iw])

[y,rd,w,iw]=ode("root",y0,t0,t [,rtol [,atol]],f [,jac],ng,g [,w,iw])

Any variables inside ode with square brackets are optional. Here type is a character string
and refers to the type of method chosen. The available types are as follows:

lsoda: This is the default integrator. It is from the package ODEPACK. It automatically
selects between a nonstiff predictor-corrector Adams method and the stiff Backward
Differentiation Formula (BDF) method. Both methods are multistep methods. lsoda
uses the nonstiff method initially and dynamically monitors data in order to decide
which method to use. It also automatically varies the order.

adams: This calls the lsode solver from ODEPACK and uses the Adams method. It is for
nonstiff problems.

stiff: This is for stiff problems. It calls the lsode solver from ODEPACK and uses the
BDF method.

rk: This is an adaptive Runge-Kutta of order 4 (RK4). Thus it is a one-step method and
can usually use larger steps after a restart than a multistep method can use.

rkf: This is another Runge–Kutta method by Shampine and Watts and is based on
Fehlberg’s Runge–Kutta pair of order 4 and 5 (RKF45). The method is of order 4.
It simultaneously carries out a fifth-order method that is used for error prediction.
This method is for nonstiff and mildly stiff problems when derivative evaluations are
inexpensive. This method should generally not be used when the user demands high
accuracy.

fix: This is the same solver as rkf, but the user interface is very simple. Only the rtol

and atol parameters can be passed to the solver. This is the simplest method to try.
root: This is the lsodar solver with root-finding capabilities from ODEPACK. It is a

variant of the lsoda solver. root finds the roots of a given vector function. We will
discuss this more carefully below when we discuss ode_root.

discrete: We will discuss this option when we discuss discrete simulation tools below. See
also ode_discrete for more details.

Two parameters that are especially useful are rtol and atol, which are real constants
or real vectors of the same size as y. Their entries are the absolute and relative error
tolerances requested for each entry of y. Setting these tolerances too tight can increase
computational time and, in some cases, lead to integrator failure when tolerances cannot
be met. Setting the tolerances too loose can lead to inaccurate answers. It should be
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kept in mind that the step size decisions are based on estimates of the error. The actual
error in the solution could be higher. Default values for rtol and atol are rtol=1.d-5 and
atol=1.d-7 for most solvers and rtol=1.d-3 and atol=1.d-4 for rfk and fix.

The parameter jac is an an external (function or character string or list) that provides
a Jacobian for those methods that can utilize analytic Jacobians. These include the BDF
based and other implicit methods for stiff problems. If jac is a function, then the syntax
should be J=jac(t,y). J should evaluate to the matrix that is ∂f/∂x.

Optional arguments w and iw are vectors for storing information returned by the inte-
gration routine. When these vectors are provided in the right-hand side of ode the inte-
gration restarts with the same parameters as in its previous stop.

When ode is called, the first thing it does is to check whether the variable %ODEOPTIONS

exists. If %ODEOPTIONS does not exist, ode uses the default values of a number of parameters.
%ODEOPTIONS can be set directly. Alternatively, these parameters can be changed using the
function odeoptions:

�−→ %ODEOPTIONS=odeoptions()

A window then opens in which any desired parameter values can be entered. Parameters
will stay at these values throughout the rest of the session unless they are reset or cleared.

The variable %ODEOPTIONS has the following entries:

%ODEOPTIONS=[itask,tcrit,h0,hmax,hmin,jactyp,mxstep,maxordn,maxords,...

ixpr,ml,mu]

with default value [1,0,0,%inf,0,2,500,12,5,0,-1,-1]. The parameters in
%ODEOPTIONS have the following uses and meaning.

itask: Takes on integer values in [1, 5]. 1 is normal computation at specified times. 2 is
computation at mesh points that are given in the first row of output of ode. 3 is one step
at one internal mesh point and return. 4 is normal computation without overshooting
tcrit. 5 is one step, without passing tcrit and return. Options 4 and 5 are used when
there is critical time past which the differential equation changes so that one wants to
integrate up to tcrit but not use information past that time.

tcrit: Assumes that itask equals 4 or 5 as described above. tcrit is a scalar.
h0: This is the first step tried by the integrator. It might be used with a Runge–Kutta

method where you know that the solution starts out changing slowly and using a small
first step wastes CPU time.

hmax: This is the largest step size that the integrator is allowed to use. One use of this
is with simulations where there are long slow stretches and then rapid changes in the
solution. Sometimes the integrators will start taking such large steps that they are
unable to recover from a rapid change, or even worse, they miss an isolated event
completely. This is illustrated in Example 7. If hmax is set small, it may be necessary
to increase mxstep.

hmin: This is the minimum step size that can be accepted. Setting it greater than zero
can make the error estimates less reliable and may result in a less-accurate solution.
However, it also has the effect of forcing the integrator to keep going rather that
letting the integrator take very tiny steps. This is most useful when there are local
conditioning problems or loss of smoothness that is interfering with the error estimates.

jactype: This specifies how any nonlinear equations in the integrator will be solved. 0 is
functional iterations with no Jacobian used. This is for ’adams’ or "stiff" only. 1 is a
user-supplied full Jacobian. 2 is an internally generated full Jacobian. This is done by
differencing and so is an approximate Jacobian. 3 is an internally generated diagonal
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Jacobian. This is for ’adams’ or "stiff" only. 4 is a user-supplied banded Jacobian
(see ml and mu below). 5 is an internally generated banded Jacobian (see ml and mu

below). Banded Jacobians naturally occur with some problems, such as the method
of lines solutions of PDEs. The solvers can exploit the banded structure if they are
informed about it.

mxstep: This is the maximum number of time steps the integrator is allowed to take. The
default value is 500. Having a finite value here is important since it avoids having
the algorithm spending a very long time on integration without permission. This can
happen on longer intervals that require very tiny timesteps, or in integrating until a
root is found but the surface is never crossed. 500 is probably a bit low for a default
value and is there for historical reasons.

maxordn: This is the maximum nonstiff order allowed. It can be at most 12. The higher
orders have some advantages, but they also have a number of disadvantages on some
problems, so one should not always assume that higher is better. Setting maxordn to
be less than 12 is another way to encourage the method to use smaller step sizes.

maxords: This is the maximum stiff order allowed. It is at most 5 since BDF methods are
not stable at orders higher than 5. Setting maxords=1 gives an implicit Euler’s method.
If one is having trouble integrating highly oscillatory systems, then it is often helpful
to set maxords to 2 or maybe 3.

ixpr: This is the print level and is 0 or 1.
ml, mu: If jactype equals 4 or 5, then ml and mu are the lower and upper half-bandwidths of

the banded Jacobian. The band is the i,j’s with i-ml ≤ j ≤ ny-1. If jactype equals 4,
then the Jacobian function must return a matrix J that is ml+mu+1*ny, where ny is the
dimension of ẏ in ẏ = f(t, y). Column 1 of J is made of mu zeros followed by ∂f/∂y1

(1+ml possibly nonzero entries). Column 2 is made of mu-1 zeros followed by ∂f/∂y2,
etc.

Example 7. As an illustration of the need for odeoptions(), we consider the problem of
simulating

ẏ = −0.1y + g(t), y(0) = 1, 0 ≤ t ≤ 600, (3.20)

with g(t) zero except between 488.3 and 488.9, where g takes the value of 2. This differential
equation is representative of the situation in which there are sudden events after a long
period during which there is little change in the solution of the differential equation. One
way to write g mathematically is

g(t) = 0.5(1 + sign(t − 488.3))(1 − sign(t − 488.9)).

The following Scilab script runs a simulation of (3.20) with the default settings of
%ODEOPTONS. The result is plotted in graphics window 0. It then changes hmax to 0.1 and
increases mxstep to 10,000 and plots the new solution in graphics window 1.

function z=g(t)

z=0.5*(1+sign(t-488.3))*(1-sign(t-488.9))

endfunction

function ydot = f(t,y)

ydot=-0.1*y+g(t)

endfunction
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tt=0:0.1:600;

%ODEOPTIONS=[1,0,0,%inf,0,2,500,12,5,0,-1,-1];

y=ode(1,0,tt,f);

xbasc()

plot2d(tt,y); ← Fig. 3.1

%ODEOPTIONS=[1,0,0,0.1,0,2,10000,12,5,0,-1,-1];

xbasc()

y=ode(1,0,tt,f);

plot2d(tt,y); ← Fig. 3.2

If this script is called longstep.sci and is in the directory /Users/scampbell, then the
simulation is carried out by

�−→ exec("/Users/scampbell/longstep.sci")

The simulation using ode with the no limit on hmax gives the graph in Figure 3.1. The
effect of g is totally missing. This is because ODE integrators often take large steps during
“quiet periods” and then sometimes totally miss events happening over relatively short
periods. Changing hmax from %inf to 0.1 and mxstep to 10,000, we get the graph in Figure
3.2. The change in mxstep was needed because the new value of hmax would require more
than the default value of 500 steps.

0 100 200 300 400 500 600
−0.1

0.1

0.3

0.5

0.7

0.9

1.1

Figure 3.1. Simulation using default values of hmax and mxstep.

A careful discussion of all the factors in choosing between methods is a book in itself.
The interested reader is referred to the classic volumes [26, 27]. But one question is,
suppose that I am going to use default values. Should I worry about which method I use?
The following example addresses the effect of method on time of computation. Actual
timings are somewhat machine-dependent. We do not consider the important question of
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Figure 3.2. Simulation after using odeoptions() to change f, hmax, and mxstep.

accuracy here but note that in the computations below, when we had the solutions graphed
they appeared the same.

Example 8. Listed below is a Scilab script compode.sci, which defines several functions.
The function comparison(a,b,c,d) generates an 8-dimensional linear system ẏ = Ay + g.
The eigenvalues of A are a±bi, a±bi, c, c, d, d, and all modes appear in all entries of y. This
differential equation is then integrated using the default method and adams, stiff, rkf, and
the DAE integrator dassl discussed later in this chapter. The output is the computational
times for each method in seconds. The times are found using tic and toc.

function w=g(t)

w=[zeros(1,6),cos(t),3*sin(2*t)]’;

endfunction
function ydot=f(t,y)

ydot=A2*y+g(t);

endfunction
function [r,ires]=res(t,y,ydot)

r=ydot-A2*y-g(t)

ires=0

endfunction

function zz=comparison(a,b,c,d)

A=[a,-b,0,0;b, a, 0,0;0,0,c,0;0,0,0,d];

II4=eye(A);Z=zeros(A);

AA=[A,zeros(A);zeros(A),A];

Q=[1 3 2 0 -1 4 6 0 10 4 5 7 8 -3 6 -5 ];

Q=[Q,1,3,Q,3,6,8,9,Q,11,7,2,4,0,-3,6,3,9,-3];

QQ=matrix(Q,8,8);

A2=inv(QQ)*AA*QQ;

tt=[0:0.1:100];t0=0;
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y0=[1 1 -1 1 2 0 -1 -1 ]’;

ydot0=A2*y0+g(0);

tic;yy1=ode(y0,t0,tt,f);

t1=toc();

tic;yy2=ode("adams",y0,t0,tt,f);

t2=toc();

tic;yy3=ode("stiff",y0,t0,tt,f);

t3=toc();

tic;yy4=ode("rkf",y0,t0,tt,f);

t4=toc();

xstart=[y0,ydot0];

tic;yy5=dassl(xstart,t0,tt,res);

t5=toc();

zz=[t1,t2,t3,t4,t5]

xbasc()

plot2d(tt,yy1(7,:))

plot2d(tt,yy2(7,:))

plot2d(tt,yy3(7,:))

plot2d(tt,yy4(7,:))

plot2d(tt,yy5(8,:))

endfunction

The functions in compode.sci are loaded in Scilab, and to compare the different methods
on an easy problem we enter

�−→ comparison(-0.1,2,-3,0.1)

ans =

! 0.318 0.197 0.348 0.525 0.533 !

We see that the methods were comparable, with the Adams method the fastest and
dassl the fastest of the stiff methods. Adams is often fastest on problems that are not
rapidly varying. rkf is second-best. Generally, Runge–Kutta methods like rkf take more
work per time step than a multistep of the same oder such as adams. Also, the adams can
go to higher order.

However, some problems, such as those in electrical engineering and some mechanical
systems can be highly oscillatory. In other areas such as chemical reactions we can have
very rapidly decaying terms. To examine what happens with a rapidly decaying component
we enter

�−→ comparison(-0.1,2,-5000,0.1)

ans =

! 0.471 2.885 0.422 70.131 0.745 !

We see that the implicit methods default, stiff, and dassl are much faster. adams takes
7 times as long as stiff and rkf takes 30 times as long as stiff. The default takes longer
than stiff since it starts as a nonstiff method and then has to switch. As is not unusual,
dassl is comparable to stiff but sometimes takes a little longer. That is because dassl is
designed for fully implicit DAEs and sometimes has to do a bit more work.
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If a system is highly oscillatory, then some of the methods designed for stiff problems
have to reduce their step size or order for stability reasons. To illustrate, we enter

�−→ comparison(-0.1,100,-3,0.1)

ans =

! 11.787 4.678 8.68 5.793 23.37 !

Whereas in the previous problem the methods of stiff type were clearly faster, we see
here that the stiff methods were much slower. In the case of dassl it has some heuristics
that look out for oscillatory systems and reduces the order to try to increase stability.

Sometimes simulation is embedded into design or optimization loops so that the same
differential equations will be integrated many times. As the previous example shows, the
computational time can vary greatly with the choice of the method. Accuracy can also vary,
so that for complex problems one needs to do a careful examination of which integrator
will be fastest and also deliver the desired accuracy.

Implicit Differential Equations

In some application areas the models are most naturally initially formulated as differential
equations in the form

A(t, y)ẏ = g(t, y), y(t0) = y0. (3.21)

If A(t, y) is not invertible for all t, y of interest, then (3.21) is a linear implicit differential
algebraic equation. If A(y, t) is invertible for all t, y of interest, we call (3.21) either a
linearly implicit differential equation or an index-zero DAE. For this section we assume
that A(t, y) is an invertible matrix. One could, of course invert A and get the ODE

ẏ = A(t, y)−1g(t, y) y(t0) = y0. (3.22)

However, this reformulation is not always desirable. The implicit system (3.21) can often
be integrated more efficiently and reliably than (3.22). The numerical methods for solving
(3.21) are similar to those we discuss later for DAEs of the form F (t, y, ẏ) = 0, which
require a way to evaluate F given estimates of y(t), ẏ(t). Traditionally this function F is
called a residual since iterative numerical methods are used, and when approximations are
substituted in for y and ẏ, the evaluation of F (t, y, ẏ) tells us how far the approximations
are from being solutions.

One Scilab simulation tool for (3.21) is impl. It is called by

y=impl([type],y0,ydot0,t0,t [,atol, [rtol]],res,adda [,jac])

Most of these variables have the same meaning as they do for ode, but there are some
important new variables and there are some restrictions on the other variables. If type is
present, it is either "adams" or "stiff". The algorithm requires an initial value of ẏ(t0)
and this is provided in the vector ydot0.

The actual differential equation being integrated enters through the residual res, which
is an external, that is, a function with specified syntax, or the name of a Fortran subroutine
or a C function (character string) with specified calling sequence or a list.

If res is a function, its syntax must be r = res(t,y,ydot) and it must return the value
of g(t,y)-A(t,y)*ydot.
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In the implicit methods there are nonlinear equations that must be solved, and these
require Jacobian information. The variable adda tells the integrator what A is. It also is
useful within the numerical algorithm in setting up other Jacobians. If adda is a function,
its syntax must be r = adda(t,y,p) and it must return r=A(t,y)+p, where p is a matrix
to be added to A(t,y). As usual, if adda is a character string, it refers to the name of a
Fortran subroutine or a C function.

The optional input jac is also an external. If jac is a function, it must have the syntax
j = jac(t,y,ydot) and it must return the Jacobian of

r= g(t,y) -A(t,y)*ydot

with respect to y.
If a differential equation is fully implicit, that is, F (t, y, ẏ) = 0 with ∂F/∂ẏ nonsingu-

lar, then it is integrated using dassl as described in the section on differential algebraic
equations.

Linear Systems

Since they occur so often in areas such as control engineering, there are a number of
specialized functions for working with linear systems of the form

ẋ = Ax + Bu, (3.23a)
y = Cx + Du, (3.23b)

where A, B, C, D are matrices. System (3.23) is called the state-space form. If we let
x(0) = 0, take the Laplace transform of (3.23), and let ẑ(s) denote the Laplace transform
of z(t), we see that (3.23) can be written as

ŷ(s) = (D + C(sI − A)−1B)û(s) = H(s)u(s), (3.24)

where H is a rational matrix function. That is, the entries of H are fractions of polynomials.
Further manipulations would allow us to get

D(s)ŷ(s) = N(s)û(s) = H(s)u(s), (3.25)

where D, N are matrices of polynomials in s.
Scilab has functions for working with all three of these ways of describing linear systems.

It also easily switches from one representation to another. Linear systems are defined by
the syslin function. It may be called in three different ways:

[sl]=syslin(dom,A,B,C [,D [,x0] ])

[sl]=syslin(dom,N,D)

[sl]=syslin(dom,H)

The resulting sl is a tlist (“syslin” list) representing the linear system. sl can in turn be
used in a number of different Scilab functions. dom is a character string (’c’ , ’d’ , or [] )
or a scalar. It defines the domain of the system. ’c’ is for a continuous-time system, ’d’
is for a discrete-time system, and a scalar n is for a sampled system with sampling period
n (in seconds). A, B, C, D are the matrices of the state-space representation (3.23). x0 is the
initial state. If x0 is not given, then x0=0. N, D, and H are polynomial and rational matrices
respectively corresponding to (3.25) and (3.24).

If it is desired to recover the values of A, B, C, D, from sl, this is done by the abcd

command,
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�−→ [A,B,C,D]=abcd(sl)

The scilab command csim provides a simulation using ode of the linear system (3.23)
defined by ls. csim is called by

[y [,x]]=csim(u,t,sl,[x0 [,tol]])

u is a function, list, or string that defines the control u. t provides the times requested
for the simulation values. t(1) is the initial time. y is a matrix of y values such that
y(i)=[y(t(i)] for i = 1, . . . , n. The optional output x is the corresponding values of the
state x. tol is the two-vector [atol rtol] defining absolute and relative error tolerances
for the ode solver. In addition to the usual choices for u such as a function, list, or vector of
values, there are two special options. If u is the string "impuls", then an impulse response
calculation is done. That is, u is a delta function, or unit impulse, at time t = 0. If u is
"impuls", then it is assumed that sl is SISO (single input-single output), D = 0, and x0=0.
u can also be "step" for a step response calculation. That is, u = 1 for t > 0. "step" has
the same assumptions as "impluls".

Example 9. Consider the continuous linear system

ẋ1 = −2x1 + 7x2 + u, (3.26a)
ẋ2 = 8x1 − 2x2, (3.26b)
y = x1 + x2. (3.26c)

When executed, the following file produces the output for a step input and an impulse
input in two different windows.

A=[-2 7;-8 -2];B=[1;0];C=[1 1 ];D=0;

[sl]=syslin("c",A,B,C);

t=0:0.01:5;

[ys,xs]=csim("step",t,sl); ← Finds step response of system
plot2d(t,ys); ← Fig. 3.3 (upper graph)

[yi,xi]=csim("impuls",t,sl); ← Finds impuls response
f1=scf(1);

xbasc();

plot2d(t,yi) ← Fig. 3.3 (lower graph)

The graphs are given in Figure 3.3.

Root Finding

It is often desirable to simulate a differential equation up to the time something happens.
In some cases the time is the quantity of interest, for example in an interception problem.
In other cases the time will represent physical change in the dynamics such as when a
tank is filling up and it starts to overflow. In all these cases we have a system (3.1) and we
wish to integrate it until some quantity g(t, y) is equal to 0. Scilab includes root finding
software for both ODEs and DAEs. We focus on the ODE case here. The Scilab function
ode_root is called by
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Figure 3.3. Output step response (above) and impulse response (below) for (3.26).

[y,rd [,w,iw]]=ode("root",y0,t0,t [,rtol [,atol]],f [,jac],ng,g [,w,iw])

All of these variables have the same meaning as they do for ode, except that there are two
new input variables g and ng, and a new output variable rd. g is an an external that defines
g(t, y), and ng is its size. The integration will proceed until the solution of (3.1) crosses
the surface g(t, y) = 0. If g is a function, then the syntax should be z=g(t,y). The function
g can be vector-valued. In that case the integration stops as soon as any component of
g is zero. The output rd is a 1 × k matrix. The first entry of rd contains the stopping
time. Other entries indicate which components of g have changed sign. k > 2 indicates
that more than one surface has been simultaneously traversed.
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It is worth noting that ode_root does not just stop when it crosses the surface g(t, y) =
0. Rather, once it has crossed the surface, the algorithm iteratively reduces the last step
in order to try to end on the surface up to the specified tolerances. This is an important
feature.

When the surface-crossing represents a change in the differential equation, one could
try to describe this situation using a single function with if statements. However, then
there is the problem that the numerical simulation will step across the event and make
the change at a later time. Often it is important to have the change occur at the correct
time, and this requires the integrator searching out exactly when the crossing occurs.

Example 10. We suppose that we have a 1,000 cubic meter rectangular tank containing
water that flows out a hole at the bottom. The tank is 10 meters high and initially full.
When the tank is three quarters empty, a sensor causes water to be pumped into the tank
at a constant rate. We are interested in the amount of water in the tank, which we denote
by V . This may be modeled by V̇ = −c1

√
V , V (0) = 1, 000 until V (t) = 250, and then the

differential equation is V̇ = −c1

√
V +c2, where c1, c2 are two positive constants determined

by the size of the hole and the pumping rate. We are interested in the first 600 time units
or until the tank fills back up, whichever occurs first. Listed below is a file tank.sci, which
performs the simulation. It sets itask to 2 so that all mesh points are output. The if-then
construction is built to cover the case in which tf occurs before the surface is reached, which
does not happen for the particular flow rates and final time chosen. This implementation
also stops the simulation if the tank fills back up. The simulation is obtained by executing
the next script, and the simulation graph is in Figure 3.4.

function z=f1(t,V) ← tank draining
z=-0.3*sqrt(V);

endfunction

function z=f2(t,V) ← tank draining with pumping in
z=-0.3*sqrt(V) +8.0;

endfunction

function z=g(t,V) ← surface
z=250-V;

endfunction

function z=h(t,V) ← end of integration
z=1000-V;

endfunction

%ODEOPTIONS=[2,0,0,%inf,0,2,10000,12,5,0,-1,-1]; ← set itask to 2, increase maxstep
tf=600;

[vsol,rd]=ode(’root’,1000,0,tf,f1,1,g);

m=size(vsol);

if rd(1)< tf then
[vsol2,rd2]=ode(’root’,vsol(2,m(2)),rd(1),tf,f2,1,h);

sol=[vsol,vsol2];

else sol=vsol;

end
xbasc();

plot2d(sol(1,:),sol(2,:)); ← Fig. 3.4
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Figure 3.4. Simulation of Example 10 using ode root.

3.2.2 Boundary Value Problems

A number of methods have been developed for solving BVP. The shooting methods take
the given initial information and guess the rest of the initial information. They then adjust
this initial guess by integrating over the full interval and use how far they miss the terminal
boundary condition to correct the initial guess. Shooting methods are easy to program and
can solve some problems, but they are not reliable for problems with long intervals or that
are stiff in some sense. A more sophisticated approach is multiple shooting, which breaks
the time interval into several subintervals and shoots over these.

The third approach is to discretize the differential equation using some numerical
discretization, and then solve the large discrete system that results. For example, if one
used Euler’s method with a fixed step of h as the discretization, then the BVP (3.5) would
become the nonlinear system of equations

xi+1 − xi − hf(t0 + ih, xi) = 0, i = 0, . . . , N − 1, (3.27a)
B(x0, xN ) = 0. (3.27b)

Of course, modern computer programs do not use Euler’s method, but (3.27) makes the
key point that what must be solved is a large system of equations, and these equations
are nonlinear if the differential equation or the boundary conditions are nonlinear. This
means that the BVP solver must deal with all the usual problems of numerically solving
a nonlinear system including having a good enough initial guess and needing some sort of
Jacobian information.

Scilab provides one simulation tool for BVP, which is bvode. It uses the COLNEW
code, which is an update of the COLSYS code [6, 7, 20, 8]. Unlike the situation with
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ode and dassl, which requires the differential equations to be in first-order form, bvode

allows the equations to be of higher order. bvode also allows for boundary conditions at
several times ζj . It is traditional in parts of the BVP literature to use x instead of t for
the independent variable. We will now switch to that notation.

bvode assumes that the BVP is in the form

dmiui

dx
= fi

(
x, u(x),

du

dx
, . . . ,

dmi−1u

dxmi−1

)
, 1 ≤ i ≤ nc, (3.28a)

gj

(
ζj , u(ζj), . . . ,

dm∗u

dxm∗

)
= 0, j = 1, . . . , m∗, (3.28b)

where ζj are the x values where the boundary conditions are to hold and aL ≤ x ≤ aR. In
order to keep the notation down, let

m∗ = m1 + m2 + · · · + mnc
, (3.29)

z(u) =
[
u,

du

dx
, . . . ,

dm∗u

dxm∗

]
. (3.30)

Then (3.28) becomes

dmiui

dx
= fi(x, z(u(x)), 1 ≤ i ≤ nc, aL ≤ x ≤ aR, (3.31a)

gj(ζj , z(u(ζj)) = 0, j = 1, . . . , m∗. (3.31b)

bvode starts with an initial mesh for the discretization and solves the resulting nonlinear
system. It then iteratively refines the mesh until either it estimates that the requested
accuracy has been attained or it reaches the maximum allowable mesh. The call for bvode

takes the form

[z]=bvode(points,ncomp,m,aleft,aright,zeta,ipar,ltol,tol,fixpnt,fsub1,...

dfsub1,gsub1,dgsub1,guess1)

The parameters in the bvode call have the following meanings:

z: The solution of the ode evaluated on the mesh given by points.
points: An array that gives the points for which we want the solution.
ncomp: The number of differential equations. It must satisfy ncomp ≤ 20.
m: A vector of size ncomp . The entry m(j) gives the order of the jth differential equation.

The orders must satisfy m(i) ≤ 4.
aleft: The left end of the interval on which u is defined.
aright: The right end of the interval on which u is defined.
zeta: Entry zeta(j) gives the jth side condition point (boundary point). The entries must

be ordered so that zeta(j) ≤zeta(j+1). All the side (boundary) conditions must be at
mesh points in all meshes used. In particular, they must be part of the initial mesh.
Note the description of ipar(11) and fixpnt below.

ipar: An integer array with dimension at least 11. A list of the parameters in ipar and
their meaning follows. Note that some parameters are renamed in bvode. These new
names are given in parentheses.
ipar(1): 0 if the problem is linear and 1 if the problem is nonlinear.
ipar(2): The number of collocation points per subinterval (= k ) where max m(i) ≤

k ≤ 7. If ipar(2)=0, then bvode sets k = max(maxi m(i) + 1, 5 − maxi m(i)).
ipar(3): The number of subintervals in the initial mesh (= n ). If ipar(3) = 0, then

bvode sets n = 5.
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ipar(4): The number of solution and derivative tolerances. (= ntol) It is required that
0 < ntol ≤ mstar.

ipar(5): The dimension of fspace (= ndimf). This is a real work array. Its size pro-
vides a constraint on nmax. Choose ipar(5) according to the formula ipar(5) ≥
nmax*nsizef, where nsizef=4+3*mstar +(5+kd)*kdm+(2*mstar-nrec)*2*mstar.

ipar(6): The dimension of ispace ( = ndimi ), an integer work array. Its size provides a
constraint on nmax, the maximum number of subintervals. Choose ipar(6) accord-
ing to the formula ipar(6)>=nmax*nsizei where nsizei=3 + kdm with kdm=kd+mstar,
kd=k*ncomp, and nrec = the number of right end boundary conditions.

ipar(7): Provides output control (= iprint ). It should be set = -1 for full diagnostic
printout, = 0 for selected printout, and = 1 for no printout.

ipar(8): This is (= iread). Setting it = 0 causes bvode to generate a uniform initial
mesh. It should be = 1 if the initial mesh is provided by the user. Other values are
not yet implemented in Scilab. The initial mesh is defined in fspace. The mesh
will occupy fspace(1),...,fspace(n+1). the user needs to supply only the interior
mesh points fspace(j) = x(j), for j = 2, . . . , n. If ipar(8)= 2, then the initial mesh
is supplied by the user as with ipar(8)=1, but no adaptive mesh selection is to be
done.

ipar(9): This is (= iguess). It should be set = 0 if no initial guess for the solution is
provided, = 1 if an initial guess is provided by the user in the subroutine guess, = 2

if an initial mesh and approximate solution coefficients are provided by the user
in fspace. The former and new mesh are the same. It should be set = 3 if a former
mesh and approximate solution coefficients are provided by the user in fspace but
the new mesh is to be taken twice as coarse (that is, every second point from the
former mesh), and = 4 if in addition to a former initial mesh and approximate
solution coefficients, a new mesh is provided in fspace as well. See the description
of output for further details on iguess = 2, 3, and 4.

ipar(10): This is = 0 if the problem is regular. It is set = 1 if the first relaxation factor
is =rstart and the nonlinear iteration does not rely on past convergence. Use this
value for an extra-sensitive nonlinear problem only. Set = 2 if you want the code to
return immediately upon (a) two successive nonconvergences or (b) after obtaining
an error estimate for the first time.

ipar(11): This is the number of fixed points in the mesh other than aleft and aright.
(= nfxpnt, the dimension of fixpnt). The code requires that all side condition
points other than aleft and aright (see description of zeta) be included as fixed
points in fixpnt.

ltol: An array of dimension ipar(4). ltol(j) = l specifies that the jth tolerance in
tol controls the error in the lth component of z(u). It is also required that 1 ≤
ltol(1) < ltol(2) < $\cdots$ < ltol(ntol) ≤ mstar.

tol: An array of dimension ipar(4). tol(j) is the error tolerance on the ltol(j) component
of z(u). Thus, the code attempts to satisfy for 1 ≤ j ≤ntol on each subinterval the
following bound |z(v) − z(u)|ltol(j) ≤ tol(j)|z(u)|ltol(j) + tol(j), where v(x) is
the approximate solution vector and the subscript denotes the tol(j) entry.

fixpnt: An array of dimension ipar(11). It contains the points, other than aleft and
aright, that are to be included in every mesh.

externals: The functions fsub, dfsub, gsub, dgsub, guess are Scilab externals. The Fortran-
coded function interface to bvode is specified in the file fcol.f.
fsub: The name of the subroutine for evaluating f(x,z(u(x))) with ncomp entries at a

point x in the interval (aleft, aright). It should have the heading [f]=fsub(x,z)

where f is the vector containing the value of f(x,z(u)) and z(u(x))=(z(1),...,z(mstar)).



3.2 Simulation Tools 93

dfsub: Name of the subroutine for evaluating the Jacobian of f(x,z(u)) at a point x.
it should have the heading [df]=dfsub(x ,z) where z(u(x)) is defined as for fsub

and df is an ncomp× mstar array. The entries should be df(i,j), which are ∂fi/∂zj .
gsub: Name of the subroutine for evaluating the ith component of

g(x,z(u(x))) = g(zeta(i),z(u(zeta(i)))) at a point x = zeta(i), where 1 ≤ i ≤
mstar. It should have the heading [g]=gsub(i,z). Note that in contrast to f in
fsub, here only one value per call is returned in g.

dgsub: Name of the subroutine for evaluating the ith row of the Jacobian of g(x,u(x)).
It should have the heading [dg]=dgsub(i,z).

guess: Name of subroutine to evaluate the initial approximation for z(u(x)) and for
dmval(u(x)) = vector of the m(j)th derivatives of u(x). It should have the heading
[z,dmval]= guess(x). Note that this subroutine is used only if ipar(9) = 1, and
then all mstar components of z and ncomp components of dmval should be specified
for any x in the interval (aleft, aright) .

Example 11. One source of boundary value problems is in the necessary conditions for
optimal control problems. Other techniques are used for more complicated optimal control
problems [10] but solving the necessary conditions works on many simpler problems.

To illustrate suppose that we have the nonlinear controlled system

ẏ = y2 + v

and we want to choose the control v so that it will steer y from 2 at time 0 to −1 at time
10. Given this requirement, we wish to have v minimize the quadratic cost

J(y, v) =
∫ 10

0

10v2 + y2dt.

This cost penalizes v and y, so that it encourages both the control and state to be small.
Then the necessary conditions [30] are found by taking the Hamiltonian

H = 10v2 + y2 + λ(y2 + v)

and forming the boundary value DAE

ẏ =
∂H

dλ
, (3.32a)

−λ̇ =
∂H

∂y
, (3.32b)

0 =
∂H

∂v
, (3.32c)

y(0) = 2, y(10) = −1, (3.32d)

which is

ẏ = y2 + v, (3.33a)
λ̇ = −2y − 2λy, (3.33b)
0 = 20v + λ, (3.33c)

y(0) = 2, y(10) = −1. (3.33d)

Using (3.33c) to eliminate v from (3.33a), we get the BVP
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ẏ = y2 − λ/20, (3.34a)
λ̇ = −2y − 2λy, (3.34b)

y(0) = 2, y(10) = −1. (3.34c)

We will now solve the BVP using bvode. To simplify things, we shall use the defaults
whenever possible. In particular, we will not provide Jacobians or an initial guess. The
following script sets up all the needed values for the call. A dummy guess is included since
the call requires something in the guess position even if not used. After the BVP is solved
the optimal y(t) and v(t) are plotted on the same graph as shown in Figure 3.5. The solid
line is y(t) and the x-line curve plots v(t). In this problem the origin is unstable. The
control has to work harder to get the solution near zero at the start than it does at the
end of the interval.

function w=f(x,z)

w1=z(1)^2-z(2)/20;

w2=-2*z(1)-2*z(1)*z(2)

w=[w1;w2];

endfunction

function w=df(x,z)

w=[2*z(1),-1/20;-2-2*z(2),-2*z(1)]

endfunction

function w=g(i,z)

if i==1 then w=z(1)-2,

else w=z(1)+1;

end
endfunction

function w=dg(i,z)

w=[1 0]

endfunction

tt=0:0.1:10;

ncomp=2;nrec=1;

m=[1 1];k=4; ← k=4 since ipar(2)=0 below
nmax=200; ← set the maximum number of subintervals

mstar=2; ← begin computation for ipar(5), ipar(6)
kd=k*ncomp;

kdm=kd+mstar;

nsizei=kdm+3;

ip6=nmax*nsizei;

nsizef=4+3*mstar+(5+kd)*kdm+(2*mstar-nrec)*2*mstar;

ip5=nmax*nsizef;

zeta=[0 10]; ← aleft=0 and aright=10

ipar=[1 0 0 2, ip5, ip6, 0 0 0 0 0];

er=1.0d-3;

ltol=[1 1];

tol=[er,er];
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function w=gs(x)

w=[0,0;0,0]

endfunction

zz=bvode(tt,2,m,0,10,zeta,ipar,ltol,tol,0,f,df,g,dg,gs);

plot2d(tt,zz(1,:));

control=-(1/20)*zz(2,:);

plot2d(tt,control);

plot2d(tt,control,style=-1) ← Fig. 3.5
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Figure 3.5. Optimal y (line) and control u (x-line) for Example 11.

3.2.3 Difference Equations

In many ways the simulation of discrete systems is easier because there is no choice about
the time step and no error is introduced by the approximation of derivatives. Any error is
the usual function evaluation and roundoff error. In order to simulate a discrete system of
the first-order form

y(k + 1) = f(k, y(k)), y(k0) = y0, (3.35)

we use ode_discrete, which is called by

�−→ y=ode("discrete",y0,k0,kvect,f)

Note that the initial time k0, is an integer and kvect, which contains the times at which
we want the solution, is a vector of integers. kvect(1) must be greater than or equal to k0.
As an illustration, suppose that we enter the scilab code
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function z=f(t,y)

z=-y/2 + sin(t/10)

endfunction
kvect=0:20;

y=ode("discrete",1,0,kvect,f);

plot2d(kvect,y) ← Fig. 3.6

xbasc()

plot2d2(kvect,y) ← Fig. 3.7

If we want to plot the graph, we might use the command plot2d(kvect,y), which results
in Figure 3.6. However, this graph is misleading since the actual solution exists only at
integer values. A better option is to just plot either the points or to use plotd2d2(kvect,y)

as in Figure 3.7.

0 2 4 6 8 10 12 14 16 18 20
-0.5

0.0

0.5

1.0

Figure 3.6. Graph produced by plot2d(kvect,y).

Linear Systems

As with the continuous case, there are specialized programs for working with linear systems
with real matrix coefficients in the form of

x(k + 1) = Ax(k) + Bu(k), (3.36a)
y(k) = Cx(k) + Du(k). (3.36b)

If we just wish to simulate the state equation (3.36a), then we can use ltitr. It is called
with either of

[X]=ltitr(A,B,U,[x0])

[xf,X]=ltitr(A,B,U,[x0])
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Figure 3.7. Graph produced by plot2d2(kvect,y).

With ltitr the initial value of k is understood to be zero. If the initial value x0 is not
given, it is chosen as the zero vector. The inputs u(i) are the columns of the U matrix,
U=[u0,u1,...,un]. X is the matrix of outputs, so that X=[x(0),x(1),x(2),...,x(n)], and
xf is the vector of the final state xf=X[n+1].

If the system is given by a transfer function, then we can use rtitr with calling syntax

[y]=rtitr(Num,Den,u [,up,yp])

Here Num and Den are polynomial matrices of dimensions n×m and n× n that are the
numerator and denominator of the transfer function D−1(z)N(z). If D(z) =

∑d1
i=0 Diz

i

and N(z) =
∑d2

i=0 Niz
i, then D(z)y = N(z)u is interpreted as

d1∑
i=0

Diy(t + i) =
d2∑

i=0

Niu(t + i)

for t = 0, 1, . . . . It is assumed that Dd1 is nonsingular. The columns of u are the inputs of
the system at t = 0, 1, ..., T . The outputs at t = 0, 1, . . . , T +d1−d2 are the columns of the
matrix y, that is, y=[y(0), y(1),...., y(T+d1-d2)]. up and yp define the initial conditions
for −d1 < t < 0. The default values of up and yp are zero.

The time response, or simulation, of the linear system (3.36) can be done using flts,
which is called by either of

[y [,x]]=flts(u,sl [,x0])

[y]=flts(u,sl [,past])

Here sl is a syslin list containing A, B, C, D or the information for the transfer function
representation, u is the matrix (input vector), x0 is the initial state with default value = 0,
past is the matrix giving the past with default value = 0.

If one just wants the simulation of the output, then it is often easier to use dsimul,
which provides state-space discrete-time simulation with syntax
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y=dsimul(sl,u)

If [A,B,C,D]=abcd(sl) and x0=sl(’X0’), then dsimul returns

y=C*ltitr(A,B,u,x0)+D*u.

With dsimul it is assumed that sl is in state-space form.

3.2.4 Differential Algebraic Equations

Before giving the simulation tools for DAEs it is helpful first to point out some of the
requirements of these tools. With an ODE one had only to supply the initial value of y(t0).
But a DAE needs information on both y(t0) and ẏ(t0) in order to uniquely determine the
solution and get the integration started. Consider, for example, the implicit ODE tan(ẏ) =
−y + g(t). This actually defines a family of differential equations ẏ = tan−1(y + g) + nπ.
Without a value for ẏ, the integrator would not be able to determine which family it should
be integrating. There are a number of possibilities. A user might have a value of ẏ. Or one
may have only an approximate value. Sometimes one has no idea at all. We return to this
problem in Example 12.

The simulation tools in Scilab use backward differentiation formulas (BDF). For ex-
ample, a backward Euler’s method applied to (3.15) would take the form

F

(
tn+1.yn+1,

yn+1 − yn

h

)
= 0. (3.37)

Given yn, equation (3.37) must be solved by an iterative method. The Jacaobian with
respect to yn+1 of (3.37) is Fy + 1

hFy′ . This accounts for the different form that the input
jac has in dassl below from what it had in some of the earlier simulation tools.

Scilab provides the DAE simulation tool dassl, which is the DASSL code developed
by Linda Petzold [11]. DASSL integrates general nonlinear fully implicit index-one DAEs.
It can also be used on implicit ODEs. DASSL is called by

[r [,hd]]=dassl(x0,t0,t [,atol,[rtol]],res [,jac] [,info] [,hd])

If y is n-dimensional, then r will have 2n + 1 rows. The first row is the returned
values of t. The next n rows are the corresponding values of y, and the last n rows are
the corresponding values of ẏ. info is a list that passes information on to DASSL that
is specific to the solution of index-one DAEs. It also provides some of the information
provided by %ODEOPTIONS for ode. It will be described more carefully below.

The inputs to dassl have the following meanings:

x0: This can can be either y0, in which case ydot0 is estimated by dassl with zero as its
first estimate of ydot0, or x0 can be the matrix [y0, ydot0]. If ydot0 is provided, then
F(t,y0,ydot0) must be equal to zero. If you know only an estimate of ydot0, then set
info(7)=1.

t0: This is the initial time.
t: As with ode, the vector t gives the times that the solution is outputted. If you want

the solution at every time step, then set info(2)=1.
atol, rtol: As with ode, atol and rtol are real scalars or column vectors of the same size

as y giving the absolute and relative error tolerances requested of the solution.
res: This is an external as with impl. res computes the value of F(t,y,ydot). If res is a

function, its calling sequence must be [r,ires]=res(t,y,ydot). res must return the
residue r=g(t,y,ydot) and an error flag ires. ires = 0 if res succeeds in computing
r. ires =-1 if the residue is not defined for the given values of (t,y,ydot). ires =-2 if
the parameters are out of the admissible range.



3.2 Simulation Tools 99

jac: This is an external (function or list or string) that computes the value of the Jacobian
dF/dy+cj*dF/dydot for a given value of the parameter cj. If jac is a function, its calling
sequence must be r=jac(t,y,ydot,cj) and it must return

r=dF(t,y,ydot)/dy+cj*dF(t,y,ydot)/dydot

where cj is a real scalar.
info: This is a list that contains 7 elements. Its default value is

list([],0,[],[],[],0,0)

info(1): real scalar that gives the maximum time for which F is allowed to be evalu-
ated or an empty matrix [] if no limits are imposed for time.

info(2): flag that indicates whether dassl returns its intermediate computed values
(flag=1) or only the user-specified time point values (flag=0).

info(3): 2-component vector that gives the definition [ml,mu] of the band matrix
computed by jac;

r(i - j + ml + mu + 1,j) = "dF(i)/dy(j)+cj*dF(i)/dydot(j)".

If jac returns a full matrix, set info(3)=[].
info(4): Real scalar that gives the maximum step size. Set info(4)=[] if no limitation.
info(5): Real scalar that gives the initial step size. Set info(4)=[] if not specified.
info(6): Set info(6)=1 if the solution is known to be nonnegative; otherwise set

info(6)=0.
info(7): Set info(7)=1 if ydot0 is just an estimate of y′(t0). Set info(7)=0 if

F(t0,y0,ydot0)=0.
hd: Real vector that allows for storing the dassl information and to resume integration.
r: This is a real matrix. Each column is the vector [t;x(t);xdot(t)], where t is the time

for which the solution had been computed.

Example 12. As an illustration of the use of dassl and also to point out the importance of
the full initial conditions, we consider the implicit ODE

tan(ẏ) = −y + 10t cos(3t), y(0) = 0. (3.38)

Notice that nπ is a consistent initial value of ẏ(0) for any integer value of n. This reflects the
fact that there are several solutions consistent with (3.38). When executed, the following
script uses dassl to solve (3.38) for ẏ(0) = 0, ẏ(0) = π, and ẏ(0) = 2π and then plot them
on the same axis. The resulting figure is Figure 3.8.

x0=[0 0];x1=[0, %pi];x2=[0,2*%pi];

t0=0;

tt=0:0.1:10;

function [r,ires]=res(t,y,ydot)

r=tan(ydot)+y-10*t*cos(3*t)

ires=0

endfunction
r0=dassl(x0,t0,tt,res);

r1=dassl(x1,t0,tt,res);

r2=dassl(x2,t0,tt,res);

plot2d(r0(1,:),r0(2,:));

plot2d(r1(1,:),r1(2,:));

plot2d(r1(1,:),r1(2,:),style=-1);

plot2d(r2(1,:),r2(2,:));

plot2d(r2(1,:),r2(2,:),style=-3); ← Fig. 3.8
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Figure 3.8. Simulation of (3.38) using dassl for three values of ẏ(0).

The fact that implicit ODEs and fully implicit DAEs can have multiple nearby solu-
tions for the same value of the state has important consequences for the design of these
integrators since this behavior shows up in applications. The integrators must try to ensure
that when making a step they do not jump to another solution. This is accomplished by
being conservative in choosing the size of the step.

DAEs and Root-Finding

Root-finding with DAEs is done with dasrt, which is dassl along with the ability to find
where the solution of the DAE crosses a surface. The calling sequence for dasrt is the same
as for dassl except for two inputs, which are the same as for ode using the type “root.”
The calling sequence of dasrt is

[r,nn,[,hd]]=dasrt(x0,t0,t [,atol,[rtol]],res [,jac],ng, surf [,info] [,hd])

The differences from the calling of dassl are nn, which is a vector with two entries
[times num]. times is the value of the time at which the surface is crossed, and num is the
number of the crossed surface. surf is an external (function or list or string) that computes
the value of the column vector surf(t,y) with ng components. Each component defines a
surface. If surf is a function, its calling sequence must be surf(t,y).

3.2.5 Hybrid Systems

Many systems have both continuous-time and discrete-time components. The simulation
tool odedc is designed to integrate some of these models. It is assumed that there are
continuous variables yc and discrete variables yd that can change at discrete times tk. yd

is considered as a function of continuous time by making it piecewise constant on the
intervals [tk, tk+1[.

The system that is integrated then takes the form
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ẏc(t) = f0(t, yc(t), yd(t)), t ∈ [tk, tk+1[, (3.39a)
yd(tk+1) = f1(t, yc(tk+1), yd(tk) at t = tk+1. (3.39b)

In a given subinterval [tk, tk+1], the software integrates (3.39a) up to time tk+1 using
yd(t) = yd(tk). Then it resets the value of yd using (3.39b) and then proceeds with in-
tegration at the next step. The parameters require that the tk be uniformly spaced, but
they do not require that the discrete and continuous systems start at the same time.

A special example of (3.39) is a sampled data system. In a sample data system the
dynamics are given by a differential equation but the outputs occur at discrete times. A
sampled data system could take the form

ẏc(t) = f0(t, yc(t), u(t)), t ∈ [tk, tk+1[, (3.40a)
yd(tk+1) = f1(t, yc(tk+1), u(tk)) at t = tk+1, (3.40b)

where u is a control function.
The calling sequence for odedc is

yt=odedc(y0,nd,stdel,t0,t,f)

Here the input terms of odedc have the following meaning:

y0: This is a real column vector of initial conditions for both the continuous and discrete
variables, y0=[y0c;y0d].

nd: This is the number of components in y0d.
t0: This is the initial time for starting the simulation.
stdel: This is a real vector with one or two entries, stdel=[h, delta]. If there is one entry,

then delta=0. h is tk+1 − tk for k > 0. That is, h is the length of the time interval
between events. The variable delta = delay/h, where delay is the length of time after
t0 before the first discrete event happens.

t: This is instants where the solution is calculated and output.
f: This is an external. If it is a function, it must have the calling sequence

ycd=f(t,yc,yd,flag).

This function must return the derivative of the vector yc if flag=0. That is, it evaluates
the f0 function in (3.39a). If flag=1, then f returns the update of yd. That is, it provides
the function f1 of (3.39b).

yp: This must be a vector with the same dimension as yc if flag=0. yp must be a vector
with the same dimension as yd if flag=1.

y: This contains the values of the solution at times in t.

odedc can be called with the same optional parameters as the ode function, provided nd

and stdel are given in the calling sequence as second and third parameters. In particu-
lar, integration flags and tolerances can be set. Optional parameters can be set by the
odeoptions function.

As an example we consider the following example of a hybrid system:

ẏ1 = −4y2 + (zk − 1)y1 + 2, y1(0) = 1, (3.41a)
ẏ2 = 4y1 + (zk − 1)y2, y2(0) = 1, (3.41b)

zk+1 = −0.9zk + 1.1sgn(y1(t)), z0 = 0, (3.41c)

where t1 = 3.3 and tk+1 − tk = 3 for k > 0 and we wish to simulate it on the time interval
from 0 to 20.

We execute the following Scilab script:
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function ycd=f(t,yc,yd,flag)

if flag==0 then
ycd(1)= -4*yc(2)+(yd-1)*yc(1) + 2;

ycd(2)=4*yc(1)+(yd-1)*yc(2);

else
ycd=-0.9*yd+ 1.1*sign(yc(1));

end
endfunction

t0=0;y0=[1;1;0];nd=1;stdel=[3 1.1];

tt=0:0.1:20;

yt=odedc(y0,nd,stdel,t0,tt,f);

xbasc();

plot2d(tt’,yt’); ← Fig. 3.9

The result is the plot of the three components in Fig. 3.9. The graph of yd is given by
the square wave form. The two components of yc are the wiggly curves that change their
behavior each time that yd changes.
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Figure 3.9. Simulation of (3.41) using odedc.

We conclude with an example of a sampled data system.

Example 13. Suppose that we have started with the linear system

ẋ =
(

0.1 −1
1 0.1

)
x +

(
1
0

)
u. (3.42)

This system is unstable. A feedback control
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u =
(−2 −1

)
x (3.43)

is designed to stabilize the system. The control is to be applied starting at time t = 15.
Sometimes it is possible to measure the state at any time, but suppose that we are only
able to determine the state every ρ time units starting at time t = 5. The following script
when executed performs three simulations. The first is using the continuous version of the
control. The second and third are with ρ = 1 and ρ = 0.9.

Figure 3.10 shows the effect of the continuous-time feedback. Once the feedback is
applied at t = 15 it quickly stabilizes the system. If the sampling is rapid enough, the
result is essentially the same as using the continuous feedback. However, as Figure 3.11
shows, once the sampling period is ρ = 0.9, the system is still stabilized, but it takes much
longer for the state to go to zero. Once the sampling period reaches 1, the control no longer
stabilizes the system, as shown in Figure 3.12.

function z=control(t,x)

if t<15 then z=0,

else z=-2*x(1)-x(2);

end
endfunction

function xdot =f(t,x)

xdot=[.1 -1;10.1]*x +[control(t,x);0]

endfunction

x0=[1;1];

tt=[0:0.1:40];

y=ode(x0,0,tt,f);

xbasc();

plot2d(tt,y(1,:)); ← Fig. 3.10

xbasc()

xd0=[1;1];

xc0=[0;0];

function ycd =fcd(t,yc,yd,flag)

if flag==0 then ycd=[.1 -1;10.1]*yc +[control(t,yd);0],

else ycd=yc;

end
endfunction

yy=odedc([xd0;xc0],2,[1,5],0,tt,fcd);

plot2d(tt,yy(1,:)); ← Fig. 3.12

xbasc()

yy=odedc([xd0;xc0],2,[0.9,5/0.9],0,tt,fcd);

plot2d(tt,yy(1,:)); ← Fig. 3.11



104 3 Modeling and Simulation in Scilab

0 5 10 15 20 25 30 35 40
-8

-6

-4

-2

0

2

4

6

Figure 3.10. x1 from simulation of Example 13 using continuous feedback.
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Figure 3.11. x1 from simulation of Example 13 using sampled feedback with period ρ = 0.95.
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Figure 3.12. x1 from simulation of Example 13 using sampled feedback with period ρ = 1.0.



4

Optimization

Various optimization problems play a fundamental role in modeling and simulation. This
chapter will cover some of the optimization utilities available in Scilab. Section 4.1 will
present some overview comments about optimization, useful in using the algorithms. Sec-
tion 4.2 discusses the most general optimization utilities. There is a close relationship
between optimization and solving equations in a least squares sense. This is examined in
Section 4.4. One application of optimization is parameter fitting. Specialized utilities for
this are given in Section 4.5. Finally, some specialized optimization utilities for linear and
quadratic programming are given in Section 4.6.

4.1 Comments on Optimization and Solving Nonlinear Equations

In this chapter we discuss the problem of solving the minimization problem

min
x

f(x), (4.1)

where f is a real-valued function of the vector variable x. Note that maximizing f is
the same as minimizing −f , so that all of the utilities given here can also be used with
maximization problems.

There are a number of characteristics of (4.1) that determine which, of any, of the
available utilities will work. They also affect how the optional parameters should be set if
a simple call does not work.

Constraints

The first question is whether there are any restrictions on x (4.1). if there are, the problem
is said to be constrained. As far as Scilab is concerned there are three types of constraints.

Bound, or box, constraints require different entries of x to lie in specified intervals.
For example, if x is 3 dimensional, we could have −2 ≤ x(1) ≤ 3 and 2 ≤ x(3) ≤ 4.

Linear equality constraints take the form of b′x − c = 0 when b and x are written
as column vectors. Linear inequality constraints take the form b′x − c ≤ 0 when b, x are
written as column vectors.

Finally there are the more general constraints of the form g(x) = 0. There are not
currently any utilities in Scilab for solving general constrained optimal control problems.
However, if the problem takes the form
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minx f(x), (4.2a)
g(x) = 0, (4.2b)

and f, g are differentiable, then the solution x∗ of (4.2) satisfies the necessary conditions

fx(x) + λT gx(x) = 0, (4.3a)
g(x) = 0, (4.3b)

where gx is the Jacobian of g, which is discussed below.
It is sometimes possible to solve (4.3) using fsolve as discussed later in this chapter.
The next question is whether f is a differentiable function and whether we know what

its gradient is. If f is differentiable, then often some type of iterative method is used. Inside
the iterative method at each iteration there is the determination of a search direction and
a decision on how far to move in that direction. Then there are questions of how long
the iteration will continue. Common choices are until f does not change much, until the
gradient of f is small, or when the allowed number of iterations has been used. The last
criterion can be important if function evaluations are computationally expensive.

These types of iterative methods, when they find a minimum, usually find local minima.
That is, they find where f is smaller than at nearby values. Such local minima may or
may not be a global minimum, that is, the place where f is smallest for all possible x.

A different type of algorithm is sometimes called a “dart-throwing algorithm.” These
algorithms vary in philosophy, but basically they continue to evaluate throughout the
region but take more values where the function appears small. While usually much slower
than iterative methods when both can be used, the dart-throwing algorithms are more apt
to find a global minimum and multiple minimum values.

Nonlinear Equation Solving

A nonlinear equation takes the form

f(x) = 0. (4.4)

In the simplest case this represents n equations in n unknowns. Such equations are also
solved by iterative methods. A key role is played by the Jacobian matrix J(x). If f has m
entries and x has n entries, then

J(x) =

⎛
⎜⎝

∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fm

∂x1
· · · ∂fm

∂xn

⎞
⎟⎠ .

When m = n, and J(x) is invertible, the simplest iterative method is Newton’s method,
which is

xj+1 = xj − J(xj)−1f(xj).

Actual solvers utilize a number of methods to increase the region of convergence and to
provide estimates of J .

4.2 General Optimization

The general optimization utility in Scilab is optim. This algorithm allows the user to have
some control of the optimization process. It can accept bound constraints. optim needs to
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know the gradient. If the gradient is unknown, or too complicated to code, then a utility is
provided to enable optim to proceed using only the function to be minimized. This utility is
NDcost, which stands for numerical differentiation of the cost. It approximates the gradient
using finite differences.

There are additional software programs whose distribution is maintained by the de-
veloper but for which there exist Scilab interfaces. For example, a toolbox providing an
interface for the general optimization code can be found at http://www.scilab.org/
under contributions, and then downloads, in the category “Optimization Tools.” In par-
ticular, there is an interface to FSQP that can handle more general types of constraints
than optim can.

We shall first present the simplified use of optim and NDcost. We will then discuss some
of the more general options. The simplified call is

�−→ [f,xopt]=optim(costf,x0)

Here x0 is the initial guess for where the minimum occurs, f is the optimum value, and
xopt is where this optimum value occurs. costf is a function that provides the value of
the function to be minimized, the value of its gradient, and a variable that is used by the
optimization routine that we will explain later. If costf is a Scilab function, it takes the
form

�−→ [f,g,ind]=costf(x,ind)

Of course, for a more complicated problem we may not be able to, or prefer not to,
provide the gradient. Then we can use the NDcost function. In its simplest form the call
to optim then takes the form

�−→ [f,xopt]=optim(list(NDcost,myf),x0)

In using optim and providing the gradient, the initial guess x0 can be either a row or
column and then the xopt will be the same. However, in using NDcost, the initial guess
must be a column vector.

Suppose that we wished to minimize the function

f(x, y, z) = (x − z)2 + 3(x + y + z − 1)2 + (x − z + 1)2. (4.5)

Its gradient is

∇f =
[
∂f

∂x
,
∂f

∂y
,
∂f

∂z

]
= [2(x − z) + 6(x + y + z − 1) + 2(x − z + 1), 6(x + y + z − 1),

−2(x − z + 1) + 6(x + y + z − 1)] , (4.6)

and we take an initial guess of x0 = [0, 0, 0]. The following script solves using the gradient
and then solves the problem using optim.

function z= myf(x)

z=(x(1)-x(3))^2+3*(x(1)+x(2)+x(3)-1)^2+(x(1)-x(3)+1)^2

endfunction

function z=myg(x)

xs=x(1)+x(2)+x(3)-1;

z=[2*(x(1)-x(3))+6*xs+2*(x(1)-x(3)+1), 6*xs,...

-2*(x(1)-x(3))+6*xs-2*(x(1)-x(3)+1)]
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endfunction

function [f,g,ind]=costf(x,ind)

f=myf(x);g=myg(x);

endfunction

x0=[0 0 0]; ← initial condition
[fopt,xopt]=optim(costf,x0); ← x0 a row vector
[fopt,xopt]=optim(costf,x0’); ← x0 a column vector
[fopt,xopt,gopt]=optim(list(NDcost,myf),x0’); ← x0 must be a column

When executed, after listing the function definitions, the output gives the results:

�−→ x0=[0 0 0]; ← initial condition
�−→ [fopt,xopt]=optim(costf,x0) ← x0 a row vector
xopt =

! 0.0833333 0.3333333 0.5833333 !

fopt =

0.5

�−→ [fopt,xopt]=optim(costf,x0’) ← x0 a column vector
xopt =

! 0.0833333 !

! 0.3333333 !

! 0.5833333 !

fopt =

0.5

�−→ [fopt,xopt,gopt]=optim(list(NDcost,myf),x0’) ← x0 must be a column
gopt =

! 0. !

! 0. !

! - 1.833D-11 !

xopt =

! 0.0833333 !

! 0.3333333 !

! 0.5833333 !

fopt =

0.5

In more complicated problems the user often has to set limits on how many iterations
are taken in order to control the time of computation. In these cases the value of the
gradient is very useful information, since if we are at a local optimum of an unconstrained
smooth problem, then the gradient should be zero. Note that in the NDcost we get a
numerical estimate of the gradient and it is close to zero. Requesting the value of the
gradient at the optimal point is a general option with optim, as we will now show.
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For more complicated problems, the user will want to use some of the options of optim,
which we will now describe. The full calling format is

[f,[xopt,[gradopt,[work]]]]=optim(costf,[contr],x0,[’algo’],....

[df0,[mem]],[work],[stop],[’in’],[imp=iflag])

These parameters are as follows. Using some of them requires knowledge about the iterative
numerical methods used.

• costf: An external, Scilab function, list, or string (costf is the cost function: see its
calling sequence below (Scilab, C, or Fortran)). x0: real vector (initial value of variable
to be minimized).

• f: Value of optimal cost.
• xopt: Best value of x found.
• contr: The three entries ’b’,binf,bsup. binf and bsup are real vectors with the same

dimension as x0. binf and bsup are lower and upper bounds on x.
• "algo": Determines the algorithm. ’qn’ is quasi-Newton, which is the default. ’gc’

is conjugate gradient. ’nd’ stands for nondifferentiable. Use this if there are points
where the cost function does not have a derivative. An example is abs, which is not
differentiable at zero. Note that ’nd’ does not accept bounds on x.

• df0: Real scalar giving the guessed decrease of f at first iteration. df0=1 is the default
value. It affects the efficiency of the line-search algorithm.

• mem: An integer giving number of variables used to approximate the Hessian when
algo=’gc’ or ’nd’. Default value is around 6.

• stop: A sequence of optional parameters controlling the convergence of the algorithm.
stop= ’ar’,nap, [iter [,epsg [,epsf [,epsx]]]], where
– "ar": Reserved keyword for stopping rule selection defined as follows:
– nap: Maximum number of calls to costf allowed.
– iter: Maximum number of iterations allowed.
– epsg: Threshold on gradient norm.
– epsf: Threshold controlling decreasing of f.
– epsx: Threshold controlling variation of x. This vector (possibly matrix) of same

size as x0, can be used to scale x.
• "in": Reserved keyword for initialization of parameters used when costf is given as a

C or Fortran routine.
• "imp=iflag": Named argument used to set the trace mode. If iflag=0, then nothing

except errors are reported. If iflag=1, then there are initial and final reports. If iflag=2,
then there is an additional report per iteration. iflag>2 adds reports on linear search.
Most of these reports are written on the Scilab standard output, so if there are many
iterations involving vectors, there could be a lot of output.

• gradopt: Gradient of costf at xopt.
• work: Working array for hot restart for quasi-Newton method. This array is automati-

cally initialized by optim when optim is invoked. It can be used as an input parameter
to speedup the calculations.

The costf format is described above. The variable ind is used by optim. On output,
ind<0 means that f cannot be evaluated at x and ind=0 interrupts the optimization. If
costf is a character string, it refers to the name of a C or Fortran routine, which must be
linked to Scilab. The generic calling sequence for the C or Fortran routine is the function
costf(ind,n,x,f,g,ti,tr,td). Details on these additional variables are given in the on-line
help.
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4.3 Solving Nonlinear Equations

The theory and algorithms for solving a nonlinear system of equations

fct(x)=0 (4.7)

intertwines in a number of ways with those for optimization. Assuming that f is differen-
tiable, the primary Scilab utility is fsolve. It has the calling sequence

[x [,v [,info]]]=fsolve(x0,fct [,fjac] [,tol])

and uses the Powell hybrid method. fsolve is based on the package MINPACK [19].
The simplest calls need only

• x0: Real vector that is the initial value of the function argument.
• fct: External providing function in (4.7)

The optional parameters are

• fjac: External providing the Jacobian of fct.
• tol: Real scalar, which is a precision tolerance. Termination occurs when the algorithm

estimates that the relative error between x and the solution is at most tol. Default
value is tol=1.d-10.

• x: Final value of function argument. Estimated solution of (4.7).
• v: Value of function fct at x. Should be close to zero if a solution has been found.
• info: Indicates why termination occurred.

– 0: improper input parameters.
– 1: algorithm estimates that the relative error between x and the solution is at most

tol.
– 2: number of allowed calls to fct reached.
– 3: tol is too small. No further improvement in the approximate solution x is possible.
– 4: iteration is not making good progress.

The simplest calling sequence for fct is [v]=fct(x). If fct is a character string, it refers
to a C or Fortran routine, which must be linked to Scilab. Fortran calling sequence must
be

fct(n,x,v,iflag)

integer n,iflag

double precision x(n),v(n)

and the C Calling sequence must be

fct(int *n, double x[],double v[],int *iflag)

As an illustration of using fsolve we consider the problem of

min f(x, y, z) = (x − z)2 + 3(x + y + z − 1)2 + (x − z + 1)2, (4.8)

where
g(x, y, z) = 1 − x − 3y − z2 = 0. (4.9)

As noted earlier, the necessary condition for the minimum of this problem is that it be a
solution of

∇f + λ∇g = 0, (4.10)
g = 0. (4.11)

If we execute the next script:
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�−→ function z=fct(x)

�−→ xs=x(1)+x(2)+x(3)-1;

�−→ w1=[2*(x(1)-x(3))+6*xs+2*(x(1)-x(3)+1),6*xs,...

�−→ -2*(x(1)-x(3))+6*xs-2*(x(1)-x(3)+1)]

�−→ w2=[-1 -3 -2*x(3)]

�−→ z=[w1’+x(4)*w2’;1-x(1)-3*x(2)-x(3)^2]

�−→ endfunction

�−→ x0=[0 0 0 0]; ← initial condition
�−→ [x,v]=fsolve(x0,fct);

we get

�−→ v ← value of function at x

ans =

1.0D-16 *

! 0.0016752 0.0050255 0.0023359 - 1.6653345 !

�−→ x ← solution
ans =

! 0.1972244 0.1055513 0.6972244 - 1.675D-19 !

Since v= 0, we have found a solution given by x.

4.4 Nonlinear Least Squares

Suppose that y = f(x) is a function from the space of n-dimensional vectors x to that of
m-dimensional vectors y. Sometimes it may not be possible to solve f(x) = 0. The best
that we can hope for is to find an x that makes f(x) as small as possible. That is, you
want x that minimizes ‖f(x)‖2 = f(x)′f(x) =

∑m
i=1 fi(x)2. Such a solution is called a least

squares solution. Notice that this allows for m > n. That is, there are more equations than
there are unknowns. This situation is important for a number of applications including
parameter fitting. Scilab provides two utilities for nonlinear least squares. They are leastsq
and lsqrsolve.

leastsq

The calling format of leastsq is much like that of optim except that we give the function
f and optionally its Jacobian. The algorithm then computes the cost function f ′f and its
gradient. The only other difference is that the parameters are in a different order than
with optim. Thus the short calling format is

[f,xopt]=leastsq([imp,] fun [,Dfun],x0)

The complete format is

[f,[xopt,[gradopt]]]=leastsq(fun [,Dfun],[contr],x0,[’algo’],...

[df0,[mem]],[stop],[’in’])
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Here fun is an external, i.e., a Scilab function or string defining the least squares
problem.

Functions specialized for parameter fitting will be given shortly, but to illustrate the
use of leastsq, suppose that we have the data points

{(0, 0), (0, 1), (1, 1, ), (2, 1.5), (2, 2)}

and we want to find parameters a, b, c such that y = aebt + c fits these data as well as
possible. If the unknown parameters are called p = (a, b, c) and the data points (ti, yi),
then we can solve in the least squares sense the five equations given by yi−p1e

p2ti −p3 = 0.
When executed, the following Scilab script finds p and plots in Figure 4.1 both the data
points and the curve.

DAT=[0 0;0 1;1 1;2 1.5; 2 2];

function z=fun(p)

DAT=[0 0;0 1;1 1;2 1.5; 2 2]

z=DAT(:,2)-p(1)*exp(p(2)*DAT(:,1))-p(3)

endfunction

p0=[0 0 0]; ← initial value

[ff,p]=leastsq(fun,p0) ← ff value of the function at p

p =

! 1.0000000 0.4054651 - 0.5000000 !

ff =

0.625

xbasc();

plot2d(DAT(:,1),DAT(:,2),-3,rect=[-0.5,-0.5,2.5,2.5])

t=linspace(-0.5,2.5,50);

et=p(1)*exp(p(2)*t)+p(3);

plot2d(t,et,rect=[-0.5,-0.5,2.5,2.5]) ← Fig. 4.1

lsqrsolve

This program minimizes the sum of the squares of nonlinear functions, using the Levenberg–
Marquardt algorithm. The long and short forms of the calling sequence are

[x [,v [,info]]]=lsqrsolve(x0,fct,m [,stop [,diag]])

[x [,v [,info]]]=lsqrsolve(x0,fct,m ,fjac [,stop [,diag]])

depending on whether the Jacobian is supplied. Here

• x0: Real vector that is initial value of functions argument.
• fct: An external that defines the equations.
• m: Integer that is the number of functions.
• fjac: External that is the Jacobian of fct.
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Figure 4.1. Data points and curve found by leastsq.

• stop: Optional vector [ftol,xtol,gtol,maxfev,epsfcn,factor] whose default value is
[1.d-8,1.d-8,1.d-5,1000,0,100]. Controls the iterations.
– ftol: A positive real number. Termination occurs when both the actual and pre-

dicted relative reductions in the sum of squares are at most ftol. ftol measures
the relative error desired in the sum of squares.

– xtol: A positive real number. Termination occurs when the relative error between
two consecutive iterates is at most xtol. Thus xtol measures the relative error
desired in the approximate solution.

– gtol: A nonnegative input variable. Termination occurs when the cosine of the
angle between fct(x) and any column of the Jacobian is at most gtol in absolute
value. gtol measures the orthogonality desired between the function vector and the
columns of the Jacobian.

– maxfev: A positive integer. Termination occurs when the number of calls to fcn is
at least maxfev by the end of an iteration.

– epsfcn: A positive real number, used in determining a suitable step length for the
forward-difference approximation. This approximation assumes that the relative
errors in the functions are of order epsfcn. if epsfcn is less than the machine preci-
sion, it is assumed that the relative errors in the functions are on the order of the
machine precision.

– factor: A positive real number, used in determining the initial step bound. This
bound is set to the product of factor and the Euclidean norm of diag*x if nonzero,
or else to factor itself. In most cases factor should lie in the interval (0.1, 100), and
100 is a generally recommended value.

• diag: This is an array of length n. diag must contain positive entries that serve as
multiplicative scale factors for the variables.

• x: Final value of function argument, which is the estimated solution.
• v: Value of functions at x, also called the residual.
• info: Indicates cause of termination.

– 0: improper input parameters.
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– 1: algorithm estimates that the relative error between x and the solution is at most
tol.

– 2: maximum number of calls to fcn has been reached.
– 3: tol is too small. No further improvement in the approximate solution x is possible.
– 4: iteration is not making good progress.

The functions describing the equations fct and their Jacobian fjac are of the same
form. Letting fn stand for either fct or fjac, the allowable formats are

• A Scilab function whose calling sequence is v=fn(x,m) given x and m.
• A character string that refers to a C or Fortran routine that must be linked to Scilab.

Should return −1 in iflag to stop the algorithm if the function or Jacobian could not
be evaluated
– Fortran calling sequence should be fct(m,n,x,v,iflag), where m, n, iflag are inte-

gers, x is a double-precision vector of size n and v a double-precision vector of size
m.

– C calling sequence should be
fct(int *m, int *n, double x[],double v[],int *iflag)

Suppose that we wish not to use leastsq on our previous example, but wish to use
lsqrsolve. The format of the function is slightly different due to the parameter m, but we
can reuse our previous function by using the following script.

DAT=[0 0;0 1;1 1;2 1.5; 2 2];

function z=fun(p)

DAT=[0 0;0 1;1 1;2 1.5; 2 2]

z=DAT(:,2)-p(1)*exp(p(2)*DAT(:,1))-p(3)

endfunction

p0=[0 0 0];

function z=fct(p,m)

z=fun(p)

endfunction

[p,v]=lsqrsolve(p0,fct,5);

xbasc();

plot2d(DAT(:,1),DAT(:,2),-3,rect=[-0.5,-0.5,2.5,2.5]) ← Fig. 4.2
t=linspace(-0.5,2.5,50);

et=p(1)*exp(p(2)*t)+p(3);

plot2d(t,et,rect=[-0.5,-0.5,2.5,2.5])

Note that we are using the same equations and the same initial guess as before. The
value of p is completely different from the one we found before.

�−→ p

p =

! - 4154.231 - 0.0001505 4154.706 !
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�−→ v’

ans =

! - 0.4749930 0.5250070 - 0.1000375 - 0.2249880 0.2750120 !

However, the value of the norm squared is

�−→ v’*v ← norm squared
ans =

0.6375094

which compares favorably with the 0.625 found by the earlier method. Looking at the
graph and the data, we get Figure 4.2.
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Figure 4.2. Data points and curve found by lsqrsolve.

The example of this section illustrates that problems can sometimes have several solu-
tions, even when that is not obvious, and that different numerical methods, starting with
the same starting value, can lead to very different solutions.

4.5 Parameter Fitting

We gave an example of data fitting in the previous section. But Scilab has some utilities
that are especially designed for data fitting. We discuss here datafit, which is an improved
version of the older routine fit_dat. For a given function G(p, z), datafit finds the best
vector of parameters p for approximating G(p, zi) = 0 for a set of measurement vectors zi.
The vector p is found by minimizing

∑n
i=1 G(p, zi)′WG(p, zi). That is, p is the solution of a
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weighted least squares problem. The most common use of W is to make some measurements
more important than others. This utility uses optim, so the full calling sequence has many
of the same optional variables.

The simplest call to datafit requires only the form of the equation G, the data, and a
starting guess for the parameters p. In this case the calling sequence takes the form

�−→ [p,err]=datafit(G,Z,p0)

Let ne, np, nz be the number of equations in G, the number of parameters in p, and the
size of a single observation (dimension of z) respectively. Then

• G is a function describing e=G(p,z).
• Z is the matrix of observations [z_1,z_2,...,z_n], where each measurement is a column

vector.
• p0 is the initial guess for the parameters.

For example, if we wished to fit the data of the example in the last section, we could
use the following Scilab script:

�−→ Z=[0 0 1 2 2;0 1 1 1.5 2];

�−→ function e=G(p,z)

�−→ e=z(2)-p(1)*exp(p(2)*z(1))-p(3)

�−→ endfunction

�−→ p0=[0 0 0]’;

Note that the initial p0 had to be put in as a column vector. When this script is
executed we get the output

�−→ [p,err]=datafit(G,Z,p0);

which is the same as that given by leastsq in the last section.
We saw in the last section that there can be more than one solution to a parameter-

fitting problem. It can be important to bound the parameters to avoid values that are
not physically correct. Also, sometimes some data are more important than other data.
In this case one wants to weight the data. Sometimes the default values of parameters do
not enable the algorithm to converge. These and other considerations sometimes require
access to more of the parameters inside the algorithm. The full calling sequence, which
shares a number of variables with optim, is

[p,err]=datafit([imp,] G [,DG],Z [,W],[contr],p0,[algo],[df0,[mem]],

[work],[stop],[’in’])

These parameters are as follows:

• imp: Scalar argument used to set the trace mode. imp=0 means that nothing (except
errors) is reported. imp=1 means initial and final reports, imp=2 adds a report per
iteration and imp>2 adds reports on linear search. Note that most of these reports are
written on the Scilab standard output.

• DG: Partial of G with respect to p. In the form S=DG(p,z), so that S is ne×np.
• W: Weighting matrix of size ne×ne. Default is the identity.
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• "in": Reserved keyword for initialization of parameters used when G is given as a
Fortran or C routine.

• p: Optimal solution found, given as a column vector.
• err: Least squares error.

All the remaining parameters are identical to those in the general call to optim.

4.6 Linear and Quadratic Programming

4.6.1 Linear Programs

The basic linear programing problem is to minimize p′x subject to linear constraints. These
linear constraints can be equality or inequality constraints. The inequality constraints can
be one-sided or bound constraints. The Scilab function to solve these problems is linpro.
The general form of the problem is

minx p′x, (4.12a)
C1x ≤ b1, (4.12b)

ci ≤ x ≤ cs, (4.12c)
C2x = b2. (4.12d)

The form of the calling sequence depends on how many of these types of constraints are
present. The calling sequences are

[x,lagr,f]=linpro(p,C,b [,x0])

[x,lagr,f]=linpro(p,C,b,ci,cs [,x0])

[x,lagr,f]=linpro(p,C,b,ci,cs,me [,x0])

[x,lagr,f]=linpro(p,C,b,ci,cs,me,x0 [,imp])

The first three of these correspond to having the constraints (4.12b), (4.12b) and (4.12c),
(4.12b)–(4.12d) respectively. Note that if there are no constraints at all, then the problem
has no finite solution if p is not the zero vector.

These parameters have the following meaning:

• p: Real column vector of dimension n that contains the coefficients of the linear cost
function.

• C: Real (me + md)×n matrix. If no constraints are given, that is, all constraints are
of the form (4.12c), you can set C = []. Equality constraints are listed first, so that
if both (4.12b) and (4.12d) are present, we have C(j,:)x = b(j) for j=1,...,me and
C(j,:)x <= b(j), for j=me+1,...,me+md.

• b: (me + md)-dimensional column vector that is the right hand of the constraints in
(4.12b), (4.12d). If no constraints are given, then you can set b = [].

• ci: n-dimensional column vector of lower bounds. If there are no lower bound con-
straints, put ci = []. If some components of x are bounded from below, set the other
(unconstrained) values of ci to a negative number that has very large magnitude. That
is, ci(j)=-number_properties(’huge’).

• cs: Column vector of upper bounds. See comments for ci.
• me: Number of equality constraints. Thus C(1:me,:)*x = b(1:me).
• x0: Either an initial guess for x or one of the character strings ’v’ or ’g’. If x0=’v’,

then the calculated initial feasible point is a vertex. If x0=’g’, then the calculated initial
feasible point need not be a vertex.
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• imp: This is the verbose option. (Try imp= 7, 8 . . .). Note that the messages are sent to
Scilab standard output (can be lengthy if there are many iterations).

• x: Optimal solution found by algorithm.
• f: Optimal value of the cost function (4.12a).
• lagr: This is a vector of Lagrange multipliers. If lower and upper-bounds ci,cs are

provided, lagr has n+me+md components and lagr(1:n) is the Lagrange vector associated
with the bound constraints and lagr(n+1: n+me+md) is the Lagrange vector associated
with the linear constraints. If an upper bound (respectively lower bound) constraint i

is active, then lagr(i) is greater than 0 (resp. <0). If no bounds are provided, then
lagr has only me+md components.

4.6.2 Quadratic Programs

A quadratic program is the same as (4.12) except that the cost function (4.12a) is replaced
by the quadratic expression

1
2
x′Qx + p′x. (4.13)

The utility provided by Scilab is quapro. Since quapro does not require Q to be positive
definite, in fact Q could be zero, quapro can solve linear programming problems. With the
exception of the matrix Q, which must be real symmetric, the calling sequence for quapro

is identical to that of linpro. Since the variables have the same meanings, we do no repeat
their definitions here. The possible calling sequence for quapro are

[x,lagr,f]=quapro(Q,p,C,b [,x0])

[x,lagr,f]=quapro(Q,p,C,b,ci,cs [,x0])

[x,lagr,f]=quapro(Q,p,C,b,ci,cs,me [,x0])

[x,lagr,f]=quapro(Q,p,C,b,ci,cs,me,x0 [,imp])

4.6.3 Semidefinite Programs

There is also a Scilab function for solving semidefinite programs called semidef:

[x,Z,ul,info]=semidef(x0,Z0,F,blck_szs,c,options)

However, we shall not discuss it here. The interested reader is referred to the on-line help.

4.7 Differentiation Utilities

The function NDcost was introduced earlier to enable the user to solve some problems
without having to specify the gradient. Other utilities described earlier will automatically
estimate derivatives or Jacobians numerically when this is requested. However, it is some-
times useful to be able to get numerical estimates of derivatives and Jacobians directly.
This capability is provided by numdiff and derivative.

The Scilab function numdiff computes a numerical estimate of the Jacobian using finite
difference methods. If the function has real-number values, then it gives an estimate of the
gradient. Its calling sequence is

g=numdiff(fun,x [,dx])

if there are no parameters in fun. The parameters in numdiff are
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• fun: An external describing the function to be differentiated. The function fun calling se-
quence must be y=fun(x,p1,p2,...,pn), where the pi are optional parameters. If param-
eters p1,p2,...,pn exist, then numdiff can be called by g=numdiff(list(fun,p1,p2,...,pn),x).

• x: Vector argument of the function fun.
• dx: Vector, which is the finite difference step. Default value is

dx=sqrt(%eps)*(1+1d-3*abs(x))

• g: Vector (matrix), which is the estimated gradient (Jacobian).

For example, suppose that we want the Jacobian (derivative) of

f(x1, x2, x3) =
(

x1 + 2x2
2x3

sin(x1x2x3)

)
at x =

⎛
⎝1

2
3

⎞
⎠ . (4.14)

The following Scilab script, when executed, computes the estimate of the Jacobian given
by numdiff, the true Jacobian, and their difference.

function z=myf(x)

z=[x(1)+2*x(2)-x(2)^2*x(3);sin(x(1)*x(2)*x(3))]

endfunction

x=[1;2;3];

J=numdiff(myf,x);

TrueJ=[1,2-2*x(2)*x(3), -x(2)^2];

a=cos(x(1)*x(2)*x(3));

TrueJ=[TrueJ;a*[x(3)*x(2),x(1)*x(3),x(1)*x(2)]];

Difference=J-TrueJ;

The solution is

�−→ J

J =

! 1.0000000 - 10. - 4. !

! 5.7610218 2.8805109 1.9203406 !

�−→ TrueJ

TrueJ =

! 1. - 10. - 4. !

! 5.7610217 2.8805109 1.9203406 !

�−→ Difference

Difference =

! - 1.286D-08 - 4.045D-08 3.518D-08 !

! 1.157D-07 5.690D-08 - 1.100D-08 !
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4.7.1 Higher Derivatives

Sometimes it is desirable to have higher derivatives. Numerical differentiation is prone to
ill conditioning and error and this is especially true with the higher derivatives. If high-
accuracy higher derivatives are required, the best alternatives are symbolic differentiation
using a symbolic language such as Maple or automatic differentiation using a package such
as ADOL-C. [24] For complicated problems the symbolic approach can be very slow and
have memory problems. The only choice then may be automatic differentiation.

If the needed derivatives are limited to first and second order, then useful approximate
derivatives can often by gotten by using the Scilab function derivative.

Suppose that we have a function such as (4.15) of an n-dimensional vector x with
values that are m-dimensional vectors. Then at a point a it has a Taylor expansion

f(x) =

⎛
⎜⎝

f1(x)
...

fm(x)

⎞
⎟⎠ = f(a) + J(a)(x − a) +

⎛
⎜⎝

(x − a)′H1(a)(x − a)
...

(x − a)′Hm(a)(x − a)

⎞
⎟⎠ + · · · . (4.15)

Thus the first derivative is just the m × n Jacobian matrix J . However, the second
derivative is now m matrices each of which is n × n. The first and second derivatives of
f are provided by derivative. This utility provides several choices on how to arrange the
information on the second derivative by use of the H_form variable. The full calling syntax
is

[J [,H]] = derivative(F,x [,h ,order ,H_form ,Q])

• F: Scilab function F or a list(F,p1,...,pk), where F is a Scilab function in the form
y=F(x,p1,...,pk), with p1, ..., pk being any Scilab objects such as matrices or lists.

• x: real column vector of dimension n.
• h: Step size used in the finite difference approximations. Usually better to leave to

software to choose.
• order: Integer that is the order of the finite difference formula used to approximate the

derivatives. Default is order= 2. May be chosen as 1, 2, or 4.
• H_form: String giving the form in which the Hessian will be returned.

– H_form=’default’: H is an m×(n^2) matrix. Here the kth row of H corresponds to the
Hessian of the kth component of F.

– H_form=’blockmat’: In this format H is a (m×n)×n block matrix . Thus, in Scilab
notation, H = [H1;H2; ... ;Hm].

– H_form=’hypermat’: H is a n×n matrix for m=1, and a n×n×m hypermatrix otherwise.
That is, H(:,:,k) is the classical Hessian matrix of the kth component of F.

• Q: Real orthogonal matrix. Default is eye(n,n).

The Jacobian is computed by approximating the directional derivatives of the compo-
nents of F in the direction of the columns of Q. The second derivatives are computed by
composition of first-order derivatives. Numerical approximation of derivatives is generally
an unstable process. The step size h must be small to get a low error, but if it is too small,
floating-point errors will dominate by cancellation. A rule of thumb is not to change the
default step size. To work around numerical difficulties one may also change the order
and/or choose different orthogonal matrices Q (the default is eye(n,n)), especially if the
approximate derivatives are used in optimization routines. All the optional arguments may
also be passed as named arguments.

As an illustration suppose that myf is the same function as in the previous example
and that it and x are already in the workspace. Then the second derivative will have two
3 × 3 matrices. If we choose ’hypermat’ for the output format, then we will obtain
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�−→ function z=myf(x)

�−→ z=[x(1)+2*x(2)-x(2)^2*x(3);sin(x(1)*x(2)*x(3))]

�−→ endfunction
�−→ x=[1;2;3];

�−→ [J,H]=derivative(myf,x,H_form=’hypermat’)

H =

(:,:,1)

! 0. 0. 0. !

! 0. - 6. - 4. !

! 0. - 4. 0. !

(:,:,2)

! 10.058956 7.9099883 5.2733256 !

! 7.9099883 2.5147394 2.6366631 !

! 5.2733256 2.6366631 1.117662 !

J =

! 1. - 10. - 4. !

! 5.7610217 2.8805109 1.9203406 !
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Examples

Up to this point we have deliberately kept most of our examples concise in order to focus
on learning Scilab and also to illustrate how simple many types of calculations are with
Scilab. However, real scientific inquiries are often more complicated, involve several kinds
of software, and have several goals.

In this chapter we provide a few more elaborate application examples to illustrate how
Scilab can be used within this more complicated environment of investigation.

x

θ2

θ3

(x3, y3)

(x2, y2)

(x1, y1)

θ1

g

y

(x0, y0)

Figure 5.1. 3-link pendulum.

5.1 Modeling and Simulation of an N -Link Pendulum

Our first application will be the modeling and simulation of a pendulum with N links.
With this problem we shall illustrate how a symbolic manipulation package, in this case
Maple, can be used to derive the equations of motion of a multibody system and simulate
the result in Scilab. This is done using the Lagrangian approach.

The N -link pendulum is a well-known problem in numerical analysis. For large N it is
used as a test problem for software used for molecular dynamics simulation. In this case
it is very important to know whether energy is conserved.
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The N -link pendulum also arises as a model for flexible cables and chains. Several years
ago there was a collapse of several towers carrying power. It turned out that the power
lines were supported by pairs of chains of insulators and one of these chains had failed and
the other was unable to continue to support the power line. In the followup studies, the
insulator chains were modeled as 16-link pendulums.

5.1.1 Equations of Motion of the N-Link Pendulum

In this application we wish to simulate the motion of an N -link pendulum fixed at one
extremity and moving without friction in a vertical plane. As an example, and for fixing
notation, a picture of a 3-link pendulum is given in Figure 5.1. The equation of motion
can easily be deduced from a Lagrangian formulation for a 1- or 2-link pendulum but it
can become tedious work for say a 10-link pendulum in the Scilab demos.

In order to construct models with large N , we use the computer algebra package
Maplein order to derive the equations of motion from a Lagrangian formulation. The
computer algebra package generates Fortran code to be used by Scilab for simulation. It
also provides LATEX code for symbolic expressions at every step of the computation. The
N -link pendulum is considered as N independant connected rigid bodies.

The Maple code is separated into two parts. The first part provides a general library
for Lagrangian modeling of rigid bodies linked with holonomic constraints, and the second
part applies the general code to the specific example of the N -link pendulum. By setting
the code up in this manner, we have made it easier for the reader to modify the pendu-
lum problem, say by adding masses at the end or even modeling a completely different
mechanical system.

It should be noted that the kind of constraints we have here are called holonomic.
Constraints involving velocities are called nonholonomic and are not considered here.

Lagrangian of Multibody Systems with Holonomic Constraints

Let q be the generalized coordinates and q̇ the generalized velocities of the system of N
rigid bodies. The coordinates q can vary with time t. Then the Lagrangian of the problem
can be expressed as

L(q, q̇) =
N∑

i=1

Li(q, q̇), (5.1)

where Li is the Lagrangian of body i. For each component of q we have to compute
I(q, q̇, q̈)i, which is defined by the Euler equation

I(q, q̇, q̈)i =
d

dt

(
∂L
∂q̇i

)
− ∂L

∂qi
.

Readers familiar with the calculus of variations or optimal control will recognize this as
the usual term that arises in the necessary conditions for a minimum.

This formal expression for I(q) can be rewritten in matrix notation as

I(q, q̇, q̈) = M(q)q̈ + R(q, q̇). (5.2)

If there are no constraints or outside forces, then (5.2) is set equal to zero, and we get the
usual second-order equation of motion, which says that mass times acceleration is equal
to the total force.
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So far we have assumed that the rigid bodies were independent. We now have to deal
with the mechanical constraints of holonomic type expressing the fact that we have a linked
pendulum. These constraints can be written as A(q) = 0. Note that the time derivative of
the constraints gives the equation

B(q)q̇ = 0,

where B(q) = dB
dq , that is,

B(q)i,j =
(

∂A(q)i

∂qj

)
.

Thus q̇ has to be in the kernel of B(q). We can then try to compute a formal basis of the
kernel of B(q). This yields a matrix S(q) whose columns span the kernel of B(q). Then we
can introduce a time function η such that q̇ = S(q)η. Note that by definition we have

B(q)S(q)η = 0. (5.3)

We return now to the Euler equations. Using the constraints and their associated
Lagrange multipliers, the equations can be expressed as

I(q, q̇, q̈) = B(q)T λ. (5.4)

We use S(q) to eliminate the right-hand side of (5.4) by left multiplying by S(q)T and
simplifying the result using q̇ = S(q)η and its time derivative, which can be expressed as
q̈ = W (q, η, η̇). We finally obtain

0 = S(q)TI(q, q̇, q̈) = M1(q)η̇ + R1(q, η).

The dynamical system with state (q, η) to be simulated is then

M1(q)η̇ + R1(q, η) = 0, (5.5a)
q̇ − S(q)η = 0. (5.5b)

Note that in this last equation the constraint A(q) = 0 is seen only through its time
derivative. This raises the possibility that during simulation there may be numerical er-
rors in the constraints. In the numerical analysis literature this is called constraint drift.
However, we will see that in the example of the N -link pendulum, we can simplify the
equations in order to avoid the numerical drift in the constraint A(q) = 0.

When it is not possible to find a formal basis of the null space of B(q), it is often
possible to differentiate the holonomic constraint twice, which leads to the constraint

B(q)q̈ + Bq(q)q̇ = 0.

Thus we have A(q) = 0, B(q)q̇ = 0, and B(q)q̈ + Bq(q)q̇ = 0. These three constraints can
be replaced by a unique constraint [9]

−B(q)q̈ + R2(q, q̇) = 0

with
R2(q, q̇) = −Bq(q)q̇ + α (B(q)q̇) + βA(q) = 0.

This replacement process is known as stabilized differentiation or Baumgarte stabilization.
The new system to be simulated is then

M(q)q̈ − B(q)T λ + R(q, q̇) = 0, (5.6a)
−B(q)q̈ + R2(q, q̇) = 0. (5.6b)
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At each integration step we need to solve a linear system to get (q̈, λ), and α and β are to be
properly chosen so as to keep the error stabilized. A similar problem has been considered
in [21] where the control of a bicycle was considered.

Note that neither (5.5) nor (5.6) is an explicit ordinary differential equation. Depending
on the invertibility of M1 and B they are either implicit ordinary differential equations or
differential algebraic equations (DAE). There are two options. One is to try to integrate
with a DAE solver such as dassl. Alternatively, one can try to reduce the system to an
ordinary differential equation. We shall do the latter.

The N-Link Pendulum as N Rigid Bodies with Holonomic Constraints

We consider here an N -link pendulum that is fixed at one end and moves without friction
in a vertical plan as described in Figure 5.1. In this section we derive, with specialized
Maple code, the equations of motion of the N -link pendulum. We will follow the steps of
the previous section. In order to keep the output simple, we will use the simpler 2-link
pendulum. But the reader should keep in mind that the equations are not manually written
but rather are derived by a computer program.

We first generate the Lagrangian of the N -link pendulum by adding the Lagrangian of
each rigid body. Let ri = li/2. For the 2-link pendulum this gives

L(q, q̇) =
1
2
m1

(
r1

2 sin(θ1)2 θ̇2
1 + r1

2 cos(θ1)2 θ̇2
1

)
+

J1 θ̇2
1

2
− m1 g r1 sin(θ1)

+
1
2
m2

((
ẋ1 − r2 sin(θ2) θ̇2

)2

+
(
ẏ1 + r2 cos(θ2) θ̇2

)2
)

+
J2 θ̇2

2

2
− m2 g (y1 + r2 sin(θ2)) .

Then we obtain the following expression for I(q, q̇, q̈):⎛
⎜⎜⎜⎜⎜⎜⎝

m2 ẍ1 − m2 r2 cos(θ2) θ̇2
2 − m2 r2 sin(θ2) θ̈2

m2 ÿ1 − m2 r2 sin(θ2) θ̇2
2 + m2 r2 cos(θ2) θ̈2 + m2 g

m1 r1
2 θ̈1 + J1 θ̈1 + m1 g r1 cos(θ1)

0
0

−m2 r2 sin(θ2) ẍ1 + m2 r2
2 θ̈2 + m2 r2 cos(θ2) ÿ1 + J2 θ̈2 + m2 g r2 cos(θ2)

⎞
⎟⎟⎟⎟⎟⎟⎠

,

which is rewritten as in (5.2) with

M(q) =

⎛
⎜⎜⎜⎜⎜⎜⎝

m2 0 0 0 0 −α2

0 m2 0 0 0 β2

0 0 m1 r1
2 + J1 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

−α2 β2 0 0 0 m2 r2
2 + J2

⎞
⎟⎟⎟⎟⎟⎟⎠

,

R(q, q̇) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−m2 r2 cos(θ2)θ̇2
2

m2 g − m2 r2 sin(θ2)θ̇2
2

m1 g r1 cos(θ1)
0
0

m2 g r2 cos(θ2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,
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where βk = mkrk cos(θk) and αk = mkrk sin(θk).
We have simplified the system by eliminating (x0, y0) and (ẋ0, ẏ0), since one end of the

first link is at a fixed position.
The constraints are

x1 − 2r1 cos(θ1) = 0, (5.7a)
y1 − 2r1 sin(θ1) = 0, (5.7b)

x2 − x1 − 2r2 cos(θ2) = 0, (5.7c)
y2 − y1 − 2r2 sin(θ2) = 0. (5.7d)

In general we would have 2N constraints for a nN -link pendulum, which are given by
A(q) = 0.

Symbolic differentiation of A(q) by Maple leads to B(q):

B(q) =

⎛
⎜⎜⎝

1 0 2r1 sin(θ1) 0 0 0
0 1 −2r1 cos(θ1) 0 0 0
−1 0 0 1 0 2r2 sin(θ2)
0 −1 0 0 1 −2r2 cos(θ2)

⎞
⎟⎟⎠ .

A symbolic computation for a basis of the kernel of B(q) gives

S(q) =

⎛
⎜⎜⎜⎜⎜⎜⎝

−2 r1 sin(θ1) 0
2 r1 cos(θ1) 0

1 0
−2 r1 sin(θ1) −2 r2 sin(θ2)
2 r1 cos(θ1) 2 r2 cos(θ2)

0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

As pointed out in the previous section we can thus introduce a time function η such
that q̇ = S(q)η. Using the particular form of S(q), we note that the η variable has a
physical interpretation as η = θ̇. Note also that S(q) is not unique and we have selected
the S(q) for which we have

η = θ̇.

We use S(q) to eliminate the right-hand side of this equation by left multiplying by S(q)T

and simplifying the result using q̇ = S(q)η. Using basic symbolic algebra, the obtained
equation can be rewritten as

M1(q)η̇ + R1(q, η) = 0,

where

M1(q) =
(

m1 r1
2 + J1 + 4 r1

2 m2 2 r1 m2 r2 cos(θ1 − θ2)
2 r1 m2 r2 cos(θ1 − θ2) m2 r2

2 + J2

)
,

R1(q, η) =
(

r1 cos(θ1) g (2m2 + m1) + 2 r1 m2 r2 sin(θ1 − θ2)η2
2

m2 g r2 cos(θ2) − 2 r1 m2 r2 sin(θ1 − θ2)η2
1

)
.

The dynamical system with state (q, η) to be simulated is then

M1(q)η̇ + R1(q, η) = 0,
q̇ − S(q)η = 0.

Note that M1, R1, and S depend only on θ and η. Thus we can drop (xi, yi)i=1,2 from the
system equations and just keep (θ, η) as the state, giving us
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M1(θ)η̇ + R1(θ, η) = 0, (5.8a)
θ̇ = η. (5.8b)

Notice that (5.8) has the expected form with θ being the angular position and η being the
angular velocity.

When a solution is found for (θ, η), it is easy to recompute the (xi, yi)i=1,2 positions
using the constraints (5.7). This calculation works in general and we have shown that the
dynamics of the N -link depend only on the state variables (θ, θ̇).

5.1.2 Generated Code and Simulation

Using the Maple computer algebra system we can code as a Maple script the steps described
in the previous section. This script was used to generate the three Fortran files: npend.f
(dynamics), np.f (number of links), and ener.f (total energy), and LATEX code of the
equations that were placed, using cut and paste, in the previous paragraph.

We provide in listing (5.1.2) a verbatim input of the Fortran file npend.f containing
npend(neq,t,th,ydot), which codes the dynamics given by (5.1.2). The equations given
by (5.1.2) are in implicit form, and we numerically solve a linear system in npend (M1(q)η̇ =
−R1(q, η) in order to compute η̇. Note that this file is 59 lines long for a 2-link pendulum.
For a 10-link pendulum the generated file, which can be found in the Scilab distribution
at demos/simulation/npend/Maple, is 477 lines long!

c SUBROUTINE npend
subroutine npend(neq,t,th,ydot)
parameter (n=2)
implicit doubleprecision (t)
doubleprecision t,th(2*n),eta(n),ydot(2*n),r(n),
doubleprecision me3s(n,n),const(n,1),j(n),m(n)
doubleprecision w(3*n),rcond
integer i,k,neq,ierr
data g / 9.81/
data r / n*1.0/
data m / n*1.0/
data j / n*0.3/

c
do 1000, i =1,n ,1

ydot(i) = th(i+n)
1000 continue

c
c

do 1001, i =1,n ,1
eta(i) = th(i+n)

1001 continue
c

t1 = r(1)**2
t8 = cos(th(1)−th(2))
t11 = 2*r(1)*m(2)*r(2)*t8
t12 = r(2)**2
me3s(1,1) = m(1)*t1+4*t1*m(2)+J(1)
me3s(1,2) = t11
me3s(2,1) = t11
me3s(2,2) = m(2)*t12+J(2)
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t1 = m(2)*r(2)
t2 = eta(2)**2
t4 = sin(th(1)−th(2))
t8 = cos(th(1))
t16 = eta(1)**2
t20 = cos(th(2))
const(1,1) = r(1)*(2*t1*t2*t4+2*t8*m(2)*g+m(1)*g*t8)
const(2,1) = t1*(−2*r(1)*t16*t4+g*t20)

c
do 1002, i =1,n ,1

const(i,1) = −const(i,1)
1002 continue

c
c solving M z = const to obtain ydot((n+1). .2*n)

call dlslv(me3s,n,n,const,n,1,w, rcond,ierr,1)
if (ierr.ne.0) then

write(6,2000)
2000 format(’Matrix is badly conditioned’)

endif
c

do 1003, i =1,n ,1
ydot(n+i) = const(i,1)

1003 continue
c

return
end

As described in Section 2.5.1 on interfacing, it is now possible to link the function
npend (which conforms to the internal calling syntax accepted by ode), and numerically
integrate the N -pendulum equation using ode. The np function, which is also dynamically
linked in Scilab, returns the number of links of the pendulum. The reader can take a look
at the SCI/demos/simulation/npend to check the details. The Fortran code is compiled
and dynamically linked in a running Scilab using the previously described ilib_for_link

function.

�−→ npend_build_and_load() ; ← calling ilib_for_link

generate a loader file

generate a Makefile: Makelib

running the makefile

compilation of npend

compilation of np

compilation of ener

compilation of dlslv

building shared library (be patient)

shared archive loaded

Link done

�−→ n=np(); r=ones(1,n); m=ones(1,n); j=ones(1,n); g=9.81;

�−→ y0=0*ones(2*n,1);tt=0:0.05:10; ← (θ, θ̇)(0) = 0
�−→ yt=ode(y0,0,tt,’npend’); ← calling ode

�−→ draw_chain_from_angles(yt(1:$/2,:),r,1); ← Figure˜5.2
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Then the N -link pendulum is easily simulated using ode given initial values for (θ, θ̇).
Using the scilab demo files, we now show the result (See Figure 5.2) of a simulation of a
10-link pendulum.

Figure 5.2. 10-link pendulum. Dotted line represents the trajectory of the endpoint of the
pendulum.

The result of the ode simulation is a matrix with N rows. Each column of the
matrix gives the value of (θ, θ̇) at a specific time. Using this matrix a graphics sim-
ulation is obtained by first computing the (xi, yi)i=0,N and then using the function
draw_chain_from_angles to provide an animation. There is an option in the animation
to keep track of the trajectory of the endpoint of the pendulum. This curve can be seen
as the dashed line in the static Figure 5.2.

We provide here a slightly modified version of draw_chain_from_angles, which gives an
example of an animation using the new graphics mode. Moreover, this function uses the
Scilab functions realtimeinit and realtime to control the animation speed.

function draw_chain_from_angles(a,r,job,rt)

// a the angles , a(i,j) is the angle of node i at time t(j)

// r the segments half length

if argn(2)<3 then job=0, end
if argn(2)<4 then rt = 0.01; end
n2=size(a,2);

x=[0*ones(1,n2);cumsum(2*diag(r)*cos(a),1)];

y=[0*ones(1,n2);cumsum(2*diag(r)*sin(a),1)];

draw_chain_from_coordinates(x,y,job,rt)

endfunction

function draw_chain_from_coordinates(x,y,job,rt)

// x(i,j), y(i,j) is the coordinate of node i at time t(j)
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// r the segments half length

if argn(2)<3 then job=0, end
if argn(2)<4 then rt = 0.01; end
[n1,n2]=size(x);

b = maxi(maxi(abs(x)),maxi(abs(y)));

xbasc();set figure_style new; ← new graphics mode
a=gca() ← we want to set
a.data_bounds=[-1,-1;1,0]*b; ← the graphics boundaries
a.isoview="on"; ← and use an isoview mode
xset(’pixmap’,1); ← double buffer mode
drawlater() ← wait for graphics display
colors= 1:n1-1; colors(8)=n1;

xsegs([x(1:$-1,1)’;x(2:$,1)’],[y(1:$-1,1)’;y(2:$,1)’],colors) ← draw
p=gce();p.thickness=4; ← p is used to keep track of xsegs data
if job==1 then

xpoly(x($,1)*ones(2,1),y($,1)*ones(2,1),’lines’); ← endpoint trajectory
t=gce();t.line_style=2;

end
drawnow() ← perform drawing
xset(’wshow’) ← update display with double buffer
ind=[1;(2:n1-1)’.*.ones(2,1);n1]

realtimeinit(rt); ← set time unit: smaller values will accelerate the animation
for j=1:n2,

realtime(j) ← wait to time j before continuing
drawlater()

p.data = [x(ind,j),y(ind,j)]; ← update xsegs data
if job==1 then t.data=[t.data;[x($,j),y($,j)]], end ← update xpoly data
drawnow() ← since objects are updated, graphics is cleared and redrawn
xset(’wshow’) ← update display with double buffer

end
endfunction

5.1.3 Maple Code

General Code Dealing with Euler Equation

We provide here part of the file Euler.map, which contains generic functions for Euler
equation computation from Lagrangian formulation. For simplicity we have removed from
the Maple code functions devoted to LATEX code generation, but the full file content can
be found in the Scilab distribution.

#---------------------------------------------------------------

# Functions for computing Euler equations. L is the Lagrangian,

# q,qd,qdd are the generalized coordinates and their derivatives

#---------------------------------------------------------------

with(‘linalg‘):

euler_equations:=proc(L,q,qd,qdd)

local k,m:

m:=nops(q);

v:=matrix(m,1,0);

for i to m do
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v[i,1]:=LL(q[i])=simplify(time_diff(diff(L,qd[i]),q,qd,qdd)

-diff(L,q[i]));

od;

eval(v):

end:

#---------------------------------------------------------------

# Time derivative computation of an expression

# depending on q,qd,qdd. Used to compute Euler equations

#---------------------------------------------------------------

ttvar:=proc(xx)

if type(xx,‘indexed‘)

then cat(op(0,xx),‘d‘)[op(xx)]

else cat(xx,‘d‘) fi

end:

time_diff:=proc(phi,q,qd,qdd)

local phi_copy,k,diff_phi:

# substitution to specify that q,qd ,qdd depends on time

phi_copy:=phi:

phi_copy:=subs(map( xx-> xx=xx(t),[op(q),op(qd)]),phi_copy):

diff_phi:=diff(phi_copy,t):

# substitution to come back to our variables

diff_phi:=subs(map(xx->diff(xx(t),t)=ttvar(xx),[op(q),op(qd)]),

diff_phi):

diff_phi:=subs(map(xx->xx(t)=xx,[op(q),op(qd),op(qdd)]),diff_phi):

end:

#-----------------------------------------------------

# Rewriting the Euler equations to have a canonical form

# .. .

# El= ME(q) q + RE(q,q)

# Computation of ME

# CEuler returns a list [ME,RE];

#-----------------------------------------------------

CEuler:=proc(E,q,qd,qdd)

local Me,Ce,Re:

Me:=MME(E,q,qd,qdd):

Re:=RRE(E,Me,q,qd,qdd):

[eval(Me),eval(Re)]:

end:

MME:=proc(E,q,qd,qdd)

local E1:

E1:=eval(E):

genmatrix([seq(E1[i,1],i=1..nops(qdd))],qdd):

end:

#-----------------------------------------------------

# .

# Extract the RE(q,q) matrix El= ME(q) qdd + RE(q,qd)
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#-----------------------------------------------------

RRE:=proc(E,ME,q,qd,qdd)

local MM:

MM:=matadd( E,multiply(ME,matrix(nops(q),1,qdd)),1,-1);

MM:=map((x)-> simplify(x),eval(MM)):

end:

#-----------------------------------------------------

# FORTRAN GENERATION

#-----------------------------------------------------

Gener:=proc(filename,fortranlist)

global optimized;

init_genfor();

optimized:=true:

writeto(filename):

genfor(flist):

writeto(terminal):

end:

5.2 Modeling and Simulation of a Car

This example is presented to illustrate the use of the zero-crossing option in the ode
function. is also particularly interesting because it is hybrid in nature. This means that
it has different behaviors in different “states.” In this example the different states are
characterized by whether or not the wheels of the car are on the ground. Since our 2D
model has only two wheels, the system has four states, since each wheel can be on or off
the ground.

The term “state” is being used two ways in this section. If we wanted to be more precise,
we would say that the state of the system is composed of both discrete and continuous
states. The discrete part takes on four values depending on the contact of the wheels. For
each value of the discrete state we have continuous state variables that describe the car.
In the model that follows there are the same number of continuous state variables for each
value of the discrete state variable. That need not be true in general.

We consider a very simple planar mechanical model so that the equations do not
become very complex. We will make several simplifying assumptions in order to reduce
the complexity of the model, yet keep the essence of the application so that the model’s
dynamic behavior remains realistic. It would be easy to modify this example to make it
even more realistic.

5.2.1 Basic Model

The simple 2D model of the car that we consider here includes (see Figure 5.3):

• two parallel suspensions which are massless but have internal damping,
• massless wheels of size zero rolling on the ground with no loss of energy due to friction,
• a mass m with rotational inertia J in the middle of the massless rod connecting the

top of the suspensions. The length of the rod connecting the top of the suspensions is
a constant denoted by l.
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Figure 5.3. Simple model of the 2D car.

The model uses the following variables:

• θ: angle the car body makes with the horizonal. This is equal to the angles of the
suspensions with the vertical.

• ξ and η: length of the two suspensions.
• λ1 and λ2 (respectively λ3 and λ4): the horizontal and vertical forces exerted by the

ground on the rear (respectively front) wheel.
• ground modeled by the function y = F (x).
• (x0, y0) (respectively (x1, y1)), which represent the coordinates of the rear (respectively

front) wheel. They may or may not be on the ground (i.e., on the curve F (x)).
• (x, y): coordinate of the center of gravity of the mass m (the only object with mass in

the model).

The two suspensions are assumed to have the parameters k, γ, and d. The forces
produced by the suspensions are k(ξ − d) + γξ̇ for the rear suspension and k(η − d) + γξ̇
for the front suspension.

5.2.2 Equations of Motion

The equations of motion are obtained from basic principles of physics. We calculate the
sum of external forces in the x and y directions to obtain the acceleration of the mass m
in each of these directions. We also compute the torque around its center of gravity to
obtain an equation for θ̈. The remaining equations are obtained from the dynamics of the
suspensions.

Since in our model each wheel can be on or above the ground, normally we should
derive four different sets of equations describing the motion of the car. However, it turns
out that once we have the model with both wheels on the ground, the other models can
be obtained from it very easily. So we start with the assumption that both wheels are on
the ground.

The equations of motion for the system are easily obtained from basic principles:
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mẍ = λ1 + λ3, (5.9a)
mÿ = −mg + λ2 + λ4, (5.9b)

0 = k(ξ − d) + γξ̇ − λ1 sin(θ) + λ2 cos(θ), (5.9c)
0 = k(η − d) + γη̇ − λ3 sin(θ) + λ4 cos(θ), (5.9d)

Jθ̈ = λ1φ0 − λ2ψ0 + λ3φ1 + λ4ψ1, (5.9e)

where

φ0 = ξ cos(θ) + l cos(θ)/2, (5.9f)
φ1 = η cos(θ) − l sin(θ)/2, (5.9g)
ψ0 = −ξ sin(θ) + l cos(θ)/2, (5.9h)
ψ1 = η sin(θ) + l cos(θ)/2. (5.9i)

System (5.9) gives a complete characterization of the dynamics of the system if the λ’s
are known.

In the absence of friction, the ground can apply only an orthogonal force to the wheels
(the car does not accelerate or brake in our model). Thus

λ1 = −λ2Fx(x0), (5.10)
λ3 = −λ4Fx(x1), (5.11)

where
Fx(x) =

∂f

∂x
(x). (5.12)

This means that the only values we need to determine are λ2 and λ4. Note that if a wheel
is not in contact with the ground, then the corresponding λ’s are simply zero.

If the wheels touch the ground, we have

y0 = F (x0), (5.13)
y1 = F (x1). (5.14)

The state of the car is completely characterized in terms of the variables x, y, θ, their
derivatives, and ξ and η. Thus the wheel positions can be obtained from them:

x0 = x − ψ0, (5.15)
y0 = y − φ0, (5.16)
x1 = x + ψ1, (5.17)
y1 = y − φ1. (5.18)

The values of λ2 and λ4 can be obtained from (5.13)–(5.18) and the derivatives of (5.9c)
and (5.9d):

λ2 = γ(Fx(x0)ẋ − w0k(ξ − d)/γ + (Fx(x0)φ0 + ψ0)θ̇ − ẏ)/w2
0, (5.19)

λ4 = γ(Fx(x1)ẋ − w1k(η − d)/γ + (Fx(x1)φ1 − ψ1)θ̇ − ẏ)/w2
1, (5.20)

where
wi = Fx(xi) sin(θ) + cos(θ), i = 0, 1. (5.21)
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5.2.3 Simulation Model

To use the Scilab function ode to simulate this system, we need to put the system into
a first order ODE. This is done by introducing variables vx, vy, and ω to represent the
derivatives of x, y and θ. The first-order ODE can now be expressed as follows:

ẋ = vx, (5.22)
v̇x = −(λ2Fx(x0) + λ4Fx(x1))/m, (5.23)
ẏ = vy, (5.24)

v̇y = −(mg − λ2 − λ4)/m, (5.25)

ξ̇ = −(k(ξ − d) + λ2w0)/γ, (5.26)
η̇ = −(k(η − d) + λ4w1)/γ, (5.27)
θ̇ = ω, (5.28)
ω̇ = −(λ2(Fx(x0)φ0 + ψ0) + λ4(Fx(x1)φ1 − ψ1))/J, (5.29)

where λ2 and λ4 are either zero (wheel not on the ground) or given by

λ2 = γ(Fx(x0)vx − w0k(ξ − d)/γ + (Fx(x0)φ0 + ψ0)ω − vy)/w2
0, (5.30)

λ4 = γ(Fx(x1)vx − w1k(η − d)/γ + (Fx(x1)φ1 − ψ1)ω − vy)/w2
1. (5.31)

The w’s, φ’s, and ψ’s are defined as before.

Discrete States

Note that the system can be in 4 different states:

1. both wheels on the ground,
2. only rear wheel on the ground,
3. only front wheel on the ground,
4. no wheel on the ground.

The simulation must detect when the state changes. This is done by zero-crossing tests
(the root option in ode).

If the system is in state 1 (both wheels on the ground), then the zero-crossing surfaces
are

s =
(

λ2

λ4

)
. (5.32)

The reason is that as long as the wheels are on the ground, the vertical forces exerted on
them from the ground are positive. As soon as any of them goes negative, the corresponding
wheel leaves the ground.

If the system is in state 2 (only rear wheel on the ground), then the test on the rear
wheel (λ2) remains the same, but the other zero-crossing consists in finding whether the
front wheel has come to contact with the ground. So in this case the zero-crossing surfaces
are

s =
(

λ2

y1 − F (x1)

)
. (5.33)

Similarly, for state 3 the zero-crossing surfaces are

s =
(

y0 − F (x0)
λ4

)
, (5.34)
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and for state 4,

s =
(

y0 − F (x0)
y1 − F (x1)

)
. (5.35)

5.2.4 Scilab Implementation

Now that the first-order dynamics and the zero-crossing surfaces are explicitly defined,
the implementation in Scilab is straightforward using the ode function. The four states of
the system are coded in two variables ST0 and ST1, which can take the values 0 and 1.
The value 0 for ST0 indicates rear-wheel contact with the ground, while the value 0 for
ST1 indicates front-wheel contact. A value of one means that the wheel is not in contact
with the road.

Since the root option in ode does not allow the system to start off a zero-crossing
surface, the simulation starts (and restarts after each zero-crossing detection) with a call
to ode without the root option for a short period of time. Subsequently, ode with root
option is called to perform the simulation up to the next zero-crossing. This also eliminates
multiple zero-crossing detections for the same surface due to numerical errors.

The Scilab function simul car, given below, implements the main simulation routine.
This function receives the initial state X and a vector of time instances TT. It computes
the solution XX of the system over the instances T. T is just TT to which the zero crossing
instances have been added in order to capture important positions of the car.

function [XX,T]=simul_car(TT,X)

Tt=TT; // remaining time instances

XX=[];T=[]; // intialization of outputs

tc=0; //current time

delt=1d-3; // time interval without root

while 1

t=tc+delt;

It=find(Tt<t); // find indices of output points

if It==[] then
xt=ode(X,tc,t,car); // no root simulation

else
Xx=ode(X,tc,Tt(It),car);

T=[T,Tt(It)];XX=[XX,Xx];xt=Xx(:,$);Tt(It)=[];

end
[Xx,rd]=ode(’root’,xt,t,Tt,car,2,carg);

if rd==[] then // no root found, update outputs

XX=[XX,Xx];T=[T,Tt]; break;
end
tc=rd(1); // root found at time tc

if size(rd,’*’)==3 then // two roots crossed

ST0=1-ST0;ST1=1-ST1; // change both states

else
if rd(2)==1 then ST0=1-ST0; end // rear wheel

if rd(2)==2 then ST1=1-ST1; end // front wheel

end
T=[T,Tt(find(Tt<rd(1))),rd(1)];XX=[XX,Xx];X=Xx(:,$);

// update outputs, time of zero-crossing added to TT

Tt=Tt(find(Tt>rd(1))); // update remaining time instances

end
endfunction
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The car model car and the zero-crossing surfaces carg functions are defined as follows:

function Xd=car(t,X)

x=X(1);xd=X(2);y=X(3);yd=X(4);th=X(5);thd=X(6);xsi=X(7);eta=X(8);

[lam2,lam4,x0,x1,mu0,mu1,w0,w1]=fun(X);

if ST0 then lam2=0; end
if ST1 then lam4=0; end
xdd=-(lam2*Fx(x0)+lam4*Fx(x1))/m

ydd=-(m*g-lam2-lam4)/m

thdd=-(lam2*mu0+lam4*mu1)/J

xsid=-(k*(xsi-d)+lam2*w0)/gam

etad=-(k*(eta-d)+lam4*w1)/gam

Xd=[xd;xdd;yd;ydd;thd;thdd;xsid;etad]

endfunction

function s=carg(t,X)

x=X(1);xd=X(2);y=X(3);yd=X(4);th=X(5);thd=X(6);xsi=X(7);eta=X(8);

[lam2,lam4,x0,x1,mu0,mu1,w0,w1]=fun(X);

if ST0 then
s1=y-xsi*cos(th)-l2*sin(th)-F(x0)

else
s1=lam2

end
if ST1 then
s2=y-eta*cos(th)+l2*sin(th)-F(x1)

else
s2=lam4

end
s=[s1,s2]

endfunction

function [lam2,lam4,x0,x1,mu0,mu1,w0,w1]=fun(X)

x=X(1);xd=X(2);y=X(3);yd=X(4);th=X(5);thd=X(6);xsi=X(7);eta=X(8);

x0=x+xsi*sin(th)-l2*cos(th)

x1=x+eta*sin(th)+l2*cos(th)

mu0=Fx(x0)*(xsi*cos(th)+l2*sin(th))-xsi*sin(th)+l2*cos(th)

mu1=Fx(x1)*(eta*cos(th)-l2*sin(th))-eta*sin(th)-l2*cos(th)

w0=Fx(x0)*sin(th)+cos(th)

w1=Fx(x1)*sin(th)+cos(th)

lam2=(Fx(x0)*xd-w0*k*(xsi-d)/gam+mu0*thd-yd)*gam/w0^2

lam4=(Fx(x1)*xd-w1*k*(eta-d)/gam+mu1*thd-yd)*gam/w1^2

endfunction

The road profile (the function F (x) and its derivative) are defined below. The param-
eters a, b, f are available to vary the road surface.

function y=F(x)

if x<0 then
y=-a*cos(f*x)

else
y=a*(-2+cos(b*f*x))
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end
endfunction

function y=Fx(x)

if x<0 then
y=a*f*sin(f*x)

else
y=-a*f*b*sin(b*f*x)

end
endfunction

We can avoid having to define Fx(x) by using automatic differentiation, which is available
as a plug-in toolbox for Scilab.

5.2.5 Simulation Result

The simulation is run with the following Scilab script:

A=30;a=5.2;f=%pi/A;B=3;b=1; ← curve parameters
XI=A; ← used to define boundaries of display
del=.02;TT=[del:del:15]; ← instances for animation
// model parameters

l=6;l2=l/2;m=1;d=4;g=10;gam=.5;

J=m*l2*l2/4;k=12;r2=d/4;

// compute reasonable initial state

x=-XI+.7;

y=d-m*g/2/k+F(x);xsi=y-F(x-l2)-0.3;eta=y-F(x+l2)-0.4;

X=[x;0;y;0;0;0;xsi;eta];

ST1=1;ST0=1;

[XX,T]=simul_car(TT,X); ← simulation
play(T,X,XI) ← animation

The initial condition is selected so that the car starts off with zero speed close to the
top of a hill. To avoid having to compute an initial condition in which both wheels are on
the ground, we start off with both wheels slightly above the ground. The car lands and
start rolling immediately.

The animation is performed by the function play, which can be found in Appendix C.
During this animation, the system changes state a number of times. Some of the changes
can be seen in Figure 5.4, which shows the position of the car at certain points during the
simulation.

To make the animation more realistic, wheels are drawn even though the model as-
sumed zero-sized wheels. It turns out that the simulation is valid (assuming of course that
wheels have zero mass) if the function F (x) describes not the profile of the ground but a
function drawn by the center of a wheel if the wheel would roll on the ground. This is true
provided the radius of curvature of the curve F (x) is always larger than the radius of the
wheel.

In the function play, the profile of the ground drawn (see Figure 5.4) is not F (x), but
it is obtained from F (x) and Fx(x), and, of course, the radius of the wheel. This is done for
a set of x’s to allow plotting the curve with enough detail. The mathematical expression
of this curve is in general difficult to obtain.
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Figure 5.4. Snapshots of the car during animation.

Note also that in play we use the xor mode to erase previous positions of the car. In
the xor mode, drawing an object for a second time erases it. This provides a very efficient
way of moving objects, in particular when some objects (for example the road in this case)
do not move because these latter objects need not be redrawn.

5.3 Open-Loop Control to Swing Up a Pendulum

We consider here the classical control problem of erecting a free swinging pendulum. The
set up consists of a pendulum mounted on a motor-driven cart traveling horizontally.

5.3.1 Model

The model is a special case of the model considered later in the part dedicated to Scicos;
see Figure 11.14 and equations (11.3)–(11.4). Here we consider the case that the angle φ
is zero. The model is then

(M + m)z̈ + mlθ̈ cos(θ) − mlθ̇2 sin(θ) = u(t), (5.36)
lθ̈ + z̈ cos(θ) − g sin(θ) = 0. (5.37)

The state of this system can be defined as follows:

x =

⎛
⎜⎜⎝

z
θ
ż

θ̇

⎞
⎟⎟⎠ . (5.38)

The system dynamics can then be expressed as follows:

ẋ = f(x, u), (5.39)

where f is easily obtained from (5.36)–(5.37).

5.3.2 Control Problem Formulation

The control problem considered is that of finding an input u(t) to move the pendulum
from an initial position, hanging at rest with the cart at the origin, to a final position
with the pendulum upright with the cart restored to its original position. We look only
for an open-loop control; in a real application such a control must be supplemented with
a feedback control to stabilize the system around the open-loop trajectory.
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The solution to this open-loop control problem is not unique: there are many control
functions u(t) over any interval [0, T ] that would move the state x(0) = [0,−π, 0, 0] to
x(T ) = [0, 0, 0, 0]. Clearly there is a compromise between the interval length T and the
size of u: the smaller T is, the bigger u is going to be.

A common formulation is to consider u to be bounded:

|u(t)| ≤ Umax, 0 ≤ t ≤ T,

and look for the shortest control interval (smallest T ). In this formulation, since u enters
the system equations linearly and there is no cost associated with it, from the optimality
principle, it can be shown that the optimal open-loop control is bang-bang. This means
that the optimal open-loop trajectory consists of a piecewise constant function taking
values +Umax and −Umax. So the control starts off with u(t) equal to +Umax for a period
of τ1 (which could be zero). This pushes the state to x1. Then the control switches to
−Umax and remains there over a period τ2; at the end of this period the state is at x2,
and so on until the end of the interval T is reached. See Figure 5.5.

.........

−Umax UmaxUmax
x0 x1 x2 xn

τ1 τ2 τn

Figure 5.5. Controls and states over the interval [0, T ].

So the problem reduces to finding the number of “switchings” and their “times.” To do
so, we fix the number of switchings and optimize over the switching times. We can run the
optimization problem for different numbers of switchings. We shall see the consequence of
overestimating this number in an example.

5.3.3 Optimization Problem

The control problem is formulated as an optimization problem by defining the following
cost function:

J(τ) = h(τ) + x(h(τ))T Wx(h(τ)), (5.40)

where
τ = (τ1, . . . , τn) (5.41)

and

h(τ) =
n∑

i=1

τi. (5.42)

The problem is then to minimize J over the τ ’s subject to the dynamics of the system.
We shall use optim to solve the problem.

The computation of J requires the computation of the final state xn given the control.
This can be done with the Scilab function ode. But optim also requires the gradient of
J with respect to τ (= (τ1, τ2, . . . , τn)). The gradient can also be obtained using ode and
the linearized model of the system.

The linearized model can readily be obtained from (5.36)–(5.37):
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(M + m)δz̈ − mlθ̈ sin(θ)δθ + ml cos(θ)δθ̈ − mlθ̇2 cos(θ)δθ − 2mlθ̇ sin(θ)δθ̇ = δu,

lδθ̈ + cos(θ)δz̈ − z̈ sin(θ)δθ − g cos(θ)δθ = 0.

By straightforward algebra, it can be shown that the linearized model can be expressed
as follows:

˙δx = A(ẋ, x, u)δx, (5.43)

where

A(ẋ, x, u) =
(

0 I
V −1F V −1G

)
(5.44)

where

F =
(

0 ml sin(θ)θ̈ + mlθ̇2 cos(θ)
0 z̈ sin(θ) + g cos(θ)

)
, (5.45)

G =
(

0 2mlθ̇ sin(θ)
0 0

)
, (5.46)

V =
(

M + m ml cos(θ)
cos(θ) l

)
. (5.47)

Note that z, θ, and their derivatives are all functions of u.
Note also that

∂J

∂τ
=

∂h

∂τ
+ x(h)T W

∂x(h)
∂τ

. (5.48)

∂h
∂τ is simply a vector of ones. ∂x(h)

∂τ is the variation in the final state xn due to a variation
in τ . Thus we can compute it by computing δxn due to variations δτ .

Let Ψ(t) be the fundamental solution of the linear system (5.43), i.e., the solution of
the following equation:

Ψ̇ = A(ẋ, x, u)Ψ, Ψ(0) = I. (5.49)

It is then straightforward to see that

δx1 = f(x1, Umax)δτ1, (5.50)
δx2 = Ψ(τ2)δx1 + f(x2,−Umax)δτ2 = Ψ(τ2)f(x1, Umax)δτ1 + f(x2,−Umax)δτ2

=
(
Ψ(τ2)f(x1, Umax) f(x2,−Umax)

) (
δτ1

δτ2

)
. (5.51)

By continuing the same way, we can show that for all i > 0,

δxi = Gi

⎛
⎜⎝

δτ1

...
δτi

⎞
⎟⎠ (5.52)

where G is obtained from the following recursion:

Gi+1 =
(
Ψ(τi)Gi f(xi, (−1)i+1Umax)

)
, G0 = [ ]. (5.53)

So at the end we have
δxn = Gnδτ, (5.54)

which allows us to evaluate ∂J
∂τ thanks to (5.48):

∂J

∂τ
= 1 + xT

n WGn, (5.55)

where 1 denotes a row vector of ones of size n.
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5.3.4 Implementation in Scilab

As we have seen in the previous section, the evaluation of the cost and the gradient of
the cost require the solution of the system and the fundamental solution of the linearized
system. These two systems cannot be solved separately because the linear system depends
on the trajectory of the original system. The two systems are thus solved simultaneously
by considering as state

X =
(
x Ψ

)
. (5.56)

This matrix differential equation can be solved directly by ode. The associated Scilab
functions are defined in the following file:

function Xd=simul(t,X)

x=X(:,1);dx=X(:,2:$)

[xd,dxd]=full_model(x,dx)

Xd=[xd,dxd];

endfunction

function [xd,dxd]=full_model(x,dx)

[lhs,rhs]=argn(0);

z=x(1);th=x(2);zd=x(3);thd=x(4);

Mati=inv([M+m,m*l*cos(th);cos(th),l]);

ydd=Mati*[m*l*sin(th)*thd^2+U;g*sin(th)];

zdd=ydd(1);thdd=ydd(2);

xd=[zd;thd;zdd;thdd];

F=[0,m*l*thdd*sin(th)+m*l*thd^2*cos(th);0,zdd*sin(th)+g*cos(th)];

G=[0,2*m*l*thd*sin(th);0,0];

if rhs == 2 then dxd=[zeros(2,2),eye(2,2);Mati*F,Mati*G]*dx; end
endfunction

The cost and its gradient, to be used by optim, are then computed by the following
function

function [f,gg,ind]=cost(Ti,ind)

xc=x0;

dxdt=[];

N=size(Ti,2)

tc=0;

for i=1:N

U=(-1)^(i-1)*Umax;

if Ti(i)>1d-9 then
XX=ode([xc,eye(4,4)],tc,tc+Ti(i),1d-11,1d-12,simul)

else
XX=[xc,eye(4,4)]

end
xc=XX(:,1);tc=Ti(i)+Ti(i)

Psi=XX(:,2:$);

dxdt=[Psi*dxdt,full_model(xc)];

end
f=sum(Ti)+xc’*W*xc/2

gg=ones(Ti)+xc’*W*dxdt

endfunction
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The main Scilab script which uses optim is the following

�−→ W=100*eye(4,4); // weighing matrix

�−→ M=1;m=.2;l=.6;g=10; // model parameters

�−→ N=5; // number of tau’s

�−→ delt=1.7;T0=ones(1,N)*delt/N; // initial guess

�−→ x0=[0;-%pi;0;0]; // intial state

�−→ Umax=9.7;

�−→ [J,Topt,gr]=optim(cost,’b’,ones(T0)*delt*0,delt*ones(T0),T

0,’ar’,300);

�−→ Topt

Topt =

! 0. 0.2817765 0.6133068 0.5066828 0.1752807 !

Note that we have let n be 5 (maximum of four switchings) but the optimal solution
obtained by optim sets τ1 to zero (Scilab variable Topt contains the vector τ). So this
solution starts off with u = Umax and switches three times over the interval. Both the
simulation result and the animation show that the solution is correct; see Figures 5.6 and
5.7.
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Figure 5.6. The first two figures illustrate the evolution of z and θ. The third figure is the
control. The last figure contains the derivatives of z and θ showing that the pendulum comes to
rest at the end of the interval as required.
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Figure 5.7. Snapshots of the pendulum during animation.

5.4 Parameter Fitting and Implicit Models

In many applications the scientist knows the general form of the equations that model the
process, but specific parameter values are not known. Also, in many application areas the
models are often differential algebraic equations (DAE). In this section we shall give an
illustration of parameter fitting with a DAE model.

The general procedure will be the following. Suppose that the model that is to be found
is a DAE

F (ẏ, y, t, p) = 0, (5.57)

where p is a vector of unknown parameters. We suppose that the model is to be defined over
the time interval [0, T ] and suppose that measurements are taken of the actual physical
process for some function of y at times ti for i = 0, . . . , N . That is, we have the measured
quantities

zi = h(y(ti), ti), i = 0, . . . , N. (5.58)

We suppose that J of these trials are done and let zi,j be the result of the jth trial at time
ti.

The initial condition for (5.57) could be fixed or it could be viewed as more parameters
to be determined. We shall take the initial condition fixed, but that does not change the
procedure. We wish to determine p such that the solution of (5.57) fits the observation data
as closely as possible. There are a couple of ways to do this in Scilab. One way would be to
use optim. Another is to use the function datafit. The function datafit will fit a function
e = G(p, z) to data. We found that datafit could solve the problem, but convergence
could be slow and the accuracy was somewhat lower. Here we shall use directly optim with
a cost function of the same form that datafit uses except that by using optim we can
control the step used for the finite difference computation of the gradients.

We do not want to call for the integration of (5.57) for every zij . It is more efficient
to do just one integration for each value of j. Thus we will take the z in G(p, z) to be the
vector of all zi,j for a fixed j.
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5.4.1 Mathematical Model

Many applications use polynomial models. In some cases these are argued for on first
principles. In other applications they occur because if linear equations do not suffice, then
the next natural thing to try is a polynomial equation. If a linear approximation is not
adequate, then the next level of Taylor approximation uses quadratic functions. The DAE
we consider arises as the model of a batch reactor and is sometimes used as a test problem
in the chemical engineering literature [17, 31]. The equations are

ẏ1 = −p3y2y8, (5.59a)
ẏ2 = −p1y2y6 + p2y10 − p3y2y8, (5.59b)
ẏ3 = p3y2y8 + p4y4y6 − p5y9, (5.59c)
ẏ4 = −p4y4y6 + p5y9, (5.59d)
ẏ5 = p1y2y6 − p2y10, (5.59e)
ẏ6 = −p1y2y6 − p4y4y6 + p2y10 + p5y9 (5.59f)
0 = −0.0131 + y6 + y8 + y9 + y10 − y7, (5.59g)
0 = p7y1 − y8(p7 + y7), (5.59h)
0 = p8y3 − y9(p8 + y7), (5.59i)
0 = p6y5 − y10(p6 + y7). (5.59j)

In its original form this problem is known to be very stiff and is used for a test problem
for parameter sensitivity software. We shall take a slightly modified set of initial conditions.

5.4.2 Scilab Implementation

To illustrate the procedure we shall proceed as follows. Our observational data will be
given by a simulation followed by the addition of random perturbations. We begin with a
fixed value of p, which we denote by ptrue. Assuming that p is given in the current Scilab
environment, the system is coded as follows:

function [r,ires]=reactor(t,y,ydot)

ires=0;

r(1)=ydot(1)+p(3)*y(2)*y(8);

r(2)=ydot(2)+p(1)*y(2)*y(6)-p(2)*y(10)+p(3)*y(2)*y(8);

r(3)=ydot(3)-p(3)*y(2)*y(8)-p(4)*y(4)*y(6)+p(5)*y(9);

r(4)=ydot(4)+p(4)*y(4)*y(6)-p(5)*y(9);

r(5)=ydot(5)-p(1)*y(2)*y(6)+p(2)*y(10);

r(6)=ydot(6)+p(1)*y(2)*y(6)+p(4)*y(4)*y(6)-p(2)*y(10)-p(5)*y(9);

r(7)=-0.0131+y(6)+y(8)+y(9)+y(10)-y(7);

r(8)=p(7)*y(1)-y(8)*(p(7)+y(7));

r(9)=p(8)*y(3)-y(9)*(p(8)+y(7));

r(10)=p(6)*y(5)-y(10)*(p(6)+y(7));

endfunction

Since the model (5.59) is a DAE, only some initial conditions will be consistent. We
shall assume that {p6, p7, p8} are known and fixed at the values ptrue(6:8). In this case
the space of consistent initial conditions is independent of the remaining values of pi and
we do not have to worry about finding new consistent initial conditions as the parameters
are varied.
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We take fixed initial values of the first 6 components of the initial condition y(0). The
remaining values of y(0) are found by solving the last four equations in (5.59) using fsolve.
This ensures that our y(0) is consistent to high order.

�−→ ptrue=[21.893;2.14e3;32.318;21.893;1.07e3;6.65e-3;4.03e-4;5.e-5/32];

�−→ function z=constraints(y2) ← compute constraints for y=[y1,y2]

�−→ r = reactor(0,[y1;y2],0*ones(10,1));

�−→ z = r(7:10);

�−→ endfunction

�−→ function [y,v]=initial_condition(y1) ← compatible initial value given y1

�−→ [y2,v]=fsolve(zeros(4,1),constraints);

�−→ y =[y1;y2];

�−→ endfunction

�−→ y01=[1.5776;8.32;0;0;0;0]; ← initial value of first 6 components
�−→ p=ptrue;

�−→ [y0,v]=initial_condition(y01); ← a consistent initial condition
�−→ norm(v) ← test consistency

ans =

2.262D-17

Simulations with dassl using y(0) and ptrue show that the solutions are close to steady
state by around t = 0.5. Accordingly we will take our observations on the interval [0, 0.5].
These simulations, which are indicated by the solid unmarked lines in Figs. 5.8–5.13, also
show that the components of yi vary greatly in size. A given experiment will consist of
observing the value of the first six components of y every 0.05 seconds for a total of 10 time
points. Hence the observation times are tts=0.05:0.05:0.5. We generate the experimental
outcomes by taking a simulation using ptrue and then perturbing the entries by a uniformly
generated random vector. The perturbations are scaled so that they are of the same relative
size for each entry and each observation time. We take 9 such observations so that J = 9.

�−→ t0=0; tt=0:0.05:0.5;

�−→ y=dassl(y0,t0,tt,reactor); ← integration with p=ptrue

�−→ y=y(2:7,2:11);y(4:6,:)=100*y(4:6,:); ← rescale y(4:6,:)

�−→ rtrue=y(:);

�−→ rand(’seed’,20);

�−→ N=9; ← generate 9 observations perturbed with noise
�−→ obs= rtrue*ones(1,N);

�−→ obs= obs.*(1+ 0.1*(rand(60,N,’u’)-0.5)); ← perturbations are to be rela-
← tive to the size of what is being perturbed

We then make an intial guess p0 for the first 5 parameters and use optim to find the
values of {p1, . . . , p5} to best fit the data. The final estimate is denoted by pest. This last
step is carried out now by

�−→ function e=G(p1) ← error function to be minimized
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�−→ p=[p1;ptrue(6:$)] ← p(6:8) is fixed and fit using p(1:5)

�−→ rr=dassl(y0,t0,tt,1.e-10,1.e-12,reactor);

�−→ rr=rr(2:7,2:11);rr(4:6,:)=100*rr(4:6,:);

�−→ rr=rr(:);

�−→ e=0;

�−→ for i=1:size(obs,’c’)

�−→ gg = (rr-obs(:,i));

�−→ e = e + gg’*gg;

�−→ end
�−→ endfunction

�−→ function [f,g,ind]=costf(p,ind) ← cost function for optim

�−→ if ind==2|ind==4 then
�−→ f=G(p);

�−→ else
�−→ f=0;

�−→ end;
�−→ if ind==3|ind==4 then
�−→ g=0*p;

�−→ pa=sqrt(%eps)*10*abs(p);

�−→ f=G(p);

�−→ for j=1:size(p,’*’) do

�−→ v=0*p;v(j)=pa(j),

�−→ g(j)=(G(p+v)-f)/v(j);

�−→ end;
�−→ else
�−→ g=0*p;

�−→ end
�−→ endfunction

�−→ p0=ptrue(1:5)*0.5; ← initial guess for p

�−→ [err,pest]=optim(costf,p0,’ar’,100,100,1.e-9,1.e-9,imp=2);

�−→ [p0,pest,ptrue(1:5)] ← fitted parameters
ans =

! 10.9465 10.614308 21.893 !

! 1070. 1105.6571 2140. !

! 16.159 33.346866 32.318 !

! 10.9465 5.8412889 21.893 !

! 535. 946.85234 1070. !

�−→ [G(p0),G(pest),G(ptrue(1:5))] ← cost minimized by datafit

ans =

! 453.75872 6.1442786 5.2443056 !

The first thing one notices is that pest is not the same as ptrue(1:5), nor is it even
very close. However, if we examine the answer we see that we have in fact found a good
approximation. Running the following script will graph the different yi for p0, ptrue, and
pest. What we see is that the new value pest is providing a good fit to the data. This
example shows the importance of using parameter bounds whenever they are available
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especially in nonlinear problems. Observe how the fifth component of pest has moved
much farther from the fifth component of ptrue than the fifth component of p0 was.

p=[ptrue]; krt=dassl(y0,t0,tt,reactor);

p=[p0;ptrue(6:$)];kr0=dassl(y0,t0,tt,reactor);

ttt=[0.01:0.02:0.5];

p=[pest;ptrue(6:$)];krf=dassl(y0,t0,ttt,reactor);

scale_r=[ones(1,3),100*ones(1,3)];

for ii=2:11

f1=scf(ii-1);

plot2d(ttt,krf(ii,:));

plot2d(ttt,krf(ii,:),-1);

plot2d(tt,krt(ii,:));

plot2d(tt,kr0(ii,:));

plot2d(tt,kr0(ii,:),-2);

xtitle(’y(’+string(ii-1)+’)’);

nz=size(obs,’c’);

if nz <>1 & ii<=7 then
for k=1:N

obsk=obs(:,k);obsk=matrix(obsk,6,10);

plot2d(tt(2:$)’,obsk(ii-1,:)./scale_r(ii-1),-3);

end
end

end

Figures 5.8–5.13 illustrate what happens for several components for y. In all cases the
solid unmarked line gives the graph of yi using ptrue. The graphs using pest and p0 are
indicated by + and ×’s respectively. In the cases where there are observations, those are
indicated by circles.
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Figure 5.8. Graph of observational data and y1 for ptrue (solid), pest (+++), and p0 (xxx).
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Figure 5.9. Graph of observational data and y2 for ptrue (solid), pest (+++), and p0 (xxx).
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Figure 5.10. Graph of observational data y3 for ptrue (solid), pest (+++), and p0 (xxx).

Often there are bounds on reasonable parameter values which come either from physical
arguments or practical experience. In this case the bounds can be incorporated into the
call for datafit or optim. Suppose, for example, that we knew that the value of pi was in
the interval [0.8∗ptrue(i), 1.2∗ptrue(i)]. If we replace the last line of the first script with

�−→ ps=ptrue(1:5);pinf=ps;psup=1.2*ps;p0=1.1*ps;

�−→ [err,pest]=optim(costf,’b’,pinf,psup,p0,’ar’,100,100,1.e-9,1.e-9,imp=2);

we get the new parameter estimate of

�−→ [p0,pest,ps]
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Figure 5.11. Graph of observational and y4 for ptrue (solid), pest (+++), and p0 (xxx).
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Figure 5.12. Graph of observational data and y5 for ptrue (solid), pest (+++), and p0 (xxx).

ans =

! 10.9465 24.172324 21.893 !

! 1070. 2349.0207 2140. !

! 16.159 32.318 32.318 !

! 10.9465 24.364568 21.893 !

! 535. 1083.1877 1070. !
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y(6)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Figure 5.13. Graph of observational data and y6 for ptrue (solid), pest (+++), and p0 (xxx).

Comments

optim calls an iterative solver. Each time G is evaluated there is a call to dassl. For more
complicated problems with more parameters or longer time intervals these calls can be
computationally expensive. As implemented in the previous illustration there would be N
calls for each value of p. If these calls are taking too much time, one can directly formulate
the cost as

∑
i eT

i ei, use optim, and have to do only one call to dassl for each value of p.
Parameter estimation is an important part of many engineering and scientific proce-

dures. The example given illustrates two important facts. One is that since one is using the
data to construct a model that predicts the data, it is important to have enough data to
cover the region in which one wishes to use the model. Secondly, the criterion is the ability
to predict the observations. If the parameter estimates are of interest themselves, then
considerable more analysis and care may be needed to determine how good the estimate
is.

Notice in this example that the graphs using the estimated parameters appear to be
close to the graphs for the true parameter values. So the numerical algorithm is doing
a good job of giving us parameter values that give the desired behavior. However, the
estimated parameter values are not always close to the true parameter values. A similar
behavior was observed in Section 3.4 in the discussion of lsqrsolve.

In the nonlinear case there are the added problems of local minima when one is solving
for parameter estimates. But even for the linear case y = Ax, it is important to keep in
mind that the following three problems are distinct and can produce different estimates
Â for A:

1. Given data {xi, yi} find the value Â that gives the best prediction law for y given an
additional value of x.

2. Given data {xi, yi} find the value Â that gives the best prediction law for x given an
additional value of y.

3. Given data {xi, yi}, which we assume come from a model y = Ax, find the value of Â
that gives the best estimate of A.



5.4 Parameter Fitting and Implicit Models 155

The functions optim, datafit, and lsqrsolve as described here are being used for the first
type of problem since the error in the value of G is being minimized. The function G needs
to be formulated differently if either problem 2 or 3 is to be solved.

Finally, this example illustrates an important aspect of solving optimization problems.
Finding the optimal solution even when we know it exists can be difficult. When we initially
solved this problem we used more of the default settings of optim and dassl. The result
was not nearly as good as reported above. After some experimentation, it was determined
that one factor was that the gradient approximation was not accurate enough. Since the
function being differenced was the result of an integration by dassl, we both increased
the lower bound on the difference in optim and tightened the error tolerances in dassl.
Another problem was that the large difference in magnitude of the components was leading
to inaccuracy. So we put a factor of 100 in the function evaluation, which helps prevent
stagnation and increased accuracy of gradients. In particular, we rescaled y(4:6) to give
these variables a range similar to those in y(1:3). This was necessary to increase the part
dedicated to y(1:3) in the global cost.

We also gave optim some guidance. In

[err,pest]=optim(costf,p0,’ar’,100,100,1.e-9,1.e-9,imp=2)

the 1.e-9 sets the thresholds on the gradient norm and the decrease in f. Here we are
forcing the change in f and the gradient to be rather small at termination since they
need to be below these thresholds. The imp=2 gives a verbose reporting on the iterations,
which was used in examining the behavior of the iteration while deciding where to set the
thresholds. In trying to solve a parameter problem in practice when the solution is not
known it is often helpful to try first what we have done here. That is, generate observations
by simulation with known parameters and then try first to find the known parameters. This
helps in checking that the problem is properly coded and gives insights into the problem’s
behavior. Thus the problem solved in this section is not as academic as it appears and is
representative of part of the solution of real problems.
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Introduction

Scicos is a Scilab toolbox for modeling and simulation of dynamical systems. Scicos is
particularly useful for modeling systems where continuous-time and discrete-time compo-
nents are interconnected. Such models can be programmed directly in Scilab using the ode
and dassl functions, studied previously, but that requires programming the discrete-time
dynamics in Scilab. These programs are often complex and difficult to debug. Moreover,
there is no simple systematic way of programming them in a modular fashion.

Scicos provides a modular way to construct complex dynamical systems using a block
diagram editor. Scicos diagrams are compiled and simulated efficiently by a single click.
Scicos handles, in particular, the interaction between continuous-time dynamics and sys-
tem events including events associated with the timing of a discrete-time clock. Such events
affect the way the numerical solver, which integrates the continuous-time dynamics, should
be called. Handling efficiently such matters by hand for complex dynamical systems can
be extremely difficult.

Using Scicos, the user can construct a library of reusable modules (blocks) that can be
used in different models in different projects. This is particularly useful when a large model
is composed of modules designed by different development teams. The Scicos formalism,
which must be respected in designing blocks and submodels, guarantees that modules
constructed separately and interconnected can work harmoniously together.

A large number of blocks are already available in Scicos palettes. These blocks provide
elementary operations needed to construct models of many dynamical systems. Users
seldom need to construct a new block from scratch.

Scicos is more than a modeling and simulation program. It contains many functional-
ities to help the designer optimize model parameters, validate models, generate C code,
etc. In this part of the book, we present Scicos and some of these useful functionalities.
We shall give the reader a general picture of the Scicos environment and the type of ap-
plications that can be treated in it. Numerous examples are used to illustrate the subjects
covered. Enough information is provided to allow the user to understand the examples.
The examples are also included in the book’s web site.

We start by providing a tutorial in Chapter 7 on how to use the editor to construct
models and how to simulate these models. We cover important editor functionalities and
illustrate them using simple examples.

Chapter 8 is devoted to a description of the formalism behind Scicos. This chapter
provides detailed information on how blocks are activated by activation signals, how data
is exchanged between blocks, and what synchronism means in this environment and how
it can be used for conditional subsampling.
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Even if in many cases Scicos diagrams can be constructed using existing blocks, some-
times it is more convenient, or even becomes necessary, to develop new blocks. This is the
subject of Chapter 9. Sometimes a new block is not absolutely necessary but can simplify
the diagram and/or its use can make the simulation of the diagram more efficient. Various
ways of constructing new blocks are discussed in this chapter. The content of this chapter,
however, is fairly technical, and most users may skip it on a first reading.

In Chapter 10, through a number of examples, we show what types of systems can be
modeled in Scicos and propose solutions for modeling certain behaviors that are particu-
larly difficult to realize outside of Scicos.

Often the objective for modeling and simulation is parameter optimization. The pa-
rameter can be a system parameter to be tuned in an identification process, or a controller
or filter parameter to be adjusted to a given system. The procedure for parameter opti-
mization consists in associating a cost (obtained by simulation) to a set of parameters.
This cost is then optimized by standard optimization techniques. This procedure, which
usually requires many simulation runs, can easily be implemented in the Scilab-Scicos en-
vironment by batch processing. In Chapter 11, we present Scilab functions used for batch
simulation of Scicos diagrams in Scilab and present a number of examples illustrating
typical applications.

Code generation is an important functionality in Scicos. A typical application is to
a situation in which the diagram models a controlled system. The control part of the
diagram, after validation of the control law through simulation, is to be implemented in
an embedded system. For that, C code generation can be performed for a part of the
diagram designated by the user. Code generation is the subject of Chapter 12. Examples
are provided and some pitfalls are discussed.

A number of debugging functionalities are available in Scicos. They are explained in
Chapter 13. Debugging is particularly useful when diagrams become complex and when
user-defined blocks are used. A few examples are provided to show how debugging can be
done efficiently.

A recent addition to Scicos is the capacity to use “implicit” blocks in a Scicos diagram.
This allows the construction of systems using blocks modeling physical components in
a natural way. These blocks have no explicit inputs and outputs but rather have ports.
Connecting these ports by links defines constraints. For example, in this environment we
can define an electrical circuit with implicit blocks modeling resistors, capacitors, diodes,
and other electrical components, and with links imposing Kirchoff’s laws of current and
equality of voltages at the two connected ports. The possibility to mix implicit and nor-
mal blocks in the same environment provides a powerful modeling environment that is
presented in Chapter 14. It should, however, be noted that the implementation of implicit
blocks is at the beta testing stage.

Appendix A contains an introduction on how Scicos is implemented and, in particular,
what data structures it uses. Understanding implementation issues is very useful not only
for advanced users who want to customize the tool, but also for anybody who encounters
subtle modeling problems and wants to take full advantage of debugging facilities. This
chapter also gives a lot of information on where important Scicos programs can be found.
Most of these programs (except for the simulator part) are Scilab programs, so they are
easy to read and customize.

In this book we present functionalities of Scicos distributed with Scilab version 3.1 or
higher. Even though most of the discussions apply also to Scicos in Scilab 3.0, some of the
examples may not run on this earlier version.

Note also that running some of the examples presented here requires a C compiler. This
is usually no problem under Linux, MacOSX, and most Unix workstations. But under the
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Windows operating system, it requires the installation of Visual C++. Visual C++ is
automatically instantiated and usable by Scilab if Scilab is run by clicking on its icon.
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Getting Started

7.1 Construction of a Simple Diagram

Scicos contains a graphical editor that can be used to construct block diagram models of
dynamical systems. The blocks can come from various palettes provided in Scicos or can
be user-defined. In this section, we describe how the editor can be used to construct simple
models and how these models can be simulated.

7.1.1 Running Scicos

Scicos is a Scilab toolbox included in the Scilab package. The Scicos editor can be opened
by the scicos command

�−→ scicos;

This command opens up an empty Scicos diagram named by default Untitled. Called
with an argument, it can open up an existing diagram:

�−→ scicos my_diagram.cos;

The Scicos main window displaying an empty diagram is illustrated in Figure 7.1. The
look of the main window may be slightly different under different window managers and
operating systems. Editor functionalities are available through pull-down menus placed
at the top of the editor window. The manual page of each functionality is displayed by
selecting Help in the Misc menu and then the item of interest in the menu.

Some of the editor functionalities can also be accessed by clicking the right mouse
button. Finally, keyboard shortcuts can be used for various operations. For example, typing
an “r” activates the operation Replot, which centers and redraws the diagram. Keyboard
shortcuts can be defined by the user.

7.1.2 Editing a Model

To construct a model, we need to access Scicos blocks. Scicos provides many elementary
blocks organized in different palettes that can be accessed using the operation Palettes
in the Edit menu. This operation opens up a dialog box that includes the list of available
palettes. By selecting a palette in the list, a new Scicos window opens up displaying the
blocks available in this palette. Figure 7.2 shows the blocks in the Sources palette. Blocks
from palettes can be copied into the main Scicos window by clicking first on the desired
block and then at the location where the block is to be copied in the Scicos window.
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Figure 7.1. Scicos editor main window.
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Figure 7.2. Blocks in the Sources Palette.

The Sources and Sinks palettes contain respectively blocks generating signals without
any inputs and blocks without any outputs such as scopes and right-to-file blocks. We start
by copying from these palettes three blocks as illustrated in Figure 7.3. In this figure we
have copied a sinusoid signal generator, a scope, and an event generator (Event Clock).
The first block generates on its unique output port a sine function. We wish to display this
signal using the scope. This can be done by connecting the output of the signal generator
to the input of the scope by clicking first on the output port and then near the input port
of the scope. The Align operation in the Edit menu can be used to align the two ports
beforehand in order to make sure the link becomes horizontal.
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generator
sinusoid
generator
sinusoid

Figure 7.3. Scicos diagram in construction. Blocks are copied from the palettes.

The Event Clock is used to activate the scope block periodically with the desired
frequency. Every time the scope is activated, it reads the value of the signal on its input
port (which is nothing but the value of sin(t) generated by the signal generator). This
value is then used to construct the curve that is displayed in the scope window. To specify
that the scope block is activated by the event generator, the activation output of the event
generator should be connected to the activation input of the scope. The result then looks
like the diagram in Figure 7.4. This diagram is now complete.

generator
sinusoid
generator
sinusoid

Figure 7.4. Completed Scicos diagram.

Note that Scicos diagrams contain two different types of links. The regular links trans-
mit signals and the activation links transmit activation timing information. By default, the
activation links are drawn in red and the regular links in black, but this can be changed by
the user. Also note that regular ports are placed on the sides of the blocks whereas activa-
tion inputs and outputs are respectively on the top and at the bottom of the blocks. Most
blocks follow this convention, but the user can define new blocks with ports arbitrarily
placed.

The editor provides, through pull-down menus, many functionalities to change the look
of the diagram and that of the blocks such as changing color, size, and font.

7.1.3 Diagram Simulation

To simulate a diagram, it suffices to select the Run operation from the Simulate menu.
Simulation parameters can be set by the Setup operation in the same menu. There we
can, for example, adjust the final simulation time.

Running the simulation for the system in Figure 7.4 leads to the opening of a graphics
window and the display of a sinusoidal signal. This window is opened and updated by the



166 7 Getting Started

scope block. The simulation result is given in Figure 7.5. In this case, the final simulation
time is set to 30. The default value of the final simulation time is very large. A simulation
can be stopped using the stop button on the main Scicos window, subsequent to which
the user has the option of continuing the simulation, ending the simulation, or restarting
it.

0 3 6 9 12 15 18 21 24 27 30
−10

−5

0

5

10

+

Figure 7.5. Scope window for the system in Figure 7.4.

A Scicos diagram can be modified and simulated again. Let us consider adding an
integrator to the diagram in Figure 7.4 as illustrated in Figure 7.6. The integrator block
gives as an output the integral of its input. This block comes from the Linear palette.
We also replace the scope with a multi-input scope. Note that to create a split on a link,
in particular here to create a link going to the integrator, off the link connecting the signal
generator to the scope, the user must click first on the existing link at the position where
the split is to be placed. Also note that to create a broken link, the user can click on
intermediary points before clicking on the destination, which is necessarily an input port.

The simulation result for this new diagram is given in Figure 7.7.

7.1.4 Changing Block Parameters

The behavior of a Scicos block may depend on parameters that can be modified by the
user. These parameters can be changed by clicking on the block. This action opens up a
dialog box showing current values of the block parameters and allowing the user to change
them. For example, the dialog box associated with the integrator block is illustrated in
Figure 7.8. The other blocks also have parameters. For example, in the sinusoid generator,
we can set the frequency, the amplitude, and the phase. In the same way, certain properties
of the scope window can be set by the parameters of the scope block.

The value of a parameter can be defined by any valid Scilab instruction. For example,
the frequency of the sinusoid generator can be set to 2*%pi/10. The Scilab instruction
can also include Scilab variables, but these variables must have been previously defined
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Figure 7.6. Modified Scicos diagram.
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Figure 7.7. Scope window after simulation of the modified diagram.

in the “context” of the diagram. Such variables are called symbolic parameters. Symbolic
parameters and the context will be discussed in the next section.

Let us now consider more complicated examples in which the systems we want to model
are given by differential equations. An integrator block is used to define each state of the
system.

SIR Model for Spread of Disease

We consider a simple model of how a disease can spread in a community [5]. Let s(t) be
the fraction of the population susceptible to getting infected as a function of time t. Also
let i(t) be the infected (and infectious) fraction of the population and r(t) the recovered,
and thus immune, fraction of the population. Then the SIR model can be expressed as
follows:



168 7 Getting Started

Figure 7.8. Dialog box of the integrator block.

ṡ = −as(t)i(t), (7.1a)
i̇ = as(t)i(t) − bi(t), (7.1b)
ṙ = bi(t), (7.1c)

where a and b are positive parameters.
To model this system in Scicos, we set the state of one integrator to s, another one to

i, and a third one to r. It is then straightforward to construct the inputs of the integrators
from their outputs, as can be seen in Figure 7.9. Here we have set a to 1 and b to 0.3.
For the reader less familiar with block diagrams, the × and Σ blocks multiply and add
inputs respectively. Since we are calling the outputs of the integrator blocks s, i, and r,
the Scicos implementation of the differential equation in (7.1a) can be thought of as the
integral equation

s(t) = −
∫ t

t0

s(τ)i(τ)dτ + s(t0),

where s(t0) is the initial condition of s at time t0. Similarly (7.1a), (7.1c) are implemented
as integral equations in the Scicos diagram. However, they are integrated as differential
equations by Scicos using a numerical ODE solver.

The simulation result for this SIR model is given in Figure 7.10. The variable s is
initialized to 0.999, and i to 0.001.

Chaotic Dynamics of a Rössler Attractor

The Rössler system [35] given below has chaotic behavior for certain values of the param-
eters a, b and c:

ẋ = −(y + z),
ẏ = x + ay,

ż = b + z(x − c).

This system is modeled in Figure 7.11 with a = b = 0.2 and c = 5.7. The initial conditions
are set to zero. The 2D scope is used to plot y against x. The result is given in Figure 7.12.
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Figure 7.9. Scicos implementation of the SIR model.
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Figure 7.10. The simulation shows, as expected, that the percentage of the recovered population
is increasing and that of the susceptible population is decreasing. The percentage of population
infected reaches its maximum at a time called the peak of the epidemic.

7.2 Symbolic Parameters and Context

Often it is useful to use symbolic parameters to define block parameters. This is partic-
ularly the case if the same parameter is used in more than one block or if the parameter
is computed as a function of other parameters. Symbolic parameters are simply Scilab
variables that must be defined in the context of the diagram before being used in the
definition of block parameters.

Each Scicos diagram contains a context. The context is simply a Scilab script used
to define Scilab variables, which can then be used to define block parameters. To access
the context of the diagram, use the Context button in the Edit menu. This opens up
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Figure 7.11. Scicos implementation of the Rössler attractor.
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Figure 7.12. Output of the 2D scope for the Rössler model.
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an editor. The user can use this editor to write a Scilab script, that is, a set of Scilab
commands that are executed by Scilab after a click on the ok button. For example, if the
command C=1 is placed in the context, then C can be used to define a block parameter.
If the value of C is changed in the context, the parameter of the block is automatically
updated accordingly.

Let us now consider an example in which the context is very useful for defining a generic
diagram. We consider the construction of a sampled-data observer for a linear system. The
system is considered to be modeled as a continuous-time state-space linear system:

ẋ = Ax + Bu, (7.2)
y = Cx, (7.3)

where A, B, C are constant matrices.
In developing controls for a system like this, it is often easier to develop them in terms

of the state x. State feedback controls are one example. But the only thing that may be
available in practice is the output y. A state observer is another dynamical system, which
accepts as input u and y, and gives as an output x̂, which has the property that x − x̂
goes to zero independent of the initial conditions of either (7.2) or the observer. Observers
have the nice property of being able to return to giving good estimates after disturbances.
The speed with which the error goes to zero can be specified to give good estimation but
avoid being overly sensitive to disturbances.

A continuous-time observer can be constructed as follows:

˙̂x = Ax̂ + Bu + K(y − Cx̂). (7.4)

The matrix K must be chosen so that the eigenvalues of A−KC have negative real parts.
This ensures that the estimation error x̃ = x̂−x satisfying ˙̃x = (A−KC)x̃ will go to zero.

The discrete-time (sampled data) observer is obtained by first constructing the cor-
responding continuous-time observer using the method of pole placement, and then dis-
cretizing it. We begin by taking fixed dimensions and randomly generated matrices. We
will then explain how to make this a generic diagram.

The Scilab script to perform this procedure with random matrices, placed in the context
of the diagram, is the following:

n=5;m=2;dt=.2;

A=rand(n,n);A=A-max(real(spec(A)))*eye()

B=rand(n,1);C=rand(m,n);D=zeros(m,1);

x0=rand(n,1);

K=ppol(A’,C’,-ones(x0))’;

Ctr=syslin(’c’,A-K*C,[B,K],eye(A),zeros([B,K]))

Ctrd=dscr(Ctr,dt)

[Ad,Bd,Cd,Dd]=abcd(Ctrd)

The original system is constructed with random matrices, and the A matrix is mod-
ified to make sure the system is not exponentially unstable. The Scilab pole placement
(eigenvalue assignment) function ppol is used to obtain the observer gain matrix K, and
dscr is used to discretize the observer. dt is the sampling period.

The Scicos diagram in Figure 7.13 is used to simulate the observer performance. The
input u is set to sin(t) and the estimation error is displayed using a scope. The continuous-
time and discrete-time state-space linear system blocks are used to model the original
system and the observer. The parameters of the first are set as illustrated in Figure 7.14
and the second as in Figure 7.15. The first block also outputs its internal state to be used
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generator
sinusoid
generator
sinusoid

y=Cx+Du
xd=Ax+Bu
y=Cx+Du
xd=Ax+Bu

Demux

y=Cx+Du
x+=Ax+Bu
y=Cx+Du
x+=Ax+Bu

Mux

+

−

+

−

Figure 7.13. Scicos diagram including the system and the discrete-time observer.

Figure 7.14. Dialog box of the block realizing the original system; the output of the block
contains also its state.

Figure 7.15. Dialog box of the discrete-time linear system realizing the observer.
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for generating the estimation error displayed by the scope. dt is used to define the period
of the Event Clock.

The use of symbolic parameters is particularly useful in this case because it allows
us to construct a generic system observer diagram. To change the system matrices A, B,
and C, the size of the system, the size of the outputs, or the discretization time, we only
have to modify the definition of the m, n, and system matrices. No change is made to the
diagram. In fact, by rewriting the context as follows we can make the diagram completely
generic:

load(’datafile’)

K=ppol(A’,C’,-ones(x0))’;

Ctr=syslin(’c’,A-K*C,[B,K],eye(A),zeros([B,K]))

Ctrd=dscr(Ctr,dt)

[Ad,Bd,Cd,Dd]=abcd(Ctrd)

We just have to make sure that the data file datafile contains variables A, B, C, D, x0,
and dt before launching Scicos. This file can be created in Scilab as follows:

�−→ save(’datafile’’,A,B,C,x0,dt)

Remark

If the context contains many lines of Scilab code, it is convenient to place the code in a
separate script file and execute it with a single exec command in the context. However,
if the file being executed by the exec command is changed when the diagram is already
open, and the user wants the modification to be taken into account, he or she should do
an Eval because Scicos has no way of knowing whether the file has been changed.

It should also be noted that using a separate script file implies that the Scicos diagram
is not self-contained and this script file must always accompany the diagram.

7.3 Hierarchy

It is not good modeling practice to place too many blocks in a diagram at the same level
because the diagram becomes incomprehensible and difficult to read and debug. For large
systems, it is useful to use the Super block facility to construct a hierarchical model. A
Super block looks like any other block: it can be moved, copied, resized, etc., but its
behavior is defined by the Scicos submodel within it.

7.3.1 Placing a Super Block in a Diagram

There are two ways to place a Super block in a Scicos diagram.

Region-to-Super-block

If the submodel the user wants to place in a Super block already exists in the model, then
the Region-to-Super-block operation of the Diagram menu can be used to place it in a
Super block. This is done by specifying the region of the diagram containing the submodel
concerned. This region is automatically replaced with a Super block with the appropriate
number of input and output ports.

Let us consider a simple example. In the diagram of Figure 7.13, we used a linear
system block to model the original system, but since we also needed its internal state, we
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had to concatenate it to the output, which we then had to split using the Demux1 block
in order to generate separately the state x and the output y. The diagram would have
been much clearer if the linear system block had two output ports generating x and y.
Unfortunately, that is not the way this block works.

But the combination of the linear system block and Demux does exactly what we want.
So it is natural to consider constructing a Super block out of these two blocks. This can be
done using the Region-to-Super-block functionality and selecting a region containing
these two blocks. The result is illustrated in Figure 7.16.

y=Cx+Du
x+=Ax+Bu
y=Cx+Du
x+=Ax+Bu

KcKc

Mux
x

u

x_hat

y

Figure 7.16. The linear system and Demux blocks are placed in a Super block.

Super Block in Palette

A Super block can also be placed in a diagram by copying the empty Super block provided
in the Others palette. The desired submodel can then be constructed inside the Super
block.

7.3.2 Editing a Super Block

To edit the content of a Super block, it suffices to click on it to “open” it. This opens
up a new Scicos editor window resembling the main Scicos window displaying the content
of the Super block. For example, by opening the Super block in Figure 7.16, the model
illustrated in Figure 7.17 is displayed in the new editor.

Note that new blocks have been added to the submodel that were not present in the
original model. These are the input, output port blocks. These blocks define the connection
from the inside of a Super block to the outside world. There are exactly as many input
(respectively output) port blocks inside the Super block as there are input (respectively
output) ports on the Super block.

1 Demux is network terminology for demultiplex and it means to separate channels.
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y=Cx+Du
xd=Ax+Bu
y=Cx+Du
xd=Ax+Bu

DemuxSystem

11 11

22

Figure 7.17. Inside the Super block.

The Super block can be edited just like the main Scicos diagram, and when the editing
is complete, closing the diagram will commit the changes to the main diagram. If the
number of input or output port blocks is modified, after closing the Super block, the
number of ports of the Super block in the main window is adjusted accordingly. Note that
the port blocks must be numbered consecutively and the corresponding ports on the Super
block are also numbered counting consecutively from the top to the bottom.

Each Super block has a context. The values of symbolic parameters used in the blocks
of a Super block are normally defined in the context of the Super block or in the context
of the diagram.

7.4 Save and Load

7.4.1 Scicos File Formats

Scicos diagrams can be saved in two different formats. The most common format is a
binary file for which by convention the extension .cos is used. This file is simply a binary
Scilab data file and can be loaded in Scilab (assuming its name is myfile.cos) using the
command

�−→ load myfile.cos

There are three Scilab variables inside .cos files:

• scs m: this Scilab structure contains all the information concerning the diagram
• %cpr: this Scilab structure contains the result of the compilation. It is an empty struc-

ture if the diagram had not been compiled before being saved (diagram compilation
will be discussed later)

• scicos ver: a string indicating the version of Scicos that has produced the diagram.

Normally, the user never needs to load this file in Scilab directly except for batch
processing, which is discussed in Chapter 11. The loading is done in the Scicos environment
using the Load button in the File menu. The file can also be loaded when launching Scicos
as follows:

�−→ scicos myfile.cos;

Scicos diagrams can also be saved in text format. The extension of text files is .cosf.
These files are in fact Scilab scripts that can be executed using the exec command, pro-
vided Scicos libraries are loaded in the environment. Note that Scicos libraries are not
loaded by default into Scilab. They are loaded by the function scicos. Just as in the
binary case, the loading should be done by Scicos.

The expert user may be able to modify a diagram by editing the corresponding text
file. But in most cases, it is much easier to use the Scicos graphical editor to do the editing.

Note that the name of the saved file, except the extension, corresponds to the name
of the diagram. New diagrams are named by default Untitled. The name of the diagram
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can be changed using the Rename button in the File menu. The name is also changed if
the file is saved, using the Save As button, under a different name. In that case, the name
of the diagram becomes the name of the file (without the extension).

7.4.2 Super Block and Palette

The contents of all the Super blocks present in a diagram are saved when the diagram is
saved. So there is no need to save the content of a Super block unless we want to use it
in the construction of another diagram. Super blocks can be saved just like any diagram
in both .cos and .cosf formats. The saved file is identical to that of a main diagram. It
can be loaded into a main Scicos diagram or inside a Super block.

A palette is also a standard Scicos diagram. Any Scicos diagram can be loaded as a
palette. This means that blocks can be copied from it but the diagram itself cannot be
edited. The button Load as Palette can be used to load any existing Scicos diagram as
a palette. To avoid searching for palette files often used, Scicos provides the possibility of
defining a list of palettes with their names and locations (see Pal editor in the menu
File). These palettes can then be loaded simply by clicking on their names when the
button Palettes is clicked. The default Scicos palettes are originally placed in this list.

7.5 Synchronism and Special Blocks

When two blocks are activated with the same activation source (for example the same
Event Clock), we say that they are synchronized. In that case, they have the same acti-
vation times, and if the output of one is connected to the input of the other, the compiler
makes sure the blocks are executed in the correct order. Synchronism is an important prop-
erty. Two blocks activated by two independent clocks exactly at the same time are not
synchronized. Even though their activations have identical timing, they can be activated
in any order by the simulator.

On the other hand, two activations can be synchronous but not have exactly the same
timings. For example, an activation can be a subset of another activation. Consider two
activation sources, one generating a sequence of events with frequency 2 and another with
frequency 1. In this case, half the events generated by the fast clock are simultaneous with
the events of the slow clock. If these two activations are generated by two independent
clocks, then they are not synchronized. So even when the two events are simultaneous, the
blocks they activate can be activated in any order by the simulator. To enforce synchronism
in this case, we have to make sure the two activations have the same source (same Event
Clock for example). In this example this means that the slow activation is obtained from
the fast activation.

There are two very special blocks in Scicos: the If-then-else and the event select
blocks. They are in the Branching Palette. Even though they look like standard Scicos
blocks and can be manipulated by the editor as such, strictly speaking they are not blocks.
We shall give a detailed presentation of these blocks and the notion of synchronism in
Chapter 8. Here, it suffices to say that these blocks are the only blocks that generate
events synchronous with the incoming event that had activated them. These blocks, which
can be considered as counterparts of conditional statements If-then-else and Switch in
the C language, are used for conditional subsampling of activation signals.

Consider the diagram in Figure 7.18. The If-then-else block redirects the event it
receives toward its then output port, activating the delay block 1/z if its regular input is
positive. If not, the activation goes out through the else port, which is not connected to
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 then    else

If in>0

 then    else

If in>0

generator
square wave
generator
square wave

1/z1/z
+

+

+

+

Figure 7.18. A synchronous Scicos diagram.

anything. The square wave generator generates a series of alternating ones and minus
ones. Every time the 1/z block is activated, it adds the output of the generator to its
content (initially set to zero). Since the activation takes place only when the output of
the generator is positive, the content of 1/z goes up by one at every other activation of
the clock. This is confirmed by the result of the simulation illustrated in Figure 7.19. The
period of the clock in this simulation is set to 1.
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Figure 7.19. Simulation of Figure 7.18 showing that the counter goes up by one at every other
activation of the clock.
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Scicos Formalism

We have seen, in the previous chapter, how simple Scicos models can be constructed and
simulated. To be able to construct more complex models, in particular models involving
conditional and unconditional subsampling, it is important to understand the formalism
on which Scicos is based. This is the subject of this chapter. The information in this
chapter is also essential for reading the next chapter, which discusses the construction of
new blocks.

8.1 Activation Signal

A simulation function is associated to each Scicos block. This function is called when the
block is activated. The activation times for a given block are specified by the activation
signals received on its activation input ports.

8.1.1 Block Activation

Memoryless Case

Consider the diagram in Figure 8.1. In this diagram, the activation signal (event) activates
synchronously the three blocks Source, Func.1, and Func.2. This synchronous activation
occurs because they are activated by the same activation signal. The order in which the
associated functions are called is determined by the Scicos compiler. If we assume that the
Func blocks are memoryless immediate functions, Func.1 needs the value of the output of
the Source block before being called, and similarly Func.2 needs the output of Func.1,
then the compiler orders the blocks accordingly.

In this example, the activation times of the three blocks were the same. However, having
the same activation time does not necessarily imply synchronism. Consider the diagram
in Figure 8.2. In this case the two event generators are identical and the events they
generate have the same timing but are not synchronized. When a diagram contains more
than one activation source, the compiler computes an order for each activation separately.
During the simulation, it is the timing of the activations that determines the order in
which the events are fired, and consequently the blocks are activated. If, as is the case
here in Figure 8.2, two events have identical timing, then the order of firing is arbitrary.
So Func.2 could be executed before or after the other two blocks. Depending on which
one occurs, the result of the simulation can be completely different.
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SourceSource Func. 1Func. 1

time t
Event at
time t
Event at

Func. 2Func. 2

Figure 8.1. A synchronous diagram.

SourceSource Func. 1Func. 1

time t
Event at
time t
Event at

Func. 2Func. 2

time t
Event at
time t
Event at

Figure 8.2. An asynchronous diagram.

Discrete Blocks with Internal State

If a block has an internal state, then when the block is activated, the simulation function
corresponding to the block may be called more than once. In particular, if the block has
an internal state and an output, then it will be called twice. Consider the diagram in
Figure 8.3. The delay block is simply a memory block holding in its internal state the
value of its input at the time of activation. Its output corresponds to the previous value
of the state. At its activation, this block is called first with flag 1 so that it can compute
its output (in this case a simple copy of the state), and then it is called with flag 2 to
compute its state (copy of its input).

SourceSource 1/z1/z

time t
Event at
time t
Event at

Func. 2Func. 2

Figure 8.3. A synchronous diagram with a memory (delay) block.

The order in which block functions are called with flag 2, contrary to the case of
flag 1, has no importance because the result has no bearing on the outputs of the blocks.
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But in this case, even the order with which the blocks are called with flag 1 is not the
same as in the case of the diagram in Figure 8.1. Here, the 1/z block does not require the
value of its input when it computes its output. This means that this block can very well
be activated before the Source block. But in any case, Func.2 comes after the 1/z block.

Func. 1Func. 1 1/z1/z

time t
Event at
time t
Event at

Func. 2Func. 2

Figure 8.4. Diagram with feedback but without algebraic loop.

The blocks whose outputs do not depend directly on their inputs must be specified.
Otherwise the compiler cannot compute the correct order of execution. In the example of
Figure 8.3 even if 1/z is not specified as such a block, the blocks can be ordered. However,
in the example in Figure 8.4, the compiler cannot compute the order of block activations
due to the presence of an algebraic loop. This is why the dep u property of the 1/z block
is set to false and the compiler finds that the block functions must be called with flag 1
in the following order: 1/z followed by Func.2 followed by Func.1. And then 1/z is called
with flag 2.

General Case

A Scicos block can be more complex than just an internal state and an output. The event
generator, for example, has an output activation port. We have seen in the previous chapter
blocks with continuous-time internal states such as the integrator block. A general Scicos
block can be fairly complex and will be discussed in the next chapter.

8.1.2 Activation Generation

The event generator in diagrams of Figures 8.1 through 8.4 generates an activation signal at
a given time. This output activation is preprogrammed at the output activation port of this
block. The block itself is never activated. Since only one activation can be preprogrammed
at any output activation port, a Scicos block cannot serve as a clock event as we have seen
in the previous chapter. In fact, the event clock is not a basic block; it is a Super block
containing an event delay block with a feedback, as illustrated in Figure 8.5.

Initially an activation is programmed on the output activation port of the delay block.
This activation, when fired, activates the delay block itself. Since this block has no internal
state and no (regular) output, the corresponding function is not called with flags 1 and 2.
Instead, it is called with flag 3 because it has an output activation port. In this case, the
function schedules a new activation on its output activation port by returning the delay
(in this case T), after which the scheduled activation must be fired. When this activation
is fired, it schedules in turn a new activation, and so on. This way, an event clock with
period T is constructed.
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  T
Delay
  T
Delay

11

Figure 8.5. An event clock.

8.2 Inheritance

In the examples of the previous chapter, we had encountered many blocks without activa-
tion input ports. Consider the diagram in Figure 8.6. Normally the Func.1 block should
not be activated because it receives no activation signal. But by convention, in the absence
of input activation ports, a block inherits its activation from its regular input.

SourceSource Func. 1Func. 1

time t
Event at
time t
Event at

Figure 8.6. The block Func.1 is activated by inheritance.

The inheritance mechanism is implemented at a precompilation phase. For example,
in the case of the diagram in Figure 8.6, the precompiler adds the missing activation port
and link as illustrated in Figure 8.7. The user never sees this diagram; the precompilation
phase is completely transparent to the user.

If the block has more than one regular input, the inheritance mechanism places as
many activation input ports on the block as the block has regular input ports. See the
diagram in Figure 8.8 and the diagram obtained after the precompilation phase illustrated
in Figure 8.9. The + block outputs an activation signal with activation times corresponding
to the union of input activation times.

We see here that a block can have more than one activation input port. In this case,
the block is activated when it receives an event on one or the other of its input activation
ports. Thus the block is activated at the union of the two activation times. This explains
how Func.2 inherits its activation.
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SourceSource Func. 1Func. 1

time t
Event at
time t
Event at

Figure 8.7. The diagram after the precompilation phase.

SourceSource
Func. 1Func. 1

time t
Event at
time t
Event at

time s
Event at
time s
Event at

SourceSource

Func. 2Func. 2

Figure 8.8. Blocks Func.1 and Func.2 are activated by inheritance.

8.3 Always Active Blocks

There is another way a block can be active, and that is by being declared always active.
Consider the sinusoid generator in the diagram of Figure 7.4 in Chapter 7. This block
is not explicitly activated, and it clearly does not inherit. But it is active because it is
declared always active. This is done by setting the block’s dep t property to true.

An always active block is, at least as far as the formalism is concerned, always active.
But during the simulation, the block is activated only when needed. For example, in the
diagram of Figure 7.4, the output of the sinusoid generator should evolve continuously.
But since this value is used only by the scope at its activation times, during the simulation,
the function associated with the sinusoid generator is only called at these times.

In the diagram of Figure 7.6, the integrator block is also declared always active. But
even if it were not, it would not have made any difference because it would have inherited
always activation from the sinusoid generator. In this case, since the output of the sinusoid
generator affects a differential equation, the times that the function associated with the
sinusoid generator is called, in addition to the activation times of the scope, are the times
(integration time steps) imposed by the numerical solver.
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SourceSource
Func. 1Func. 1

time t
Event at
time t
Event at

time s
Event at
time s
Event at

SourceSource

Func. 2Func. 2

Figure 8.9. The diagram after the precompilation phase.

8.4 Constant Blocks

A block without input, not explicitly activated and not being always active, is a constant
block. A constant block’s outputs do not evolve as a function of time. During the sim-
ulation, the function associated with a constant block is called only at the initialization
phase. The same holds for blocks inheriting from constant blocks. See, for example, the
diagram in Figure 8.10. If Source is not always active, then it is a constant. If Func.1 is
not always active, it inherits its activation, or more specifically its absence of activation,
from the Source block. The Func.1 block’s function is called just once to compute its
output after the initialization phase. This is, of course, reasonable because the output of
Func.1 does not evolve.

SourceSource Func. 1Func. 1

Figure 8.10. Inheritance from a constant block.

8.5 Conditional Blocks

In many applications, in particular in signal processing, signals with different frequencies
interact in the same model. A common situation is the decimation operation, which consists
in generating a signal B from a signal A by taking one out of every n values of A. The
frequency of signal B is then that of signal A divided by n. To implement this operation,
one might consider using two independent clocks to fix the two frequencies. This is done
in the diagram of Figure 8.11 using a sample and hold block.
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SourceSource S/HS/H

Clock
Slow
Clock
Slow

Clock
Fast
Clock
Fast

Func.Func.

Figure 8.11. Incorrect way of implementing decimation.

But we have seen that two activation sources generate asynchronous events. So even if
we set the period of the slow clock to exactly n times that of the fast clock, at times when
the two events have the same time, the order of block execution is not predictable.

We see through this example that there is a need for being able to define synchronism
between two nonidentical activation signals. The events generated by the fast clock do not
always have the same timing information as that of the slow clock. However, when they
do (one out of every n times), they must be considered synchronized. This is particularly
important when the fast and slow signals are used in common operations later such as
being added together.

This type of synchronous signal can be constructed in Scicos using two special blocks:
the If-then-else and the event select, which can be found in the Branching palette.
Strictly speaking, these blocks are not Scicos blocks. They do not generate new activation
signals. Rather they redirect the activation they receive.

SourceSource S/HS/H

ClockClock

Func.Func.

 then    else

If in>0

 then    else

If in>0

Figure 8.12. Conditional subsampling.

Consider the diagram in Figure 8.12. The sample and hold block, when activated,
copies its input on its output. The If-then-else block activates the sample and hold
block when the value of its input is positive. The output of this block is then a signal
with an activation that depends on values of the signal generated by the Source block.
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We say then that this signal is obtained by conditional subsampling. In this case, since
the Source and S/H have identical activation sources (remember that the If-then-else
block only redirects activations), they are considered synchronous by the Scicos compiler
and ordered properly. In particular, in this case we can be sure that the output of the S/H
block is always positive.

Now we return to the decimation problem previously discussed. The diagram in Fig-
ure 8.11 did not function properly because the Source and the S/H blocks were not syn-
chronized. Using the If-then-else block, we can implement the decimation operation
correctly as illustrated in Figure 8.13. The Counter Modulo block counts up to n− 1 and
then returns to zero. The S/H block is activated only when the output of the counter block
is zero (activation through the else branch), that is, one out of every n times. And in this
case, the Source and S/H blocks are synchronized.

SourceSource S/HS/H

Clock
Fast
Clock
Fast

Func.Func.

 then    else

If in>0

 then    else

If in>0

Modulo n
  Counter
Modulo n
  Counter

Figure 8.13. A correct way to implement decimation. The (Super) block freq div can replace
the Counter Modulo and If-then-else blocks.

The combination Counter Modulo and If-then-else provides a versatile mechanism
for implementing frequency division. The division factor can be set by fixing the value of n,
and the phase by the initial state of the counter. In fact, that is the way the freq div
(Super) block, available in the Events palette, is constructed.

Conditional blocks work also for “always active” activation. Consider the diagram in
Figure 8.14. The If-then-else block is always active (inheriting its activation from the
sine generator) but activates the S/H block only when its input is positive. So the integrator
receives on its input sin(t) if it is positive, and zero otherwise. Zero is the last value output
by S/H before deactivation. When a block is not active, its output remains constant. The
simulation result is given in Figure 8.15.
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S/HS/H

1/s

 then    else

If in>0

 then    else

If in>0

generator
sinusoid
generator
sinusoid

MScopeMScope

Figure 8.14. Conditional blocks function also with continuous-time activation.
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Figure 8.15. Simulation result. At the bottom we have the output of the sinusoid generator

sin(t) and on top
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Scicos Blocks

A block is a basic module from which Scicos diagrams are constructed. A block corresponds
to an operation, and by interconnecting blocks through links, we construct (implement) an
algorithm. So in a sense, blocks in Scicos are the counterpart of functions in a programming
language, and as in programming languages, some blocks are provided through standard
libraries, while others are developed by the user.

Most Scicos users never need to develop a new block because standard libraries con-
tain a large number of blocks providing most of the elementary functionalities needed in
the construction of Scicos diagrams; moreover, blocks such as Mathematical Expression
allow the user to define block functionality in terms of Scilab expressions without loss of
efficiency (the Scilab expression in this case is compiled). That is why readers can skip
this chapter on a first reading and come back to it when they want to learn about block
construction.

9.1 Block Behavior

A Scicos block can be a complex entity. It can have multiple vector inputs and outputs, a
continuous-time vector state, a discrete-time vector state, zero-crossing surfaces, etc., as
shown in Figure 9.1. But most Scicos blocks do not contain all of these features simulta-
neously.

The behavior of a block is primarily specified by the way it is activated. We have seen
in the previous section that a block is activated in three different ways. The way the block
learns about the way it is activated is via an activation index nevprt.

9.1.1 External Activation

A block is activated when it receives activations on its activation input ports. As we have
seen in the previous section, such activations can also be inherited when the block has no
activation input ports, in which case the corresponding activation ports are added by the
Scicos compiler and the activations are considered to be external.

In the case of external activation, the activation index nevprt is a positive integer
obtained by the following formula:

nevprt =
n∑

j=1

ij2j−1, (9.1)
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continuous-time state

discrete-time state

mode vector zero-crossing surfaces

state derivative

inputs outputs

i1i2

tevo

input activations

activation outputs

Figure 9.1. Scicos block: an inside look.

where n is the number of input activation ports and ij is equal to one or zero depending
on whether an activation has been received on port j. Note that nevprt corresponds to
the binary coded number inin−1 · · · i1.

In some cases, block behavior does not depend on nevprt. For example, the summation
block performs an addition regardless of the value of nevprt. But the Selector block uses
nevprt to select the input that should be copied into the output.

Event Activation

When a block is activated in this way by an event, say at time te, it can update its outputs:

y(te) = f1(te, x(t−e ), z(t−e ), u(te), μ(te)). (9.2)

In the above, te denotes the event time, and x(t−e ) and z(t−e ) denote respectively the
continuous-time and discrete-time states just before the occurrence of the event. y(te)
denotes the outputs of the blocks (which can be more than one and each a vector of
arbitrary size). u(te) denotes similarly the inputs.

The function f1 depends also on nevprt, which is part of μ:

μ = (nevprt, m, p).

Here m and p represent respectively the mode and the simulation phase. We shall discuss
them later.

If the block contains output activation ports, upon activation it can program events
on them by providing the delay time to event firing on each activation output port:

tevo = f3(te, x(t−e ), z(t−e ), u(te), μ(te)). (9.3)

Finally, if it has internal states, it can update them (both continuous-time and discrete-
time):

[z(te), x(te)] = f2(te, x(t−e ), z(t−e ), u(te), μ(te)). (9.4)

The vector tevo is generated at block activation (if the block has any output activation
ports). If the jth entry is positive, then an event is programmed on the jth output acti-
vation port of the block. The activation date of this event is obtained by adding te to this
entry.
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Continuous-Time Activation

If a source of block activation is “always activation,” then activation occurs over time
intervals and not at specific times as in the case of event activation. See, for example, the
diagram in Figure 8.14. In this case, the output calculation given in equation (9.2), thanks
to the continuity assumption of all the signals over a continuous-time activation period,
can be simplified as follows:

y(t) = f1(t, x(t), z(t), u(t), μ(t)). (9.5)

The output activation programming and state updates do not apply in this case, but if
the block has a continuous-time state, it evolves according to the following differential
equation,

ẋ = f0(t, x(t), z(t), u(t), μ(t)) (9.6)

over the activation period, which we call the simulation phase 2, as opposed to event
activation instances which are referred to as simulation phase 1 . Note that z(t), like
nevprt, is constant over this period. So is the mode m if there is one.

Mode and Zero-Crossing

The mode parameter is not part of the Scicos formalism. It is introduced to facilitate the
implementation of the numerical solver. Most blocks that a user may have to construct
don’t need any mode or zero-crossing, and the user can use existing blocks with mode
and zero-crossing without a complete understanding of the way they work. For the sake
of completeness, however, we give a short presentation below. More details can be found
in the examples provided later in this chapter.

Numerical integrators can experience step size control and other problems at places
where the functions being integrated are not continuously differentiable. If f1 or f0 is not
smooth (continuously differentiable) at some points, then mode is used in such a way as
to make sure the numerical solver never encounters these points of discontinuity inside an
integration interval.

Consider the following simple example: y = u if u ≥ 0, and y = −u otherwise. This
function realizes the absolute-value function and is not differentiable at 0. In this case, a
mode can be defined to specify at the start of the integration period whether u is positive.
To make sure the integration stops when the sign of u changes, a zero-crossing surface is
introduced at zero. During the integration period (which could end because of the zero-
crossing), the output y is computed as follows: y = u if m = 1, and y = −u otherwise. After
the zero-crossing the mode is recomputed and the integration continues. The computation
of the mode and the zero-crossing surface are performed by the block. If the simulation
phase is 1, we have

[m(t), s(t)] = f9(t, x(t), z(t), u(t), μ(t)). (9.7)

The zero-crossing surfaces s(t) may be present even if the block has no mode. When a
zero-crossing occurs, the block is internally activated, which means that (9.3) and (9.4)
are called with nevprt = −1. The blocks in the Threshold palette, for example, have
zero-crossings but no modes.

9.1.2 Always Activation

A block can be declared always active. This is, for example, the case of the sine generator
block. In this case the nevprt index is zero. Always activation can be thought of as
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an activation received on a fictitious activation input port 0 that would correspond to
nevprt = 0.

Always activation is a special case of continuous-time activation where the activation
period is equal to the period of simulation. So the behavior of the block is specified again
by equations (9.5) and (9.6) with nevprt set to zero.

9.1.3 Internal Zero-Crossing

When a zero-crossing occurs inside a block, this block is activated with nevprt equal to −1
at the time of crossing. If this time is denoted by te, then the state update formula is
given by (9.4) with nevprt = −1. This type of activation is used, for example, in the
bouncing balls demo block of Scicos to change the direction of balls (characterized by the
continuous-time state of the block) after a collision.

9.2 Blocks Inside Palettes

Scicos libraries of blocks are called palettes. There are a number of standard palettes
available in Scicos providing many elementary blocks.

The available palettes are the following:

• Sources library. It includes signal generators such as the square-wave, sawtooth, and
sine-wave generators, and also read from file blocks. The read from file blocks generate
signals from data stored on files.

• Sinks library. It includes blocks that store signals on a file or display signals on a
screen. These blocks have no output ports.

• Branching library. This palette contains switches, multiplexers, selectors, and a
relay. It also includes two very special blocks that redirect activation signals: the
If-then-else and the events select blocks.

• Non linear library. The blocks in this palette realize memoryless nonlinear operators
such as trigonometric functions, multiplication, logarithm, inversion, and saturation.
The palette also includes interpolation and table lookup blocks, and a special block
called Mathematical Expression used to express a nonlinear operator in terms of a
Scilab expression. The constraint on the scilab expressions is that only scalar expres-
sions can be used, but the evaluation is very efficient.

• Events library. This library includes blocks for generating and manipulating events
(activation signals). It also includes the block Stop, which halts the simulation if acti-
vated.

• Threshold library. The blocks included in this palette can generate events when a
signal crosses zero.

• Others library. This palette includes a number of blocks useful for the construction
of new blocks: Cblock2, Scifunc, GENERIC,. . . . These blocks are discussed later in this
chapter. It also includes logical and relational blocks. It also includes the Text block,
which is not a real block, but a way to place text inside a diagram.

• Linear library. This palette contains blocks realizing linear operators such as summa-
tion, gain, and many dynamical linear systems in both continuous and discrete time.
Delay blocks and jump linear systems are also included in this palette.

The above palettes provide general-purpose blocks. Specialized palettes can be added
by the user. Two such palettes are included. One is an electrical palette. The other is
a Thermo-Hydraulic palette.
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9.3 Modifying Block Parameters

Most blocks have parameters that must be changed by the user for specific applications.
Block parameters can be changed by “opening” a block (clicking at the center of the
block). This action opens a dialog box, which can be used to define new parameter values.

Blocks parameters are stored in two different ways:

1. Symbolically: the exact expression entered for each parameter in the dialog box is
stored as Scilab text. For example, the user can enter 2*%pi, and this expression is
saved and shown the next time the dialog box is opened.

2. Numerically: the expression is evaluated and the numerical value is saved.

It may seem redundant to store parameter values in two different ways but there are
good reasons for doing this. One reason is that it is more convenient to see 2*%pi the next
time the dialog box is opened than it is to see 6.2831853. But the main reason is that
the values of the parameters can be defined in terms of Scilab variables already defined
in the context of the diagram. For example, a parameter can be set to sin(x)*y. The
numerical value of this parameter is evaluated based on the values of x and y defined in
the context of the diagram. Keeping the symbolic expression allows Scicos to update the
value of the parameter when x or y is modified in the context. In this case, x and y are
symbolic parameters.

9.4 Super Block and Scifunc

In addition to the blocks available in Scicos palettes, the user can create and use custom
blocks by adapting existing blocks. There are various ways of doing this.

• using the Super block facility,
• using Scifunc blocks, which allow block functionality to be defined on-line by Scilab

expressions.
• using C or Scilab programs, dynamically linked with, or loaded in, Scilab.

The third method, which will be presented in the next section, gives the best results
as far as simulation performance is concerned, provided a C program is used.

9.4.1 Super Blocks

To construct a Super block, the user should copy the “Super block” block from the Others
palette into the Scicos window and click on it. This will open up a new Scicos window
in which the Super block should be defined. Super blocks can also be defined using the
Region-to-Super-block facility, which creates a Super block from existing blocks in a
specified region of the diagram.

The construction of the Super block model is done in the same way as the earlier
diagrams, that is, by copying and pasting blocks from various palettes into the Super
block’s editor window and connecting them. Input and output ports of the Super block
should be specified by input and output block ports available in the Sources and Sinks
palettes. Super blocks can, of course, be used within Super blocks.

A Super block can be saved in various formats. If the Super block is of interest in other
constructions, it can be converted into a block and placed in a user palette. This can be
done in various ways:
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• The Save-as-Interf-Func facility can save the Super block in two different ways:
as a block or as a Super block. The difference is that in the block case, the content
of the Super block is no longer visible, whereas in the Super block case, the saved
Super block would have exactly the same behavior as the Super block being saved.
Save-as-Interf-Func should be used inside the Super block of interest.
By default, in the block case, the dialog menus of the new block are generated auto-
matically using the dialog menus of all the blocks within the Super block. This is often
cumbersome, and most users need to edit the new interfacing function. This Scilab
function is easily customizable.
Once the Super block, or more specifically the corresponding Scilab interfacing func-
tion, is saved, either as a block or as a Super block, it can be used in Scicos. This can
be done using Add-new-block in the Edit menu. The block can also be placed in a
palette for future use. See Section 9.6.

• Using Code-Generation. Under certain conditions, the dynamics of the content of a
Super block can be expressed using a single C program. Code-Generation generates
this program automatically; see Section 12.

If the Super block is used only in a particular construction for one Scicos diagram, then
the Super block need not be saved. A click on the Exit will close the Super block window
and activate the main Scicos window (or another Super block window if the Super block
was being defined within another Super block). Saving the block diagram automatically
saves the content of all Super blocks used inside of it.

A Super block, like any other block, can be duplicated using the Copy button. In that
case all the contents of the Super block are duplicated.

9.4.2 Scifunc

The Scifunc block enables using the Scilab language for defining, on-line, new Scicos
blocks. Block information, such as the number of inputs and outputs, initial states, the
initial firing vector, and information regarding the behavior of the block during simulation
have to be entered by the user. This input consists essentially of Scilab expressions defining
functions fi (presented in Section 9.1). This is done interactively by clicking on the Scifunc
block once it is copied into the Scicos window. The main disadvantage of Scifunc is
that the dialog for updating block parameters cannot be customized. In order to have a
customized dialog box, a Scilab function called the interfacing function must be developed.
We shall see how this is done in Section 9.5.1.

It should be noted that in the case of Scifunc, like all older types of Scicos blocks, the
function f3 must return the time of the outgoing events and not the delay with respect to
the activation time of the block.

9.5 Constructing New Basic Blocks

In this section we show how a new basic block can be constructed and used in Scicos.
Each Scicos basic block is defined by two functions. The first one, which must be in the

Scilab language, handles the interactions with the editor. It is this function that specifies
what the geometry of the block should be, how many inputs and outputs it should have,
what the block type is, etc. It is also this function that handles the user interface (updating
block parameters and initializing the states). This function is referred to as the interfacing
function.
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The second function, which is called the computational function, is normally written
in C, but can also be a Scilab function. This function defines the behavior of the block
during the simulation. For simple blocks, this amounts to coding the fi functions which
have to be evaluated by the program depending on the value of an input flag. The i in fi

corresponds to the value of the flag. We shall come back to this in Section 9.5.2. In order to
get the best performance, this part of the Scicos block should be defined by C programs,
but Scilab functions are often used in the early phases of development for testing and
debugging purposes since they are easier to write.

Even though each basic block requires both an interfacing function and a computational
function, the user often needs to be developed only one. For example, a computational
function can be used with the GENERIC block available in the Others palette. The GENERIC
block is a generic interfacing function. It suffices to specify the “name of the computational
function” in the dialog box of the GENERIC block along with information concerning the
input/output numbers and sizes, initial states, etc. The name of the program, in the case
of C programs, is the name of the entry point when the C program is incrementally linked
with Scilab (see Section 9.5.2). In the case of a Scilab program, it is simply the name of
the Scilab function. Scilab functions must, of course, be loaded as usual into Scilab before
Scicos is launched. This can be done using either getf or load if the function is contained
in a library. See Section 2.5.

The drawback of using the GENERIC block, as in the case of Scifunc, is the generic dia-
log box. In most cases, it is desirable to customize both the block’s dialog box and its look.
For that, a custom interfacing function must be used. This Scilab function should provide
information on the geometry of the block and handle the dialog for defining and updating
block parameters and states. The interfacing function is used by the graphical editor,
as opposed to the computational function, which is used by the simulator. Section 9.5.1
describes how the interfacing function and the underlying programs should be developed.

On the other hand, in some cases a new block may consist simply of a new inter-
facing function using an existing computational function. Consider, for example, the two
continuous-time linear dynamical system blocks in the Linear palette. One is in state-space
form and the dialog requests the A, B, C, D matrices. The other uses transfer functions
and the user should enter the transfer function of the system. But both of these blocks use
the same computational function, namely csslti. The reason is that the transfer function
is converted to a state-space representation in the corresponding interfacing function. So
two blocks may look very different but have a common computational function.

A new block realizing a low-pass filter should have a dialog where information such as
the cut-off frequency, order, overshoot, etc., are specified. But once the filter is designed in
the interfacing function (using specialized Scilab functions), the simulation can very well
be performed with csslti. The reason is that the filter is nothing but a linear system
characterized by A, B, C, D matrices.

9.5.1 Interfacing Function

The interfacing function is used only by the Scicos editor. In particular, it is used to ini-
tialize, draw, connect the block, and to modify its parameters. In addition, the interfacing
function initializes block states and specifies certain block properties. It also specifies the
name of the computational function to be used by the simulator. What the interfacing
function should return depends on an input flag job.

Syntax

[x,y,typ]=block(job,arg1,arg2)
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Parameter job

The parameter job can take on the following values:

• ’plot’: the function draws the block and its label. arg1 is the data structure of the
block. arg2,x,y,typ are unused.
In general, the standard draw function can be used. It draws a rectangular block.

• ’getinputs’: the function returns the position and type of input ports (regular and
event). arg1 is the data structure of the block. arg2 is unused. x is the vector of x
coordinates of input ports. y is the vector of y coordinates of input ports. typ is the
vector of input ports types.
In general, the standard input function can be used.

• ’getoutputs’: returns position and type of output ports (regular and event). arg1 is the
data structure of the block. arg2 is unused. x is the vector of x coordinates of output
ports. y is the vector of y coordinates of output ports. typ is the vector of output ports
types .
In general, the standard output function can be used. The standard input and
standard output functions place regular input/outputs on the side of the block and
the activation inputs on top and activation outputs at the bottom of the block.

• ’getorigin’: returns coordinates of the lower left point of the rectangle containing the
block’s shape. arg1 is the data structure of the block. arg2 is unused. x is the vector
of x coordinates of output ports. y is the vector of y coordinates of output ports. typ
is unused.
In general, the standard origin function can be used.

• ’set’: This function opens a dialog for block parameter acquisition. arg1 is the data
structure of the block. arg2 is unused. x is the new data structure of the block. y is
unused. typ is unused.

• ’define’: provides initialization of the block’s data structure. It sets block’s initial type,
number of inputs, number of outputs, etc. arg1, arg2 are unused. x is the data struc-
ture of the block. y is unused. typ is unused.

Example: the Interfacing Function of the Absolute Value Block

function [x,y,typ]=ABS_VALUE(job,arg1,arg2)

x=[];y=[];typ=[]

select job

case ’plot’ then
standard_draw(arg1)

case ’getinputs’ then
[x,y,typ]=standard_inputs(arg1)

case ’getoutputs’ then
[x,y,typ]=standard_outputs(arg1)

case ’getorigin’ then
[x,y]=standard_origin(arg1)

case ’set’ then
x=arg1;

graphics=arg1.graphics;exprs=graphics.exprs

model=arg1.model;

while %t do

[ok,zcr,exprs]=..

getvalue(’Set block parameters’,..
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[’use zero_crossing (1: yes) (0:no)’],..

list(’vec’,1),exprs)

if ~ok then break, end
graphics.exprs=exprs

if ok then
if zcr<>0 then
model.nmode=-1;model.nzcross=-1;

else
model.nmode=0;model.nzcross=0;

end
x.graphics=graphics;x.model=model

break
end

end
case ’define’ then
nu=-1

model=scicos_model()

model.sim=list(’absolute_value’,4)

model.in=nu

model.out=nu

model.nzcross=nu

model.nmode=nu

model.blocktype=’c’

model.dep_ut=[%t %f]

exprs=[string([1])]

gr_i=[’txt=[’’ABS’’];’;

’xstringb(orig(1),orig(2),txt,sz(1),sz(2),’’fill’’)’]

x=standard_define([2 2],model,exprs,gr_i)

end
endfunction

The data structures used in the interfacing function are explained in Appendix A.
The only hard part of defining an interfacing function is in the ’set’ case. Note that
the function getvalue is used to create a dialog for the block. This should be done in all
user-defined blocks as well, since this function is overloaded, when Eval is performed, to
read and evaluate block parameters. getvalue is a generic dialog box with built-in type
checking facilitating the implementation of Scicos blocks’ dialog boxes.

9.5.2 Computational Function

The computational function is called in various ways by the simulator. The way the block
is called (the calling sequence) is characterized by the type of the interfacing function. It is
strongly recommended that type 4 and 5 computational functions now be used. The other
types are now obsolete. Type 4 is used for programs written in C and type 5 for Scilab
computational functions.

Type 4 C functions receive two arguments: a structure containing block information
and a flag:

#include "scicos_block.h"

#include <math.h>

void my block(scicos block *block,int flag)
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{
. . .

}

flag

The flag indicates the job that the computational function must perform. It usually consists
in updating some of the fields of the block structure. Specifically, the following jobs exist:

• Initialization: If the function is called with flag=4, then the continuous and discrete
states can be initialized, or more specifically, reinitialized (if necessary) because they are
already initialized by the interfacing function. The block output can also be initialized.
This option is not used in most blocks. It is used by the ones that read and write
data from files, for opening the file, or by scope for initializing the graphics window.
It is also used by blocks, which require dynamically allocated memory; the allocation
is done under this flag. Each block is called once and only once at the beginning of the
simulation with flag 4.

• Output update: When flag=1, the simulator is requesting the outputs of the block.
The computational function should use the needed information within the block’s struc-
ture (inputs, states, nevprt, which codes the way by which the activation has arrived,
etc.) to compute the outputs and place them at the addresses given in the block struc-
ture. Note that if the block contains different modes, then the way the output is
computed depends on the simulation phase. The simulation phase indicates whether
the call is made in the numerical integration phase or is due to an event.

• State update: When the simulator calls the function with flag=2, it means that an
event has activated the block (nevprt�= 0). The activation may also be due to an
internal zero-crossing event, in which case nevprt is equal to −1. With flag= 2, the
simulator is asking the block to update its states x and z. Scicos provides the addresses
of the states, where old values of x and z reside, and the block should update them
in place. This avoids useless and time-consuming copies, in particular when part or
all of x or z is not to be changed. If a temporary workspace is needed to perform
the computations, it can either be statically allocated in the C routine or dynamically
allocated when the block is called with flag 4.
If nevprt= −1, indicating that the activation is due to an internal zero-crossing, then
the vector jroot specifies which surfaces have been crossed and in which direction. In
particular, if the ith entry of jroot is 0, then the ith surface (counting from zero) has
not crossed zero. If it is +1 (respectively −1), then it has crossed zero with a positive
(respectively negative) slope.

• Integrator calls: During the integration, the solver calls the function for the value of
ẋ. This is done with flag=0. The computational function must compute ẋ and place it
in the address provided in the block structure.

• Mode and zero-crossing: Scicos solvers assume model smoothness. This means that
the behavior of blocks, which contain or affect continuous-time states of the system
must be smooth, or at least piecewise smooth. In this latter case, the points of nons-
moothness must be specified in such a way that the solver can, if needed, issue a cold
restart when going through such points. An example of such a block is the ABS block.
The absolute value function is smooth except at zero, where it is not even differen-
tiable. In this case, we say that the absolute value block has two modes: one where the
output equals the input, and one where the output is the negative of the input. A block
may have many different modes, which are stored in the block structure. The point of
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nonsmoothness is represented by a zero-crossing, and the mode is updated after such
a crossing occurs. flag= 9 is used both for evaluating the zero-crossing function and
setting the mode. Mode setting is done only in the simulation phase 1.
Note that the block may have more zero-crossings than modes. For example, the zcross
block, which generates an event when its input crosses zero, has one zero-crossing
surface but no mode.

• Event scheduler: To update the event scheduler table, the simulator calls the function
with flag=3. This happens if the block has output activation ports. In this case the
block has access to jroot.

• Ending: Once the simulation is done or at user request (by responding End in the
Run menu after a Stop), the simulator calls each computational function with flag=5,
once. This is useful, for example, for closing files that have been opened by the block
at the beginning or during the simulation, to flush buffered data, and to free allocated
memory.

Table 9.1 summarizes the role of each flag. Note that in most cases the computa-
tional functions are not called with all these flag values. For example, if a block has no
output port, its associated computational function is never called with flag 1. If it has no
continuous-time state, then it is not called with flag 0, etc. Also note that in this table
we have not specifically stated as input time-invariant quantities such as the parameters
rpar and ipar. The function clearly has access to these parameters and can use them in
computing its outputs. Finally, the workspace is not mentioned in the table because it can
be used in various ways. If needed, the workspace w is in general allocated when flag= 4
and freed when flag= 5. The workspace can be used as storage and in many different
ways.

flag inputs outputs description

0 t, nevprt, x, z, inptr,
mode, phase

xd compute the derivative of
continuous time state

1 t, nevprt, x, z, inptr,
mode, phase

outptr compute the outputs of the
block

2 t, nevprt>0, x, z, inptr x, z update states due to exter-
nal activation

2 t, nevprt=-1, x, z, inptr,
jroot

x, z update states due to inter-
nal zero-crossing

3 t, x, z, inptr, jroot evout program activation output
delay times

4 t, x, z x, z, outptr initialize states and other
initializations

5 x, z, inptr x, z, outptr final call to block for end-
ing the simulation

6 not needed

7 only used for internally im-
plicit blocks

9 t, phase=1, nevprt, x, z,
inptr

g, mode compute zero-crossing sur-
faces and set modes

9 t, phase=2, nevprt, x, z,
inptr

g compute zero-crossing sur-
faces

Table 9.1. This tables illustrates the jobs that the computational function must perform for
different flags.
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The computational function receives most of its inputs from the block structure. The
rest is obtained from the following functions:

• double get scicos time(): returns the current time t.
• int get phase simulation(): returns the simulation phase (1 or 2).
• int get block number(): returns the block number in the structure %cpr.

These functions are defined in scicos block.h. Other useful functions in this file are:

• void set block error(int): used by the block to signal an error to the simulator.
• void do cold restart(): used to force a cold restart of the numerical solver (almost

never used since Scicos determines automatically when cold restart is needed).
• void set pointer xproperty(int* pointer): used only for internally implicit blocks

to designate which states are algebraic and which ones are differential.
• void *scicos malloc(size t ): used to allocate memory for workspace if needed.
• void scicos free(void *p): used to free allocated memory.

Block Structure

The block structure is a C struct defined as follows:

typedef struct {
int nevprt; /* binary coding of activation inputs, -1 if internally activated */
voidg funpt; /* pointer: pointer to the computational function */
int type; /* type of interfacing function, current type is 4 */
int scsptr; /* not used for C interfacing functions */
int nz; /* size of the discrete-time state */
double *z; /* vector of size nz: discrete-time state */
int nx; /* size of the continuous-time state */
double *x; /* vector of size nx: continuous-time state */
double *xd; /* vector of size nx: derivative of continuous-time state */
double *res; /* only used for internally implicit blocks. vector of size nx */
int nin; /* number of inputs */
int *insz; /* input sizes */
double **inptr; /* table of pointers to inputs */
int nout; /* number of outputs */
int *outsz; /* output sizes */
double **outptr;/* table of pointers to outputs */
int nevout; /* number of activation output ports */
double *evout; /* delay times of output activations */
int nrpar; /* number of real parameters */
double *rpar; /* real parameters of size nrpar */
int nipar; /* number of integer parameters */
int *ipar; /* integer parameters of size nipar */
int ng; /* number of zero-crossing surfaces */
double *g; /* zero-crossing surfaces */
int ztyp; /* boolean, true only if block MAY have zero-crossings */
int *jroot; /* vector of size ng indicating the presence and direction of crossings */
char *label; /* block label */
void **work; /* pointer to workspace if allocation done by block */
int nmode; /* number of modes */
int *mode; /* mode vector of size nmode */

} scicos block;
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Examples

The simplest computational functions are those that simply compute an output as a
smooth function of an input. One such function is the computational function of the
SUMMATION block:

#include "scicos_block.h"

#include <math.h>

void summation(scicos block *block,int flag)
{

int j,k;
if(flag==1){

if (block−>nin==1){
block−>outptr[0][0]=0.0;
for (j=0;j<block−>insz[0];j++) {

block−>outptr[0][0]=block−>outptr[0][0]+block−>inptr[0][j];
}

}
else {

for (j=0;j<block−>insz[0];j++) {
block−>outptr[0][j]=0.0;
for (k=0;k<block−>nin;k++) {

if(block−>ipar[k]>0){
block−>outptr[0][j]=block−>outptr[0][j]+block−>inptr[k][j];

}else{
block−>outptr[0][j]=block−>outptr[0][j]−block−>inptr[k][j];

}
}

}
}

}
}

This block can have one or more vector inputs. If it has one input, then the output
is a scalar corresponding to the sum of the entries of the unique input vector. If not, the
output is a vector of the same size as that of all the input vectors. In this case, the output
is simply obtained by the adding and subtracting (in the vector sense, i.e., elementwise)
of the input vectors. The choice of addition and subtraction is made based on the values
of the integer parameter vector block->ipar.

The test on the number of inputs determines which algorithm should be used. This
number is available in block->nin. The size of the input vector i (counting from zero) is
in block->insz[i]. The address of the jth entry of the kth input (respectively output)
can be found in block->inptr[k][j] (respectively block->outptr[k][j]).

Another example of a simple block is the Gain block. This block has a vector input
and a vector output. The output is the input multiplied either by a scalar or a matrix.
Here is the corresponding computational function:

#include "scicos_block.h"

#include <math.h>
#include ". ./machine.h"

extern void C2F(dmmul)();
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void gainblk(scicos block *block,int flag)
{

int i,un=1;
if (block−>nrpar==1){

for (i=0;i<block−>insz[0];++i){
block−>outptr[0][i]=block−>rpar[0]*block−>inptr[0][i];

}
}else{

C2F(dmmul)(block−>rpar,&block−>outsz[0],block−>inptr[0],
&block−>insz[0],block−>outptr[0],&block−>outsz[0],
&block−>outsz[0],&block−>insz[0],&un);

}
}

Note that depending on the value of block->nrpar, which represents the number
of real parameters, two different algorithms are used. If block->nrpar equals one, then
the output is obtained by multiplying each entry in the input vector by the unique real
parameter contained in block->rpar[0]. If not, a matrix multiplication is performed.
Note that Scilab’s multiplication routine is used. C2F is used because the routine dmmul is
in Fortran.

The following is the computational function associated with the ABS block. :

#include "scicos_block.h"

#include <math.h>

void absolute value(scicos block *block,int flag)
{

int i,j;
if (flag==1){

if( block−>ng>0){
for(i=0;i<block−>insz[0];++i){

if (get phase simulation()==1) {
if (block−>inptr[0][i]<0){

j=2;
} else{

j=1;
}

}else {
j=block−>mode[i];

}
if (j==1){

block−>outptr[0][i]=block−>inptr[0][i];
} else{

block−>outptr[0][i]=−block−>inptr[0][i];
}

}
}else{

for(i=0;i<block−>insz[0];++i){
if (block−>inptr[0][i]<0){

block−>outptr[0][i]=−block−>inptr[0][i];
}else{

block−>outptr[0][i]=block−>inptr[0][i];
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}
}

}
}else if (flag==9){

for(i=0;i<block−>insz[0];++i){
block−>g[i]=block−>inptr[0][i];
if (get phase simulation()==1) {

if(block−>g[i]<0){
block−>mode[i]=2;

}else{
block−>mode[i]=1;

}
}

}
}

}

This example is not very simple because this block is nonsmooth and thus uses modes.
Note, however, that the modes are used only if the block generates continuous-time signals
affecting the continuous-time state. The compiler determines whether this is the case, so
the computational function must be prepared to function both with and without modes.
It is the value of block->ng (or equivalently in this case block->nmode) that determines
whether modes should be used. Note that if block->ng is zero, then a simple absolute
value operation is performed in flag 1 and the block is never called with flag 9.

If, on the other hand, block->ng is not zero, then modes must be used. An important
function to use in this case is get phase simulation. It returns 1 or 2 to specify the
simulation phase. If the numerical solver is at work advancing the time, then the compu-
tational function must produce a smooth signal and thus must use the mode to generate
its output. When get phase simulation returns 1, then the output must be computed
normally by computing the absolute value of the input. In the flag 9 case, the zero-crossing
surface is computed all the time, but the mode is set only in simulation phase 1.

Note that using modes in this case means that during the simulation, the output of the
ABS block can become negative because at zero the solver has to step back and forth for
pinpointing the zero-crossing. In some cases, this could be a problem, for example, if the
ABS block is followed by a SQRT block that computes the square root. It is for this reason
that in the ABS block we have the option of using, or not using, zero-crossings (modes).
This is true for most blocks using modes.

The following example shows how output activations can be programmed when a block
has output activation ports:

#include "scicos_block.h"

void evtvardly(scicos block *block,int flag)
{

if (flag==3){
block−>evout[0]=block−>inptr[0][0];

}
}

evtvardly is the computational function associated with the variable Event Delay
block in the Events palette. The value of the input determines the delay between the
activation time of the block and the generation of the output activation.
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Let us now consider an example in which the zero-crossing is used to generate a jump in
the state of the system. This example corresponds to a bouncing ball. This model includes
a gravitational force and a nonlinear air resistance. The differential equations modeling
this system are

ḣ = v, (9.8a)
v̇ = −9.8 − αv3, (9.8b)

where h is the height of the ball, v is its speed, and α is the coefficient of friction. When the
ball hits the floor (at h = 0), it bounces back without any loss of energy. Thus, at h = 0,
v becomes −v. The computational function of a block realizing this dynamical system is
the following:

#include <scicos/scicos block.h>
#include <math.h>

void Bounceball(scicos block *block,int flag)
{

if (flag==1){
block−>outptr[0][0]=block−>x[0];

}else if (flag==0){
block−>xd[0]=block−>x[1];
block−>xd[1]=−9.8−block−>rpar[0]*block−>x[1]*block−>x[1]*block−>x[1];

}else if (flag==2&block−>nevprt==−1&block−>jroot[0]<0){
block−>x[1]=−block−>x[1];

}else if (flag==9){
block−>g[0]=block−>x[0];

}
}

Note that the test on nevprt does not accomplish anything because this function is
called only with flag equal to 2 when nevprt is equal to −1 (nevprt indicates the way
in which the block is executed and since this block has no activation port and does not
inherit any activations because it is always active, it is only internally activated). Note
also the test on jroot. This test means that we switch the sign of speed only when the
ball crosses the zero level going downward. In a perfect world, the ball should never cross
zero upward, but due to numerical errors such a situation may come up. In such a case,
if a test on the sign of jroot is not performed, the ball could bounce off the zero line and
go downward thereafter.

To use this function, we should first link it with Scilab. This can be done with the fol-
lowing Scilab commands (assuming that the corresponding file is in the current directory):

ilib_for_link(’Bounceball’,’bounceball.o’,[],’c’)

exec loader.sce

The first command compiles the program and creates a shared library. The second com-
mand links the shared library with Scilab.

This computational function can be easily tested with the GENERIC interfacing function
provided in the Others palette. The name of the simulation function is set to Bounceball,
the function type to 4, the initial continuous-time state to [10;5], the real parameter
to 0.001, the number of zero-crossings to 1, and the block is declared time-dependent
(always active). The block is placed in the diagram in Figure 9.2. The simulation result is
shown in Figure 9.3.
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Figure 9.2. Scicos diagram for the bouncing ball example.
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Figure 9.3. Simulation result of the bouncing ball example.

Scilab Computational Functions

A computational function of type 5 is a Scilab function. Its calling sequence is

block=func_name(block,flag)

where block is a Scilab structure similar to the C structure used in the C computational
function of type 4. The fields of block are

scicos_block nevprt funpt type scsptr nz z nx x xd res

nin insz inptr nout outsz outptr nevout evout nrpar rpar

nipar ipar ng g ztyp jroot label work nmode mode

Note that block.z, in case of computational functions of type 5, can be any Scilab
object and not just a vector of reals. The user, however, should make sure that the size of
block.z does not change during the simulation. For example, it can be a Scilab list of
constant-size vectors, an integer matrix, or a character string, but not a Scilab polynomial
because the memory used by a Scilab polynomial depends on the number of nonzero
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coefficients and is very likely to change if the polynomial changes. block.nz gives the size
of the memory used by the Scilab object. So even for a simple vector, block.nz does not
give the size of the vector, but rather the size of the vector plus 2. The overhead is due
to the coding of the type and dimensions that Scilab places on top of each object. In the
case of computational functions of type 5, the size information is not really necessary. If
block.z is a vector, its size can always be obtained using Scilab’s size function:

nz=size(block.z)

The variable flag is a scalar and has exactly the same role as flag in the C case. The
following Scilab functions can be used to obtain additional information and perform other
operations:

• curblock(): returns the current block number in the structure %cpr.
• scicos time(): gives the current time.
• phase simulation(): returns the simulation phase.
• set blockerror(i): set the error flag if the computational function encounters an error.
• pointer xproperty: used for internally implicit blocks.

Example

The following is a simple type 5 computational function for a Scicos block realizing the
sine function:

function block=sin5(block,flag)

if flag==1 then
for j=1:block.insz(1)

block.outptr(1)(j)=sin(block.inptr(1)(j));

end
end

endfunction

The fields of the block structure are similar to their C counterpart. But note that
the numbering starts from 1 and not zero in referring to input/output numbers. That is
because in Scilab, unlike C, indices start counting from 1.

Other examples of a type 5 computational functions can be found in Appendix B.

Using the Computational Function

Once you have written your computational function, you have to compile it and incremen-
tally link it with Scilab. All this can be done within Scilab. Suppose the name of your C
routine is My prog and it is defined in the file Files.c in the current directory. Then the
following Scilab commands can be used to compile and link:

�−→ ilib_for_link(’My_prog’,’Files.o’,[],’c’);

�−→ exec loader.sce

These commands works under all operating systems (Linux, Unix, Windows, MacOSX)
provided an appropriate C compiler is available on the system.
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CBlock2

As we have seen in the previous section, if you are developing a new C computational
function, in order to use it in Scicos, you have to compile it and incrementally link it
with Scilab before launching Scicos. You also need an interfacing function (or you could
use the GENERIC block). The CBlock2 block provides an alternative to this. It allows you
to write your computational function on-line. The text is stored in the block structure
and the compilation and linking are done automatically. The block also provides a generic
interfacing function. The main advantage of using CBlock2 is that the C computational
function is included in the block and thus in the diagram structure. This means that the
Scicos diagram is self-contained and can be used on different operating systems. The only
drawback is that the diagram works only if there is an appropriate C compiler available
on the operating system being used. If the computational function is used directly without
CBlock2, then dll libraries can be provided along with the diagram and the block will
function even if no compiler is available. It also means that the source of the computational
function need not be made available. This could be of interest for commercial toolboxes.

9.5.3 Saving New Blocks

New blocks can be used in a Scicos diagram using the AddNewBlock menu by giving the
name of the corresponding interfacing function. However, it is a lot more convenient to
place new blocks in user palettes. A palette is simply a Scicos diagram from which the
user can copy blocks into the Scicos editor. To edit a palette, for example to add a new
block, the palette should be loaded as a diagram, edited, and saved.

9.6 Constructing and Loading a New Palette

A palette can be defined if the computational and interfacing functions associated to all
of its blocks are available. Suppose we want to construct a palette named foo and we have
placed inside the directory /home/basile/foo the C files containing the computational
functions foo blk1 through foo blk5 and Scilab interfacing functions associated to the
blocks to be placed in the palette. Each interfacing function is supposed to be in a file
with extension .sci bearing its name.

The C and Scilab files can be compiled and the corresponding libraries generated by
the appropriate commands (usually ilib for link for C functions and genlib for Scilab
functions). These commands can be placed in a file called builder.sce. The following is
the content of a builder.sce for compiling the C functions:

�−→ comp_fun_lst=[’foo_blk1’,’foo_blk2’,’foo_blk3’,’foo_blk4’,’foo_blk5’];

�−→ c_prog_lst=listfiles(’*.c’); //list of C programs in the directory

�−→ prog_lst=strsubst(c_prog_lst,’.c’,’.o’);

�−→ ilib_for_link(comp_fun,prog_lst,’c’); // compile and generate loader

�−→ genlib(’lib_foo’,pwd()); // compile macros and generate lib

Note that to execute this file, the current directory must be foo. The Scilab function
genlib can be used to construct lib associated to Scilab functions as usual. This can be
done by the builder.sce function as well.

This script needs to be executed only once. It generates the libraries but does not load
them. Loading of the interfacing functions can be done with the command load(’lib’)
and linking the computational functions done with exec(’loader.sce’).
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At this point, the palette foo can be edited and saved in foo.cos or foo.cosf. Blocks
are placed in the diagram using the Add New Block functionality.

The palette can also be constructed using the create palette Scilab function. For
that, all the files containing the interfacing functions associated with the blocks in the
palette should be placed in a directory. Each file must bear the name of the function with
the extension .sci, as usual. Then the function create palette, called with argument
the path to this directory, creates the Scicos diagram of the palette. For example, if the
directory /home/basile/foo contains the interfacing function files, the command

�−→ create_palette(’/home/basile/foo’);

creates a Scicos diagram (palette) foo.cosf and places it in /home/basile/foo.
To load the palette, we can now construct a loader.sce script as follows

�−→ load(’lib’) // loads the interfacing functions

�−→ scicos_pal($+1,1)=’foo’; //adding the palette to the list

�−→ scicos_pal($+1,2)=’/home/basile/foo/foo.cosf’;

It is good programming practice to provide with each palette the builder and the
loader scripts. These scripts may also be used for creating and loading manual pages for
the blocks.
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Examples

A typical Scicos model used in a real industrial application includes hundreds of blocks
and does not constitute a good example for illustrating Scicos functionalities. That is why
in this chapter we use small academic examples. Each example is chosen specifically to
put forward a different feature of modeling.

10.1 Predator Prey Model

In this section we consider a simple predator prey model of sardine and shark populations.
The dynamics of this model can be expressed as follows:

ẋ = ax − bxy + F (t)x, (10.1a)
ẏ = cxy − dy, (10.1b)

where x denotes the sardine population and y the shark population. The xy terms represent
the effect of shark predation of the sardines which is assumed proportional to the frequency
of encounters between the two species. These encounters, of course, have a positive effect
on the shark population and a negative effect on the sardine population. The a, b, c, and d
are positive constants. The F (t)x term represents the consequence of fishing with F (t) ≤ 0,
so that F (t) = 0 means no fishing. F (t) may be thought of as a varying harvesting rate.

The Scicos model corresponding to this system of equations is given in Figure 10.1. The
fishing effort is modeled by a Super block. With F set to zero, the simulation results are
given in Figure 10.2 and Figure 10.3. As we can see, the solution to these equations with
F = 0 (in fact with F any constant larger than −a) is periodic. With the parameters and
initial conditions chosen for this simulation, the two populations undergo large variations.

If there is no fishing, then there is a stationary value of this system, which is x = d/c,
y = a/b, obtained by setting the derivatives in (10.1) to zero. Suppose we wish to use
fishing regulation to get the sardine population to stay close to the stationary value d/c.
One type of regulation, which is practical to implement, is to adjust the fishing effort when
populations reach certain threshold levels. So we assume the regulation is done by setting
F (t) to 0 (no fishing) when the sardine population is low and F (t) = f < 0 when it is
high. This is the control law:

F (t) =
{

0 if x falls below xmin,
f if x goes above xmax.

We set xmin and xmax to 5 percent below and 5 percent above d/c. This control law is
implemented in the fishing effort Super block as illustrated in Figure 10.4. We could
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have used the HYSTERESIS block to implement this block, but we wanted to illustrate the
way Threshold blocks function.

1/s
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y
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MScopeMScope
effort
fishing
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Figure 10.1. The predator prey model with fishing.

The simulation is done for the parameters defined in the context as follows:

a=2;b=1;c=.3;d=-1;

perc=5/100;

xmin=-(1-perc)*d/c;xmax=-(1+perc)*d/c;

f=-.5;

The simulation results are given in Figure 10.5 and Figure 10.6. As we can see, after a
transient period, as desired the sardine population stays much closer to its stationary value
than in Figure 10.2.

10.2 Control Application

One of the most common uses of Scicos is in control applications. Here we give a simple
example in which a discrete-time controller is designed and used to control a continuous-
time system.

We start with the observer system constructed in Figure 7.13 of Chapter 7 and con-
struct an observer-based controller. This is done by adding a feedback control to obtain
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Figure 10.2. The simulation shows wide swings in the two populations for the given initial
conditions when the fishing effort (lower graph) is set to zero.
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Figure 10.3. The output of the 2D scope displays here the shark population as a function of the
sardine population showing clearly the periodicity of the solution.
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Figure 10.4. Scicos diagram inside the fishing effort Super block.
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Figure 10.5. The simulation shows the stabilization of the two populations. The lower graph is
the fishing effort F .

a generic observer-based controller as illustrated in Figure 10.7. The feedback gain Kc is
computed as follows:

Kc=-ppol(A,B,-ones(x0))

This statement is, of course, placed in the context of the diagram. In this case, in contrast
to what we did in Chapter 7, we can let the matrix A be unstable.
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Figure 10.6. The output of the 2D scope shows the solution moving close to the desired stationary
point.
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Figure 10.7. Generic Scicos diagram realizing an observer-based controller.

10.3 Signal Processing Application

In signal processing applications, very often down-sampling and segmentation are used.
These operations can easily be implemented in Scicos. We illustrate this through an exam-
ple of a simple monitoring scheme, where we track the frequency components of an input
signal. We do this by implementing a sliding window over which we apply the FFT (fast
Fourier transform) algorithm. The result of the FFT is animated on a graphics window.
Moreover, we compute and display on a scope the two dominant frequencies in the signal.
Such monitoring is often used in failure-detection applications.
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Figure 10.8. A signal processing application.

In the diagram of Figure 10.8, we have used a Scifunc block to implement the com-
putation of the FFT and the display of the result. The output of the Scifunc block is
computed using the following instructions:

nz=size(u1,1)/2

f=fft(u1,-1)

f=abs(f(1:nz))

xset(’window’,3)

xbasc()

plot2d(0:nz-1,f,1,"011"," ",[0,0,nz,240])

[j,I]=gsort(f)

I=I(1:rpar(2))

y1=rpar(1)*(I-1)/(2*nz)

Note that we only use half the spectrum. Since the input signal is real, the other half
is redundant. Note also that the display of the spectrum is done here using the Scilab
graphics function plot2d.

The Mathematical Expression block is used to generate a test signal as follows:

sin(2*%pi*20*u1*(1+cos(u1/20)))+cos(2*%pi*14*u1)*2

Here u1 is the block’s input, which is just the time. The output is then the sum of a fixed
amplitude and frequency cosine and a time-varying frequency sine. Random noise is added
to create a more realistic situation.

The Buffer is realized using a CBlock2 block, which allows an on-line definition of its
computational function in C. The buffer simply outputs the last n values of its input on
its output vector of size n. This is realized as follows:

#include <math.h>
#include <stdlib.h>
#include <scicos/scicos block.h>
void toto(scicos block *block,int flag)
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Figure 10.9. Simulation shows the evolution of the two dominant frequencies (top graph) and
the original signal (bottom graph).
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Figure 10.10. The animation of the frequency profile.

{
if (flag == 4) { /* initialization */

toto bloc init(block,flag);

} else if(flag == 1) { /* output computation*/
set block error(toto bloc outputs(block,flag));

} else if (flag == 5) { /* ending */
set block error(toto bloc ending(block,flag));

}
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}

int toto bloc init(scicos block *block,int flag)
{

return 0;
}
int toto bloc outputs(scicos block *block,int flag)
{

int n=block−>outsz[0];
int i;
for (i=0;i<n−1;i++){block−>outptr[0][n−i−1]=block−>outptr[0][n−i−2];}
block−>outptr[0][0]=block−>inptr[0][0];
return 0;

}
int toto bloc ending(scicos block *block,int flag)
{

return 0;
}

The FFT operation can, of course, be implemented in a C block to speed up the
simulation. However, in this example, the FFT is not computed at every step, so the
overhead of calling the Scilab interpreter is not significant.

The simulation results are illustrated in Figure 10.9 and Figure 10.10. The latter con-
tains a snapshot of the animation at time t = 20.

10.4 Queuing Systems

Queuing systems can conveniently be modeled in Scicos using the event mechanism. Let
us consider a simple queuing system with a Poisson arrival process and an exponential
service time. This would model a queue at the checkout counter of a store. Customers
arrive following a Poisson process law, and the time each customer spends at the counter
is assumed to have an exponential law.

To generate the arrival process, we use the model in Figure 10.11. The random number
generator outputs a uniformly distributed random number between 0 and 1. By taking the
logarithm and multiplying by −1/λ, we generate a random number with an exponential law
with parameter λ. By feeding the output of the Event Delay block to its input activation
port, we generate a sequence of events where the time between two events is an independent
random variable with exponential law. The result is a Poisson process with parameter λ.
The input activation to the Super block starts the process (no event firing is initially
programmed on the output of the event delay block).

Generating the departure process (process of serving a customer) is more complicated.
As long as the queue is not empty, the time between two events is an independent random
variable. But when the queue is empty, no departure event should be generated. The
process should be inactive. To implement this process, we have to allow the restart of the
process by an external event (the arrival of a customer in an empty queue). This is the
reason why the model of the departure events in Figure 10.12 has two input activations.
One is for initialization and the other is for restart. Note the use of the Mathematical
Expression block to allow for modeling more general waiting laws. But in this example
we have used -log(u1)/mu, which results in an exponential law with parameter μ.

The complete model is given in Figure 10.13, where the state of the queue is stored in
the 1/z block. Its value goes up or down by one, depending on the event. The simulation
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Figure 10.11. Super block generating arrival events based on Poisson’s law.
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Figure 10.12. Super block generating departure events from the queue.
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result is given in Figure 10.14, where we see the evolution of the queue, and in Figure 10.14,
where the events are displayed (dark lines correspond to arrival events). The parameters
are defined in the context as follows:

lam=.3;mu=.35;z0=6

where z0 is used as the initial state of the 1/z block.
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Figure 10.13. Scicos diagram realizing the queuing system.

10.5 Neuroscience Application

We consider here a model of the luteinizing hormone-releasing hormone pulse generator.
We are not going to discuss the significance of the model. The interested reader is referred
to [12]. We focus on the mathematical aspects. This model is chosen because it presents,
from the modeling point of view, some nice features.

The model is a continuous-time nonlinear dynamical system with state jumps. The
jumps are due to perturbations of variable magnitude occurring at random times. These
times are constrained by a minimum interevent period ta and are modeled as a displaced
exponential distribution. The magnitude and timing of the perturbations are modeled as
in Figure 10.16. The top random generator block generates uniformly distributed random
variables between 0 and exp(−taλ), so that the input to the event delay block is a displaced
exponential distribution.

The second random generator block generates a normal distribution with mean μ and
variance σ2. The magnitude of the perturbation is then the exponential of this value.
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Figure 10.14. Simulation result shows the evolution of the queue.
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Figure 10.15. Arrival and departure events.

Since the perturbation affects only the first state out of the three, two zero signals are
concatenated to the perturbation so that the result can directly be added to the state.

In the absence of perturbation, the dynamics of the system are given by the following
equations:

v̇ = s(−v(v − c)(v − 1) − k1g + k2a), (10.2)
ġ = b(v)(k3a + k4v − k5g), (10.3)
ż = p(v) − k6z, (10.4)

where
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Figure 10.16. Scicos diagram for perturbations.

b(v) = b1 − b2

1 + exp(−b3(v − b4))
(10.5)

and
p(v) =

p1

1 + exp(−p2(h(v) − p3))
(10.6)

with h(v) = v if v > 0 and h(v) = 0 otherwise. The s, a, ki, pi and, bi are known constants.
To allow for a jump in the state, the Jump linear system block is used. In the absence

of activation on its input activation port, this block realizes a standard continuous-time
linear system with u corresponding to the first input of the block. When the block is
activated by an external event, the state jumps to the value specified on the second input.
So the second input port must have the same dimension as the state. In this case the state
is set to x = (v, g, z) and the parameters are chosen so that the block realizes a simple
integrator. This is done by setting A = 0, B = I, C = I, and D = 0.

Expressions (10.2) to (10.4) are realized with three Mathematical Expression blocks.
See Figure 10.17. Note that the last expression is nonsmooth due to the if statement in
the definition of h. This expression is realized in the Mathematical Expression block as
follows:

(u1>0)*(p1/(1+exp(-p2*(u1-p3)))-k6*u3)+(1-(u1>0))*(p1/(1+exp(p2*p3))-k6*u3)

The zero-crossing mode must be set to on.
The simulation result is given in Figure 10.18.

10.6 A Fluid Model of TCP-Like Behavior

Our next example is a nonlinear time-delay system representing a fluid model for a
TCP/AQM network. Once again we do not address the significance of the model but
simply focus on the dynamics and the way it can be implemented in Scicos. We consider
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Figure 10.17. Scicos diagram realizing the luteinizing hormone-releasing hormone pulse gener-
ator.

this system to show how delay differential systems can be modeled. We use one of the
models studied in [29]:

Ẇ (t) =
1
R

− W (t)W (t − R)
2R

KQ(t − R), (10.7)

Q̇(t) =

{
N W (t)

R − C, Q > 0,

max(N W (t)
R − C, 0), Q = 0.

(10.8)

The Scicos diagram realizing this system is given in Figure 10.19. The continuous-time
fixed delay blocks are used to implement the delay. The content of the Mathematical
Expression block is

(u2==0)*max(N*u1/R-C,0)+(u2>0)*(N*u1/R-C)

The simulation result is displayed in the 2D scope, where W is plotted as a function
of Q. Note that the result is compatible with that obtained in [32].

10.7 Interactive GUI

In some applications, it is desirable to have the possibility of adjusting certain system pa-
rameters during the simulation without having to stop and restart the simulation process.
We consider here a simple example to illustrate how this can be done. The technique used
here can be used to construct sophisticated control panels for controlling simulations.
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Figure 10.18. Simulation result gives the evolution of the state (v, g, z).
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Figure 10.19. The delay differential model.

An on-screen representation of a control that may be manipulated by the user, is called
a widget as are parts of such a representation. Scroll bars, buttons, sliders, menu bars,
title bars, and text boxes are all examples of widgets. Programmatically, widgets are often
expressed as data structures.



10.7 Interactive GUI 223

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
0.00

0.16

0.32

0.48

0.64

0.80

0.96

1.12

1.28

1.44

1.60

+

Figure 10.20. Chaotic behavior of the delay differential system.

We consider here a source block where its output can be interactively set using a scale
widget by moving up and down a scrollbar. The first thing to consider is the type of widget
to use. In order to make sure the application remains machine-independent, a good choice
is to use the Tcl/Tk language. Tcl/Tk is included and interfaced in Scilab, so widget
construction and data exchange can be carried out with Scilab commands. This implies,
however, using Scicos blocks of type 5. This may not be a problem, since user interaction
is in general of low frequency, and thus the source block can be activated with a slow clock.
Otherwise, Tcl/Tk routines must be called directly from the C language, which requires
familiarity with the internal implementation of Tcl/Tk, to have optimal performance.

The source block we are considering must construct and display the widget at initial-
ization (flag 4) and then read the position of the scrollbar and return it when activated
with flag= 1. All this is done, of course, by the computational function, which here will
be of type 5, that is, written in Scilab.

The interfacing function is the following:

function [x,y,typ]=TKSCALE(job,arg1,arg2)

//Source block; output defined by tk widget scale

x=[];y=[];typ=[];

select job

case ’plot’ then
standard_draw(arg1)

case ’getinputs’ then
[x,y,typ]=standard_inputs(arg1)

case ’getoutputs’ then
[x,y,typ]=standard_outputs(arg1)

case ’getorigin’ then
[x,y]=standard_origin(arg1)

case ’set’ then
x=arg1;

graphics=arg1.graphics;exprs=graphics.exprs
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model=arg1.model;

[ok,a,b,f,exprs]=getvalue(’Set scale block parameters’,..

[’Min value’;’Max value’;’Normalization’],..

list(’vec’,1,’vec’,1,’vec’,1),exprs)

// tk widget returns a scalar, the value is divided by

// Normalization factor

if ok then
graphics.exprs=exprs

model.rpar=[a;b;f]

x.graphics=graphics;x.model=model

end
case ’define’ then
a=0;b=100;f=1;// default parameter values

model=scicos_model()

model.sim=list(’tkscaleblk’,5)

model.out=1

model.evtin=1

model.rpar=[a;b;f]

model.blocktype=’d’

model.dep_ut=[%f %f]

exprs=[sci2exp(a);sci2exp(b);sci2exp(f)]

gr_i=[’xstringb(orig(1),orig(2),’’TK Scale’’,sz(1),sz(2),’’fill’’)’]

x=standard_define([3 2],model,exprs,gr_i)

end
endfunction

Note that the block has three parameters: the first two are the minimum value and the
maximum value of the scale. The last is a normalization factor. The output of the block is
normalized by dividing the scale value by this factor. This allows, in particular, the display
of only integer scale values inside the widget.

The computational function is the following:

function block=tkscaleblk(block,flag)

blknb=string(curblock())

if flag==4 then
cur=%cpr.corinv(curblock())

if size(cur,’*’)==1 then // open widget only if the block

// is in main Scicos editor window

o=scs_m.objs(cur).graphics.orig;

sz=scs_m.objs(cur).graphics.sz

pos=point2pixel(1000,o)

pos(1)=pos(1)+width2pixel(1000,sz(1)) // widget position

geom=’wm geometry $w +’+string(pos(1))+’+’+ string(pos(2));

title=block.label

if title==[] then title="TK source", end
tit=’wm title $w Scale’+blknb // write block label

bounds=block.rpar(1:2)

bnds=’-from ’+string(bounds(1))+’ -to ’+string(bounds(2))

cmd=’-command ""f’+blknb+’ $w.frame.scale""’

lab=’-label ""’+title+’""’;

L=’-length 100’

I=’-tickinterval ’+string((bounds(2)-bounds(1))/4)

scale=strcat([’scale $w.frame.scale -orient vertical’,..
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lab,bnds,cmd,L,I],’ ’)

initial=mean(bounds) // initial value is the mean

txt=[’set w0.vscale’+blknb;

’set y’+blknb+’ 0’;

’catch destroy $w’;

’toplevel $w’;

tit

geom

’frame $w.frame -borderwidth 10’;

’pack $w.frame’;

scale

’frame $w.frame.right -borderwidth 15’;

’pack $w.frame.scale -side left -anchor ne’;

’$w.frame.scale set ’+string(initial);

’proc f’+blknb+’ w height global y’+blknb+’;set y’+blknb+’ $height’

];

TCL_EvalStr(txt) // call TCL interpretor to create widget

block.outptr(1)=mean(block.rpar(1:2))/block.rpar(3);

end
elseif flag==1 then // evaluate output during simulation

block.outptr(1)=evstr(TCL_GetVar(’y’+blknb))/block.rpar(3);

end
endfunction

The block number (returned by the function curblock) is used to customize Tcl variable
names to make sure that if two of these blocks are used in the same diagram, they create
different widgets. The position of the widget is computed so that it is placed next to the
corresponding block in the Scicos diagram (it can be moved subsequently by the user). The
complete Tcl text for the construction of the widget is sent to the Tcl interpreter using the
TCL EvalStr command. The Tcl procedure defined in the program sets the variable yN
(where N is the block number) to the value designated by the position of the scrollbar in
the scale. This variable is returned from the Tcl environment to Scilab using the command
TCL GetVar in the case of flag= 1. It is then normalized and returned as the output of the
block.

The source block TKSCALE can be used, for example, to adjust manually the parameters
of a PD controller. This is done in the diagram illustrated in Figure 10.21. The clock period
activating the square-wave generator is set to half that of the refresh period of the scope
so that the output of the generator, displayed as the first curve on the scope, remains
always the same, that is, −1 up to the middle of the screen and then 1. The output of the
plant is changed as the user moves up and down the scrollbars in the GUI boxes. See the
simulation result in Figure 10.22.

Various Tcl/Tk widgets can be used to display simulation results and even to construct
a scope using Tk Canvas. It is not difficult to imagine the construction of sophisticated
control panels, for example, the instrumentation panel of a car in Tcl/Tk to be used with
a simulation model of the car. This can be done even if the model is simulated in batch
mode.
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Figure 10.21. Screen capture of the diagram shows the widgets during simulation.
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Figure 10.22. Simulation result after adjusting PD parameters by hand using the widgets.
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Batch Processing in Scilab

Having Scicos live within Scilab is very useful because it allows the interaction of the two
in many different ways, thereby mutually enriching their functionalities. We have already
seen that Scicos relies heavily on the Scilab language. The Scicos editor is, for example,
fully written in Scilab, making it easy for the user to add new functionalities or customize
existing ones. We have also seen that the interfacing functions of all Scicos blocks are
Scilab functions using only standard Scilab commands. For example, to define a block’s
icon we use standard Scilab graphics commands. But perhaps the most important aspect
of having access to Scilab in Scicos is the ability to use Scilab commands from specialized
toolboxes, such as Signal Processing, Control and Optimization, in the construction of
Scicos blocks.

In this chapter we look at the ways Scicos simulations can be performed and used
in Scilab. We have already seen that Scilab can be used for postprocessing Scicos simu-
lation results, but here we look at ways of piloting Scicos functionalities through Scilab
commands.

In doing modeling and simulation work, very often one needs to perform multiple
simulations either for adjusting or optimizing model parameters, or for testing the model
on multiple data sets, or for performing simulation-based statistical analyses. Monte Carlo
techniques are one example. In such cases, Scicos simulations should be carried out in batch
mode. In the Scilab/Scicos environment, this can be done within the Scilab language,
which not only can handle repetitive calls to the Scicos simulator by changing the value
of a parameter or the name of a file each time, but can also perform complicated analyses
and make decisions on how to proceed with additional simulation runs.

11.1 Piloting Scicos via Scilab Commands

Having the Scicos editor written entirely in Scilab simplifies a great deal the piloting of
Scicos commands from Scilab. Note, however, that the Scicos library is not loaded by
default into the Scilab environment. So if you want to use any Scicos routines within
Scilab, you must first load them as follows:

�−→ load SCI/macros/scicos/lib
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if you are writing a Scilab function, you can place this instruction on top of it. Scicos
blocks’ interfacing functions associated with the blocks inside Scicos palettes are not loaded
automatically either. If they are needed, they can be loaded as follows:

�−→ exec (loadpallibs,-1)

You can now use Scicos commands associated with each editor button. The name of
the function is obtained from the text inside the button from which empty spaces, slashes,
dots and dashes have been removed and an underscore has been added to the end. For
example, the Scilab function associated with the button Save As is named SaveAs . It is
defined in the directory scilab/macros/scicos, like all other editor functions, and inside
the file SaveAs .sci.

Note, however, that using editor commands requires a good understanding of the data
structures and global variables used in the Scicos editor. Some of these functions re-
quire that these variables be defined properly. In order to see how the editor functions
should be called, we examine the scicos function. This function, which can be found in
scilab/macros/auto/scicos.sci, is the main Scicos editor program and contains the
main loop from which editor functions are called when the Scicos editor is active. Some
data structures used in this function are explained in Appendix A.

In many applications, however, it turns out that there is no need to access directly
every editor command. The reason is that often when doing batch processing, we are only
interested in being able to change system parameters and running the simulation with
these new parameters. The Scilab function scicos simulate provides a generic way of
performing batch simulation. This function is described in Section 11.1.2.

But first we describe scicosim, the basic Scilab function interfacing the Scicos simu-
lator. This function can be used only if the Scicos diagram is compiled.

11.1.1 Function scicosim

The Scilab function scicosim is an interface to the Scicos simulator. To use this function,
the Scicos diagram must be compiled because we need the compilation result %cpr. The
user, however, need not be familiar with the compilation stage (information on that can
be found in Appendix A).

scicosim is called in three different ways. First it is called to initialize the simulation.
This is done usually by the following Scilab command:

[state,t]=scicosim(state,0,tf,sim,’start’,tol)

The string start indicates that only the initialization must be performed. To run the
simulation and finish the simulation, the following corresponding calls are performed:

[state,t]=scicosim(state,t,tf,sim,’run’,tol)

and

[state,t]=scicosim(state,t,tf,sim,’finish’,tol)

The argument state initially contains the initial state of the system to be simulated
(see Section A.2.3 for details). It contains, in particular, initial values of all the continuous-
time and discrete-time states of all the blocks, the preprogrammed events, etc. state is
both an input and an output because it changes as the simulation goes on.
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The argument sim contains the scheduling tables needed by the simulator. These tables
are generated by the compiler and do not evolve during the simulation (see Section A.2.3
for details).

The argument tf is the time up to which the simulation must run (not used with
options start and finish). When scicosim is called with the run option, the simulation
is performed up to time tf unless a pause or an error is encountered earlier. The output
argument t gives the actual ending time of the simulation. In most cases we have t equal
to tf. The input argument t indicates the current time and is used only in the run case.
Its value is, in general, 0 because Scicos simulations by default start at time 0. But if a
simulation is to be continued by making other calls to scicosim with option run without
starting over, then the final time of the previous simulation (the output argument t of
previous call to scicosim) must be used.

The argument tol is a vector containing various simulation parameters. It includes

1. atol: absolute tolerance (see Section 3.2.1).
2. rtol: relative tolerance (see Section 3.2.1).
3. ttol: minimum spacing in time between two events for the continuous-time solver to

be called. If two events are spaced closer than deltat in time, the solver is not called
and the continuous-time variables are supposed to remain constant over that period.

4. deltat: maximum time interval length used for each call to the continuous-time solver.
If the next event is further in the future than deltat, the continuous-time solver is
called more than once.

5. scale: sets the correspondence between simulation time and real time. If set to 1, one
unit of Scicos simulation time corresponds to one second. The solver is slowed down
to achieve the desired correspondence. The default value 0 indicates that no slowing
down is to be performed and simulation runs at maximum speed.

6. hmax: maximum time step taken by the solver (see Section 3.2.1). The default value 0
indicates no maximum being set.

To use scicosim, the variables state and sim must be available. The initial value of
state and the value of sim are computed by the Scicos compiler from the Scicos diagram.
It is possible to call the compiler from Scilab to construct these variables, but the simpler
solution is to use the Scicos editor to construct them and save them to a file for future use
in Scilab. This can be done as follows:

1. Use the Scicos editor to construct a block diagram and compile it.
2. Save the compiled diagram in binary form (as a .cos file) using the Save or Save

As menu.
3. In Scilab, load the saved file (say myfile.cos) using the load function:

load myfile.cos

You obtain Scilab variables scicos ver, scs m, and %cpr. scicos ver contains the
version number of Scicos that has created the diagram, scs m contains the Scicos
diagram, and %cpr contains the result of the compilation. It is this latter that is of
interest to us for calling scicosim. In particular, %cpr is a Scilab structure containing
state, sim, cor, and corinv. Note that if the diagram is not compiled before being
saved, then %cpr is an empty structure.

4. Extract state out of %cpr:

state=%cpr.state;

5. Define tol and tf, for example,
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tf=1;

tol=[1.d-4,1.d-6,1.d-10,tf+1,0,0];

then call scicosim for initialization:

[state,t]=scicosim(state,0,tf,%cpr.sim,’start’,tol);

6. Then run the simulation from 0 to tf:

[state,t]=scicosim(state,t,tf,%cpr.sim,’run’,tol);

Successive such calls may be performed changing the final time tf before each call.
7. End the simulation:

[state,t]=scicosim(state,t,tf,%cpr.sim,’finish’,tol);

Running Scicos simulations in Scilab in batch mode is useful if the user wants to perform
multiple simulations by changing a parameter or an initial condition each time. All the
parameters of the blocks in the diagram are in %cpr.sim. The initial conditions are in
state. Note, however, that the change in the parameter should not require recompilation.
For example, if one is testing the performance of a controller by changing its parameters,
the order of the controller should not be modified, because this implies a change in the
size of a state, which in turn requires a partial recompilation since %cpr is no longer valid.

To change the parameter of a block, one must know the block number in the compiled
structure. This information can be obtained in the Scicos editor using the Get Info menu
in the “Compiled structure index” field. This number specifies the order in which blocks
are placed in %cpr fields. Note, however, that this number may change if the diagram is
edited and recompiled.

This number can also be obtained in Scilab if a “label” has been associated with the
block of interest. Labels are available in %cpr.sim.labels as a vector. So, for example, if
the label toto has been assigned to a block, the block number can be obtained using the
command

k=find(%cpr.sim.labels==’toto’)

k is then the block number and can be used to examine and modify block parameters.
Suppose the block labeled toto is a GAIN block. The parameters of the block that are the
entries of the gain matrix, like all real parameters of all the blocks, are in %cpr.sim.rpar.
The entries of the vector %cpr.sim.rpar that contain the parameter of block k can be
obtained from %cpr.sim.rpptr, which is a vector of pointers to %cpr.sim.rpar. In par-
ticular, let

idx=%cpr.sim.rpptr(k):%cpr.sim.rpptr(k+1)-1

Then idx contains the indices of %cpr.sim.rpar corresponding to the GAIN block:

gain_param=%cpr.sim.rpar(idx)

So if the objective is to run simulations for various gains, then before starting each simu-
lation, the parameter must be set as follows:

%cpr.sim.rpar(idx)=new_gain_param

To change integer parameters, the procedure is identical except that the two vectors
to use are %cpr.sim.ipar and %cpr.sim.ipptr. For initial continuous-time and discrete-
time states, the pointer vectors are respectively %cpr.sim.xptr and %cpr.sim.zptr, and
the values are found in %cpr.state.x and %cpr.state.z.



11.1 Piloting Scicos via Scilab Commands 231

Example of Batch Simulation
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Figure 11.1. Scicos diagram for batch simulation.

Consider the Scicos diagram illustrated in Figure 11.1. The sinusoid generator block
has been labeled toto, the transfer function in the linear system block is 1/(1+s+s2), and
the output file name is chosen to be o file. Suppose we want to simulate this diagram
for different values of the frequency parameter in the sinusoid generator block and
compare the results in Scilab by plotting them in the same plot. This can be done by
changing the second parameter of the sinusoid generator (the three parameters of this
block are respectively the amplitude, the frequency, and the phase) before each simulation.
Note that the file name is not changed from one simulation to the other, so at the end of
each simulation the file o file must be stored in a different location. The following Scilab
script does exactly that if batch1.cos has been saved after being compiled.

load batch1.cos

freq_list=[.1 1 2 4]; ← list of frequencies to consider
k=find(%cpr.sim.labels==’toto’); ← block number
idx=%cpr.sim.rpptr(k):%cpr.sim.rpptr(k+1)-1;

tf=100; ← simulation parameters
tol=[1.d-4,1.d-6,1.d-10,tf+1,0,0];

for i=1:size(freq_list,2) ← main loop over the list of frequencies
%cpr.sim.rpar(idx(2))=freq_list(i);

state=%cpr.state;

[state,t]=scicosim(state,0,tf,%cpr.sim,’start’,tol);

[state,t]=scicosim(state,t,tf,%cpr.sim,’run’,tol);

[state,t]=scicosim(state,t,tf,%cpr.sim,’finish’,tol);

// renaming o_file o_file1, o_file2,....

if MSDOS then
host(’move o_file o_file’+string(i));

else
host(’mv o_file o_file’+string(i));

end
end
// and plotting on a single graph
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xbasc()

for i=1:size(freq_list,2)

tx=read(’o_file’+string(i),-1,2); ← reading back the results of the simulation
plot2d(tx(:,1),tx(:,2),i) ← and plotting on a single graph

end

In this example, we can avoid using the host command by changing the file name
in the write to output file block. The file name is coded as an integer in the integer
parameter vector of the block. To do so, however, we must know exactly where the name
appears in the vector. This information can be obtained by examining the interfacing
function of the block. The integer coding of the name can be done using the Scilab function
str2code. The function retrieving the name from the code is code2str. Note, however,
that if we are to use this method to write into different files, all file names must have the
same length, unless %cpr.sim.ipptr is reconstructed. This is not recommended, especially
since there is a more convenient way of handling such modifications, as we shall see in the
next section.

Finally, note that in this example the diagram contained no graphics displays such as
a scope. This is often the case when one is doing batch processing. But sometimes it could
be interesting to follow simulation results visually for debugging purposes. If a graphics
display is used in the diagram, then make sure to switch to the old graphics style in Scilab
before calling scicosim, because for the moment, Scicos displays use the old graphics
routines. This can be done with the Scilab command

set(’old_style’,’on’)

11.1.2 Function scicos simulate

The scicos simulate function provides a convenient way of running Scicos simulations in
Scilab using the diagram’s data structure scs m. Unlike scicosim, scicos simulate does
not require %cpr. The function scicos simulate handles automatically all the necessary
compilations in a transparent way.

In this case, model changes must be done by changing formal parameters defined nor-
mally in the context; see Section 11.2.1 for information on formal parameters and the
use of context. Changing formal parameters not only is more convenient than directly
changing block parameters, it also allows for more general changes. For example, it is more
natural in the case of a linear system block, specified in terms of a transfer function, to
specify the new polynomials representing the transfer function’s numerator and denomina-
tor than it is to change directly the matrices of the state-space representation. Moreover,
by changing the transfer function, the order of the linear system and thus the size of its
system matrices can vary.

In this case the scicos simulate function performs automatically the necessary (par-
tial) recompilation.

The calling sequence of this function is as follows:

Info=scicos_simulate(scs_m,Info[,%scicos_context][,flag]);

The arguments %scicos context and flag are optional.

• scs m: scicos diagram, obtained for example by the instruction load mydiag.cos. Note
that the diagram mydiag need not be compiled because we do not make use of %cpr.
The Scicos version of mydiag.cos must be the current version. If not (i.e., if the diagram
has been saved by an old version of Scicos), you must use the Scicos editor to load and
save. The save will be done automatically in the current version.
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• %scicos context: a Scilab structure containing values of symbolic variables used in
the context and Scicos blocks. This is often used to change a parameter in the diagram
context. In that case, in the diagram context, the variable must be defined such that
it can be modified. Say a variable a is to be defined in the context having value 1, and
later in batch mode it is to be changed. In that case, in the context of the diagram one
can use the following command to define a:

if ~exists(’a’) then a=1,end

This way we define the default value of a to be 1 but we allow its modification. For
example, to run a simulation in batch mode using the value a= 2, it suffices to set a
to 2 in the %scicos.context variable. This can be done as follows:

%scicos_context.a=2

• Info: a list. It must be list() at the first call, then output Info can be used as input
Info for the next call. Info contains compilation and simulation information and is
used to avoid recompilation when not needed. Normally the user should not, and need
not, modify Info. There are, however, a few exceptional cases in which expert users
may be able to edit this variable. Info contains the following fields (when it is not
empty):
1. %tcur: starting time of simulation. It is always zero except if the simulation had

been halted before reaching the end time, for example by an event to the block
STOP. In this case the simulation is not terminated but only halted at time %tcur.

2. %cpr: compilation result as we have previously seen.
3. alreadyran: a boolean indicating whether the simulation is halted.
4. needstart: a boolean indicating whether the simulation is to be restarted from

zero. This applies only if the simulation is halted. If false, the halted simulation
proceeds without reinitialization.

5. needcompile: An integer indicating the level of compilation. It should always be
zero unless there are errors in the diagram leading to the failure of the compilation
process. But it can be used by the user to force a compilation. It should be set to 4.

6. %state0: Initial state.
• flag: a string. If it equals nw (no window), then blocks using graphics windows are not

activated. In most batch simulation tasks, graphical outputs are not useful and only
slow down the simulation. Note that the list of deactivated blocks must be updated as
new blocks are added. The current list is coded in the following vector:

[’cscope’,’cmscope’,’scope’,’mscope’,’scopexy’,’evscpe’,’affich’]

We shall see an example of the usage of scicos simulate in Section 11.3.

11.2 Data Sharing

When running a Scicos simulation in Scilab, exchanging data between Scilab and Sci-
cos becomes an important issue. In previous examples we have seen a few methods. In
particular, we have seen how to communicate information from Scilab to Scicos using
the %scicos context variable. We have also seen how Scicos simulation results can be re-
trieved in Scilab through writing into a file. We shall examine in more detail these methods
and propose new ones for exchanging data.
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11.2.1 Context Variables

The variable %scicos context is used to store all the variables defined in the context. As
we have seen in previous chapters, Scicos blocks’ parameters can be made to depend on
formal parameters. These formal parameters (which are just Scilab variable names) must
be defined in the context of the diagram before being used. All the formal variables defined
in a context are placed by the Scicos editor in the Scilab structure %scicos context. So,
for example, if the context contains the instruction

a=3

then the field a is added to %scicos context as if the instruction

%scicos_context.a=3

had been executed. After that, a can be used in block dialog boxes to set block parameters.
If a variable is not defined in the context, then it cannot be used, unless it is placed initially
in %scicos context. The way context works is to first extract all the variables from
%scicos context and then execute context commands and finally place all the variables
defined by these commands in %scicos context. Variables already in %scicos context
can thus be used and updated, if needed, by the context.

In most cases, when one is using the Scicos editor, %scicos context is initially empty,
and all formal parameters must be defined by the context commands. But a user can
initialize %scicos context before launching Scicos (editor) by placing certain parameters
in it. The user can then use these parameters without having to define them in the context.
The user just should make sure that the initialization is done every time Scicos is started.

But the real usage of %scicos context occurs when the Scicos simulator is to be
executed by a Scilab command. Being able to change formal parameters is an extremely
flexible way of changing system parameters. We shall see that in Section 11.3 through an
example.

11.2.2 Input/Output Files

Another way of exchanging data between Scilab and Scicos is through the usage of external
files. We have seen an example of that previously. Files are particularly useful if the data
to be exchanged is not just a value but a timed sequence of values. For example, an input
signal to a Scicos diagram performing signal processing, is best placed in a file. Similarly,
simulation results in the form of output signals can be placed in output files. These files
can then be read into Scilab for further processing.

A simple example of such exchange is the following. Consider the Scicos diagram in
Figure 11.2. In this diagram, the read block generates a piecewise constant signal by
reading the values and the timing of the signal from the file foo. The dialog box of this
block is illustrated in Figure 11.3.

The signal generated by the read block goes through a continuous-time linear system
the output of which, along with the input and the current time, are fed to a write block
that writes the data to the file goo at the frequency specified by the parameters of the
event clock. The “period” of this latter is set to dt defined in the context along with the
parameters of the linear system as follows:

if ~exists("num") then num=1,end

if ~exists("den") then den=1+%s,end

if ~exists("dt") then dt=0.1,end
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Figure 11.2. Using files for exchanging data between Scicos and Scilab.

Figure 11.3. Parameters of the read block.
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In order to run this diagram in batch mode from Scilab, we define a function which receives
the description of the input signal and the definition of the linear system, generates the file
foo, sets the parameters of the linear system in the Scicos diagram, runs the simulation,
reads the content of the file goo, and outputs it:

function [t,u,y]=syslinsim(Sys,tf,dt,ui,T,U)

// Define symbolic parameters

%scicos_context.num=Sys.num

%scicos_context.den=Sys.den

%scicos_context.dt=dt

// Add initial input and a fake end point

UT=[[0,T,tf+1];[ui,U,0]];

mopen("foo","wb")

mput(UT,"d")

mclose()

load("bg.cos")

scs_m.props.tf=tf

// run simulation in batch mode

scicos_simulate(scs_m,list(),%scicos_context)

// read back result in Scilab

mopen("goo","rb")

YT=mget(3*tf/dt+1000,"d")

mclose()

t=YT(3:3:$);u=YT(1:3:$);y=YT(2:3:$)

endfunction

The following script shows how the function syslinsim can be used:

// Example

Sys=(1-2*%s)/(1+%s+%s^2);

tf=20;dt=.01;

ui=0;

T=[ 2 4 7 9 ];

U=[ 2 -2 2 0 ];

[t,u,y]=syslinsim(Sys,tf,dt,ui,T,U);

// Display result

xset("window",1)

xbasc()

plot2d(t,u,2)

plot2d(t,y,5)

Figure generated by this script is given in Figure 11.4.

11.2.3 Global Variables

A very convenient way of exchanging data between Scilab and Scicos is through the use
of global variables, which were discussed in Section 2.2.3. However, this is possible only if
the computational function of the Scicos block doing the exchange is written in Scilab (for
example, it is a Scifunc block). In general, the use of such blocks is not recommended
because of efficiency concerns. However, if such a block is not executed very often and
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Figure 11.4. Simulation result displayed by Scilab.

executes fast enough, then its use is justifiable. In Section 11.3 we shall see an example
in which Scifunc is not activated at all by any event in the diagram; it is simply the
last call by the Scicos simulator (flag= 5), made to all blocks regardless of whether they
are activated, which is used to copy the final value of the input of the block into a Scilab
global variable. This global variable is subsequently read and used in Scilab.

11.3 Examples

Often the purpose of batch processing Scicos simulations is to optimize system parameters.
In the following examples, we shall consider the problem of optimizing the parameters of a
PI (proportional-integral) controller. These are toy examples presented to illustrate mod-
eling techniques and are not necessarily practical methods for PI controller construction.

Consider the Scicos diagram in Figure 11.5. There are two linear systems in this dia-
gram. The one on top has transfer function 1/(1 + s), and the other has transfer function
(a+ bs)/s. The latter is the PI controller, and a and b are the parameters to be optimized.
These parameters are initialized in the context of the diagram as follows:

if ~exists(’a’) then a=1;end

if ~exists(’b’) then b=1;end

The optimality criterion used here is the integral of the square of the difference between
the reference input (a step function in this case) and the output of the system over the
interval [0, 10]. The input step occurs at time t = 1. The square is computed using the
block u^ a and integrated. The scifunc block returns the final value of the integration
to Scilab. Note that the scifunc block has an input activation port but this port is not
connected. This means that this block is never activated except once at the beginning and
once at the end. But this is exactly what is needed here because we only need to read
the final value at the input of this block, and we want to activate this block as little as
possible to avoid loss of performance. To use the scifunc block to return the value of its
input to Scilab, the following instructions are placed in the “finishing” section:
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Figure 11.5. Scicos diagram for batch simulation.

global AA

AA=u1

This means that at the end of the simulation, u1, which is the value of the input, is copied
into the Scilab global variable AA. Then if in Scilab we declare a global variable with the
same name, we can get back the value of u1. Assuming that the diagram is saved in the file
batch11.cos (not necessarily compiled), the following Scilab script runs the simulation
for various values of the parameters a and b, stores the value of the difference between the
reference input and the output, and finally plots in 3D this difference as a function of the
parameters.

load batch11.cos

A=.04:.004:.06;B=-0.3:.05:-0.1; ← values of a and b

global AA ← declared global to read value in scifunc
Res=[];

Info=list();

for i=1:size(A,’*’)

%scicos_context.a=A(i); ← change a

for j=1:size(B,’*’)

%scicos_context.b=B(j); ← change b

Info=scicos_simulate(scs_m,Info,%scicos_context);

Res(i,j)=AA; ← store result
end

end
xbasc()

plot3d(A,B,Res) ← visualize the difference

The simulation can be made to run faster if the optional argument nw is used when
calling scicos simulate. It is also more efficient to set initially Res to a matrix of ap-
propriate size. As it is programmed here, Res often changes dimensions and thus Scilab
performs numerous useless memory allocations and copies. To avoid this, replace
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Res=[];

with, for example (the values of the entries of the matrix don’t matter, it is just the size
that counts here),

Res=A’*B;

The result of running this script is a 3D plot, which is given in Figure 11.6.
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Figure 11.6. PI controller performance as a function of its parameters.
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Figure 11.7. Scicos diagram for batch simulation.
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Consider now the Scicos diagram in Figure 11.7. The problem here is again that of
finding the optimal values of a and b, the PI controller parameters. But in this case we
will use an optimization algorithm. For input, we use a square wave, and the difference
between the input and output is no longer computed using an integrator but is evaluated
in Scilab using sampled values. Finally, the system to control, used to test the program,
is 1/(1 + s + s2).

Note that the main difference between the way the block scifunc is used in this
example and in the previous case is its activation. The block scifunc is used to exchange
data between Scicos and Scilab. In the previous example, scifunc was used to send a
Scicos result back to Scilab only once at the end of the simulation. Here, the two scifunc
blocks exchange data at every event time generated by the Event Clock. The parameters
of the Event Clock are set to 0 for the initial time and 0.01 for the period. Thus the
scifunc on the left side of Figure 11.7 generates a new value every 0.01 unit of time. This
is done by using the following instructions in the field dedicated to the computation of the
output:

global i

global ZZ

y1=ZZ(i)

i=i+1

Here the variable ZZ contains the profile of the input signal and i is a counter.
The scifunc on the right side of Figure 11.7 contains the following instructions in the

same field:

global AA

global i

AA(i)=u1

y1=u1

Note that we have defined an output for this block even though the output port is not
connected and thus the y1 is not used. The reason is that if the block does not have an
output, the scifunc does not propose to define a field for the computation of the output,
and worse, the Scicos simulator never calls the block, because even though the block is
activated, if it has no output to compute or state to update, Scicos considers calling the
block to be pointless. The underlying difficulty is that the block does have an output, one
that goes to Scilab through a global variable, but Scicos is not aware of it. Another way
to get around this problem would have been to define a fictitious discrete-time state. In
that case, the block would have been called for state update. This is, for example, how
the scope block works except that the state is not fictitious, but rather contains a data
buffer.

Setting the PI controller parameters to zero (a = b = 0), we obtain the simulation
result in Figure 11.8. The distance between the input and output in this case is around
21. The optimization is then performed using the following Scilab script:

function e=eval_cost(p,z)

global(’Info’,’AA’,’ZZ’,’i’)

i=1;ZZ=z;AA=zeros(ZZ);

%scicos_context.a=p(1)

%scicos_context.b=p(2)

Info=scicos_simulate(scs_m,Info,%scicos_context,’nw’)

e=norm(AA-ZZ) ← distance between input and output
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Figure 11.8. Simulation result without PI controller.

//disp(e) ← to monitor the progress of optimization
endfunction

load Untitled0.cos

global(’Info’,’AA’,’ZZ’,’i’)

Z=sign(sin([1:1002]/100))’; ← generate a square wave

p0=[0.;0.]; ← initial values of a and b

Info=list();

%scicos_context.a=p0(1);

%scicos_context.b=p0(2);

ZZ=Z;

i=1;AA=zeros(Z);

scicos_simulate(scs_m,Info,%scicos_context);

// datafit is an optimization function that

// uses optim but does not require the gradient

[p,err]=datafit(eval_cost,Z,p0,’ar’,30);

ZZ=Z;

i=1;AA=zeros(Z);

%scicos_context.a=p(1);

%scicos_context.b=p(2);

// final simulation to visualize the solution

scicos_simulate(scs_m,list(),%scicos_context);

The function datafit reduces the distance to below 9; the simulation result is depicted
in Figure 11.9. The optimal values of the parameters obtained by the program are a =
−0.94255, b = 0.02047. datafit is discussed in Chapter 4.

The scifunc block used to generate the desired input trajectory from within Scilab
can be used to construct complex parameter optimization scenarios. For example, suppose
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Figure 11.9. Simulation result with optimal PI controller.

the parameters a and b are to be adjusted not to just one input signal, but we want the
PI controller to have good tracking capabilities for a step input and a ramp input. This is
done in the following Scilab script:

function e=eval_cost(p,z)

global(’Info’,’AA’,’ZZ’,’i’)

i=1;ZZ=z;AA=zeros(ZZ);

%scicos_context.a=p(1)

%scicos_context.b=p(2)

scicos_simulate(scs_m,Info,%scicos_context,’nw’)

e=norm(AA-ZZ)

// disp(e)

endfunction

load Untitled0.cos

global(’Info’,’AA’,’ZZ’,’i’)

Z=[ones(1002,1),[1:1002]’/500];

p0=[0.;0.];

Info=list();

%scicos_context.a=p0(1);

%scicos_context.b=p0(2);

for ZZ=Z

i=1;AA=zeros(ZZ);

scicos_simulate(scs_m,Info,%scicos_context);

end
[p,err]=datafit(eval_cost,Z,p0,’ar’,30);

Info=list();
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for ZZ=Z

i=1;AA=zeros(ZZ);

%scicos_context.a=p(1);

%scicos_context.b=p(2);

scicos_simulate(scs_m,Info,%scicos_context);

end

Note that the optimized cost in this case is the sum of the two distances obtained for
a step and a ramp input. It is, of course, fairly straightforward to weigh the distances
differently. The simulation results without PI controller (parameters a and b set to zero)
are given in Figure 11.10 and Figure 11.11. The simulation results using the optimal PI
controller are given in Figure 11.12 and Figure 11.13.
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Figure 11.10. Simulation result for step input without PI controller.

11.4 Steady-State Solution and Linearization

Scicos is primarily used to construct nonlinear models for simulation purposes. For analysis
and controller or filter synthesis, it is often necessary to have a linearized version of the
model, or more specifically, of the part of the model that represents the system being
analyzed. Scicos provides some facilities for performing linearization of such systems.

The method presented in this section concerns only continuous-time components of
the system described by a Scicos model or submodel (Super block). These components
represent a finite-state, in general nonlinear, dynamical system that can be expressed as
follows:

ẋ = f(x, u, t), (11.1)
y = g(x, u, t). (11.2)
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Figure 11.11. Simulation result for the ramp input without PI controller. The two curves are
almost identical.
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Figure 11.12. Simulation result for step input with optimal PI controller.

Here x is the continuous-time state vector; u and y are the input and output vectors. For
simplicity, we assume here after that f and g do not depend explicitly on time and drop
t from their list of arguments.

An equilibrium point of system (11.1) is any pair (x0, u0) satisfying

f(x0, u0) = 0.

The state x0 is the steady-state solution associated with the constant input u0. This type
of equilibrium is also sometimes called a setpoint. Clearly if the system is at an equilibrium
point and u is the corresponding constant u0, then the state remains at x0 indefinitely.
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Figure 11.13. Simulation result for ramp input with optimal PI controller. The two curves
coincide almost perfectly.

In most control problems, the objective of the controller is to keep the system near
an equilibrium point. Under mild regularity assumptions on the functions f and g, the
behavior of the system near the equilibrium point can be approximated with a linear
model.

Let
δx = x − x0, δu = u − u0,

be the deviation from the equilibrium. Then the following linear model approximates the
continuous-time behavior of the nonlinear system:

˙δx = Aδx + Bδu,

δy = Cδx + Dδu,

where matrices A, B, C, and D are given by

A =
∂f

∂x
(x0, u0), B =

∂f

∂u
(x0, u0),

C =
∂g

∂x
(x0, u0), D =

∂g

∂u
(x0, u0).

To illustrate how linearization can be done and used in Scicos, we consider an example.
In particular, we consider the classical problem of the control of an inverted pendulum on
a cart. The system consists of a cart of mass M traveling on a ramp and subject to a force
u(t) with an inverted pendulum hinged on its side. For simplicity, all friction and the mass
of the cart wheels are neglected. Moreover, it is assumed that the mass of the pendulum
is concentrated at the tip and has value m. It is also assumed that the slope of the ramp,
φ, is known. The setup is illustrated in Figure 11.14.

The dynamics of this mechanical system can be obtained easily from the Euler Lagrange
equation, and is given below:
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Figure 11.14. Inverted pendulum on a cart.

(M + m)z̈ + mlθ̈ cos(θ − φ) − mlθ̇2 sin(θ − φ) = u(t) − (M + m)g sin(φ), (11.3)
ml2θ̈ + mlz̈ cos(θ − φ) − mgl sin(θ) = 0. (11.4)
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Figure 11.15. Scicos diagram for inverted pendulum on a cart problem.

To start, we need to construct a Scicos diagram to model these dynamics. We can do
this in many different ways, both using existing blocks and constructing new blocks. To
use existing blocks, we can reduce considerably the complexity of the diagram by using
the Mathematical Expression block. The model can be reduced to a single block if a
new block is used. This can be done with both C and Scilab blocks. Here we have chosen
to use a new C block but leaving out the integrators; see Figure 11.15. The Cblock2 is
used to evaluate z̈ and θ̈ as functions of θ, θ̇, and u. The expressions for z̈ and θ̈ are readily
obtained from (11.3) and (11.4), and are coded in the block as follows:
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#include <math.h>
#include <scicos/scicos block.h>
void inv pend(scicos block *block,int flag)
{
double M,m,l,g,ph,th,thd,zdd,thdd,u,delta;
M=block−>rpar[0];
m=block−>rpar[1];
l=block−>rpar[2];
ph=block−>rpar[3];
g=9.81;
th=block−>inptr[0][0];
thd=block−>inptr[1][0];
u=block−>inptr[2][0];

delta=M*m*l*l+m*m*l*l*pow(sin(th−ph),2);
zdd=(m*l*l*(m*l*thd*thd*sin(th−ph)+u−

(M+m)*g*sin(ph))−m*m*l*l*g*sin(th)*cos(th−ph))/delta;
thdd=(−m*l*cos(th−ph)*(m*l*thd*thd*sin(th−ph)+u−

(M+m)*g*sin(ph))+(M+m)*m*g*l*sin(th))/delta;
block−>outptr[0][0]=zdd;
block−>outptr[1][0]=thdd;
}

Note that the block’s parameter vector rpar contains M , m, l, and φ, which can be
given numerical values or defined symbolically, for example as [M m l ph], in the dialog
box of the block. In this latter case, Scilab variables M, m, l, and ph must have been
previously defined in the context of the diagram.

The model non lin can be used to construct a linearized model of the nonlinear system
and subsequently a controller. It can also be used in the construction of a complete Scicos
diagram for testing the controller.

11.4.1 Scilab Function steadycos

Computing an equilibrium point can be done using the Scilab function steadycos. The
calling sequence is the following:

[X,U,Y,XP]=steadycos(scs_m,X,U,Y,Indx,Indu,Indy [,Indxp [,param ] ])

where

• scs m: a Scicos diagram data structure.
• X: column vector. Continuous state. On input, it can be set to [] if zero.
• U: column vector. Input. On input, it can be set to [] if zero.
• Y: column vector. Output. On input, it can be set to [] if zero.
• Indx: indices of entries of X that are not fixed. If all can vary, must be set to 1:$.
• Indu: indices of entries of U that are not fixed. If all can vary, set to 1:$.
• Indy: indices of entries of Y that are not fixed. If all can vary, set to 1:$.
• Indxp: indices of entries of XP (derivative of x) that need not be zero. If all can vary,

it must be set to 1:$. The default value is [].
• param: list with two elements (default list(1.d-6,0))

– param(1): scalar. Perturbation level for linearization.
– param(2): scalar. Time t.
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The equilibrium point is, in general, not unique, and parts of the vectors x0 and u0

can be set a priori to desired values. Vector indices are used to specify parts of the state
and the input that are free to be adjusted by the program. Even by specifying properly
these indices, the equilibrium point may not be unique and the input arguments X and U
can be used to direct the search toward a desired solution since they are used as initial
guess values for the search algorithm.

Often the problem of finding an equilibrium point is that of finding a steady-state
solution for a given input, in which case Indu is set to [] and Indx to 1:$. But in the
example we are considering in this section, the equilibrium point we are looking for has
an unknown u0 and a known x0. The desired objective is to keep the cart at the center
with the pendulum pointing upward. The force u0 is what is needed to prevent the cart
from moving; that is, it compensates for the force of gravity. It is not difficult to see that

u0 = (M + m)g sin(φ), (11.5)

but we let the program find this by itself. This is done using the following commands:

�−→ load non_lin.cos

�−→ [X,U,Y,XP]=steadycos(scs_m,[],[],[],[],1,1:$)

XP =

1.0E-16 *

! 0.3830958 !

! 0. !

! - 0.3811819 !

! 0. !

Y =

! 0. !

! 0. !

U =

12.731756

X =

! 0. !

! 0. !

! 0. !

! 0. !

Here it is assumed that the Scicos diagram non lin has been saved in the current directory.
Loading non lin.cos provides the variable scs m, which contains all the informa-

tion regarding the diagram. This variable is then used as the argument to the function
steadycos.

11.4.2 Scilab Function lincos

Computing the linearized system around an equilibrium point can be done using the Scilab
function lincos. The calling sequence is the following:

sys= lincos(scs_m [,x0,u0 [,param] ])

where

• scs m: a Scicos diagram data structure.
• x0: column vector. Continuous-time state around which linearization is to be done

(default value is 0).
• u0: column vector. Input around which linearization is to be done (default is 0).
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• param: list with two elements (default is list(1.d-6,0)).
– param(1): scalar. Perturbation level for linearization.
– param(2): scalar. Time t.

• sys: linear state-space system.

The linear system obtained from the linearization is coded in a “linear system” Scilab
object. This is a tlist including the A, B, C, D matrices. Applied to our example, we
obtain

�−→ sys= lincos(scs_m,X,U)

sys =

sys(1) (state-space system:)

!lss A B C D X0 dt !

sys(2) = A matrix =

! 0. 0. - 2.993E-08 - 2.9195682 !

! 1. 0. 0. 0. !

! 0. 0. 2.978E-08 12.714983 !

! 0. 0. 1. 0. !

sys(3) = B matrix =

! 0.0997019 !

! 0. !

! - 0.0992038 !

! 0. !

sys(4) = C matrix =

! 0. 1. 0. 0. !

! 0. 0. 0. 1. !

sys(5) = D matrix =

! 0. !

! 0. !

sys(6) = X0 (initial state) =

! 0. !

! 0. !

! 0. !

! 0. !

sys(7) = Time domain =

c

The linear system can now be used to construct a controller. Many methods are coded
and available in Scilab for designing controllers including pole placement, LQG, H∞, and
LMI. Here we use a simple pole placement method:

Kc=-ppol(sys.A,sys.B,[-1,-1,-1,-1]);

Kf=-ppol(sys.A’,sys.C’,[-2,-2,-2,-2]);Kf=Kf’;

Contr=obscont(sys,Kc,Kf);

The “linear system” Contr contains the system matrices of the controller.
To test and validate the controller’s use in the original nonlinear model, a Scicos sim-

ulation must be performed. This is done using the Scicos diagram in Figure 11.16. The
Super block non lin contains the diagram in Figure 11.15. An animation block is used to
show in real time the movement of the cart and the pendulum. This block is developed
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Figure 11.16. Complete Scicos diagram for testing the controller and validating the result by
animation.

with a type-5 computational function. The interfacing and the computational functions
are given in Section B.2.

Note that the control value (input to the Super block) is obtained by adding U, which
is the value of u corresponding to the equilibrium point, denoted by u0 earlier, and the
output of the controller that generates δu.

To simplify the procedure for using this diagram, all the controller design steps are
included in the context of the diagram as follows:

M=10;m=3;l=3;ph=0.1;

scs_m=scs_m.objs(27).model.rpar;

[X,U,Y,XP]=steadycos(scs_m,[],[],[],[],1,1:$);

sys= lincos(scs_m,X,U);

Kc=-ppol(sys.A,sys.B,[-1,-1,-1,-1]);

Kf=-ppol(sys.A’,sys.C’,[-2,-2,-2,-2]);Kf=Kf’;

Contr=obscont(sys,Kc,Kf);

clear(’scs_m’,’X’,’Y’,’XP’,’Kc’,’Kp’,’sys’)

z0=-4;th0=.02;

Here we see that the scs m corresponding to non lin is extracted directly from the
scs m of the diagram, which is always available within the Scicos environment. For this,
the object number of the Super block in scs m must be known. In this case, it is the 27th.
This information can be obtained using the Get Info button in the Object menu.

The context defines Scilab variables M, m, l, ph, z0, th0, U, and Contr, which are
used as formal parameters of various blocks in the diagram. But there are intermediary
variables such as Kc, Kf, which are not needed outside the context and are removed with
the clear statement to avoid the needless storage of their values in the %scicos context.
The removal of scs m is particularly important. If it is not removed, then it would clash
with the main diagram’s scs m.
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Figure 11.17. Dialog box of the controller block.

To see how the Scilab variables defined in the context are used, consider for example
the dialog box of the linear system block representing the controller illustrated in Fig-
ure 11.17. The variable U is used in the constant block feeding the summation block. The
real parameters of the CBlock2 block are set to [M m l ph], and z0 and th0 are used as
initial conditions for integration blocks in the non lin diagram.

The simulation results confirm the correctness of the design procedure as shown in
Figure 11.18. The system state and control converge to the desired steady-state values.
The correctness of the model itself can be verified by examining the animation.
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Figure 11.18. Simulation results. The displayed functions correspond to u, z, and θ.
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Code Generation

Scicos provides a code-generation facility that can be used to create C code for a model
defined in Scicos. Code generation has many applications. It can be used to improve
simulation performance. Even though Scicos diagrams are compiled in the sense that all
the scheduling tables are precomputed, there is still some overhead in using the Scicos
simulator that is eliminated by running the code that has been generated. Even if the
performance gain is not significant, replacing a Super block with a basic block may be of
interest if the designer of the model does not want to reveal the content of the Super block.
If the Super block is converted to a basic block, the designer can then simply distribute
a compiled version of the generated code. But the most important application of code
generation is the creation of standalone applications (programs that run independently of
Scilab), which can be used, in particular, in real-time applications.

This chapter discusses how the code-generation facility can be used and what the
limitations are. Some examples are provided.

12.1 Code Generation Procedure

The Code Generation item in the Object menu can be used to generate C code for
the submodel defined within a Super block. In addition, once invoked, Code Generation
compiles and links incrementally the generated code with Scilab and replaces the Super
block with a basic block having for computational function the generated code. Except
in some special situations that we shall discuss later, the replacement of the Super block
with this new block should not alter simulation results in any way. Code Generation also
creates a main C program implementing a standalone application.

Consider the Scicos diagram in Figure 12.1. In this model, a random number is gener-
ated by the random generator block at every clock event. The block parameter is set so
that the random number can be both positive and negative. If the number is positive, the
If-then-else block activates the memory block 1/z, which is updated by adding its pre-
vious value to the (positive) value of the random number. Finally, the result is displayed
in the scope alongside the values of the random signal.

The simulation result shows, as expected, that the output of the memory block increases
only when the random number is positive. The output remains constant otherwise. See
Figure 12.2.

Suppose now that we want to isolate the part of the diagram that receives a number
and, depending on its sign, adds it to a counter, in order to perform code generation for
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Figure 12.1. Original Scicos diagram.
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Figure 12.2. Simulation result for the Scicos diagram in Figure 12.1. Output is the top graph.
The random numbers generated are shown in the bottom graph.

that part of the diagram. The first step is to place this part in a Super block. This can be
done using the Region to Super Block facility. See Figure 12.3.

To generate C code for this Super block, it suffices to select the Code Generation item
in the Object menu and then click on the Super block. A dialog box is then opened so that
the user can specify the name of the new block and the directory in which the generated
code should be placed. Once the answers are validated, the following lines are displayed
in Scilab, indicating that the code has been successfully generated, compiled, and linked:

building shared library (be patient)

shared archive loaded
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generator
random
generator
random

MScopeMScope

Figure 12.3. Scicos diagram in Figure 12.1 after isolating the part for which code generation is
to be done.

Link done

Link done

Subsequently, the Super block is converted into a block; see Figure 12.4. Simulation can
be performed to verify that this operation has not altered system behavior.

generator
random
generator
random

MScopeMScope

ExampleExample

Figure 12.4. Scicos diagram after code generation.

This code generation operation creates a number of files in the specified directory.
Since we have named our new block Example, all of the generated file names start with
Example. The main file is Example.c, which is the computational function of the new
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block (this file is already compiled and linked with Scilab), and Example Cblocks.c,
Example standalone.c, and Example act sens events.c, which are used for standalone
application. The file Example Cblocks.c contains the main routines which are also found
in Example.c. The file Example standalone.c is the main standalone program.

The file Example act sens events.c contains the routines corresponding to the in-
put/output ports. In an embedded application, they would be the routines handling com-
munications with sensors and actuators. That is why the routines are named Example sensor
for the inputs and Example actuator for the outputs. The file also contains the routine
Example events, which is used to specify how the program should be executed by setting
the event dates and ensuring real-time pacing if needed. This file is generated the first time
code generation is performed, for a given example, and contains default routines, which
consist of sensors and actuators that read from and write to the shell, and event dates
regularly spaced in time with no real-time pacing. Since this file is very likely to be edited
by the user in subsequent code generations for the same example, the user has the option
of not regenerating it.

To create the standalone version, the following shell command should be used inside
the directory where the files have been created: under Unix, Linux, and MacOSX

make -f Example_Makefile standalone

under Windows (inside an MSDOS shell)

nmake /f Example_Makefile standalone

Note that under Windows, Scilab.dll and Atlas.dll must be added to the library
path of the system, or copied into the current directory. These files are available in the
scilab/bin directory.

The compilation may generate some warnings concerning unused variables. This is
normal. If everything goes well, this command creates the executable file standalone
(standalone.exe under Windows). Running the program, for example, under Unix, Linux,
and MacOSX, by typing

./standalone

the user is asked to enter an input value (followed by carriage return). In response, the
program computes and displays the corresponding output value. Then the user is asked
again to enter an input value, and so on. The following is what is displayed on the terminal.
Note that the user has entered 23, 2 and 3; the rest is displayed by the program.

Require outputs of sensor number 1

time is: 0.100000

size of the sensor output is: 1

Please set the sensor output values

23

Actuator: time=0.100000, u(0) of actuator 1 is 0.000000

Require outputs of sensor number 1

time is: 0.200000

size of the sensor output is: 1

Please set the sensor output values

2

Actuator: time=0.200000, u(0) of actuator 1 is 23.000000

Require outputs of sensor number 1

time is: 0.300000

size of the sensor output is: 1

Please set the sensor output values
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3

Actuator: time=0.300000, u(0) of actuator 1 is 25.000000

Of course this sequence continues until the final time tf is reached. Note that sensor
output is the input to the program (block) and input (u) of the actuator is the output of
the program.

These actuator sensor routines are, of course, useful only for debugging purposes. They
should be adapted to the application at hand.

The standalone program can also be called with optional arguments:

standalone [-h] [-v] [-i arg] [-o arg] [-d arg] [-s arg] [-e arg] [-t arg]

where

• -h: prints a short help page,
• -v: prints the Scilab version used to create the program,
• -i: to define input file name; by default, terminal is used,
• -o: to define output file name; by default, terminal is used,
• -d: sets discrete-time clock period; default is 0.1,
• -s: to chose the fixed-step integration method among first-order Euler (1), Heun (2),

and fourth order Runge Kutta (3),
• -e: sets discretization time period used by ode solver in case of continuous-time states,

default is 0.001,
• -t: defines final simulation time, default is 30.

The options s and e concern only diagrams containing continuous-time states.

12.2 Limitations

We have seen that C code can be generated to realize the behavior of a Super block in
Scicos simply by designating the Super block after selecting the Code Generation menu
item. There are, however, limitations on the Scicos models that can be inside the Super
block. This section presents these limitations.

12.2.1 Continuous-Time Activation

In most applications, even if the Scicos model contains continuous-time blocks, the part
of the model for which code generation is to be performed contains only discrete-time
components. Typically, this part represents a controller or a filter that is to be implemented
in a real-time application on digital hardware. Scicos simulations in such cases are used
to evaluate the controller/filter performance when applied to a continuous-time model of
the environment. It is for this reason that in Scilab version 3.0, Scicos proposed code
generation only for discrete-time systems.

In Scilab version 3.1, the code generator has been extended and allows code genera-
tion even if the Super block contains continuously activated blocks including blocks with
continuous-time states. There are, however, some limitations, in particular concerning zero-
crossing events. The standalone code in this case contains fixed-step solvers paticularly
appropriate for real-time applications.

This recent extension of the CodeGeneration function should be considered to be at
the beta testing stage.
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12.2.2 Synchronicism

We have seen that code generation is done by first converting the Super block for which
code generation is done into a basic block. This is done, in particular, for testing the
generated code. But we have also seen that a basic Scicos block cannot be self activated.
Its activation must come from the outside. This sets some limitations on the class of Super
blocks that can be handled by Code Generation. Consider the Super block model depicted
in Figure 12.5.

1111 1/z1/z S/HS/H

Delay
Event
Delay
Event

11

Figure 12.5. Asynchronous Super block diagram.

In this example, the 1/z and the S/H blocks are not synchronous. The reason is that
S/H is activated by the output of the Event Delay block and the events corresponding
to this output are not synchronous with the input events of this block that activate the
1/z block. In fact, no Scicos basic block can produce output events synchronous with its
input events, the only exceptions being the If-then-else and event select block,s which,
strictly speaking, are not blocks. So a hard constraint on the blocks within the Super block
is that none should have an output activation port unless it is an If-then-else or an
event select block.

12.3 A Look Inside

Code generation is done by the Scilab function CodeGeneration , which can be found in
the directory scilab/macros/scicos. This function takes a Scicos model (model inside
the designated Super block) and converts it into a regular block by generating the cor-
responding computational function in the C language. It also generates a standalone C
program. The code generation is done in five steps: diagram construction, compilation,
code generation, block construction, and substitution.

Diagram Construction

The subdiagram within the designated Super block is extracted and used to construct a
new Scicos diagram. This requires modifying the subdiagram because of the presence of
input/output ports that are not Scicos blocks. These ports, used inside Super blocks, are
eliminated at a precompilation stage when the original diagram is compiled.
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The replacement of regular input ports is fairly straightforward because each input
port is simply replaced with a regular block representing a sensor block and each output
port is replaced with an actuator block. In a standalone application, it is up to the user to
define the computational functions of these blocks. The Scicos code generator, by default,
generates computational functions that read from and write to the terminal where the
standalone application is launched. This facility is useful for debugging purposes.

den(z)
num(z)
den(z)
num(z)

den(z)
num(z)
den(z)
num(z)

11

11

11

Figure 12.6. Diagram inside the Super block designated for code generation.

The activation of the sensor blocks must be done through the addition of activation
links. Let us, consider the simple case illustrated in Figure 12.6. We see the diagram inside
the Super block designated for code generation. To be able to use the Scicos compiler,
this diagram is transformed into the one illustrated in Figure 12.7. This transformation is
transparent to the user, who never sees this diagram.

We see that the sensor block replacing the input port has received an explicit acti-
vation from the block replacing the activation input port. The actuator block operates
on inheritance and does not require explicit activation (placing an explicit activation link
would not affect its behavior in this case).

If the Super block contains more than one input port, then each port is turned into
a sensor block. And each sensor block is explicitly activated. But if the block contains
more than one activation input port, the situation becomes more complicated because the
events received through these ports may or may not be synchronous. For example, if the
Super block contains two activation input ports, three events must be considered: event
received on port 1, event received on port 2, synchronous events received on ports 1 and
2. That is why, in this example, the two activation input ports are replaced with a single
block having 3 output activation ports. The activations are then used in such a way as to
preserve the functionality of the Super block.

Compilation

The modified diagram corresponds to a valid Scicos diagram and it is compiled with the
standard compiler. The result of the compilation contains all the scheduling tables needed
to generate the simulation C code.
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Figure 12.7. Diagram inside the Super block after transformation.

Code Generation

Two programs are generated: one to define a new block to substitute for the Super block
in the Scicos diagram and one to be used for standalone applications. In the first case, the
sensor and actuator blocks’ computational functions are replaced with dummy programs.
The inputs and outputs to the block are written directly on their outputs and inputs
during simulation by the new computational function. For the standalone applications,
default computational functions are generated in a separate file, which can be customized
by the user.

Block Construction

The C code representing the computational function of the new block is generated at the
“Code generation” stage. Here the Scilab interfacing function is generated.

Substitution

The new block replaces at this stage the Super block in the Scicos diagram. The compi-
lation and linking of the associated computational function is done automatically so that
after the substitution, the new Scicos diagram can be simulated.

12.4 Some Pitfalls

In most cases, code generation does not alter the behavior of the system. The Super block
and the block replacing it have identical behavior. There is, however, one situation in
which the two behaviors may differ. This difference is due to the way inheritance works in
Scicos. Consider the Scicos diagram illustrated in Figure 12.8.

In this diagram, we use the 1/z block, available in the Linear palette, with the inher-
itance option. The behavior of this block is exactly the same as the usual 1/z except that
since it does not have an activation input port, it inherits its activation. Even though it is
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generator
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 then    else

If in>0

 then    else

If in>0

1/z1/z S/HS/H

generator
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generator
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Figure 12.8. Scicos diagram posing problems for the code generator.

not recommended in Scicos to use blocks with discrete states that inherit their activations,
there is nothing in the formalism that forbids it, and in some cases, it could be a useful
facility.

Suppose now that we want to generate code for the part of the diagram including
this new block, the Summation and the S/H (sample and hold) block. This is done by
encapsulating the region of interest in a Super block using the Region-to-Superblock
facility. The result is given in Figure 12.9.

MScopeMScope
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square wave
generator
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 then    else

If in>0

 then    else

If in>0

generator
sinusoid
generator
sinusoid

Figure 12.9. Diagram after encapsulation by Super block.
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By examining Figure 12.8, we see that the 1/z and Summation, which form a discrete
integrator, are activated by the output of the If-then-else block, that is, by a subsampled
version of the activations generated by the Event Clock. In fact, the activation takes
place only if sin(t) is positive. On the other hand, the S/H block is activated directly by
the Event Clock. Since this block simply performs a copy of the input on the output,
its more frequent activation does not change the result of the simulation in any way. The
encapsulation process does not alter, of course, the simulation result either, and for both
Diagrams 12.8 and 12.9, the simulation result is given in Figure 12.10.
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Figure 12.10. Simulation result before code generation (the output of the MScope display).

After code generation, we obtain the diagram in Figure 12.11, which results in the
simulation given in Figure 12.12. Clearly the simulation results are different from those in
Figure 12.10.

To explain the discrepancy, note that after the encapsulation step (Figure 12.9), the
Super block contains both blocks activated through inheritance and blocks activated di-
rectly through the activation signal received on its activation input port. But when the
Super block is converted into a basic block by code generation, the new block cannot
exhibit both behaviors. It can work either by inheritance or by explicit activation, but
not both. In this case, since the Super block has an explicit activation port, it has no
choice but to consider this port as the source of activation for all blocks inheriting their
activations with the Super block. In a sense, the Super block is considered a functional
encapsulation by the code generator and not just a graphical commodity.

Another situation in which such a problem occurs is when a block inherits from the
new generated block. Consider the Scicos diagram in Figure 12.13. In this diagram, the
scope inherits its activation from the S/H block, which means that it displays the sample
values of sin(t) only if this latter is positive, as can be seen from the simulation result
illustrated in Figure 12.14.

If the subsampling part of the diagram is converted into a block using code generation
as illustrated in Figure 12.15, the simulation result changes because now the scope inherits
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Figure 12.11. Diagram after the code generation step.
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Figure 12.12. Simulation result after code generation.The output of the Untitled block diverges.

from the new block and thus it is activated every time. The simulation result is illustrated
in Figure 12.16.

12.5 Applications

Hardware in the loop and real-time embedded control are the main applications of code
generation in Scicos. Hardware in the loop applications can be developed by constructing
specific Scicos blocks for interfacing control and measurement devices. Under Linux, for
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 then    else

If in>0

 then    else

If in>0

generator
sinusoid
generator
sinusoid S/HS/H

Figure 12.13. Original diagram; the scope inherits from the S/H block.
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Figure 12.14. Simulation result shows that scope is active only if the value to be displayed is
positive.

generator
sinusoid
generator
sinusoid

SampleSample

Figure 12.15. Diagram after code generation; the scope inherits from the Sample block.
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Figure 12.16. Simulation result is different from the original simulation, as expected.

example, this has been done using the COMEDI tool (http://www.comedi.org). The
Scicos COMEDI toolbox can be downloaded from the contribution section of the Scilab
home page.

Direct real-time code generation for Linux RTAI is available through the RTAI-Lab
project; see http://a.die.supsi.ch/~bucher/rtai.html. An adapted version of the Scicos
code generator is used in this project. RTAI-Lab relies on Scicos for the control system
code design and generation, with only the addition of some specific blocks and building
options. The generated code is then embedded in an RTAI framework to be executed in
soft/hard real time and monitored by a generic graphical user interface.

For hard real-time embedded applications in multiprocessor environments, an interface
between Scicos and SynDEx (http://www.syndex.org) is being developed. SynDEx is
system-level CAD software for rapid prototyping and optimizing the implementation of
distributed real-time embedded applications in multiprocessor architectures. Information
about this project can be obtained from http://www.criltechnology.com/eclipse.
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Debugging

When a large Scicos diagram does not yield the expected simulation results, it can be
fairly complicated to identify the problem. To help the user, debugging tools are provided
in Scicos. We shall present these tools later in this chapter, but we will first explain Scicos
error messages.

13.1 Error Messages

When something goes wrong during the simulation, the simulation stops and an error mes-
sage is displayed. Problems encountered by the simulator can be of a number of different
types.

13.1.1 Block Errors

An error could occur within a block, or more specifically the computational function of
the block. These errors must be signaled by the block itself using the set block error
function, which should be called with a negative value depending on the type of error
encountered. The following error flag values can be used:

• −1: This means that a block has been called with input out of its domain. In general,
this means that one of the input arguments of the computational function does not
have the expected value. The block can print out, in a Scilab menu, more details using
the scifunc function.

• −2: This error is signaled if the block encounters a singularity, that is, an operation
such as division by zero.

• −16: This error corresponds to the case that a block wants to allocate memory (for
which it has to use the scicos malloc function) but it cannot.

Another block-related error, not detected by the block itself but by the simulator, happens
when the block tries to program an event on an output activation port but the event
previously programmed on the same activation port has not been fired. This happens, for
example, if an event delay block is activated with an event clock and the period of the
clock is smaller than the delay period in the delay block.

Finally, it could happen that Scicos simply cannot find the block’s computational
function. This could happen with a user block if the computational function is not linked in
Scilab before simulation or its name does not match the name in the model data structure
of the block (set by the interfacing function). The message in this case is unknown block.
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13.1.2 Errors During Numerical Integration

Scicos uses LSODAR in the explicit case to simulate the continuous-time dynamics of
the model. When an error is signaled by lsodat, Scicos displays the error message
integration problem and specifies the value of the error flag istate returned by LSODAR.
The following values of istate are relevant in Scicos.

• −1: This means that too many calls have been made by the solver over the integration
period. This often happens when the system is very stiff or nonsmooth and/or the
integration period is too long. The integration period is the period between two event,s
which often correspond to the activations generated by an event clock to drive a scope
or read-from/write-to file blocks. In that case, to reduce the integration period it suffices
to reduce the period of the event clock. It is also possible to set a maximum for the
integration period in the Setup menu.

• −2: This means that excess accuracy has been requested (tolerances are too small).
The tolerances can be set by the Setup menu.

• −5: This means that repeated convergence failures have occurred, probably due to the
requested tolerances being too small.

In the implicit case, the solver DASKR can return additional error messages:

• −7: The nonlinear system solver in the time integration could not converge.
• −8: The matrix of partial derivatives appears to be singular.
• −9: The nonlinear system solver in the integration failed to achieve convergence, and

there were repeated error test failures in this step.
• −12: Failure to compute the initial state (x, ẋ).

−1−1

 then    else

If in>0

 then    else

If in>0

11
SelectorSelector

1/s
MScopeMScope

Figure 13.1. A simple system exhibiting sliding mode behavior.

Another error condition related to continuous-time dynamics, which is not always de-
tected by Scicos, is the presence of a sliding mode. When a model exhibits sliding mode
behavior, the modes of one or more blocks cannot be set properly and the simulation may
cease to advance. Consider, for example, the system ẋ = −1 if x ≥ 0 and ẋ = 1 if x < 0
modeled in Diagram 13.1. For this system the dynamics on either side of the zero-crossing
surface move toward the surface. If a zero-crossing is used in the If-then-else block, then
simulation halts as soon as the state of the integrator reaches zero. If zero-crossing (and
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thus mode) is not used, the simulation may proceed in some cases, but in most cases the
numerical solver returns an error. For well-chosen simulation parameters, simulation can
proceed and the result is given in Figure 13.2. This is a reasonable result from a practical
point of view, but such sliding mode conditions usually imply a modeling error and should
be avoided.

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0
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Figure 13.2. Simulation result without zero-crossing in the If-then-else block. The simulation
gets stuck at t = 3 if zero-crossing is used. Top graph is the state. Bottom graph is ẋ.

13.1.3 Other Errors

Initial Conditions not Converging

At the start of the simulation, after all the blocks have been called with flag 4, Scicos calls
all the blocks with flag 6 until the states and output values reach a stationary point. This
is done by performing a fixed-point iteration, and the error is declared if this iteration
does not converge. Few blocks need to use specifically flag 6.

Cannot Allocate Memory

The Scicos simulator needs to perform dynamic memory allocation when it is called. This
error is encountered when the operating system cannot furnish the requested memory.
This error is extremely unlikely on modern computers even for very large diagrams.

13.2 Debugging Tools

Information can be displayed during Scicos simulation on the Scilab window. How much
information is displayed depends on the debugging level. At level 1, only event number at
activation times and calls to the ODE or DAE solver are displayed. At level 2, in addition
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to the information displayed at level 1, the block number and activation time of every
activated block is displayed.

The debugging level can be set to i by the Scilab command

scicos_debug(i)

It can also be set by a Scicos menu. If i is zero, the debugging is turned off.
In most cases, the display of information is not enough to efficiently debug Scicos

diagrams. That is why Scicos provides a powerful debugging facility through the Debug
block (in the Others palette). This block should be placed in the diagram being debugged.

The Debug block has a Scilab computational function of type 99. This type of block
is not activated itself but it impersonates all the other blocks in the diagram, once before
and once after their activations, provided the debug level is set to 2. The debug level is
automatically set to 2 when the dialog box of the Debug block is opened and validated.

In the dialog box of the Debug block, it is possible to place Scilab instructions to be
executed when the computational function of the Debug block is called. This means once
before and once after each block activation. The default instruction in the dialog box of the
Debug block is pause. This corresponds to a simulation in single-step mode. Under pause,
all the block parameters can be inspected and even modified. To stop the debugging, it
suffices to set the debugging level back to zero as follows:

-1-> scicos_debug(0)

Having the possibility to use any Scilab instructions provides a powerful debugging
environment. For example, the pause statement can be made conditional:

if flag==1&scicos_time()>3&curblock()==2&block.inptr(1)>0 then

pause

end

This way, the user can choose exactly where and when the pause should occur. But many
other Scilab instructions can be used, as we shall see in the examples later. In these
instructions, we have access to the environment available to any Scilab computational
function of type 5. We have seen in the above example the use of functions scicos time
and curblock. The other functions available to type 5 blocks presented on page 206 can
also be used, in addition to the function scicos debug count, which returns the number
of times the block Debug has been called.

In addition to these functions, which provide information about the block, the Scilab
function getscicosvars can be used to obtain information about the global state of the
model, in particular x, z, and outtb. The continuous-time state x is obtained by the
command getscicosvars(‘‘x’’), etc.

Other information that can be obtained from getscicosvars is xptr, zptr, rpar,
rpptr, ipar, ipptr, inpptr, outptr, inplnk, outlnk, and lnkptr. These variables are
part of %cpr.sim and do not evolve as a function of time. They are essential in deter-
mining which parts of x, z, and outtb correspond to which block. For more details, see
Appendix A.

13.3 Examples

The Debug block can be used in various ways to supervise, analyze, and debug a Scicos
diagram. Here we present two elementary examples to illustrate the possibilities. Typical
applications are, of course, in general a lot more complex.
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13.3.1 Log File

The Debug block can be used to create a log file including information concerning every
single call to every block. The information recorded in the log file can be more or less
detailed. Here we record the time, the block number, the values of inputs, and the computed
values of the outputs. We do not consider the states or the way they are updated. It is for
this reason that we consider only the case of flag equal to 1 in simulation phase 1. The
following statements are placed inside the Debug block:

if flag==1&phase_simulation()==1 then

unit=mopen(’scicoslog.dat’,’a’)

if scicos_debug_count()==1 then mfprintf(unit,’SIMULATION DATE ’+date()+’\n’),end

if scicos_debug_count()-int(scicos_debug_count()/2)*2>0 then

mfprintf(unit,’Block number: %3d at time %5.3f \n’,curblock(),scicos_time())

for i=1:size(block.inptr)

IN=strcat(string(block.inptr(i)’),’;’)

mfprintf(unit,’ Input number ’+string(i)+’ is [’+IN+’]\n’)

end

else

for i=1:size(block.outptr)

OUT=strcat(string(block.outptr(i)’),’;’)

mfprintf(unit,’ Output number ’+string(i)+’ is [’+OUT+’]\n’)

end

end

mclose(unit)

end

Note that the information concerning the inputs is written before the block is called,
and the information concerning the outputs is written after the block is called. This is
done by testing whether or not scicos debug count is odd. Since the Debug block is
called twice for each block execution (once before and once after), if scicos debug count
is odd, then it corresponds to a call before block activation.

The information, at each call, is appended to the end of the file scicoslog.dat. This
file typically contains

SIMULATION DATE 11-Jan-2005

Block number: 1 at time 0.000

Input number 1 is [-0.0761649]

Output number 1 is [-2;1;2]

Block number: 3 at time 0.000

Input number 1 is [0]

Input number 2 is [-5.1904856;-2.9075105;4.7414013]

Output number 1 is [0;0;0]

Block number: 8 at time 0.000

Output number 1 is [0]

Block number: 2 at time 0.000

Input number 1 is [-2;1;2]

Output number 1 is [3;8]

and so on.

13.3.2 Animation

Here we use the Debug block to animate the block executions on the Scicos editor. This is
done by highlighting a block when it is activated.
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xset(’window’,1000) // Main Scicos editor window

k=%cpr.corinv(curblock())

if scicos_debug_count()-int(scicos_debug_count()/2)*2>0 then

hilite_obj(scs_m.objs(k(1)))

else

xpause(50000)

unhilite_obj(scs_m.objs(k(1)))

end

Note that k gives the path to the block to be highlighted, but if the block is inside a
Super block, only the first value of k is used. This means that only the Super block on the
main window containing the block is highlighted.

The xpause command is used to make sure that the period of time when the block
remains highlighted is sufficiently long so that it can be seen on screen.
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Implicit Scicos and Modelica

14.1 Introduction

Standard Scicos is not well suited for physical component-level modeling. For example,
when modeling an electrical circuit, it is not possible to construct a Scicos diagram with
a one-to-one correspondence between the electrical components (resistor, diode, capaci-
tor,. . . ) and the blocks in the Scicos diagram. In fact, the Scicos diagram does not look
anything like the original electrical circuit.

In this chapter we will discuss extensions to Scicos that make physical component-level
modeling possible. But first we will take a simple circuit and model it in standard Scicos for
comparison purposes. Consider the electrical circuit depicted in Figure 14.1. This circuit
contains a voltage source, a resistor, and a capacitor.

~

220

0.01

0.01

Figure 14.1. A simple electrical circuit.

To model and simulate this diagram in Scicos, we can use Kirchoff’s law, which states
that the voltage drops (or increases) around a circuit loop must add up to zero. This gives
us

Vs + Ri +
1
C

∫
i dt = 0, (14.1)

where Vs is the voltage across the voltage source and i the current through the circuit. If
we are interested in the voltage V across the capacitor, we can compute it as follows:

V = − 1
C

∫
i dt. (14.2)
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We can now implement these two equations in Scicos by using an integrator block
receiving i as an input. The resulting Scicos diagram is depicted in Figure 14.2. Note that
this Scicos diagram does not look anything like the original electrical circuit in Figure 14.1.

1/s

1/R/C1/R/C

−1/C−1/C

1/R1/R −

−

−

−
generator
sinusoid
generator
sinusoid

Figure 14.2. Scicos diagram realizing the dynamics of the electrical circuit in Figure 14.1.

Recently an extension of Scicos has been developed to allow modeling of physical com-
ponents directly within the standard Scicos diagrams. This has been done, in particular,
by lifting the causality constraint on Scicos blocks and by introducing the possibility of
describing block behaviors in the Modelica language. This extension allows us to model nat-
urally not only systems containing electrical components but also mechanical, hydraulic,
thermal, and other systems. For example, the electrical circuit in Figure 14.1 can be
modeled and simulated by constructing the Scicos diagram in Figure 14.3. The electrical
components come from the Electrical palette.

R=0.01R=0.01

+ −

C= 0.01

+ −

C= 0.01

~
220
~

220

Figure 14.3. Scicos diagram using Modelica component.
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The user should be aware that this extension is still being developed and should not
be considered a stable product. In this chapter we provide some information on how to
use this facility, but we do not provide detailed documentation because things may change
in the future. We also assume that the reader is familiar with Modelica; if not, consult
www.modelica.org for documentation.

14.2 Internally Implicit Blocks

The first step in extending Scicos to accept implicit blocks has been the introduction of
internally implicit blocks. These blocks are identical to standard Scicos blocks except for
the fact that the internal continuous-time dynamics are allowed to be implicit. This means
that (9.6) for internally implicit blocks changes to

e(t) = f0(t, x(t), ẋ(t), z(t), u(t), nevprt, μ(t)), (14.3)

where e(t) is the residual, which in theory equals zero, and the solver tries to keep it close
to zero during numerical integration.

Internally implicit blocks have explicit input-output ports and are used in Scicos exactly
the same way as standard blocks are. This means, in particular, that the editor and, except
for some minor modifications, the compiler were not affected by the introduction of these
blocks. But the simulator had to be extended because a diagram containing even a single
internally implicit block results in a system of differential algebraic equations (DAE) that
cannot be solved with an ODE solver. It is for this reason that the DAE solver DASKR
had been interfaced with the Scicos simulator. DAEs were discussed earlier, in Chapter 3
where the solver dassl was presented. DASKR is a relatively new member of the family;
it is DASPK with root-finding added [14].

Solving DAE systems poses specific problems [11], in particular, that of finding con-
sistent initial conditions. In the case of a DAE, and in particular an internally implicit
block, the state is not just x but the pair (x, ẋ), and not all pairs (x, ẋ) are consistent with
the system equations. Finding consistent initial conditions can be a complex problem in
some cases. This is particularly difficult in the multimode case, which is often encountered
in the Scicos environment. To help the DAE solver find consistent initial conditions, an
internally implicit block must be able to furnish information about the nature of each
state variable. It should specify in particular which state variables are algebraic and which
ones are differential [15]. This is done by the computational function of the block when it
is called with flag 7.

We do not give detailed information here on how to construct internally implicit blocks.
It suffices to say that the computational function is of type 10005, that (x, ẋ) must be
placed in the continuous-time state slot in the model, that the computational function
must return the residual e(t) when it is called with flag 0 and should provide additional
information when called with flag 7.

The reason we do not insist on the details is that one rarely needs to construct such
an internally implicit block. These blocks are generated automatically when the diagram
contains implicit blocks, as will be discussed in the next section.

14.3 Implicit Blocks

Implicit blocks, contrary to internally implicit blocks, have implicit ports. An implicit port
is different from an input or an output port in that connecting two such ports imposes a
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constraint on the values at these ports but does not imply the transfer of information in
an a priori known direction, as is the case when we connect an output port to an input
port. For example, the implicit block Capacitor used in the diagram of Figure 14.3 has
current and voltage values on its ports but there is no way a priori, without analyzing the
full diagram, to designate the ports as input or output.

Implicit blocks and the construction of diagrams based on these blocks is fully in the
spirit of the object-oriented Modelica language [22]. The description of block behavior in
Scicos is done in Modelica.1

14.3.1 Scicos Editor

Implicit and regular Scicos blocks can be used in the same diagram. The way implicit
blocks are handled by the Scicos editor is similar to the way regular blocks are handled.
Blocks can be copied from palettes or inserted using the Add New Block functionality.
Two elementary palettes are provided by Scicos. Super blocks can be used to structure
diagrams with implicit blocks. Note that Super block implicit ports are available in the
Sources and Sinks palettes for that. A Super block can have both explicit and implicit
ports.

Links are constructed as in the regular case. It is, of course, not possible to connect an
implicit port to an explicit port (it would be meaningless anyway). The connection to the
explicit world can come only from the implicit blocks having one or more explicit ports
such as the voltage sensor in Diagram 14.3.

14.3.2 Scicos Compiler

The compilation with implicit blocks is again transparent to the user; however, the compiler
performs a first stage compilation by grouping all the implicit blocks into a single internally
implicit block. This is done by generating a Modelica program for the implicit part of the
diagram and generating the computational function of the new internally implicit block.
The C program is compiled (this requires a C compiler) and linked with Scilab, and the
new internally implicit block replaces the implicit part of the diagram. The last stages are
similar to the way code generation works, as we have seen in Chapter 12, except that the
user does not see the implicit blocks being replaced.

After this first compilation stage, the compilation proceeds as with standard Scicos
diagrams, and subsequently, so does the simulation.

14.3.3 Block Construction

As in the case of standard blocks, we need to provide two functions for each new block: an
interfacing function, in Scilab, and a computational function, in Modelica. The interfacing
function is similar to that of a regular block. The only difference is an additional field in
the model structure and two additional fields in the graphics structure of the block.

model.equations is in fact present in all blocks. But in regular blocks, it is set to an
empty list and not used. In the VoltageSensor block, for example, model.equations is
defined as follows:

mo=modelica()

mo.model=’VoltageSensor’

1 For the moment only a subset of the language is implemented.
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mo.inputs=’p’;

mo.outputs=[’n’;’v’]

model.equations=mo

Implicit blocks can be classified either as inputs or outputs. Here the Modelica variable
in the Modelica class VoltageSensor p is defined as input and n and v as outputs. But
in fact, p and n correspond to implicit ports. The output v is explicit. It measures the
voltage across the block, i.e., between p and n.

The implicit/explicit nature of the input-output ports is characterized in two new fields
in the graphics structure. In the case of VoltageSensor, we have

graphics.in_implicit=[’I’]

graphics.out_implicit=[’I’;’E’]

The interfacing function of this block, as with the rest of the blocks in the Electrical
palette, can be found in the directory scilab/macros/scicos blocks/Electrical. This
directory contains also the Modelica sources of the blocks.

The Modelica program defining the behavior of the VoltageSensor block can be found
in the file VoltageSensor.mo:

class VoltageSensor

Pin p;

Pin n;

Real v;

equation

p.i = 0;

n.i = 0;

v = p.v - n.v;

end VoltageSensor;

For a Modelica class to be usable in the definition of an implicit block in Scicos,
the corresponding .mo file must be precompiled using the Modelica compiler modelicac,
available in the directory scilab/bin/modelicac. The result is a file with extension .moc.
For example, if the class is named foo and is defined in the file foo.mo, the command

modelicac -c foo.mo

produces a file named foo.moc. To use foo in Scicos, the Scilab variable modelica libs
must include the path to the directory where foo.moc can be found. Initially, the paths
to the directories Electrical and Hydraulics are placed in modelica libs. Paths to
user-defined *.moc files must be added by the user to modelica libs before launching
Scicos.

14.4 Example

Here we consider the construction and the use of a new implicit block in Scicos. This block
is an ideal operational amplifier (infinite gain) to be used with the electrical components
already available in the Electrical palette. The Modelica model of this operational am-
plifier is very simple and is taken from the Modelica library Electrical.Analog.Ideal,
with small modifications to make it compatible with modelicac:

class IdealOpAmp3Pin

Pin in_p "Positive pin of the input port";

Pin in_n "Negative pin of the input port";
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Pin out "Output pin";

equation

in_p.v = in_n.v;

in_p.i = 0;

in_n.i = 0;

end IdealOpAmp3Pin;

The Modelica program indicates that there are no currents flowing through the pins
in p and in n, and that their voltages are equal. The pin out, on the other hand, can
have any voltage and produce any current.

The interfacing function is defined as follows:

function [x,y,typ]=IdealOpAmp3Pin(job,arg1,arg2)

x=[];y=[];typ=[]

select job

case ’plot’ then
standard_draw(arg1)

case ’getinputs’ then
[x,y,typ]=standard_inputs(arg1)

case ’getoutputs’ then
[x,y,typ]=standard_outputs(arg1)

case ’getorigin’ then
[x,y]=standard_origin(arg1)

case ’set’ then
x=arg1;

case ’define’ then
model=scicos_model()

model.in=[1;1];model.out=1;

model.sim=’IdealOpAmp3Pin’

model.blocktype=’c’

model.dep_ut=[%t %f]

mo=modelica()

mo.model=’IdealOpAmp3Pin’

mo.inputs=[’in_p’;’in_n’];

mo.outputs=[’out’]

model.equations=mo

exprs=[string([1])]

gr_i=[’txt=[’’OpAmp’’];’;

’xstringb(orig(1),orig(2),txt,sz(1),sz(2),’’fill’’)’]

x=standard_define([2 2],model,exprs,gr_i)

x.graphics.in_implicit=[’I’;’I’]

x.graphics.out_implicit=[’I’]

end
endfunction

Note that this block has no parameter (thus no dialog box) and all of its ports are
implicit.

To use this block, we first construct the file IdealOpAmp3Pin.moc using the shell com-
mand

modelicac -c IdealOpAmp3Pin.mo

and in Scilab, we add the directory where this file resides to the Scilab variable modelica libs.
Note that the shell command can be executed from within Scilab using the host command:
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host(SCI+’/bin/modelicac -c IdealOpAmp3Pin.mo’)

Finally we load the interfacing function in Scilab:

getf(’IdealOpAmp3Pin.sci’)

The block IdealOpAmp3Pin is now available in Scicos and can be placed in a block or a
palette using the AddNewBlock facility. This is done for the Scicos diagram in Figure 14.4.
We have used the block IdealOpAmp3Pin to implement a voltage amplifier. The simulation
result is given in Figure 14.5.

Voltmeter

Voltage Source

VV

~
0.1
~

0.1

Input/Output voltages

MScopeMScope

R=2R=2

OpAmpOpAmp

R=0.2R=0.2

R=2R=2
VV

+ −

C= 0.1

+ −

C= 0.1
Voltmeter

Figure 14.4. Scicos diagram containing the new operational amplifier block.
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A

Inside Scicos

In this chapter, we will give an overview of how the Scicos compiler and editor are im-
plemented. This information is useful for advanced users who want to customize Scicos or
develop exotic functionalities. It is also useful for developers of interfaces to other software.
But it can also be of interest to the average user, in particular, for efficiently using the
debugging facilities.

Our objective here is not to give a detailed description of the underlying code but rather
to give enough information so that the code (which of course is available in the source
version of Scilab) becomes comprehensible. This requires explaining the data structures
used and giving the structure of the main programs.

The data structures used in Scicos are all Scilab variables. Thus they can be exam-
ined and altered using standard Scilab functions. There are in particular two variables
associated with a Scicos diagram that are of great importance:

• scs m contains all the information concerning the Scicos diagram. It is constructed by
the editor.

• %cpr contains the result of the compilation; it is used by the simulator.

We start with a brief presentation of the editor and the way scs m is constructed. We
then look at the compilation phase, where scs m is used to obtain %cpr. %cpr is used by
the simulator to perform simulation.

A.1 Scicos Editor

The Scicos editor is written entirely in the Scilab language, including the graphical user
interface, which uses standard Scilab graphics. This facilitates customization of the editor
by the user. This section provides the necessary information.

A.1.1 Main Editor Function

The main Scilab function implementing the Scicos editor is scicos, which can be found
in file SCI/macros/auto/scicos.sci. This function takes as input argument a Scicos
diagram (scs m) and opens it. Invoked without any argument, it opens an empty diagram.
This function is called recursively when a Super block is opened.

The Scicos editor can be parameterized by initializing the following variables:
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• scicos pal: list of palettes. An n×2 matrix of strings, where the first column contains
the names of the palettes and the second the file (.cos or .cosf) in which the palette
is defined. In fact, a palette is nothing but a Scicos diagram.

• %scicos menu: Scicos menus. A Scilab list including vectors of strings, where the first
element of each vector contains the name of the menu, and the rest, the corresponding
items of the menu. Each item corresponds to an operation (such as move, copy, save)
and has a corresponding Scilab function.

• %scicos short: keyboard shortcuts. An n×2 matrix of strings, where the first column
contains the character to be used for the shortcut (only lower-case characters can be
used) and the second, the name of an operation, which must be an item in one of the
menus.

• %scicos help: manual pages associated with operations. A Scilab tlist where for
each operation, a vector of strings contains the corresponding manual page.

• %scicos display mode: this scalar is used to specify whether backstoring for graphical
display of the diagrams should be used by the editor.

• modelica libs: a vector of strings containing the list of directories (full path), where
implicit Modelica blocks are defined.

• scicos pal libs: a vector of strings containing the list of directories inside
SCI/macros/scicos blocks to be loaded. These directories contain the interfacing
functions of the blocks in Scicos palettes. The user should not, in general, edit this
variable.

These variables are initialized by the function initial scicos tables, which can
be found in the directory SCI/macros/util. This function is executed as a script by
scilab.star, which is executed at the startup of Scilab. They can be modified by the
user subsequently.

The function scicos contains the main event loop of the editor. When an item in one
of the menus is invoked to perform an operation, scicos calls the corresponding Scilab
function. The name of the Scilab function is derived from the name of the menu item by
removing special characters “/”, “.”, and “-”, and adding a trailing “ ”. For example, the
function corresponding to the item Open/set in the Object menu is OpenSet . Functions
associated with editor operations have no input-output arguments and are executed as
scripts. Scicos comes with default menus providing many elementary editor operations.
The associated functions can be found in the directory SCI/macros/scicos.

Example

Here we give an example of adding a new operation to the Scicos editor. This is just a toy
example and consists in analyzing the diagram and displaying the number of blocks, the
number of Super blocks, and the number of links in the diagram. We start by adding a
new item, which we call Block Info. We place it in the last position. For that, the Scilab
variable %scicos menu should be modified. This should be done before Scicos is launched.

Default Scicos menus are Diagram, Edit, Simulate, Object, and Misc. So if we want
to place this item in Misc, we should add it to the vector %scicos menu(5). For example,
it can be placed at the end of this menu.

By doing so, the item Diagram Info is added to the Misc menu in Scicos, and when
the user selects this item, Scicos attempts to execute the function DiagramInfo . So we
need to define this function as well. To implement fully the debugging menu, the following
script can be used.

These instructions must be executed before Scicos is launched. A convenient place for
them is in the .scilab file.
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%scicos_menu($)($+1)="Diagram Info";

function [block_num,link_num,sup_num]=..

do_diagram_Info(scs_m,block_num,link_num,sup_num)

for i=1:length(scs_m.objs)

if typeof(scs_m.objs(i))==’Block’ then
if or(scs_m.objs(i).model.sim==[’super’,’csuper’]) then
sup_num=sup_num+1;

[block_num,link_num,sup_num]=..

do_diagram_Info(scs_m.objs(i).model.rpar,block_num,link_num,sup_num)

elseif ~or(scs_m.objs(i).model.sim==[’input’,’output’]) then
block_num=block_num+1;

end
elseif typeof(scs_m.objs(i))==’Link’ then
link_num=link_num+1;

end
end

endfunction

function DiagramInfo_()

[block_num,link_num,sup_num]=do_diagram_Info(scs_m,0,0,0);

txt=["Number of basic blocks: "+string(block_num);

"Number of Super blocks: "+string(sup_num);

"Number of links: "+string(link_num)];

message(txt)

Cmenu="Open/Set"

endfunction

Note that in order to explore the scs m structure, we examine each item in the objs
field and increment the corresponding counters. When a Super block is encountered, the
function do diagram Info is called recursively. This way we can explore the content of
the hierarchical structure scs m.

The Cmenu variable sets the next operation to be performed. By default in Scicos, the
editor is in Open/Set operation mode.

Editor operations are, in general, more complex and involve Scilab variables defined
and used in scicos. For example, in most cases, an operation modifies the variable scs m,
which codes the current status of the diagram. The best way to learn about these variables
is by examining source codes of the functions associated with default operations.

A.1.2 Structure of scs m

scs m is a Scilab object of type diagram having two entries:

• props: Diagram properties. Scilab object of type params,
• objs: list of objects included in the Scicos diagram.

Diagram Properties params

The diagram properties are:
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• wpar: This vector is not currently used. It may be used in the future to code window
sizes of the editor.

• title: A string containing the name of the diagram. The default value is "Untitled"

• tol: A vector containing simulation parameters including various tolerances used by
the solver:
– atol: Integrator absolute tolerance for the numerical solver.
– rtol: Integrator relative tolerance for the numerical solver.
– ttol: Tolerance on time. If an integration period is less than ttol, the numerical

solver is not called.
– deltat: Maximum integration time interval. If an integration period is larger than

deltat, the numerical solver is called more than once in such a way that for each
call the integration period remains below deltat.

– scale: Real-time scaling; the value 0 corresponds to no real-time scaling. It asso-
ciates a Scicos simulation time to the real time in seconds. A value of 1 means that
each Scicos unit of time corresponds to one second.

– solver: Choice of numerical solver. The value 0 implies LSODAR and 100 implies
DASKR.

– hmax: Maximum step size for the numerical solver. 0 means no limit.
The default value is [0.0001,1.000E-06,1.000E-10,100001,0,0].

• tf: Final integration time. The simulation stops at this time. The default value is
100000.

• context: A vector of strings containing Scilab instructions defining variables to be
used inside block GUIs. All valid Scilab instructions can be used but not comments.

• void1: Not used.
• options: Scilab object of type scsopt defining graphical properties of the editor such

as background color and link color. The fields are the following:
– 3D: A list with two entries. The first one is a boolean indicating whether or not

blocks should have 3D aspect. The second entry indicates the color in the current
colormap to be used to create the 3D effect. The default is 33, which corresponds
to gray added by Scicos to the standard colormap, which contains 32 colors. The
default value is list(%t,33).

– Background: Vector with two entries: background and foreground colors. The de-
fault value is [8,1].

– Link: Default link colors for regular and activation links. These colors are used only
at link construction. Changing them does not affect already constructed links. The
default value is [1,5], which corresponds to black and red if the standard Scilab
colormap is used.

– ID: A list of two vectors including font number and sizes. The default value is
list([5,1],[4,1]).

– Cmap: An n×3 matrix containing RGB values of colors to be added to the colormap.
The default value is [0.8,0.8,0.8], i.e., the color gray.

• void2: Not used .
• void3: Not used.
• doc: Used for documenting the diagram.

Diagram Content

The field objs contains a Scilab list of the objects within the diagram. The objects can
be of type Block, Link, or Text. A Block can be a basic block or a Super block.
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Scicos Block

It is a structure including the following fields.

• graphics: Scilab object of type graphics including graphical information concerning
the features of the block. The fields are:
– orig: Vector [xo,yo], where xo is the x coordinate of the block origin and yo is

the y coordinate of the block origin.
– sz: Vector [w,h], where w is the block width and h the block height.
– flip: Boolean indicating block orientation. It is used to switch the ports on the

lef- hand side and those on the right-hand side of the block.
– exprs: A vector of strings including formal expressions (usually including numbers

and variable names) used in the dialog of the block.
– pin: Vector with pin(i), the number of the link connected to the ith regular input

port (counting from one), or 0 if this port is not connected.
– pout: Vector with pout(i), the number of the link connected to the ith regular

output port (counting from one), or 0 if this port is not connected.
– pein: Vector with pein(i), the number of the link connected to the ith event

input port (counting from one), or 0 if this port is not connected.
– peout: Vector with peout(i), the number of the link connected to the ith event

output port (counting from one), or 0 if this port is not connected.
– gr i: Vector of strings including Scilab graphics expressions for drawing block’s

icon.
– id: A string including an identification for the block. The string is displayed un-

derneath the block in the diagram.
– in implicit: A vector of strings including "E" and "I". E and I stand respectively

for explicit and implicit port, and this vector indicates the nature of each input
port. For regular blocks (not implicit), this vector is empty or contains only E’s.

– out implicit: Similar to in implicit but for the output ports.
• model: Scilab object of type model including the following fields.

– sim: A list containing two elements. The first element is a string containing the
name of the computational function (C, Fortran, or Scilab). The second element is
an integer specifying the type of the computational function. Currently type 4 and
5 are used, but older types continue to work to ensure backward compatibility.

– in: A vector specifying the number and sizes of regular inputs.
– out: A vector specifying the number and sizes of regular outputs.
– evtin: A vector specifying the number and sizes of activation inputs. Currently

activation ports can be only of size one.
– evtout: A vector specifying the number and sizes of activation outputs.
– state: Vector containing initial continuous-time state.
– dstate: Vector containing initial discrete-time state.
– rpar: Vector of real parameters passed to associated computational function.
– ipar: Vector of integer parameters passed to associated computational function.
– blocktype: It can be set to c or d indifferently for regular blocks. x is used if we

want to force the computational function to be called during the simulation phase
even if the block does not contribute to computation of the state derivative.

– firing: Vector of initial event firing times of size equal to the number of activation
output ports. A value ≥ 0 programs an activation (event) at the corresponding port
to be fired at the specified time.

– dep ut: Boolean vector [timedep udep].
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· timedep boolean: true if block is always active.
· udep boolean: true if block has direct feed-through, i.e., at least one of the

outputs depends directly (not through the states) on one of the inputs. In other
words, when the computational function is called with flag 1, the value of an
input is used to compute the output.

– label: A string. The label can be used to identify a block in order to access or
modify its parameters during simulation.

– nzcross: Number of zero-crossing surfaces.
– nmode: Number of modes. Note that this gives the size of the vector mode and not

the total number of modes in which a block can operate in. Suppose a block has 3
modes and each mode can take two values, then the block can have up to 23 = 8
modes.

– equations: Used in case of Implicit blocks; see Chapter 14.
• gui: The name of the Scilab GUI function associated with the block.
• doc: Used for documentation of the block.

Scicos Link.

It is a Scilab list including the following fields:

• xx: A vector. A link is defined as a polyline line. xx defines the x-coordinate of the
points characterizing the polyline.

• yy: A vector having the same size as xx. It defines the y-coordinate of the points
characterizing the polyline.

• id: A string corresponding to the name of the function drawing the link. Default value
is "drawlink".

• thick: Vector of size two defining line thickness.
• ct: A vector. The first entry designates the color, and the second, the nature. The

second entry is 1 for a regular link, −1 for an activation link, and 2 for an implicit link.
• from: Vector of size three including the block number, port number, and port type (0

for output, 1 for input) at the origin of the link. Note that the third entry may be 1 if
the link is implicit; otherwise it is zero.

• to: Vector of size three including the block number, port number, and port type at the
destination of the link.

Once the diagram has been successfully edited, scs m can be passed on to the compiler.

A.2 Scicos Complier

Scicos diagram compilation is done in two stages (there is an additional precompilation
phase if the diagram contains implicit blocks; see Chapter 14). These two stages are im-
plemented by the Scilab functions c pass1 and c pass2.

A.2.1 First Compilation Stage

The first stage of the compilation consists in removing the hierarchy from the diagram and
constructing a flat description. This is done by c pass1, which has the following calling
sequence:

[blklst,cmat,ccmat,cor,corinv,ok]=c_pass1(scs_m)



A.2 Scicos Complier 287

• blklst is a list of blocks present in the diagram. It contains block information relevant
to simulation. Block properties such as color, icon, size, and location, which are not
useful for simulation, have been stripped.

• cmat is an n×6 matrix. Each row corresponds to a regular link and contains the block
number, port number, and port type (explicit or implicit) of the source block and the
same information regarding the destination block.

• ccmat is an n× 4 matrix. Each row corresponds to an activation link and contains the
block number and port number of the source block and the block number and port
number of the destination block.

• cor and corinv are correspondence tables (coded as lists) used to find the correspon-
dence between blocks in blklst and scs m.

A.2.2 Second Compilation Stage

The second stage is done by the main compilation function c pass2, which constructs all
the scheduling tables and other information needed for simulation and code generation.
The calling sequence is as follows:

%cpr=c_pass2(blklst,connectmat,ccmat,cor,corinv)

The input arguments are all generated by c pass1. connectmat is simply cmat, but
the third and last columns have been removed. The output %cpr is a Scilab structure
containing all the information needed by the simulator. We will not explain how c pass2
computes %cpr. Instead we give a detailed description of %cpr in the next section.

A.2.3 Structure of %cpr

The Scilab object %cpr contains the result of the compilation. The simulator uses only
%cpr. It is thus important for an advanced user to understand how compilation results are
coded in %cpr.

• state: Scilab object of type xcs. It contains all the states of the model, that is,
everything than can evolve during the simulation. It contains in particular
– x: The continuous-time state, which is obtained by concatenating the continuous-

time states of all the blocks.
– z: The discrete-time state, which is obtained by concatenating the discrete-time

states of all the blocks.
– iz: Vector of size equal to the number of blocks. If a block needs to allocate memory

at initialization, the associated pointer is saved here.
– tevts: Vector of size equal to the number of activation sources. It contains the

scheduled times for programmed activations.
– evtspt: Vector of size equal to the number of activation sources. It is an event

scheduler.
– pointi: The number of the next programmed event.
– outtb: Vector containing all the link memories. Link memories hold block output

values.
• sim: Scilab object of type scs. It contains information that does not evolve during the

simulation.
– funs: A vector containing the name of the computational functions.
– xptr: A vector pointer to the continuous time state x. The continuous-time state

of block i is
%cpr.state.x(%cpr.sim.xptr(i):%cpr.sim.xptr(i+1)-1).



288 A Inside Scicos

outptr

inplnk outlnk

lnkptr

outtb

input port #
output port #

block number

inpptr

link #

link #

Figure A.1. outtb contains the link registers. The memory allocated to link l is
outtb([lnkptr(l):lnkptr(l+1)-1]). The link number of the link connected to input i of block
j is l=inplnk(inpptr(j)+i-1). Similarly, the link number of the link connected to output i of
block j is l=outlnk(outptr(j)+i-1).
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– zptr: A vector pointer to the discrete-time state z, which is similar to xptr.
– zcptr: A vector pointer to the zero-crossing surfaces.
– inpptr: A vector pointer used to find the link number and consequently the part

of outtb corresponding to a given input port. See Figure A.1.
– outptr: Similar to inpptr but for output ports.
– inplnk: Similar to inpptr. See Figure A.1.
– outlnk: Similar to inplnk but for output ports.
– lnkptr: A vector pointer to outtb indicating the region corresponding to a given

link.
– rpar: Vector of real parameters that is obtained by concatenating the real param-

eters of all the blocks.
– rpptr: A vector pointer to real parameters rpar. The real parameters of block i

are
%cpr.sim.rpar(%cpr.sim.rpptr(i):%cpr.sim.rpptr(i+1)-1).

– ipar: Vector of integer parameters, similar to rpar.
– ipptr: A vector pointer to integer parameters, similar to rpptr.
– clkptr: A vector pointer to output activation ports.
– ordptr: A vector pointer to ordclk designating the part of ordclk corresponding

to a given activation.
– execlk: Not used.
– ordclk: An n×2 matrix associated to blocks activated by output activation ports.

The first column contains the block number, and the second, the event code by
which the block should be called. See Figure A.2.

– cord: An n×2 matrix associated to always active blocks. The first column contains
the block number, and the second, the event code by which the block should be
called.

– oord: Subset of cord, which affects the continuous-time state derivative.
– zord: Subset of cord, which affects the computation of zero-crossing surfaces.
– critev: A vector of size equal to the number of activations and containing zeros

and ones. The value one indicates that the activation is critical in the sense that
the continuous-time solver must be cold restarted.

– nb: Number of blocks. Note that the number of blocks may differ from the original
number of blocks in the diagram because c pass2 may duplicate some conditional
blocks.

– ztyp: A vector of size equal to the number of blocks. A 1 entry indicates that
the block may have zero-crossings, even if it doesn’t in the context of the diagram.
Usually not used by the simulator.

– nblk: Not used. Set to nb.
– ndcblk: Not used.
– subscr: Not used.
– funtyp: A vector of size equal to the number of blocks indicating the type of the

computational function of the block. Block type can be 0 through 5. Currently only
type 4 (C language) and type 5 (Scilab language) computational functions should
be used. But older blocks can also be used.

– iord: An n × 2 matrix associated to blocks that must be activated at the start
of the simulation. This includes blocks inheriting from constant blocks and always
active blocks.

– labels: A string vector of size equal to the number of blocks containing block
labels.

– modptr: A vector pointer to the block modes.
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• cor: Scilab list with a hierarchy identical to that of the original diagram and including
block numbers in the compiled structure. It allows finding block number in %cpr from
position in scs m.

• corinv: Scilab list containing vectors. It allows finding position in scs m from block
number in %cpr.

ordptr

ordclk

event number

activated

blocks

event

code

block

number code

event

Figure A.2. The table ordptr is a pointer to ordclk, which contains the blocks that
are activated by any given activation. For activation i, the associated blocks are found in
ordclk([ordptr(i):ordptr(i+1)-1],1).

A.2.4 Partial Compilation

For large diagrams including many conditional blocks, the compilation time can be notice-
able. That is why Scicos does not do a complete recompilation if minor modifications are
made in a compiled diagram. In most cases (but not always), changing a block parameter
does not affect scheduling tables in the compiled structure. In such a case, only a partial
compilation is performed, which means that some elements of %cpr such as %cpr.sim.rpar
are updated without recomputing scheduling tables %cpr.sim.ordclk, which can be time-
consuming.

Anytime a block parameter is modified, Scicos determines the effect of the modification
on the compiled structure by setting the level of compilation required. This level is coded
in the Scilab variable needcompile. If a diagram is not compiled, needcompile is 4. For a
freshly compiled diagram, needcompile is zero. In many cases, changing a block parameter,
for example the gain value of the Gain block, does not affect needcompile. The block is
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evtspt tevts

0last event

pointi

event

times

Figure A.3. The table evtspt is used to store the programmed events. The variable pointi

contains the next programmed event number. i=evtspt(pointi) is the number of the event
programmed next; j=evtspt(i) is next and so on. evtspt of the last programmed event is zero.
Event times for each event are stored in table tevts.

simply placed in the variable newparameters so that the new parameters of the block can
be copied from scs m into %cpr before simulation. This is done by the Scilab function
modipar.

If changing a parameter changes link sizes too, then needcompile goes up to one. In
this case, pointer vectors may need to be recomputed. However, scheduling tables remain
valid and are not recomputed.

If the modification is more complex and involves, for example, preprogrammed acti-
vation signals, then it still may not be necessary to recompute scheduling tables. In this
case, needcompile becomes 2 and Scilab function c pass3 recomputes all the entries from
scs m, except for scheduling tables, before simulation.

Finally, when it is absolutely necessary, for example following any operation modifying
the diagram (adding or deleting a block for example), needcompile becomes 4 and a
recompilation is performed before simulation.

The Scilab function do update handles the partial compilation. Note that a recompi-
lation can always be imposed by the user by choosing the menu item Compile.

A.3 Scicos Simulator

The interface to the Scicos simulator in Scilab is the function scicosim. We have al-
ready encountered this function in Section 11.1.2. This function is used to initialize, run,
and end Scicos simulations. These operations are done by the function do run (in the
SCI/macros/scicos directory), which is called when the user runs a simulation in Scicos.

The Scicos simulator is a complex C program. We do not study it here. The simulation
functions are in the file SCI/routines/scicos/scicos.c. The main function is scicos,
which calls the routines cosini, cossim, and cosend depending on whether initialization,
simulation, or ending has been requested.
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Scicos Blocks of Type 5

We present here two examples of Scicos blocks using type 5 computational functions.

B.1 Type 5 Block for the Bouncing Ball Example

This section gives the interfacing and the computational functions of a type 5 block real-
izing the bouncing ball example presented on page 204. In this case, the full dynamics is
included in a basic block.

Interfacing Function

The interfacing function for the block realizing the dynamics of the bouncing ball problem
is given below. The user can change the initial position and velocity of the ball.

function [x,y,typ]=BouncingBall5(job,arg1,arg2)

x=[];y=[];typ=[];

select job

case ’plot’ then
standard_draw(arg1)

case ’getinputs’ then
[x,y,typ]=standard_inputs(arg1)

case ’getoutputs’ then
[x,y,typ]=standard_outputs(arg1)

case ’getorigin’ then
[x,y]=standard_origin(arg1)

case ’set’ then
x=arg1

graphics=arg1.graphics;

exprs=graphics.exprs;

model=arg1.model;

while %t do

[ok,xx,rpar,exprs]=..

getvalue(’Set BOUNCEBALL block parameters’,..

[’Initial ball position and speed’;..

’Parameter alpha’],..

list(’vec’,2,’vec’,1),exprs)

if ok then
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model.rpar=rpar;model.state=xx

graphics.exprs=exprs

x.graphics=graphics;x.model=model

end
break

end
case ’define’ then
model=scicos_model()

model.sim=list(’bounceball5’,5);

model.out=1

model.state=[2;0]

model.rpar=1

model.nzcross=1;

model.blocktype=’c’;

model.dep_ut=[%t %t];

exprs=[sci2exp(model.state);sci2exp(model.rpar)]

gr_i=[’xstringb(orig(1),orig(2),’’BOUNCEBALL’’,sz(1),sz(2),’’fill’’);’]

x=standard_define([3 2],model,exprs,gr_i)

end
endfunction

Note that the first entry of dep ut, set to true, is not used because the block has no
input, but the second entry specifies that the block is always active.

Computational Function

This computational function should be compared to the C function Bounceball defined
on page 204.

function block=bounceball5(block,flag)

if flag==1

block.outptr(1)(1)=block.x(1)

elseif flag==0

block.xd(1)=block.x(2);

block.xd(2)=-9.8-block.rpar(1)*block.x(2)^3

elseif flag==2&block.nevprt==-1&block.jroot(1)<0

block.x(2)=-block.x(2)

elseif flag==9

block.g(1)=block.x(1)

end
endfunction

B.2 Animation Block for the Cart Pendulum Example

Animation of simulation results is often helpful both in understanding the results and in
presenting them to others. In this section we give the interfacing and the computational
functions associated with the animation block of the cart pendulum problem presented in
Section 11.4. The computational function of this block is type 5; that is, a Scilab program
is used to perform the animation during the simulation.

This block receives the position of the cart z and the angle of the pendulum θ as input.
The angle φ, which is a constant, is a block parameter as are the sizes of the cart and
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the pendulum and the coordinate of the viewing window. These parameters are initialized
and adjusted by the interfacing function below:

function [x,y,typ]=PENDULUM_ANIM(job,arg1,arg2)

// Animation of the cart-pendulum problem

x=[];y=[];typ=[]

select job

case ’plot’ then
standard_draw(arg1)

case ’getinputs’ then
[x,y,typ]=standard_inputs(o)

case ’getoutputs’ then
x=[];y=[];typ=[];

case ’getorigin’ then
[x,y]=standard_origin(arg1)

case ’set’ then
x=arg1;

graphics=arg1.graphics;exprs=graphics.exprs

model=arg1.model;dstate=model.dstate

while %t do

[ok,plen,csiz,phi,xmin,xmax,ymin,ymax,exprs]=getvalue(..

’Set Scope parameters’,..

[’pendulum length’;’cart size (square side)’;’slope’;

’Xmin’;’Xmax’; ’Ymin’; ’Ymax’; ],..

list(’vec’,1,’vec’,1,’vec’,1,’vec’,1,’vec’,1,’vec’,1,’vec’,1),exprs)

if ~ok then break, end
mess=[]

if plen<=0|csiz<=0 then
mess=[mess;’Pendulum lenght and cart size must be positive.’;’ ’]

ok=%f

end
if ymin>=ymax then
mess=[mess;’Ymax must be greater than Ymin’;’ ’]

ok=%f

end
if xmin>=xmax then
mess=[mess;’Xmax must be greater than Xmin’;’ ’]

ok=%f

end
if ~ok then
message(mess)

else
rpar=[plen;csiz;phi;xmin;xmax;ymin;ymax]

model.rpar=rpar;

graphics.exprs=exprs;

x.graphics=graphics;x.model=model

break
end

end
case ’define’ then
plen=2; csiz=2; phi=0;

xmin=-5;xmax=5;ymin=-5;ymax=5

model=scicos_model()

model.sim=list(’anim_pen’,5)
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model.in=[1;1]

model.evtin=1

model.dstate=0

model.rpar=[plen;csiz;phi;xmin;xmax;ymin;ymax]

model.blocktype=’d’

model.dep_ut=[%f %f]

exprs=string(model.rpar)

gr_i=[’thick=xget(’’thickness’’);xset(’’thickness’’,2);’;

’xx=orig(1)+sz(1)*[.40.60.60.40.4]’

’yy=orig(2)+sz(2)*[.20.20.40.40.2]’

’xpoly(xx,yy,’’lines’’)’

’xx=orig(1)+sz(1)*[.50.6]’

’yy=orig(2)+sz(2)*[.40.8]’

’xpoly(xx,yy)’

’xset(’’thickness’’,thick);’]

x=standard_define([3 3],model,exprs,gr_i)

end
endfunction

Note that this block has 2 regular scalar inputs and an activation input. The activation
input receives during the simulation the information concerning the time instants when
the display has to be updated. Note also that the block has a discrete-time state, set to
zero. The reason for the presence of this state is to make sure that during the simulation,
the block is called with flag equal to 2. Since this block has no output (from the point
of view of Scicos; there is indeed an output to the screen), the block is never called with
flag equal to 1. So in the absence of a state, the block is never called during simulation.
Adding a state is one way to overcome this problem. The other is to add outputs to the
block. This latter method works even if these outputs are left unconnected. Here we have
chosen to add a state, which turns out to be useful for other reasons.

The computational function of this block is defined in PENDULUM ANIM to be anim pen.
This function is given below.

function [blocks] = anim_pen(blocks,flag)

win=20000+curblock()

if flag<>4 then H=scf(win), end
xold=blocks.z

rpar=blocks.rpar

plen=rpar(1);csiz=rpar(2);phi=rpar(3);

if flag==4 then
xset("window",win)

set("figure_style","new")

H=scf(win)

clf(H)

H.pixmap=’on’

Axe=H.children

Axe.data_bounds=rpar(4:7)

Axe.isoview=’on’

S=[cos(phi),-sin(phi);sin(phi),cos(phi)]

XY=S*[rpar(4),rpar(5);-csiz/2,-csiz/2]

xsegs(XY(1,:),XY(2,:))

x=0;theta=0;

x1=x-csiz/2;x2=x+csiz/2;y1=-csiz/2;y2=csiz/2
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XY=S*[x1 x2 x2 x1 x1;y1,y1,y2,y2,y1]

xpoly(XY(1,:),XY(2,:),"lines",1)

XY=S*[x,x+plen*sin(theta);0,0+plen*cos(theta)]

xsegs(XY(1,:),XY(2,:))

elseif flag==2 then
Axe=H.children

x=blocks.inptr(1)(1)

theta=blocks.inptr(2)(1)

XY=Axe.children(2).data’+..

[cos(phi)*(x-xold);sin(phi)*(x-xold)]*ones(1,5)

Axe.children(2).data=XY’

x1=x*cos(phi);y1=x*sin(phi)

XY=[x1,x1+plen*sin(theta);y1,y1+plen*cos(theta)]

Axe.children(1).data=XY’

blocks.z=x

show_pixmap()

end
endfunction

This block uses Scilab’s new graphics (in contrast to Scicos, which still uses the old
graphics). The window number of the graphical display is set to 20000 plus the block
number. This is to make sure that if two such blocks are used in the same diagram, they
use different windows for their displays. The discrete-time state blocks.z, which has been
introduced simply to make sure the block is called during simulation, is also used to store
the previous position of the cart. This information is then used to update the associated
graphics data structure in a slightly more efficient way. This is done by computing the
change in the position by subtracting the old position from the new position.

The isoview property is used to make sure the horizontal and vertical scales remain
proportional on the screen after resizing the window. The pixmap mode is used to create
an efficient and smooth animation. In particular, the display is refreshed only after all the
changes have been done. Note that the block does not ensure real-time simulation. This
must be done by adjusting the corresponding simulation parameter of the diagram.
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Animation Program for the Car Example

This section provides the Scilab program used to construct the animation of the car ex-
ample in Section 5.2. This program can be used as an example for developing animation
programs in Scilab using the new graphics mode. Note also the use of the Scilab functions
realtime and realtimeinit used to make the animation run in real time.

function play(T,X,XI)

scf(1);clf();h=gcf();

h.pixmap = "on";

h.figure_size = [1400 600];

h.children.axes_visible=[’off’,’off’,’off’] ;

h.children.isoview=’on’;

h.children.tight_limits = "on"

h.children.margins = [0,0,0,0];

XXX=[-XI-l2:0.2:3*XI+l2];

FY=[];XC=[];

for x=XXX,

th=atan(Fx(x));

XC=[XC,x+sin(th)*r2]

FY=[FY,F(x)-cos(th)*r2];

end
h.children.data_bounds=[min(XC),min(FY);max(XC),max(FY)+d];

xfpoly([XC(1),XC,XC($)],[min(FY)-d,FY,min(FY)-d]); hfp = gce();

hfp.foreground = 5;

drawlater()

h.pixel_drawing_mode=’xor’

l3=1.15*l2; // car body length (half) for animation

realtimeinit(1); // intialize real time operation

for i=1:size(T,’*’)

t=T(i);

X=XX(:,i);

x=X(1);xd=X(2);y=X(3);yd=X(4);th=X(5);thd=X(6);xsi=X(7);eta=X(8);

x0=x+xsi*sin(th)-l2*cos(th);

x1=x+eta*sin(th)+l2*cos(th);

y0=y-xsi*cos(th)-l2*sin(th);

y1=y-eta*cos(th)+l2*sin(th);

xp=[x0,x-l2*cos(th);x+l2*cos(th),x1]’;

yp=[y0,y-l2*sin(th);y+l2*sin(th),y1]’;

xpp=[x-l3*cos(th);x+l3*cos(th)];
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ypp=[y-l3*sin(th);y+l3*sin(th)];

W1=[x0-r2,y0+r2,2*r2,2*r2,0,360*64];

W2=[x1-r2,y1+r2,2*r2,2*r2,0,360*64];

if i==1 then
xpoly(xpp,ypp); hp1 = gce();

hp1.thickness=10;

xpolys(xp,yp); hp2 = gce();hp21=hp2.children(1);hp22=hp2.children(2)

xfarcs([W1’,W2’]); ha = gce();ha1=ha.children(1);ha2=ha.children(2)

realtime(t);

draw([hp1,hp2,ha])//draw car

else
draw([hp1,hp2,ha])//erase car

hp1.data=[xpp,ypp];

hp21.data=[xp(:,1),yp(:,1)];

hp22.data=[xp(:,2),yp(:,2)];

ha1.data=W1;

ha2.data=W2;

realtime(t);

draw([hp1,hp2,ha])//draw car

end
show_pixmap()

end
h.pixel_drawing_mode=’copy’

drawnow()

show_pixmap()

endfunction
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Extraction Program for the LATEX Graphic Example

This function exports to a file in mixed LATEX and Postscript code the content of a Scilab
graphic window. This file has been in particular used in Section 2.4.4 to produce the two
files figps-ps.eps and figps-tex.tex.

function xs2latex(win,fname)

base=basename(fname);

I=strindex(base,’.’);

if I==[] then
fname_eps= fname+’.eps’;

fname= fname+’.ps’;

else
suf=part(fname,I($):length(fname));

if suf<>".ps" then
error(’xs2latex: fname must be ended by0.ps’);

return;

end
fname_eps= part(fname,1:I($-1))+’.eps’;

end;
xs2ps(win,fname)

unix(SCI+’/bin/Blatexpr 1 1 ’+fname);

txt=mgetl(fname_eps);

I=grep(txt,"%Latex:");

txt1=txt(I);

I=grep(txt1,"nan");

txt1(I)=[];

txt1=strsubst(txt1,"%Latex:","");

mputl(txt1,base+’-tex.tex’);

txt1=txt;

I=[];

for i=1:size(txt,’*’)

i,

l=length(txt(i));

if l-4 >= 1 then
if part(txt(i),(l-4):l) == " Show" then I=[I,i]; end

end
end
txt1(I)=[];

mputl(txt1,base+’-ps.eps’);
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endfunction



E

Maple Code Used for Modeling the N -Link Pendulum

Here we give the Maple code for the N -link pendulum presented in Section 5.1. We have
removed from the Maple code functions devoted to LATEX code generation and to energy
computation (ener.f).

read(‘Euler.map‘);

#---------------------------------------------------------------------------------

# Lagrangian for the N-link pendulum ( l[i]: length of links r[i]:=l[i]/2;)

#---------------------------------------------------------------------------------

# number of links in the pendulum

n:=2;

# [x,y,theta] is of size three

mm:=3:

LLi:=proc(i)

(1/2)*m[i]*( ( xd[i-1]- r[i] *sin(th[i])*thd[i])**2 +

( yd[i-1]+ r[i]*cos(th[i])*thd[i])**2 ) + 1/2*J[i]*(thd[i])**2

-m[i]*g*(y[i-1]+r[i]*sin(th[i])):

end:

# The point zero is fixed

x[0]:=0:xd[0]:=0: y[0]:=0:yd[0]:=0:

L:=sum( LLi(j),j=1..n):

# Lagrangian variables:

q := [ seq (op([x[i],y[i],th[i]]),i=1..n)]:

qd := [ seq (op([xd[i],yd[i],thd[i]]),i=1..n)]:

qdd:= [ seq (op([xdd[i],ydd[i],thdd[i]]),i=1..n)]:

# Lhs of Euler equations

EL:=euler_equations(L,q,qd,qdd): EE:=map((i)->rhs(i),EL):

#-----------------------------------------------------

# Rewriting the Euler equations to have a canonical form

# used only for output
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#-----------------------------------------------------

XX:=CEuler(EE,q,qd,qdd):

ME1:=XX[1]:

ME1:=subs(seq(m[k]*r[k]*cos(th[k])=mrc[k],k=1..n),

seq(m[k]*r[k]*sin(th[k])=mrs[k],k=1..n),eval(ME1)):

#------------------------------------------------

# Constraints on the N-link Pendulum

#------------------------------------------------

ncont:=2*n;

cont:=[ seq(op([ x[i]-x[i-1] - 2*r[i]*cos(th[i]),

y[i]-y[i-1] - 2*r[i]*sin(th[i])]),i=1..n)]:

# time derivative of constraints;

cont1:=map ( (exp)->( time_diff(exp,q,qd,qdd)),cont):

# derivatives of constraints are of type Aprim qd = 0

Aprim:=genmatrix(cont1,qd):

#----------------------------------------------

# Computing S(q);

#----------------------------------------------

SS:=linsolve(Aprim,matrix(ncont,1,0)):

#--------------------------------------------------------------

# Since the indices can be mixed we have to change SS

# so that the correspondence between the eta[i] and the thd[i]

# will be the identity. This is convenient, but not essential,

# in order to have a simple interpretation of eta

#--------------------------------------------------------------

permut:=seq(SS[mm*i,1]=t_s[i],i=1..n): SS:=subs(permut,eval(SS)):

permut:=seq(t_s[i]=eta[i],i=1..n): SS:=subs(permut,eval(SS)):

S:= genmatrix(convert(convert(SS,vector),list),[seq( eta[i],i=1..n)]):

#-----------------------------------------------------

# Left multiplication in the Euler equations.

#-----------------------------------------------------

E1:=multiply(transpose(S),EE):

#-----------------------------------------------------

# .

# q= S(q) eta ; here eta = [eta1,eta2,...]

# ..

# we use this equation to compute q

#-----------------------------------------------------

qt := [ seq (eta[i] ,i=1..n)]: qtd := [ seq (etad[i] ,i=1..n)]:

qtdd:= [ seq (etadd[i],i=1..n)]:

qqdd:=map((x,y,z,t)-> time_diff(x,y,z,t),eval(SS),
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[op(q),op(qt)],[op(qd),op(qtd)],[op(qdd),op(qtdd)]):

#-----------------------------------------------------

# .. .

# Using q= d/dt [ S(q) eta] and q= S(q) eta

# we can substitute these expressions in E1

#-----------------------------------------------------

E2:=subs(seq(qdd[i]=qqdd[i,1],i=1..nops(qdd)),eval(E1)):

E3:=subs(seq(qd[i]=SS[i,1],i=1..nops(qd)),eval(E2)):

#-----------------------------------------------------

# The global system is now

# .

# E3 = 0 and q= S(q) eta

#-----------------------------------------------------

E3:=map((x)-> simplify(x),E3):

#------------------------------------------------------------------

# Canonical representation for the simplified Euler equations

# .

# El= ME(q) eta + RE(q,eta).

# We use CEuler with a little trick in the parameter call qt,qt,qtd

#------------------------------------------------------------------

XX1:=CEuler(E3,qt,qt,qtd):

MM3:=map((i)->factor(combine(i,trig)),XX1[1]):

RR3:=map((i)->factor(combine(i,trig)),XX1[2]):

#-----------------------------------------------------

# FORTRAN GENERATION

# First routine npend(neq,t,th,ydot)

#-----------------------------------------------------

flist:=[subroutinem,‘npend‘,[‘neq‘,‘t‘,‘th‘,‘ydot‘],

[

[ parameterf,[‘n=‘.n]],

[ declaref,‘implicit doubleprecision‘,[‘(t)‘] ],

[ declaref,doubleprecision,[‘t,th(2*n),eta(n),ydot(2*n),r(n)‘]],

[ declaref,doubleprecision,[‘me3s(n,n),const(n,1),j(n),m(n)‘]],

[ declaref,doubleprecision,[‘w(3*n),rcond ‘]],

[ declaref,integer,[‘i,k,neq,ierr‘]],

[ declaref,‘data g‘,[‘/ 9.81/‘]],

[ declaref,‘data r‘,[‘/ n*1.0/‘] ],

[ declaref,‘data m‘,[‘/ n*1.0/‘] ],

[ declaref,‘data j‘,[‘/ n*0.3/‘] ],

[ dom , ‘i ‘ ,1,‘n ‘,1,[ equalf,‘ydot(i)‘,‘th(i+n)‘]],

[ dom , ‘i ‘ ,1,‘n ‘,1,[ equalf,‘eta(i)‘,‘th(i+n)‘]],

[ matrixm,‘me3s‘,MM3 ] ,

[ matrixm,‘const‘, RR3 ] ,

[ dom , ‘i ‘ ,1,‘n ‘,1,[ equalf,‘const(i,1)‘,‘-const(i,1)‘]],

[commentf,‘ solving M z = const to obtain ydot((n+1)..2*n)‘],

[ callf , ‘dlslv‘,[‘me3s,n,n,const,n,1,w, rcond,ierr,1‘]],
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[ if_then_m,ierr<>0,[

[writef,6,ff_w,[]],

[formatf,ff_w,[‘’Matrix is badly conditioned’‘]]]],

[ dom , ‘i ‘ ,1,‘n ‘,1,[ equalf,‘ydot(n+i)‘,‘const(i,1)‘]],

[returnf]]]:

Gener(‘npend.f‘,flist):

# New np.f

flist:=[subroutinem,‘np‘,[‘i ‘],

[[ declaref,integer,[‘i ‘]],[ equalf,‘i ‘,n],[returnf]]]:

Gener(‘np.f‘,flist):
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Pal editor 176
read from 192

bool2s 19
Boolean variable 19
bouncing ball 204, 293
boundary condition 74
boundary value problems 74
break 29
bvode 90
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BVP 74

C2F 66
call 63
cd 42
chdir 42
CheckLhs 68
CheckRhs 68
clear 9, 27
clf 48
clock 164
code generation 253

file names 256
procedure 256

code2str 232
COLNEW 90
colormap 56, 58
COLSYS 90
COMEDI 265
command history 5
comparison operators 19
computational function 195,

197, 294, 296
type 5 205

concatenation
column 12
row 12

conditional subsampling 186
conjugate gradient 111
constraint

bound 107
box 107
holonomic 126
nonholonomic 126

constraint drift 127
context 171
control design 249
Control flow
else 28
elseif 28
if 28
then 28

control panel 225
create_palette 208
CreateVar 68
csim 87
impuls 87

csslti 195
curblock 206, 225

DAE 76, 128, 147, 275
index zero 85

dasrt 100
DASSL 98
dassl 128

datafit 117, 147, 241
Debug

log file 271
decimation operation 184
deff 78
delay differential equations

221
delmenu 43
Demos 5
dep_t 183
dep_u 181
derivative 120, 122
dgetrf 66
diag 13
difference equation 75
differential algebraic equation

76, 147, 275
differential equation

implicit 128
differential variable 77
differentiation

numerical 120
stabilized 127

dir 42
discrete 95
disease spread 167
disp 28, 37
dom 86
down-sampling 213
download 7
drawlater 55
drawnow 55
driver 60
dscr 171
dsimul 97

Edit 164
eigenvalue assignment 171
elseif 28
emacs 5
entity 54
%eps 10
equations

implicit 275
nonlinear 108

equilibrium 248
errcatch 19
error 33
eval 173
eval3dp 51
event 77
event clock 165
event generator 164
event mechanism 216

Example_events 256
exec 27, 36
execstr 18
existence and uniqueness 74
exists 9
exp 14
expm 14
extensions 27
eye 13

factorial 31
failure detection 213
false 19
fast Fourier transform 213
fchamp 50
feedback 212
FFT 213
Figure 54
figure 46
figure_style 54
file 37
File operations 7
fileinfo 42
find 20, 30
fink 3, 4
first-order 73, 76
fit_dat 117
fixpnt 92
flts 97
fopen 38
for 29
format
format 38
big endian 41
little endian 41
native 41

fplot3d 49
fsolve 112, 149
FSQP 109
full 21
fully implicit 77, 86
functions
function 31
definition 26, 31

gca() 55
gcf() 55
gda() 55
gdf() 55
GENERIC 195
get 53
getcwd 42
getf 27
getfield 22
GetRhsVar 68
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getscicosvars 270
global 34
gradient 108, 110

approximation 109
computation 147
numerical 120

grand 13
graph

editing 49
graphic

editing 54
export 49
functions 56
handle 54
mode setting 54
primitives 56

graphics mode
new 53, 132
old 60

grep 18
%gtk 42
guess 93

Hamiltonian 93
help
apropos 6
browser window 6
help 6

Hessian 122
histplot 51, 58
HOME 27
hormone pulse generator

218
host 42, 232
hybrid 77, 135
hybrid system 100
hypermat 12, 22

ilib_build 69
ilib_for_link 63, 131, 204
impl 85
implicit differential equation

85
implicit semiexplicit DAE

77
index of a DAE 76
initial condition 74

consistent 76, 148
input ports 179
INRIA 3
int 13
int16 11
int32 11
int8 11
interface 66

builder.sce 69
examples 68
gateway 70
interface library 67

interfacing function
194, 195, 260, 293,
295

inverted pendulum 245, 294
ipar 91
isdef 9
isglobal 34
isoview 297

jac 86, 99
Jacobian 80

numerical 120
job 195
jroot 198

Kirchoff’s law 273
.*. 13
Kronecker product 13

Lagrangian 126
LaTeX

psfrag 57
least squared 16
least squares 113
leastsq 113

length 17
length 18
Levenberg-Marquardt 114
LhsVar 68
lincos 248
line editor 5
line style 54
linear DAE 85
linear program 119
linear system 86, 171
linearization

scicos 243
link

color 165
creation 166
splitting 166

link 63
links

activation 165
regular 165

linpro 119
linspace 13, 49
list 11, 22
listfiles 42
load 40
Load as Palette 176

loader.sce 204
logical or 16
logspace 13
ls 42
lsodar 79
lsode 79
lsqrsolve 113, 155
ltitr 97
ltol 92

MacOSX 4
macros 26
malloc 10
Maple 126, 130
matrix 12
matrix 13
concatenation 12
exponential 14
how stored 12
multiplication 16
sparse 21
term by term 16
Vandermonde 17

mclose 39
mexfiles 69
mget 41
MINPACK 112
mllst 22
mode

pixmap 297
mode 190
mode parameter 191
model

fisheries 209
predator prey 209

Modelica 274
modeling

component-level 273
error 269

Monte Carlo 227
mopen 38
mput 41
MSDOS 42
msprintf 18
msscanf 18
multiple shooting 90

ncomp 91
NDcost 109
nevprt 189
node 54
norm 17
not 19
numdiff 120
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obscont 249
observer 171, 212
ode 73
adams 79
atol 79

default value 80
discrete 79
external 80
fix 79
fixed step 257
jac 80
lsoda 79
real-time 257
rk 79
rkf 79
root 79
rtol 79

default value 80
stiff 79
type 79

ode 78, 131, 135
ode options
h0 80
hmax 80
hmin 80
itask 80
ixpr 81
jactype 81
maxordn 81
maxords 81
mi 81
mu 81
mxstep 81
tcrit 80

ode_discrete 95
ode_root 87
odedc 100
ODEPACK 78, 79
old_style 54
ones 13
optim 108, 147
optimal control 93
or 19
ordinary differential equation

73

palette
electrical 192
thermo-hydraulics 192

palettes 159, 192
Branching 176, 192
copying blocks 163
Linear 166
Others 174

Sinks 164, 192
Sources 164, 192
Threshold 192

param3d1 50
parameters

symbolic 193
18

pathconvert 42
pause 35
PD controller 225
pendulum 125, 245, 294
phase_simulation 206
PI controller 237
pixmap 61
play 141
plot

editing 49
parametric 49
surface 49

plot2d 48
plot2d2 48
plot2d3 48
plot2d4 48
plot3d 49
pmodulo 29
points 91
Poisson process 216
polarplot 51
pole placement 171
polyline

menu 54
poly 20
pop 36
postscript 49
ppol 171, 212, 249
primitives 26
print 37
prompt 4
push 36
%pvm 42

quadratic program 120
quapro 120
quasi-Newton 111
queuing system 216
quit 27, 36

rand 13
read 38
realtime 132, 299
realtimeinit 132, 299
Rec 60
Region-to-Super-block

173
res 85, 98

residual 85
resume 35, 36
RK4 79
RKF45 79
root finding 77
RTAI 265
RTAI-Lab 265
rtitr 97

sampled data 101
sampled data system 102
sampled system 86
save 40
scale

graphic 61
SCI 4
Scicos
.cosf 175
command names 228
context 169
diagram names 176
editor 163
error messages 267
graphics style 232
help 163
keyboard shortcuts 163
load 175
loading 227
Misc 163
Rename 176
Run 165
save 175
Save-as-Interf-Func

194
Setup 165
Simulate 165

scicos 163, 281
scicos_simulate 232
scicos_time 206
scicos_ver 175
scicosim 228
Scierror 68
Scifunc 193, 194
scilab.ini 27
scilab.star 27
ScilabEval 44
scope 164
scripts 27
scs 175
scs_m 281
second derivative

approximation 122
select 28

case 28
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else 28
semidef 120
semiexplicit DAE 77
set 53
set_blockerror 206
setbpt 36
seteventhandler 44
setfield 22
setmenu 43
setpoint 244
shooting methods 90
sign 18
signal processing 184
simulation phase 190, 198
simulation start time

default 229
SIR model 167
SISO 87
size 206
sliding mode 268
sparse 21
sprand 21
stabilization

Baumgarte 127
stacksize 10
state-space form 86
states

continuous-time 190
discrete-time 190
hybrid 138

steadycos 247, 248
step 87
stiff 79
stop button 166
str2code 232
strcat 18
stream

input 38
output 38

strindex 18
strings 17
string 18
concatenation 17

stripblanks 18
strsubst 18
submatrix

deletion 14
extraction 14

subplot 48
swap 41
Switch 176
synchronism 176
synchronization 176
SynDEx 265
syslin 86
syslin list 86

Taylor approximation 122
Taylor coefficients 122
Tck/Tk menus 56
Tcl/Tk 44, 223
TCL_EvalFile 44
TCL_EvalStr 44
TCL_ExistVar 44
TCL_GetVar 44
TCL_SetVar 44
%tk 42
TCP/AQM Network 221
tic 83
timer 21, 29
tlist 86
tlist 11
toc 83
tokens 18
tol 92
’ 13
true 19
type

string 17
typeof 9

uicontrol 46
uimenu 46
Undefined 24
unix
unix_g 42
unix_s 42
unix_w 42
unix_x 42

unix 42
unsetmenu 43

varargin 34
vector field 50
visible 55
Visual C++ 161

web 7
where 35
whereami 35

while 29, 30
who 10
whos 10
widget 223

definition 222
Windows 27
windows

dialog 43
write 38

x_choices 43
x_choose 43
x_dialog 43
x_mdialog 43
x_message 43
xbasc 48, 60
xbasr 60
xclick 44
xdel 61
xget 61
xgetmouse 44
xinit 60
xload 41
xor 142
xpause 272
xpoly 61
xpolys 53
xrects 61
xrects 52
xs2latex 59
xs2ps 60
xsave 41
xset 61
clipgrf 52
pixmap 61
wshow 61
thickness 53
window 48
wwpc 61
xtape 60

zero crossing 138, 191
zeros 13
zeta 91
zoom 49
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