
Chapter 14

MODELING
AND SIMULATION
OF WAVEFORM CHANNELS

14.1 Introduction

Modern communication systems operate over a broad range of communication chan-
nels including twisted pairs of wires, coaxial cable, optical fibers, and wireless
channels. All practical channels introduce some distortion, noise, and interfer-
ence. Appropriate modulation, coding, and other signal-processing functions such
as equalization, are used to mitigate the degradation induced by the channel and
to produce a system that satisfies the throughput and quality of service objectives
while meeting the constraints on power, bandwidth, complexity, and cost. If the
channel is relatively benign (e.g., does not significantly degrade the signal), or is well
characterized, the design of the communication system is relatively straightforward.

What complicates the design is that many communication channels, such as
the mobile radio channel, introduce significant levels of interference, distortion, and
noise. The mobile radio channel is also time varying and undergoes fading. In
addition, some channels are so variable that they are difficult to characterize. Fur-
thermore, wireless communication systems, such as next-generation PCS, must be
designed to operate over radio channels all over the world, in a variety of envi-
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ronments from urban areas to hilly terrains, and under a wide variety of weather
conditions. While it is possible to build prototypes of a proposed system and field-
test the prototype in many locations around the globe, such an approach will be
very expensive and will not be feasible in the early stages of the system design
process when a number of candidate designs must be explored. The only feasible
approach is to create appropriate models for the channel, and base the initial design

on those models.
Given either deterministic or statistical models for communications channels, it

might be possible, at least in the initial stages of communication system design,
to use analytical approaches for evaluating the performance of a given design. For
example, if we can assume that the “fading” in a channel has a Rayleigh amplitude
probability density function, and the noise is additive Gaussian, the probability
of error for a binary communication system operating over this channel can be
expressed as

Pe = 1/2γb (14.1)

where γb is the “average” value of the signal-to-noise ratio (SNR) at the receiver
input. This expression can then be used to determine such things as the transmitter
power required to ensure a given error probability. However, when the system is
actually built, implementation effects such as nonideal filters and nonlinear ampli-
fiers must be considered. These effects are difficult to characterize analytically and,
in most cases, one must resort to simulation or to a combination of simulation and
analytical analysis. Thus, modeling and simulation play a central role in the design
of communication systems. These two topics are covered in this chapter with an
emphasis on simulation approaches and methodologies for wireless communication
channels.

14.1.1 Models of Communication Channels

While a communication channel represents a physical medium between the trans-
mitter and the receiver, the “channel model” is a representation of the input-output
relationship of the channel in mathematical or algorithmic form. This model may
be derived from measurements, or based on the theory of the physical propagation
phenomena. Measurement-based models lead to an empirical characterization of the
channel in the time or frequency domain, and often involve statistical descriptions in
the form of random variables or random processes. The parameters of the underly-
ing distributions and power spectral densities are usually estimated from measured
data. While measurement-based models instill a high degree of confidence in their
validity, and are often the most useful models for successful design, the resulting
empirical models often prove unwieldy and difficult to generalize unless extensive
measurements are collected over the appropriate environments. For example, it is
very difficult to use measurements taken in one urban location to characterize a
model for another urban location unless a substantial amount of data is collected
over a wide variety of urban locations, and the necessary underlying theory is avail-
able to justify extrapolating the model to the new location.



Section 14.1. Introduction 531

Developing mathematical models for the propagation of signals over a transmis-
sion medium requires a good understanding of the underlying physical phenomena.
For example, to develop a model for an ionospheric radio channel, one must under-
stand the physics of radio-wave propagation. Similarly, a fundamental understand-
ing of optical sciences is needed to develop models for single mode and multimode
optical fibers. Communication engineers rely on experts in the physical sciences to
provide the fundamental models for different types of physical channels.

One of the challenges in channel modeling is the translation of a detailed physical
propagation model into a form that is suitable for simulation. Mathematical models,
from a physical perspective, might often be extremely detailed and may not be
in a form suitable for simulation. For example, the mathematical model for a
radio channel may take the form of Maxwell’s equations. While accurate, this
model must be simplified and converted to a convenient form, such as a transfer
function or impulse response, prior to using it for simulation. Fortunately, this is a
somewhat easier process than deriving fundamental physical models and specifying
the parameters of such models. Once a physical model has been derived, and the
parameter values specified, translating the physical model into a simulation model
(algorithm) is usually straightforward.

14.1.2 Simulation of Communication Channels

Physical communication channels such as wires, wave guides, free space, and optical
fibers often behave linearly. Some channels, such as the mobile radio channel, while
linear, may behave in a random time-varying manner. The simulation model of
these channels falls into one of the following two categories:

1. Transfer function models for time-invariant channels. Examples are wires,
free-space propagation, and optical fibers. In such models, the channel is
assumed to be static in nature (i.e., the channel has a time-invariant impulse
response), which provides a particular frequency response due to the fixed
delays within the channel. The transfer function of the time-invariant channel
is said to be “flat” if the applied message source has a bandwidth for which
the channel has a constant gain response. The channel is said to be “frequency
selective” if the applied modulated message source has a bandwidth over which
the channel has a significant gain variation.

2. Tapped delay line (TDL) models for time-varying channels. An important
example is the mobile radio channel. For these channel models, the channel
is assumed to vary over time. If the channel changes during the smallest time
interval of interest for an applied signal, the channel is said to be “fast fading.”
If the channel remains static for a large number of consecutive symbols of the
applied source, the channel is said to be “slow fading” and the channel can be
treated as in (1) above over the particular span of time for which the channel
is static.

Transfer function models can be simulated in either the time domain or frequency
domain using finite impulse response (FIR) or infinite impulse response (IIR) filters.
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Empirical models in the form of measured or synthesized impulse or frequency
responses are usually simulated using FIR techniques. Analytical expressions for
the transfer function are easier to simulate using IIR techniques. IIR and FIR filters
were discussed in detail in Chapter 5.

Simulation models for randomly time-varying (fading) channels take the form
of TDLs with tap gains and delays that are random processes. Given the random
process model for the underlying time variations (fading), the properties of the
tap gain process can be derived and simulated using the techniques discussed in
Chapter 13. If the channel is assumed to be slowly time varying, so that chan-
nel conditions do not change over many transmitted symbols, then we can use a
snapshot (i.e., static impulse response) of the channel for simulation. This may be
repeated as channel conditions change. By repeating the simulations for a large
number of channel conditions, we can infer system performance over longer periods
of time using performance measures, such as outage probabilities, as discussed in
Chapter 11.

14.1.3 Discrete Channel Models

The focus of this chapter is on waveform-level channel models, which are used to
represent the physical interactions between a transmitted waveform and the channel.
Waveform channel models are sampled at an appropriate sampling frequency. The
resulting samples are processed through the simulation model. Another technique,
which is often more efficient for some applications, is to represent the channel by a
finite number of states. As time evolves, the channel state changes in accordance
with a set of transition probabilities. The channel can then be defined by a Markov
chain. The resulting channel model most often takes the form of a hidden Markov
model (HMM). Assuming that the HMM is constructed correctly, simulations based
on the HMM allow the performance of a communication system to be accurately
characterized with minimum computational burden. Discrete channel models and
HMMs are the subject of the following chapter.

14.1.4 Methodology for Simulating
Communication System Performance

Simulating the performance of a communication system operating over a time-
invariant (fixed) channel is rather straightforward. The channel is simply treated
as another linear time-invariant (LTIV) block in the system. Time-varying channels,
on the other hand, require a number of special considerations. The methodology
used will depend on the objective of the simulation and whether the channel is
varying slowly or rapidly with respect to the signals and subsystems that are being
simulated. Another important factor is the relationship between the bandwidth of
the applied signal and the bandwidth of the channel. The complexity of a useful
channel model is a function of both the time and frequency characteristics of both
the source and the channel.
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14.1.5 Outline of Chapter

The first part of this chapter is devoted to the development of models for com-
munication channels, starting with simple transfer function models for “wired” or
“guided” channels. These channels include twisted pairs, cables, waveguides, and
optical fibers. These channels are linear and time invariant and, therefore, a trans-
fer function or static impulse response model is sufficient. We then consider models
for free space radio channels that are linear but may be time varying.

The second part of this chapter deals with the simulation of communication
channels with the emphasis on the implemantation of TDL (tapped delay line) mod-
els for randomly time-varying channels. Three different TDL models of increasing
complexity and capabilities are developed.

We conclude the chapter with the description of a methodology for simulat-
ing the performance of communication systems operating over fading channels.
Throughout the chapter, near-earth and mobile communication channels will be
emphasized, since these channels present most of the challenges in the modeling
and simulation of channels, and also because of the current high level of interest in
wireless communications.

14.2 Wired and Guided Wave Channels

Electrical communication systems use a variety of conducting media such as twisted
pairs of wires and coaxial cable. These channels can be adequately characterized
by RLC circuit models, and the input-output signal transfer characteristics can
be modeled by a transfer function. Cable manufacturers often provide impedance
characteristics of the transmission line models for the cables, and it is easy to de-
rive transfer function models from this data. The transfer function is then used as
a simulation model. It is also easy to measure the frequency response of varying
lengths of cable and derive a transfer function model based on the resulting mea-
surements. In a large cable network it might be necessary to define the channel
using a number of random variables that characterize the parameters of a resulting
transfer function or static impulse response. The channel, in that instance, may be
treated as time invariant and, therefore, a time-varying model is not needed.

Waveguides and optical fibers can also be included in the broad category of
guided wave transmission media. While the mode of propagation might vary, chan-
nels in this category can be modeled as time-invariant linear systems characterized
by transfer functions.

Guided lightwave communication systems use optical fibers, while free-space
optical communication systems transmit light through the air. The most common
type of lightwave communication system uses either a single-mode or multimode
fiber cable as the channel, and has a binary digital source and a receiver that makes
a decision based on the energy received during each bit interval.

Besides attenuating the transmitted pulses, the optical fiber distorts or spreads
the transmitted pulses. There are two different distortion mechanisms: chromatic
dispersion and intermodal dispersion. Chromatic dispersion is a result of the dif-
ferences in the propagation velocities of different transmitted spectral components.
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Intermodal dispersion is seen in multimode fibers and results from a large number of
propagation paths traveling along the fiber and arriving at the detector input with
different delays. This is a multipath effect. Joints and splices in a fiber network
cause reflections that can be approximated as additional intermodal dispersion. The
multipath channel model was briefly introduced in Chapter 4 and will be studied
in more detail in Section 14.4. While the emphasis in Section 14.4 is on the fad-
ing radio channel, the material to be presented is applicable to a wide variety of
channels, including cables and optical fibers.

The relationship between the input and the output of a fiber can be described
by the lowpass equivalent transfer function [1, 2]

H(f) =

∫
∞

−∞

S(λ)G(λ)Him(λ)Hc(λ, f)dλ (14.2)

where S(λ) is the source spectrum as a function of wavelength λ, G(λ) is the
frequency-selective gain of the fiber, Him(λ) is the intermodal dispersion, and
Hc(λ, f) is the chromatic dispersion [2]. The intermodal dispersion is

Him(f) =
1

σim

√
2π

exp
[(
−σ2

im(2πf)2/2
)
− j2πftd

]
(14.3)

where σim is the rms impulse response width and td is the fiber time delay. The
chromatic dispersion is

Hc(λ, f) = exp [−j2πflT (λ)] (14.4)

where l is the fiber length and T (λ) is the group delay of the fiber [2].
The source spectrum S(λ), the dispersion characteristics T (λ), and the loss L(λ)

are obtained from the manufacturer’s data sheets for the source and the fiber, and
are used to compute the transfer function by substituting them in (14.2) and carry-
ing out the integration numerically for different values of f . Several approximations
for S(λ) and T (λ) are used to simplify the computation of the transfer function [1,
2, 3]. For example, the source spectrum can be assumed to be a frequency impulse
for ideal sources. A Gaussian approximation with mean λ0 can be used for most
practical sources. The group delay function is often approximated by a parabolic
function in λ − λ0. Once the integral in (14.2) is evaluated, it is stored in tabu-
lar form, and the simulations are carried out using an FIR implementation for the
channel.

The model given in (14.2) is an input power to output power transfer function
model for the fiber, and is valid for use in direct detection lightwave communication
systems in which the source spectrum is very narrow compared to the modula-
tion bandwidth. For wideband systems, and for coherent optical communication
systems, the model is not valid. The reader is referred to the lightwave communica-
tions literature for appropriate transfer function models for these systems [1, 2, 3].

14.3 Radio Channels

Radio channels have been used for long-distance communications since the early
days of electrical communications starting with Marconi’s experiments in radio
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telegraphy. The propagation of radio waves through the atmosphere, including the
ionosphere, which extends several hundred kilometers above the surface of the earth,
is an extremely complex phenomenon. Atmospheric propagation takes on a wide
range of behaviors depending on many factors including the frequency and band-
width of the signal, the types of antennas used, the terrain between the transmit
and receive antennas (rural, urban, indoor, outdoor, etc.), and weather conditions
(clear air, rain, fog, etc.). Atmospheric scientists have devoted considerable effort to
the understanding and development of models that describe radio-wave propagation
through the atmosphere. Also, many measurement programs were carried out over
the past several decades to gather empirical propagation data for HF to microwave.
All of these efforts have led to a somewhat better understanding of how to model
radio-wave propagation through the atmosphere, and how to use these models to
aid in the analysis, design, and simulation of modern communication systems. The
literature on modeling radio channels is vast and any effort to summarize this liter-
ature in a few pages would be inadequate. Nevertheless, we will attempt to provide
the reader with a sampling of the various approaches to modeling and simulating
communication systems.

From a communication systems designer’s point of view, propagation models
fall into two categories: those that aid in the calculation of path losses and those
that aid in the modeling of signal distortion that may be due to multipath effects
or random variations in the propagation characteristics of the channel. While the
first category of models is used to establish the link power budgets and coverage
analysis during initial design, it is the latter class of models that aid in the detailed
design of communication systems. Hence, our focus will be on the second category
of models, with an emphasis on approaches to simulating them efficiently.

We begin our discussion of channel models with an “almost” free-space channel
that treats the region between the transmit and receive antennas as being free of
all objects that might absorb or reflect RF energy. It is also assumed that the
atmosphere behaves as a uniform and nonabsorbing medium, and that the earth
is infinitely far away from the propagation path. Such a model is, for example,
appropriate for satellite links.

In this idealized model, the channel simply attenuates the signal, and waveform
distortion does not occur. The attenuation is computed according to the free-space

propagation model defined by

Lf =

(
4πd

λ

)2

(14.5)

where λ is the wavelength of the transmitted signal and d is the distance between
the transmitter and receiving antennas, both of which are assumed to be omnidi-
rectional. The transmitter and receiver antenna gains are taken into account while
calculating the actual received power.

For most practical channels in which the signal propagates through the atmo-
sphere and near the ground, the free-space propagation channel assumption is
not adequate. The first effect that must be included is the atmosphere, which
causes absorption, refraction, and scattering. Absorption due to the atmosphere,
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when considered over narrow bandwidths, results in additional attenuation. How-
ever, over larger bandwidths, absorption is frequency dependent and can usually be
modeled by a transfer function. This filtering effect can be considered time invari-
ant, or at least quasi-static, since the channel is very slowly changing with respect
to the signal. Other atmospheric phenomena, such as phase distortion introduced
by the ionosphere, can also be modeled by a phase response that is slowly varying
or time invariant. Several examples of transfer function models used to characterize
certain types of atmospheric channels are described in the following paragraphs.

Other atmospheric effects (other than absorption) and the presence of ground
and other objects near the transmission path often lead to what is known as mul-
tipath propagation. Multipath propagation is the arrival of a signal over multiple
reflected and/or refracted paths from the transmitter to the receiver. These ef-
fects can also be time varying due to changes in atmospheric conditions or relative
motion of the transmitting and receiving antennas, as is the case in mobile com-
munications. The term scintillation, which originated in radio astronomy, is used
to describe time variations in channel characteristics due to physical changes in the
propagation medium, such as variations in the density of ions in the ionosphere
that reflect high frequency (HF or shortwave) radio waves. Multipath fading is the
terminology used in mobile communications to describe changes in channel condi-
tions and the resulting changes in the received signal characteristics. Models for
multipath fading channels will be covered in a later section of this chapter.

14.3.1 Tropospheric Channel

Tropospheric (non-ionospheric) communications use VHF (30 to 300 MHz) and
UHF (300 MHz to 3 GHz) frequency bands for communications over distances up
to several hundred kilometers. In these frequency bands, the oxygen and water
vapor present in the atmosphere absorb RF energy. The loss due to absorption is
dependent on the frequency of the RF wave as well as the atmospheric conditions,
particularly the relative humidity. A typical set of characteristics for propagation
losses due to atmospheric absorption is given in [4].

The frequency selective absorption characteristics of the atmosphere can be ap-
proximated by a transfer function of the form [4]

H(f) = H0 exp{j0.02096f
[
106 + N(f)

]
l} (14.6)

where N(f) is the complex refractivity of the atmosphere in parts per million, and
is given by

N(f) = N0 + D(f) + jN ′′(f) (14.7)

In (14.6) and (14.7) H0 is a constant, N0 is the frequency dependent refractivity,
D(f) is the refractive absorption, N ′′(f) is the absorption, and l is the distance
in km. These parameters are dependent on frequency and atmospheric conditions
such as temperature, barometric pressure, and relative humidity. Typical values are
tabulated in [4].
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Given the atmospheric conditions and the bandwidth occupied by the transmit-
ted signal, the transfer function can be computed empirically for various values of
frequency using (14.6) and (14.7). The lowpass equivalent transfer function can be
obtained by frequency translation, and the resulting channel model can be simulated
using FIR techniques.

14.3.2 Rain Effects on Radio Channels

Rain has a significant impact on microwave propagation at higher frequencies
(greater than 10 GHz), since the size of the rain drops is on the order of the
wavelength of the transmitted signal. Various techniques have been proposed in
the literature for modeling the effects of rain [5, 6]. The attenuation due to rainfall
is a function of the rate of rainfall and frequency. At higher frequencies and rain
rate, rain-induced attenuation, as well as depolarization, is much more significant.
Thus, attenuation increases as both rain rate and frequency increase. In addition,
there are resonant peaks in the attenuation characteristic that result in significantly
greater attenuation in the neighborhood of these peaks. Substantial resonant peaks
occur at 22 GHz and 60 GHz. The peak at 22 GHz is due to water vapor, and the
peak at 60 GHz is due to molecular oxygen. These effects are well documented [5].

Attenuation curves due to rainfall are usually computed for a given geographic
location using the statistics of the rain rates for that location. For satellite com-
munications, the attenuation is computed as a function of the elevation angle of
the ground station antenna (with respect to the horizon) and frequency. Lower
elevation means that there is more rain water in the transmission path and hence
the attenuation is higher. The effect of rainfall is typically computed for a given
outage probability, which is the fraction of the time that the link BER will exceed
an acceptable threshold value (usually 10−3 for voice communications and 10−6 for
data links).

Over relatively small bandwidths, the effects of rain can be accounted for by
simply including an additional attenuation term in the channel model. However,
as the bandwidth of the signal becomes larger, the attenuation varies over the
bandwidth, and a transfer function type model is required. The amplitude response
of the transfer function has a linear tilt [on a log (dB) scale] and the phase can be
assumed linear.

Free-space propagation channels at higher frequencies generally use highly direc-
tional antennas that have a particular polarization characteristic. When the carrier
frequency is such that the wavelength is much greater than the size of atmospheric
particles, and when there are no physical obstructions to induce multipath, it be-
comes possible to use antenna polarization to isolate channels. In communication
systems that use multiple orthogonal polarizations for different signals, the depo-
larizing effect of rain must be considered. Depolarization means that energy in
one polarization leaks into, or couples with, the energy in the orthogonal polariza-
tion. This produces cross-talk [6, 7, 8]. If the two signals that are transmitted on
orthogonal polarizations are

s̃i(t) = Ai(t) exp [jφi(t)] , i = 1, 2 (14.8)
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the simplest model for the two received signals with depolarization is

r̃1(t) = α11s̃1(t) + α12s̃2(t)
r̃2(t) = α21s̃1(t) + α22s̃2(t)

(14.9)

where the ratio 20 log (α11/α21) is a measure of the cross-polarization interference
(or XPI) on signal 1 from signal 2. While a variety of approximations are available in
the literature for analyzing the effects of XPI on analog and digital communication
systems, the need for simulation increases as the system departs from the ideal.

14.4 Multipath Fading Channels

14.4.1 Introduction

We now turn our attention to the modeling and simulation of multipath and motion-
induced fading, which are two of the most severe performance-limiting phenomena
that occur in wireless radio channels. In any wireless communication channel there
can be more than one path in which the signal can travel between the transmitter
and receiver antennas. The presence of multiple paths may be due to atmospheric
reflection or refraction, or reflections from buildings and other objects. Multipath
and/or fading may occur in all radio communication systems. These effects were
first observed and analyzed for HF troposcatter systems in the 1950s and 1960s
[9]. Much of the current interest is in the modeling and simulation of multipath
fading in mobile and indoor wireless communications in the 1 − 60 GHz frequency
range. Although the fading mechanisms may be different, the concepts of modeling,
analysis, and simulation are the same.

14.4.2 Example of a Multipath Fading Channel

To illustrate the basic approach to modeling fading channels, let us consider a
mobile communication channel in which there are two distinct paths (or rays) from
the mobile unit to a fixed base station, as illustrated in Figure 14.1. Although
Figure 14.1 shows only two paths, it is easily generalized to N paths. For the
N -path case the channel output (the input signal to the mobile receiver) is

y(t) =

N∑

n=1

an(t)x(t − τn(t)) (14.10)

where an(t) and τn(t) represent the attenuation and the propagation delay asso-
ciated with the nth multipath component, respectively. Note that the delays and
attenuations are shown as functions of time to indicate that, as the automobile
moves, the attenuations and delays, as well as the number of multipath compo-
nents, generally change as a function of time. In (14.10) the additional multipath
components are assumed to be caused by reflections from both natural features,
such as mountains, and manmade features, such as additional buildings. Further-
more, each multipath component or ray may be subjected to local scattering in
the vicinity of the mobile due the presence of objects such as signs, road surfaces,
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Base
station

Path 1

Mobile

Path 2

time t + αtime t

Figure 14.1 Example of a multipath fading channel.

Source: M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of Communications

Systems, 2nd ed., New York: Kluwer Academic/Plenum Publishers, 2000.

and trees located near the mobile. The total signal that arrives at the receiver is
made up of the sum of a large number of scattered components. These components
add vectorially with random phases and hence the resulting complex envelope can
be modeled as a complex Gaussian process by virtue of the central limit theorem.
Movement over small distances of the order of λ/2 (about 15 cm at 1 GHz) can
result in significant phase changes in the scattered components within a ray and
cause components that add constructively at one location to add destructively at a
location just a short distance away. This results in rapid fluctuations in the received
signal amplitude/power and this phenomenon is called small scale or fast fading.

It should be noted that the small-scale fading is caused by changes in phase
rather than by path attenuation, since the path lengths change by only a small
amount over small distances. On the other hand, if the mobile moves over a larger
distance and the path length increases from 1 km to 2 km, the received signal
strength will drop, since the attenuation will change significantly. Movement over
larger distances (� λ) and changes in terrain features affect attenuation and re-
ceived signal power slowly. This phenomenon is called large-scale or slow fading
and is modeled separately as discussed in the following sections of this chapter.

We have seen that the complex envelope of the receiver input due to a large
number of scattered components is a complex Gaussian process. For the case in
which this process is zero mean, the magnitude of the process is Rayleigh. If a
line-of-sight (LOS) component is present, the process becomes Ricean. The effect
of this will be demonstrated in Example 14.1.
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The definition of fast fading and slow fading are, to some extent, in the eye of
the beholder. However, when speaking about fast and slow fading we usually have
an underlying symbol rate in mind. Slow-fading channels are typically defined as
channels in which the received signal level is essentially constant over many symbols
or data frames. Fast fading typically means that the received signal strength changes
significantly over time intervals on the order of a symbol time. The definition of
fast fading and slow fading therefore depends upon the underlying symbol rate.

We now determine the complex envelope of the received signal. Assume that
the channel input (the transmitted signal) is a modulated signal of the form

x(t) = A(t) cos(2πfct + φ(t)) (14.11)

Since waveform simulation is usually accomplished using complex envelope signals,
we now determine the complex envelope for both x(t) and y(t).

The complex envelope of the transmitted signal is, by inspection,

x̃(t) = A(t) exp [φ(t)] (14.12)

Substituting (14.11) for x(t) in (14.10) gives

y(t) =

N∑

n=1

an(t)A(t − τn(t)) cos [2πfc(t − τn(t)) + φ(t − τn(t))] (14.13)

which can be written

y(t) =

N∑

n=1

an(t)A(t − τn(t))

· Re {exp [jφ(t − τn(t))] exp [−j2πfcτn(t)] exp(j2πfct)} (14.14)

Since an(t) and A(t) are both real, (14.14) can be written

y(t) = Re

{
N∑

n=1

an(t)A(t − τn(t)) exp [jφ(t − τn(t))]

· exp [−j2πfcτn(t)] exp(j2πfct)

}
(14.15)

From (14.12) we recognize that

A(t − τn(t)) exp [jφ(t − τn(t))] = x̃(t − τn(t)) (14.16)

so that

y(t) = Re

{
N∑

n=1

an(t)x̃(t − τn(t)) exp [−j2πfcτn(t)] exp(j2πfct)

}
(14.17)



Section 14.4. Multipath Fading Channels 541

The complex path attenuation is defined as

ãn(t) = an(t) exp [−j2πfcτn(t)] (14.18)

so that

y(t) = Re

{
N∑

n=1

ãn(t)x̃(t − τn(t)) exp(j2πfct)

}
(14.19)

Thus, the complex envelope of the receiver input is

ỹ(t) =

N∑

n=1

ãn(t)x̃(t − τn(t)) (14.20)

The channel input-output relationship defined by (14.20) corresponds to a linear
time-varying (LTV) system with an impulse response

h̃(τ, t) =

N∑

n=1

ãn(t)δ(t − τn(t)) (14.21)

In (14.21), h̃(t, τ) is the impulse response of the channel measured at time t assuming
that the impulse is applied at time t− τ . Thus, τ represents the elapsed time or the
propagation delay. In the absence of movement or other changes in the transmission
medium, the input-output relationship is time invariant even though multipath is
present. In this case, the transmission delay associated with the nth propagation
path and the path attenuation are constant (the channel is fixed) and

ỹ(t) =

N∑

n=1

ãnx̃(t − τn) (14.22)

For the fixed-channel case, the channel can be represented in the time domain by
an impulse response of the form

h̃(τ) =
N∑

n=1

ãnδ(τ − τn) (14.23)

The corresponding representation in the frequency domain is

H(f) =
N∑

n=1

ãn exp(−j2πfτn) (14.24)

We see that for the time-invariant channel case, the channel simply acts as a filter
on the transmitted signal.

Example 14.1. In this example we simulate the BER performance of a QPSK
system operating over a fixed 3-ray multipath channel with AWGN, and compare
the BER performance with an identical system operating over an ideal AWGN
channel (no multipath). In order to simplify the simulation model we will make the
following assumptions:
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1. The channel has three paths consisting of an unfaded LOS path and two
Rayleigh components. The received power levels associated with each path,
and the differential delays between the three paths, are simulation parameters.

2. The Rayleigh fading in the channel affects only the amplitude of the trans-
mitted signal. The instantaneous phase is not affected.

3. The magnitude of the attenuation of each multipath component is constant
over a symbol interval and has independent values over adjacent intervals (no
doppler spectral shaping required).

4. No transmitter filtering is used, and the receiver model is an ideal integrate-
and-dump receiver.

The received signal for this example can be written as

ỹ(t) = a0x̃(t)︸ ︷︷ ︸
LOS

+ a1R1x̃(t)︸ ︷︷ ︸ +

Rayleigh

a2R2x̃(t − τ)︸ ︷︷ ︸
Delayed Rayleigh

(14.25)

where R1 and R2 are two independent Rayleigh random variables representing the
attenuation of the two Rayleigh paths, and τ is the relative delay between the two
Rayleigh components. The Fourier transform of (14.25) is

Ỹ (f) = a0X̃(f) + a1R1X̃(f) + a2R2X̃(f) exp(−j2πfτ) (14.26)

which leads to the channel transfer function

H̃(f) = a0 + a1R1 + a2R2 exp(−j2πfτ) (14.27)

Clearly, if the product fτ is not negligible over the range of frequencies occupied
by the signal, the channel is frequency selective, which leads to delay spread and
ISI. The values of a0, a1, and a2 determine the relative power levels P0, P1, and P2

of the three multipath components.
Simulations were conducted for each of the six sets of parameter values given in

Table 14.1. For each scenario, the BER is evaluated using semianalytic estimation.
In Table 14.1, the delay is expressed in terms of the sampling period. Since the
simulation sampling frequency is 16 samples per symbol, τ = 8 corresponds to a
delay of one-half the sample period. (See Appendix for code.)

The simulation results for Scenarios 1 and 2 are illustrated in Figure 14.2. In
Scenario 1, only a line-of-sight component is present. There is no multipath for
Scenario 1 and this result provides the semianalytic estimation of the BER for a
QPSK system operating in an AWGN environment. This simulation serves to verify
the simulation methodology and provide baseline results representing an ideal QPSK
system. For comparison purposes, this result is displayed along with the BER results
for all five of the remaining scenarios. Table 14.1 shows that Scenario 2 results by
adding a Rayleigh fading component to the LOS component of Scenario 1. This
gives rise to a Ricean fading channel. Since τ = 0, Scenario 2 is flat fading (not
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Table 14.1 Scenarios for Fading Example

Scenario P0 P1 P2 τ (samples) Comments
1 1.0 0 0 0 Validation
2 1.0 0.2 0 0 Ricean flat fading
3 1.0 0 0.2 0 Ricean flat fading
4 1.0 0 0.2 8 Ricean frequency selective fading
5 0 1.0 0.2 0 Rayleigh flat fading
6 0 1.0 0.2 8 Rayleigh frequency selective fading
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Figure 14.2 Scenario 1 (left-hand pane) and Scenario 2 (right-hand pane) illustrating
the calibration run and Ricean flat fading.
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frequency selective). Note the increase in BER compared to the baseline (no fading)
result given in Scenario 1.

The simulation results for Scenarios 3 and 4 are illustrated in Figure 14.3.
Scenario 3 is essentially equivalent to Scenario 2. The small difference is due to
the fact that the fading process is different from that used in Scenario 2 due to a
different initialization of the underlying random number generator. Scenario 4 is
the same as Scenario 3 except that the fading is now frequency selective. Note that
system performance is further degraded.

The simulation results for Scenarios 5 and 6 are illustrated in Figure 14.4. Note
that for both of these scenarios there is no line-of-sight component present at the
receiver input. Comparison of the Scenario 5 result with the preceding four results
shows that, even for the flat-fading scenario (left-hand pane), the performance is
worse than with any of the scenarios in which a line-of-sight component is present.
Scenario 6 is the same as Scenario 5 except that the fading is now frequency selective.
Note that system performace is further degraded. Rayleigh and Ricean channels
will be explored in greater detail in the following sections. �
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Figure 14.3 Scenario 3 (left-hand pane) and Scenario 4 (right-hand pane) illustrating
Ricean flat fading and frequency selective fading.
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Figure 14.4 Scenario 5 (left-hand pane) and Scenario 6 (right-hand pane) illustrating
Rayleigh flat fading and frequency selective fading.

Source: M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of Communications

Systems, 2nd ed., New York: Kluwer Academic/Plenum Publishers, 2000.

14.4.3 Discrete Versus Diffused Multipath

The number of multipath components will vary depending on the type of channel.
In microwave communication links between fixed microwave towers using large di-
rectional antennas (narrow beams), the number of multipath components will be
small, whereas in an urban mobile communication system using omnidirectional an-
tennas, there may be a large number of multipath components caused by reflections
from buildings. The same will be true for indoor wireless communications where
signals can bounce off walls, furniture, and other surfaces.

There are some situations like troposcatter channels, or some mobile radio chan-
nels, where it is more appropriate to view the received signal as consisting of a
continuum of multipath components rather than as a collection of discrete com-
ponents. This situation is called diffused multipath. We will see later on in this
chapter that the diffused multipath channel can be approximated by a (sampled
version of) discrete multipath channel for simulation purposes.



546 Modeling and Simulation of Waveform Channels Chapter 14

14.5 Modeling Multipath Fading Channels

The recent literature on communication systems contains a vast quantity of articles
dealing with the modeling and analysis of multipath fading channels, particularly
indoor wireless and outdoor mobile channels [10–15]. While a complete review of
the literature is outside the scope of this chapter, we will provide a brief review
of the modeling of outdoor mobile wireless channels leading to the development of
simulation techniques. These modeling and simulation techniques can be applied
to other multipath fading channels.

Modeling an outdoor mobile channel is usually carried out as a two-step process
which represents large-scale (macro) and small-scale (mirco) effects of multipath
and fading. As previously mentioned, large-scale fading represents attenuation or
path loss over a large area, and this phenomenon is affected by prominent terrain
features like hills, buildings, etc., between the transmitter and the receiver. The
receiver is often hidden or shadowed by such terrain features, and the statistics of
large-scale fading provide a way of computing the estimated signal power or path
loss as a function of distance. Small-scale fading deals with large dynamic variations
in the received signal amplitude and phase as a result of very small changes in the
spatial separation between the transmitter and the receiver.

There are three mechanisms that affect the quality of the received signal in a
mobile channel [13]: reflection, refraction, and scattering. Reflection occurs when
the radio wave impinges upon a large, smooth surface (water or large metallic
surfaces). Diffraction takes place when there is an obstruction in the radio path
between the transmitter and receiver causing secondary radio waves to form behind
the obstruction. This is called shadowing, and this phenomenon accounts for radio
waves reaching the receive antenna even though there is no direct or line-of-sight
path between the transmitter and the receiver. The third effect, scattering, results
from rough surfaces whose dimensions are of the order of the wavelength, which
causes the reflected energy to scatter in all directions.

While electromagnetic theory offers very complex models for these phenomena,
it is possible to use simpler statistical models for the input-output relationship in
a mobile channel. Specifically, the lowpass equivalent response of a mobile channel
can be modeled by a complex impulse response [12] having the form

h̃(τ, t) =

{[
k

dn
gsh (p(t))

]1/2
}

c̃(τ, p(t)), d > 1 km (14.28)

where the term in braces models the large-scale fading, and c̃(τ, p(t)) accounts for
the small-scale fading as a function of the position of p(t) at time t. The constant
K = −10 log10(k) is the median dB loss at a distance of 1 km. Since the reference
distance is 1 km, (14.28) is only valid for d > 1 km. Typically, K is of the order
of 87 dB at 900 MHz, d is the distance in meters between the transmitter and the
receiver, and the path loss exponent n has a value of 2 for free space (for most mobile
channels its value will range from 2 to 4, with higher values applying to obstructed
paths). The factor gsh(p(t)) accounts for shadowing due to buildings, tunnels, and
other obstructions at a given location p(t), and G = 10 log10(gsh(p(t))) is usually
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modeled as a Gaussian variable with a mean of 0 dB and a standard deviation of
6 to 12 dB depending upon the environment (this model is called the lognormal
shadowing model (see [13] for more details). It is a common practice to express the
path loss [the term in braces in (14.28)] as

L(d)dB = L(1 km)dB + 10n log(d) + Xσ (14.29)

where Xσ is a zero mean Gaussian variable with a standard deviation of 6 to 12
dB.

In (14.28), c̃(τ, p(t)) represents the complex lowpass equivalent impulse response
of the channel at position p(t), and the local multipath and fading that will result
from small spatial displacements around the location p(t). The path loss associated
with large-scale fading, represented by the term in braces in (14.28), as well as fading
due to shadowing, changes very slowly as a function of time at normal vehicular
speeds compared to the rate of change of c̃(τ, p(t)). Hence the channel attenuation
due to large-scale fading and shadowing may be treated as a constant within a
small local area, and the large-scale effect on system performance is reflected in
the average received signal. The dynamic behavior of receiver subsystems such as
tracking loops and equalizers, as well as the bit error rate of the system, will be
affected significantly by the small-scale behavior modeled by c̃(τ, p(t)). Hence much
of the effort in the modeling and simulation of mobile wireless channels is focused
on c̃(τ, p(t)). In the following discussion we will use c̃(τ, t) as a shorter notation for
c̃(τ, p(t)).

14.6 Random Process Models

A variety of models have been proposed for characterizing multipath fading chan-
nels, and almost all of them involve using random process models to characterize
fading (see [15] for an example). There are two classes of models for describing
multipath, the discrete multipath model (finite number of multipath components),
and the diffused multipath model (continuum of multipath components). In mobile
radio communications, the first model is often used for waveform-level simulation
of mobile radio channels, while the second model is used for troposcatter channels
having narrowband modulation. In both of these cases, the channel is modeled as
a linear time-varying system with a complex lowpass equivalent response c̃(τ, t). If
there are N discrete multipath components, the output of the channel consists of
the sum of N delayed and attenuated versions of the input. Thus

ỹ(t) =

N(t)∑

k=1

ãk (t) x̃ (t − τk (t)) (14.30)

The impulse response c̃(τ, t) is

c̃(τ, t) =

N(t)∑

k=1

ãk(t)δ(τ − τk(t)) (14.31)
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where N(t) is the number of multipath components, and ãk(t) and τk(t) are the
complex attenuation and the delay of the kth multipath at time t.

As previously mentioned, a multipath channel may be time invariant. However,
for all practical channels of interest, the channel may be characterized as time
varying (fading). Time variations arise for two reasons:

1. The environment is changing even though the transmitter and receiver are
fixed; examples are changes in the ionosphere, movement of foliage, and move-
ment of reflectors and scatterers.

2. The transmitter and the receiver are mobile even though the environment
might be static. Hence, in practical multipath channels, N , ak, and τk may
all be randomly time varying. An example is illustrated in Figure 14.5.

Random fluctuations in the received signal due to fading can be modeled by treating
c̃(τ, t) as a random process in t. If the received signal is made up of the sum of a
large number of scattered components in each path, the central limit theorem leads
to a model in which c̃(τ, t) can be represented as a complex Gaussian process in
t. At any time t, the probability density function of the real and imaginary parts
are Gaussian. This model implies that for each τ or τk, the ray is composed of a
large number of unresolvable components. Hence, c̃(τ, t) and ãk(t) are both complex
Gaussian processes in t.

If c̃(τ, t) has a zero mean, the envelope R = |c̃(τ, t)| has a Rayleigh probability
density function of the form

fR(r) =
r

σ2
exp

(
− r2

2σ2

)
, r > 0 (14.32)

where σ2 is the variance of the real and imaginary parts of c̃(τ, t).

Discrete
Multipath
Channel

(LTIV System)
Impulse response

~ ,c tτb g

Input Output

t1

t2

t3

t1 1+ τ t1 2+ τ t1 3+ τ

t t2 1 2 4+ +τ τ.....

t3 1+ τ t3 2+ τ

Figure 14.5 Example of a discrete multipath fading channel.
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If c̃(τ, t) has a nonzero mean, which implies the presence of a line-of-sight non-
faded path (referred to as a specular component), then R = |c̃(τ, t)| has a Ricean
probability density function of the form

fR(r) =
r

σ2
I0

(
Ar

σ2

)
exp

(
−r2 + A2

2σ2

)
, r > 0 (14.33)

where A is the nonzero mean of c̃(τ, t), and I0 (z) is the modified Bessel function
defined by

I0(z) =
1

2π

∫ 2π

0

exp(z cos(u)) du (14.34)

The ratio K = A2/σ2, referred to as the Ricean factor, is an indicator of the relative
power in the unfaded and faded components. Values of K � 1 indicate less severe
fading, whereas K � 1 indicates severe fading.

The channel is called a Rayleigh fading channel or a Ricean fading channel de-
pending on the pdf of | c̃(τ, t) |. Other distributions for | c̃(τ, t) | such as Nakagami
and Weibul are also possible [12]. Generalized probability density functions describ-
ing envelope statistics for a finite number of specular components, together with
diffuse multipath, have recently been developed [16]. In these results, Ricean and
Rayleigh fading are special cases. For discrete multipath channels, these pdfs apply
to | ãk(t) |. While the pdf of | c̃(τ, t) | describes the instantaneous value of the
complex impulse response, the temporal variations are modeled by either an appro-
priate autocorrelation function or power spectral density of the random process in
the t variable. We describe these models now.

14.6.1 Models for Temporal Variations
in the Channel Response (Fading)

The time-varying nature of the channel is mathematically modeled by treating c̃(τ, t)
as a wide sense stationary (WSS) random process in t with an autocorrelation
function

Rc̃c̃(τ1, τ2, α) = E {c̃∗(τ1, t)c̃(τ2, t + α)} (14.35)

In most multipath channels, the attenuation and phase shift associated with differ-
ent delays (i.e., paths) are assumed uncorrelated. This uncorrelated scattering (US)
assumption leads to

Rc̃c̃(τ1, τ2, α) = Rc̃c̃(τ1, α)δ(τ1 − τ2) (14.36)

Equation (14.36) embodies both the wide sense stationary and uncorrelated scat-
tering assumptions. It is often referred to as the WSSUS model for fading, and
was originally proposed by Bello [9]. This autocorrelation function is denoted by
Rc̃c̃(τ, α) and is given by

Rc̃c̃(τ, α) = E {c̃∗(τ, t)c̃(τ, t + α)} (14.37)
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By Fourier transforming the autocorrelation function we can obtain a frequency
domain model for fading in the form of a power spectral density as

S(τ, λ) = F {(Rc̃c̃(τ, α)} =

∫
∞

−∞

Rc̃c̃(τ, α) exp(−j2πλα) dα (14.38)

The quantity S (τ, λ) is called the scattering function of the channel, and is a func-
tion of two variables, a time domain variable (delay) and a frequency domain vari-
able, which is called the doppler frequency variable. The scattering function pro-
vides a single measure of the average power output of the channel as a function of
delay and doppler frequency.

From the scattering function we can obtain the most important parameters of
the channel which impact the performance of a communication system operating
over the channel. We start with the “multipath intensity” profile, defined as

p(τ) = Rc̃c̃(τ, 0) = E
{
|c̃(τ, t)|2

}
(14.39)

which represents the average received power as a function of delay. Equation (14.39)
is commonly referred to as the power-delay profile [13]. It can be shown that p (τ)
is related to the scattering function via

p(τ) =

∫
∞

−∞

S(τ, λ) dλ (14.40)

Another function that is useful for characterizing fading is the doppler power spec-
trum, which is derived from the scattering function according to

Sd(λ) =

∫
∞

−∞

S(τ, λ) dτ (14.41)

The relationships between these functions are shown in Figure 14.6.
The multipath intensity profile is usually measured by probing the channel with

a wideband RF waveform where the modulating signal is a high-rate PN sequence.
By crosscorrelating the receiver output against delayed versions of the PN sequence
and measuring the average value of the correlator output, one can obtain the power
versus delay profile. Where measurements for mobile radio applications with a fixed
base station and mobile user are concerned, the power delay profile is measured in
short distance increments of fractions of a wavelength. The recorded power profile
is then averaged over 10 to 20 wavelengths in order to average out the effects
of Rayleigh fading. The correlation measurements made as a function of position,
i.e., the spatial autocorrelation function, can be converted to a temporal correlation
function by noting that ∆X = v∆t, where ∆X is the incremental spatial movement
of the mobile and v is the speed. Thus, the doppler spectrum can be obtained by
transforming the temporal correlation function for any vehicle speed.

14.6.2 Important Parameters

The scattering function, the multipath intensity profile, and the doppler spectrum
describe various aspects of a fading channel in detail. The two most important
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Figure 14.6 Relationship between various parts of the scattering function.

parameters, however, for simulating a fading channel are the multipath spread and
the doppler bandwidth.

Multipath Spread

Important indicators of the severity of the multipath effect are the maximum delay
spread and the rms delay spread. The (maximum) delay spread which represents
the value Tmax of the delay beyond which the received power p (τ) is very small,
and the rms delay spread στ , is defined as

στ = [< τ2 > − < τ >2]1/2 (14.42)

where < x > denotes the time-average value of x and

< τk >=

∫
τkp(τ) dτ∫
p(τ) dτ

(14.43)

When the delay spread is of the order of, or greater than, the symbol duration in
a digital communication system, the delayed multipath components will arrive in
different symbol intervals and cause intersymbol interference, which can adversely
impact the BER performance. This is equivalent to the time-varying transfer func-
tion of a channel having a bandwidth less than the signal bandwidth. In this case,
the channel behaves as a bandlimiting filter and is said to be frequency selective.
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For a channel that is not frequency selective, the maximum delay spread is much
smaller than the symbol duration Ts

Tmax � Ts or σT < 0.1Ts (14.44)

In the nonfrequency-selective case, all of the delayed multipath components arrive
within a short fraction of a symbol time. In this case, the channel can be modeled by
a single ray, and the input-output relationship can be expressed as a multiplication.
In other words

ỹ (t) = ã (t) x̃ (t) (14.45)

For a frequency-selective channel

Tmax � Ts or σT > 0.1Ts (14.46)

and the input-output relationship is the convolution

ỹ (t) = c̃ (τ, t) ~ x̃ (t) (14.47)

where ~, as always, denotes convolution. While the delay spread (maximum or
rms) has a significant impact on the performance of a communications system, it
has been observed that the system performance is not very sensitive to the shape of
the multipath intensity profile p(τ). The most commonly assumed forms for p(τ)
are uniform and exponential.

Doppler Bandwidth

The doppler bandwidth, or the doppler spread, Bd, is the bandwidth of the doppler
spectrum Sd(λ) as defined by (14.41), and is an indicator of how fast the channel
characteristics are changing (fading) as a function of time. If Bd is of the order of
the signal bandwidth Bs (≈ 1/Ts), the channel characteristics are changing (fading)
at a rate comparable to the symbol rate, and the channel is said to be fast fading.
Otherwise the channel is said to be slow fading. Thus

Bd � Bs ≈ 1/Ts (Slow fading channel)

Bd � Bs ≈ 1/Ts (Fast fading channel) (14.48)

If the channel is slow fading, then a snapshot approach can be used to simulate
the channel for performance estimation. Otherwise, the dynamic changes in the
channel conditions must be explicitly simulated.

14.7 Simulation Methodology

We now turn our attention to the simulation of multipath fading channels. We
will assume that either a discrete or diffused multipath model is specified and that
the models are WSSUS. The distributions, delay profile, and the doppler spectrum,
are assumed to be given. Furthermore, we will assume the fading to be Rayleigh
or Ricean, with an emphasis on Rayleigh fading, since the Ricean model can be
obtained from the Rayleigh model by adding a nonzero mean. We begin with the
diffused multipath channel.
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14.7.1 Simulation of Diffused Multipath Fading Channels

The diffused multipath channel is a linear time-varying system that is characterized
by a continuous, rather than discrete, time-varying impulse response c̃(τ, t). The
simulation model for an LTV system was derived in Chapter 13 and we repeat only
the essential steps here. Since the lowpass input to the channel can be assumed
to be bandlimited to a bandwidth B of the order r/2, where r is the symbol rate
(B ≈ r for the bandpass case), we can represent the lowpass input in terms of its
sampled values using the minimum sampling rate of r samples per second as

x̃(t − τ) =
∞∑

n=−∞

x̃(t − nT )
sin(2πB(τ − nT ))

2πB(τ − nT )
(14.49)

where T = 1/r is the time between samples. Substituting the above representation
of x̃(t − τ) in the convolution integral

ỹ(t) =

∫
∞

−∞

c̃(τ, t)x̃(t − τ) dτ (14.50)

we obtain

ỹ(τ) =

∫
∞

−∞

c̃(τ, t)

{
∞∑

n=−∞

x̃(t − nT )
sin(2πB(τ − nT ))

2πB(τ − nT )

}
dτ

=

∞∑

n=−∞

x̃(t − nT )

∫
∞

−∞

c̃(τ, t)

{
sin(2πB(τ − nT ))

2πB(τ − nT )

}
dτ (14.51)

Thus

ỹ(t) =
∞∑

n=−∞

x̃(t − nT )g̃n(t) (14.52)

where

g̃n(t) =

∫
∞

−∞

c̃(τ, t)

{
sin(2πB(τ − nT ))

2πB(τ − nT )

}
dτ (14.53)

Simulation models for diffused multipath fading channels are derived from (14.52)
using two approximations. Truncating the sum in (14.52) so that only the terms
for which |n| ≤ m are included and approximating the integral in (14.53) as

g̃n(t) ≈ T c̃(nT, t) (14.54)

leads to the computationally efficient form

ỹ(t) =
∞∑

n=−∞

x̃(t − nT )g̃n(t) ≈
m∑

n=−m

x̃(t − nT )g̃n(t)

≈ T
m∑

n=−m

x̃(t − nT )c̃(nT, t) (14.55)
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Figure 14.7 TDL model for a diffused multipath channel with egn(t) = Tec(nT, T ).

Source: M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of Communications

Systems, 2nd ed., New York: Kluwer Academic/Plenum Publishers, 2000.

Equation (14.55) can be implemented using a tapped delay line as shown in Fig-
ure 14.7.

For a Rayleigh fading channel, the tap gain processes g̃n(t) ≈ T c̃(nT, t) are
zero mean complex Gaussian processes. They will be uncorrelated because of the
WSSUS assumption. The power spectral density of each tap gain process is specified
by the doppler spectrum, and the variance σ2

n of the nth tap gain process is given
by

E
{
|g̃n(t)|2

}
≈ σ2

n = T 2E{|c̃(nT, t)|2} = T 2p(nT ) (14.56)

and is obtained from the sampled values of the multipath intensity profile p(τ), an
example of which is shown in Figure 14.8, where the total number of taps is Tmax/T .

Special Cases

If the channel is time invariant, then c̃(τ, t) = c̃(τ), and the tap gains become
constants. Therefore

g̃n(t) = g̃n ≈ T c̃(nT ) (14.57)

In other words, the tap gains are sampled values of the impulse response of the
LTIV system, and the tapped delay line model reduces to an FIR filter performing
time-domain convolution. If the channel is frequency nonselective, then there is
only one tap in the model, and ỹ(t) = x̃(t)g̃(t), where g̃(t) is either a Rayleigh or
Ricean process.
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Figure 14.8 Sampled values of the power delay profile.

Source: M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of Communications

Systems, 2nd ed., New York: Kluwer Academic/Plenum Publishers, 2000.

Sampling

An important aspect of the TDL model that deserves additional attention is the
sampling rate for simulations. The TDL model shown in Figure 6.8 was derived
with continuous time input x̃(t) and output ỹ(t). However, in simulation we use
sampled values of x̃(t) and output ỹ(t) which should be sampled at 8 to 32 times
the bandwidth, where the bandwidth includes the effect of spreading due to the
time-varying nature of the system as defined in Chapter 13. Note that the Nyquist
rate of 2B, B = r/2 was used to derive the TDL model, and the tap spacing
of T = 1/r will be much greater than Ts, where Ts is the sampling time for the
input and output waveforms. It is of course possible to derive a TDL model with
a smaller tap spacing (i.e., more samples per symbols), but such a model will be
computationally inefficient and does not necessarily improve the accuracy of the
simulation.

Generation of Tap Gain Processes

The tap gain processes are stationary random processes with Gaussian probabil-
ity density functions and arbitrary power spectral density functions. The simplest
model for the tap gain processes assume them to be uncorrelated, complex, zero
mean Gaussian processes with different variances but identical power spectral densi-
ties. In this case, the tap gain processes can be generated by filtering white Gaussian
processes, as shown in Figure 14.9.

The filter transfer function is chosen such that it produces the desired doppler
power spectral density. In other words, H(f) is chosen such that

Sg̃g̃(f) = Sd(f) = Sw̃w̃(f)
∣∣∣H̃(f)

∣∣∣
2

=
∣∣∣H̃(f)

∣∣∣
2

(14.58)
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Figure 14.9 Generation of the nth tap gain process.

Source: M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of Communications

Systems, 2nd ed., New York: Kluwer Academic/Plenum Publishers, 2000.

where Sw̃w̃(f) is the power spectral density of the input white noise process, which
can be set equal to 1, and Sg̃g̃(f) is the specified doppler power spectral density of
the tap gain processes. The filter gain is chosen such that g̃(t) has a normalized
power of 1. The static gain σn in Figure 14.9 accounts for the different power levels
or variances for the different taps. If the power spectral density of the tap gains are
different, then different filters will be used for different taps.

Delay Power Profiles and Doppler Power Spectral Densities

As previously mentioned, the BER performance of a communication system is more
sensitive to the values of the rms and maximum delay spreads than to the shape of
the power delay profile. Therefore, simple profiles such as uniform or exponential
can be used for simulation. The delay profiles are normalized to have unit area (i.e.,
total normalized power, or the area under the locally averaged power delay profile,
is set equal to one). Thus

∫ Tm

0

p(τ)dt = 1 (14.59)

Typical rms delay spreads are given in Table 14.2.
The most commonly used models for doppler power spectral densities for mo-

bile applications assume that there are many multipath components, each having
different delays, and that all components have the same doppler spectrum. Each

Table 14.2 Typical rms Delay Spreads

Link Type
Link

Distance
rms Delay Spread

Troposcatter 100 Km milliseconds (10−3)
Outdoor Mobile 1 Km microseconds (10−6)

Indoor 10 m nanoseconds (10−9)
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multipath component (ray) is actually made up of a large number of simultaneously
arriving unresolvable multipath components, having angle of arrival with a uniform
angular distribution at the receive antenna. This channel model was used by Jakes
and others at Bell Laboratories to derive the first comprehensive mobile radio chan-
nel model for both doppler effects and amplitude fading effects [11]. The classical
Jakes’ doppler spectrum has the form, which was initially simulated in Chapter 7
(see Example 7.11),

Sd(f) = Sg̃ng̃n
(f) =

K√
1 − (f/fd)2

, −fd ≤ f ≤ fd (14.60)

where fd = v/λ is the maximum doppler shift, v is the vehicle speed in meters
per second, and λ is the wavelength of the carrier. While the doppler spectrum
defined by (14.60) is appropriate for dense scattering environments like urban ar-
eas, a “Ricean spectrum” is recommended for rural environments in which there is
one strong direct line-of-sight path and hence Ricean fading. The Ricean doppler
spectrum has the form

Sd(f) = Sg̃ng̃n
(f) =

0.41√
1 − (f/fd)2

+ 0.91δ(f ± 0.7fd), −fd ≤ f ≤ fd (14.61)

and is shown in Figure 14.10. Other spectral shapes used for the doppler power
spectral densities include Gaussian and uniform. Typical doppler bandwidths in
mobile applications at 1 GHz will range from 10 to 200 Hz.

There are several ways of implementing the doppler spectral shaping filter needed
to generate the tap gain processes in the TDL model for the channel when using
the model assumed by Jakes. An FIR filter in time domain is the most common
implementation, since doppler power spectral densities do not lend themselves easily
to implementation in recursive form. The generation of a Jakes spectrum using FIR
filtering techniques was illustrated in Chapter 7. A block processing model based
on frequency domain techniques is discussed in [13].

In generating the tap gain processes it should be noted that the bandwidth of
the tap gain processes for slowly time-varying channels will be very small compared

Ricean component
Jakes Spectrum

(continuous)

S fd ( )

− fd 0 fd

f
0 7. fd−0 7. fd

Figure 14.10 Example of doppler power spectral densities.
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to the bandwidth of the signals that flow through them. In this case, the tap gain
filter should be designed and executed at a slower sampling rate. Interpolation can
be used at the output of the filter to produce denser samples at a rate consistent
with the sampling rate of the signal coming into the tap. Designing the filter at the
higher rate will lead to computational inefficiencies as well as stability problems.

Correlated Tap Gain Model

The approximation of the tap gain processes given in (14.53) and (14.54) by

g̃n (t) =

∫
∞

−∞

c̃ (τ, t)

{
sin(2πB(τ − nT ))

2πB(τ − nT )

}
dτ ≈ T c̃ (nT, t) (14.62)

leads to uncorrelated tap gain functions. Without the approximation, the tap gain
functions will be correlated. It can be shown that the correlation between gn(t) and
gm(t) is given by

Rm,n(η) = E {g∗m(t)gn(t + η)}

=

∫
Rc̃c̃(τ, η) sinc(2Bτ − m) sinc(2Bτ − n)dτ (14.63)

where T = 1/2B is the tap spacing.
Generating a set of correlated random processes with arbitrary power spectral

density functions is very difficult. An approximation that simplifies this problem
somewhat makes the reasonable assumption that all tap gain functions have the
same power spectral density. Therefore, we assume that

S (τ, λ) = m (τ)Sd (λ) (14.64)

where S (τ, λ) is the scattering function, m(τ) is the normalized power delay power
profile, and Sd (λ) is the doppler spectrum. The solution to this case may be found
in [17].

An approach to solving the general problem has been recently proposed [18].
This method is based on fitting a vector ARMA model to the tap gain processes
and deriving the vector ARMA model from the given correlations and power spectral
densities. The procedure for fitting the vector ARMA model is very complex, and
it is not clear whether the extra work required can be justified in terms of the
improvement in accuracy.

14.7.2 Simulation of Discrete Multipath Fading Channels

Compared to the diffused multipath model, simulation of the discrete multipath
model is rather straightforward, at least conceptually. We must keep in mind that
since the channel is dynamic in both space and time, care must be used to avoid
aliasing [19]. The input-output relationship of a discrete multipath model is given by

ỹ(t) =

N(t)∑

k=1

ãk (t) x̃ (t − τk (t)) (14.65)



Section 14.7. Simulation Methodology 559

where ãk(t) is the complex path attenuation as discussed in Section 14.4. In (14.65)
it can be assumed that the number of multipath components and the delay structure
will vary slowly compared to the variations in ãk(t). Hence the delays τk(t) can be
treated as constants over the duration of a simulation, and the preceding equation
can be written as

ỹ(t) =

N(t)∑

k=1

ãk (t) x̃ (t − τk) (14.66)

and implemented in block diagram form as shown in Figure 14.11.
In order to illustrate the basic approach for simulating discrete channel models

we assume that the model is specified in terms of probability distributions for the
number of components N , the delays, and the complex attenuations as a function of
the delays. A representation (snapshot) of the channel is then obtained as follows:

1. Draw a random number N to obtain the number of delays.

2. Draw a set of N random numbers from the distribution for delay values.

3. Draw a set of N attenuations based on the delay values.

This set of 3N random numbers represents a snapshot of the channel, which is
implemented as shown in Figure 14.11. In Figure 14.11 the initial delay is ∆1 = τ1.
The remaining delays ∆n, 2 ≤ n ≤ N , are differential delays defined by

∆n = τn − τn−1, 2 ≤ n ≤ N (14.67)

• • •  • • •  

~( )y t

~( )x t

~ ( )a t1

~ ( )( )/a tN +1 2
~ ( )a t2

~ ( )a tN −1
~ ( )a tN

∆ N −1∆2
∆ ( )/N +1 2∆1 ∆ N

Figure 14.11 A variable delay TDL model for discrete multipath channels.

Source: M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of Communications

Systems, 2nd ed., New York: Kluwer Academic/Plenum Publishers, 2000.
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While the implementation shown in Figure 14.11 is rather straightforward, it
poses a problem when the delays differ by very small time offsets. Since everything
will be sampled, the tap spacings (i.e., the differential delays τn − τn−1) must be
expressed in terms of an integer number of sampling periods for simulation. Hence,
the sample time must be very small, smaller than the smallest differential delay.
This might lead to excessive sampling rates and an unacceptable computational
burden. We can avoid this problem by developing a TDL model with uniform tap
spacing following the approach used in the simulation of diffused multipath channels
in Section 14.7.1.

Uniformly Spaced TDL Model for Discrete Multipath Fading Channels

The tap gains of a uniformly spaced TDL model are given in (14.53) as

g̃n(t) =

∫
∞

−∞

c̃(τ, t)

{
sin(2πB(τ − nT ))

2πB(τ − nT )

}
dτ (14.68)

Substituting the impulse response of the discrete multipath channel, given by

c̃(τ, t) =
N∑

k=1

ãk (t) δ (τ − τk) (14.69)

in the preceding equation, we obtain the tap gains as

g̃n(t) =
N∑

k=1

ãk(t) sinc
(τk

T
− n

)
=

N∑

k=1

ãk(t) α (k, n) (14.70)

In (14.70)

α (k, n) = sinc
(τk

T
− n

)
(14.71)

Note that the envelope of α (k, n) decreases as |n| increases. Hence the number
of taps can be truncated to |n| ≤ m, where m is chosen to satisfy m � TmaxT .
For the case where the maximum delay spread Tmax will not exceed 3 or 4 symbol
times, the number of taps need not be greater than about 20 (−m < n < m ,
m = 10). The model now takes the form previously derived for the approximate
diffused multipath model illustrated in Figure 14.7.

The generation of the tap gains is illustrated in Figure 14.12. Note that the
generation of the tap gain processes for the discrete multipath model is straight-
forward compared to the generation of the tap gain processes for the diffused case.
We start with a set of N independent, zero-mean complex Gaussian white noise
processes, which are filtered to produce the appropriate doppler spectrum. These
are then scaled to produce the desired power profile, and are finally transformed
according to (14.70) to produce the tap gain processes. (Note that only two of the
N paths are shown in Figure 14.12.)
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Figure 14.12 Generation of the tap gain processes.

Source: M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of Communications

Systems, 2nd ed., New York: Kluwer Academic/Plenum Publishers, 2000.

To illustrate the calculation of the tap gain functions let us assume that

∆τ =
τ2 − τ1

T
= 0.5 (14.72)

The tap gain functions in this case are obtained by filtering two uncorrelated white
Gaussian noise processes and then transforming them to tap gain processes accord-
ing to (14.70) as




g̃−4(t)
g̃−3 (t)
g̃−2 (t)
g̃−1 (t)
g̃0 (t)
g̃1 (t)
g̃2 (t)
g̃3 (t)
g̃4(t)




=




sinc (0.0 + 4) sinc (0.5 + 3)
sinc (0.0 + 3) sinc (0.5 + 3)
sinc (0.0 + 2) sinc (0.5 + 2)
sinc (0.0 + 1) sinc (0.5 + 1)

sinc (0.0) sinc (0.5)
sinc (0.0 − 1) sinc (0.5 − 1)
sinc (0.0 − 2) sinc (0.5 − 2)
sinc (0.0 − 3) sinc (0.5 − 3)
sinc (0.0 − 4) sinc (0.5 − 4)




[
ã1 (t)
ã2 (t)

]
(14.73)

which is



g̃−4(t)
g̃−3 (t)
g̃−2 (t)
g̃−1 (t)
g̃0 (t)
g̃1 (t)
g̃2 (t)
g̃3 (t)
g̃4(t)




=




0.0 0.0707
0.0 −0.0910
0.0 0.1273
0.0 −0.2122
1.0 0.6366
0.0 0.6366
0.0 −0.2122
0.0 0.1273
0.0 −0.0909




[
ã1 (t)
ã2 (t)

]
(14.74)
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Figure 14.13 Simple two-ray model. (Note that ∆τ is normalized).

Source: M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of Communications

Systems, 2nd ed., New York: Kluwer Academic/Plenum Publishers, 2000.

where ã1 and ã2 are defined in Figure 14.12. The preceding equation shows the
coefficients of the transformation for only 9 taps. We see that these coefficients will
be negligible for higher-order tap gains and, as a result, they can be ignored. The
TDL model is therefore truncated to 9 taps.

A simple two-ray model is often used to make preliminary performance predic-
tions for fading channels. Consider the power-delay profile illustrated in Figure
14.13. Parametric performance predictions can be made by varying the ratio of the
normalized delay spread ∆τ = (τ2 − τ1) /T , where T is the symbol duration and

the ratio of relative powers in the two paths (σ1/σ2)
2
. If ∆τ � 0.1, then the two

paths can be combined and the model can be treated as frequency nonselective. If
∆τ > 0.1, there will be considerable intersymbol interference in the channel and it
is treated as frequency selective.

Example 14.2. In this example we consider the effect of fading due to doppler
on the transmission of a QPSK signal on a discrete multipath channel. The block
diagram is illustrated in Figure 14.14. The generation of the tap weights is shown
in Figure 14.14(a). The doppler filter is realized using the Jakes model defined by
(14.60) with K = 1 and fd = 100 Hz. The tap gain processes are uncorrelated
and Gaussian. The tap spacing is based on an RF bandwidth of 20 kHz (lowpass
equivalent bandwidth of 10 kHz). The tap weights are denoted tw1 and tw2. The
complex signal is multiplied by the complex tap weights. Both the complex QPSK
signal and the complex carrier are used as inputs. The carrier is defined by

c(t) = exp [j2π(1000)t] (14.75)

The delay of 8 samples corresponds to one-half of the symbol time. Additional
details are included in the MATLAB code for this example, which is given in Ap-
pendix B.

The simulation length is determined from a number of considerations. In order
to observe the spectra of the input and output for the complex exponential case,
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(b) Processing of QPSK signal and carrier.

Figure 14.14 Block diagrams of simulated systems.

10 to 20 cycles of the complex exponential are needed. At the same time, in order
to capture the effects of the time-varying channel, we need to simulate the fading
process for about 5 to 10 times the reciprocal of the doppler bandwidth. These two
considerations lead to a simulation length of 1/20 second, or about 8,000 samples.

Executing the MATLAB program given in Appendix B generates the results
illustrated in Figures 14.15, 14.16, and 14.17. The input and output carrier signals
are shown in Figure 14.15. The input (top pane) is the tone at 1,000 Hz. The
output (bottom pane) illustrates the spectral spreading due to doppler. The direct
channel input and output are illustrated in Figure 14.16. The input signal (top
pane) has two levels as expected. The output signal (bottom pane) has more than
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Figure 14.15 Input (top pane) and output (bottom pane) power spectral densities. The
spectral spreading due to doppler is evident in the bottom pane.
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Figure 14.16 Direct channel QPSK input and output.
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Figure 14.17 Envelope of the complex exponential output.

two levels because of intersymbol interference. The envelope of the QPSK output
signal is illustrated in Figure 14.17. �

14.7.3 Examples of Discrete Multipath Fading Channel Models

In this section we present a number of examples of discrete multipath models that
are used to simulate the performance of wireless communication systems. The first
model that we present is the so-called Rummler’s model for terrestrial microwave
communication links between fixed antenna towers. This is a line-of-sight radio
channel with a very small number of multipath components because of the larger
directional antennas used in the system and the very benign properties of the tro-
pospheric channel used by LOS microwave radio. Larger antennas mean that the
field of view of the antenna is limited at very small angles of arrival which yields a
smaller number of multipath components. Also, since the antennas are fixed, the
only time variations in the channel characteristics are due to changes in the atmo-
spheric conditions. These variations can be considered very slow compared to the
channel bandwidths which will be of the order of tens of MHz. Hence Rummler’s
model is a multipath model with very slow fading.

The second set of examples that we present are for mobile radio channels. These
channels typically have a larger number of multipath components because of the use
of omnidirectional antennas which pick up a large number of reflections with widely
varying propagation delays, especially in urban areas. They will also experience
faster fading due to the the large number of multipath components that experience
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large carrier phase shifts over small distance changes and thus can combine destruc-
tively or constructively over small distances.

Rummler’s Model for LOS Terrestrial Microwave Channels

One of the most widely used models for terrestrial microwave links operating in the
frequency range of 4 − 6 GHz between fixed towers, was developed by Rummler
[20]. This model is based on a set of assumptions, and measured data is used to
obtain numerical values of the model parameters. Given the geometry of the link
and antenna parameters, Rummler hypothesized a three-ray model of the form

y(t) = x(t) + α x(t − τ1) + β x(t − τ2) (14.76)

where x(t) and y(t) are the bandpass input and output, respectively. In terms of
the complex envelopes, the model takes the form

ỹ(t) = x̃(t) + α exp(−j2πfcτ1)x̃(t − τ1) + β exp(−j2πfcτ2) x̃(t − τ2) (14.77)

and the lowpass equivalent transfer function of Rummler’s channel is given by

H(f) = 1 + α exp(−j2π(fc − f)τ1) + β exp(−j2π(fc − f)τ2) (14.78)

The first simplification of the model is based on the assumption that over the
bandwidth of interest (fc − f) τ1 << 1, and hence exp(−j2π(fc − f)τ1) ≈ 1 and

H(f) ≈ 1 + α + β exp(−j2π(fc − f)τ2) (14.79)

The next step is to assume that the “notch” frequency, where the magnitude of
the response is minimum, is fc + f0 in the bandpass case, and at f0 in the lowpass
model, so that the final form of the lowpass equivalent transfer function can be
written as

H(f) ≈ a[1 − b exp(−j2π(f0 − f)τ2)] (14.80)

where a = 1+α is the overall attenuation, and b = −β/ (1 + α) is a shape parameter.
The value of the delay parameter τ2, chosen to fit the measured data, has a value
of τ2 = τ = 6.3 ns. Note that this small time delay is only on the order of 2
meters of propagation delay, which is physically plausable and corresponds to typical
refractive path differences observed over tropospheric channels for LOS microwave
radio at 2–6 GHz.

The amplitude response of the Rummler model is

|H(f)|2 = a2[1 + b2 − 2b cos(2π(f − fo)τ)] (14.81)

and an example of the magnitude response is shown in Figure 14.18.
The parameters a and b are normalized and expressed in dB units as illustrated

in Table 14.3. Analysis of channel data yields exponential distributions for B1



Section 14.7. Simulation Methodology 567

Channel BW

100500 150

−40 dB

−20 dB

  f  (MHz)

= −20 110log ( )b
Notch Depth

Figure 14.18 Example of the magnitude response of the Rummler channel.

Table 14.3 Parameters for Rummler Model

Minimum Phase Case (b < 1) Nonminimum Phase Case (b > 1)
A1 = 20 log10(a) A2 = −20 log10 (ab)

B1 = 20 log10 (1 − b) B2 = 10 log10 (1 − 1/b)

and B2 with means of 3.8 dB. Likewise, A1 and A2 are Gaussian with standard
deviations of 5 dB. The means are

µ = 24.6

(
B4 + 500

B4 + 800

)

where B = B1 for A1 and B = B2 for A2. The probability density function of
θ = 2πf0τ is shown in Figure 14.19.

In order to simulate a snapshot of the Rummler channel, we draw the following

f
Θ
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π / 6

5 6π /

−π −π / 2 0 θ

Figure 14.19 Probability density function of θ.
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set of random numbers:

1. Draw a number U uniformly distributed in [0,1]. If U > 0.5, assume mini-
mum phase. If U < 0.5, assume nonminimum phase. (Minimum phase and
nonminimum phase fades are assumed equally likely.)

2. Draw an exponentially distributed random number for B1 or B2.

3. Draw a Gaussian random number for A1 or A2 using the value of B1 or B2.

4. Draw a random number for θ and set the notch frequency at f0 = θ/2πτ ,
τ = 6.3ns.

These parameters define a snapshot of the Rummler channel. Since the channel is
assumed to be slowly varying with respect to the symbol rate, a series of snapshots of
the channel is adequate for performance evaluation using a Monte Carlo simulation
for each snapshot produced by the model.

Models for Mobile Channels

Discrete channel models are also widely used for indoor and outdoor wireless chan-
nels. Many models are based on emperical data collected over a wide range of
environments [21, 22, 23]. Given the large number of both mathematical and em-
pirical models that have been proposed recently, the designer of a communication
system is faced with the difficult problem of choosing a representative set of channel
models that will represent the channels over which the communication system is to
operate satisfactorily. Fortunately, some guidance on the choice of which models
to use has been provided by international standards bodies that specify a set of
“representative” channels for analyzing and simulating the performance of different
types of communication systems. We present two examples below.

Discrete Channel Models for GSM Applications The Global System for Mobile
Communications (GSM) is a standard for mobile communications in the frequency
band from 1 to 2 GHz and uses 200 kHz RF channels for time-division multiplexed
communications [13, 24]. The symbol time in GSM is of the order of a few micro-
seconds.

The recommended GSM models are discrete models consisting of 12 rays (paths),
and are specified for three different scenarios: rural, hilly, and urban. For each
scenario, two models are specified. In addition to the 12-ray models, a simpler
set of models with 6 rays (paths) are also defined. The 12-ray and 6-ray models
for urban areas are given in Table 14.4 and Table 14.5, respectively. In addition
to these models, there is also a model specified for testing the performance of the
Viterbi equalizer used in GSM systems. This model is given in Table 14.6. All of
the relative powers are in dB, and (1) and (2) designate the two equivalent models.

It should be noted that the symbol time in the system is of the order of a
few microseconds, and some of the differential delays are of the order of 0.1µs,
which means that a sampling rate of 10 M samples/sec should be used in order
to represent these small delays. Another approach, as outlined in the preceding
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Table 14.4 Typical Profile for Urban Areas (12-ray model)

Ray
Relative
Time
(1) s

Relative
Time
(2) s

Average
Power
(1) dB

Average
Power
(2) dB

Dopp.
Spect.

1 0.0 0.0 -4.0 -4.0 Jakes
2 0.1 0.2 -3.0 -3.0 Jakes
3 0.3 0.4 0.0 0.0 Jakes
4 0.5 0.6 -2.6 -2.0 Jakes
5 0.8 0.8 -3.0 -3.0 Jakes
6 1.1 1.2 -5.0 -5.0 Jakes
7 1.3 1.4 -7.0 -7.0 Jakes
8 1.7 1.8 -5.0 -5.0 Jakes
9 2.3 2.4 -6.5 -6.0 Jakes
10 3.1 3.0 -8.6 -9.0 Jakes
11 3.2 3.2 -11.0 -11.0 Jakes
12 5.0 5.0 -10.0 -10.0 Jakes

Table 14.5 Reduced Profile for Urban Areas (6-ray model)

Ray
Relative
Time
(1) s

Relative
Time
(2) s

Average
Power
(1) dB

Average
Power
(2) dB

Dopp.
Spect.

1 0.0s 0.0s -3.0 -3.0 Jakes
2 0.2 0.2 0.5 0.0 Jakes
3 0.5 0.6 -2.0 -2.0 Jakes
4 1.6 1.6 -6.0 -6.0 Jakes
5 2.3 2.4 -8.0 -8.0 Jakes
6 5.0 5.0 -10.0 -10.0 Jakes

Table 14.6 Profile for Equalization Test

Ray Relative Time Average Power Doppler Spectrum
1 0.0s 0.0dB Jakes
2 3.2 0.0 Jakes
3 6.4 0.0 Jakes
4 9.6 0.0 Jakes
5 12.8 0.0 Jakes
6 16.0 0.0 Jakes
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Table 14.7 Parameters for a 3-Ray Outdoor Model for PCS

Environment τ1 (ns) τ2 (ns) τ3 (ns) Doppler Doppler BW
Pedestrian 0 1,500 14,500 Flat 12Hz
Wireless Loop 0 1,500 14,500 Gaussian 12Hz
Vehicular 0 1500 15,500 Jakes 180Hz

Table 14.8 Ray Strengths

Ray Power(dB)
1 0
2 -3
3 -6

Table 14.9 Parameters of PCS Indoor Model

Environment
Tap

Spacing
Number
of Taps

Doppler
Spectrum

Doppler
BW

Residential 50(ns) 2 Gaussian 3Hz
Office 50 4 Gaussian 3
Commercial 50 12 Flat 30

section, uses a symbol time spaced TDL (correlated tap gain functions) to reduce
the computational load.

Discrete Models for PCS Applications For PCS communication systems operat-
ing in the 2-GHz band, the standards bodies have agreed on a set of discrete models
for typical operating environments [25]. These models are summarized in Tables

14.7, 14.8, and 14.9. For the model given in Table 14.7, the ray strengths E
{
|ã|2

}

are given in Table 14.8.
It should be noted again that the differential delays of 50 ns (indoor model) are

very small compared to the symbol time of proposed PCS systems. Hence, either
the fading should be treated as frequency nonselective, or a bandlimited TDL model
with symbol time spacing should be used for simulations.

Discrete Multipath Channel Models for 3G Wideband CDMA Systems Cellular
communication systems are in their third generation of evolution, and the third gen-
eration systems (3G) will use wideband CDMA operating around 2 GHz. Examples
of the discrete channel models proposed for 3G systems are shown in Table 14.10
(Case 1: Indoor, Case 2: Indoor or Pedestrian, Case 3: Vehicular) [26].
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Table 14.10 Parameters for 3G Wideband CDMA Channels

Case 1 (3 km/h) Case 2 (3 km/h) Case 3 (120 km/h)
Delay (ns) Power (dB) Delay (ns) Power (dB) Delay (ns) Power (dB)

0 0.0 0 0.0 0 0.0
244 -9.6 244 -12.5 244 -2.4
488 -35.5 488 -24.7 488 -6.5

732 -9.4
936 -12.7
1220 -13.3
1708 -15.4
1953 -25.4

14.7.4 Models for Indoor Wireless Channels

Fading characteristics of indoor wireless channels are very different from those of ve-
hicular channels due to differences in physical environments (dimensions, materials,
etc.) and propagation mechanisms. Outdoor vehicular environments are character-
ized by larger cells of the order of kilometers and a smaller number of multipath
components. Indoor environments, on the other hand, are characterized by smaller
dimensions (tens of meters) and a large number of multipath components due to
reflections from walls, tables, and other flat work surfaces. There are a number of
statistical models for indoor channels derived from measurements and, by and large,
the indoor models can be categorized as dense discrete multipath models with an
rms delay spread in the range of 30 to 300 ns with each component having Ricean
envelope statistics [23]. The path loss index typically varies from 1.8 to 4. Addi-
tional details of the indoor channel characteristics may be found in the references
[27–31]. The simulation techniques for indoor channels are the same as those we
have seen for other multipath channels. However, the small differential delays en-
countered in indoor situations might require the conversion of nonuniformly spaced
TDL models to uniformly spaced models as discussed in Section 14.7.2.

14.8 Summary

The overall performance of a communication system is significantly impacted by the
distortion, noise, and interference introduced by the communication channels over
which they operate. To assess communication system performance, and to design
and optimize the signal-processing operations in the transmitter and receiver, we
need simulation models for communication channels.

The simplest simulation model for a communication channel is the transfer func-
tion model, which can be used for time-invariant communication channels such as
optical fibers and electrical cables. Radio communication channels, on the other
hand, require more complex models to account for the multipath effect and the
time variations (fading) in the channel characteristics, especially in mobile channels.
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The simulation model for multipath fading channels has the structural form of a
tapped delay line with time-varying tap gains, which are modeled as stationary
random processes over observation intervals for which the stationarity assumption
applies. For mobile applications, fading in the communication channel is char-
acterized by complex Gaussian processes with appropriate power spectral density
functions. Sampled values of tap gain processes in the tapped delay line model are
generated by filtering uncorrelated Gaussian sequences with FIR filters which shape
the power spectral densities.

For most applications, the tap gains can be assumed to be uncorrelated. How-
ever, in some simulation cases, the tap gain processes in the simulation models will
be correlated. Generating a set of correlated tap gain processes is, in general, a
difficult problem. If the processes involved are Gaussian and have the same power
spectral densities, this problem is easily handled.

The literature on measurements of mobile and other radio channels is vast and
varied. For simulation purposes we often rely on statistical models derived from
measurements. Many examples of the models used for designing and evaluating the
performance of second- and third-generation mobile communication systems were
presented in this chapter. The reader can find additional models and details in the
references.

14.9 Further Reading

A vast amount of material has been published on the characterization and model-
ing of wireless channels and only the most fundamental material is included in this
chapter. Almost every issue of the IEEE Transactions on Wireless Communica-

tions, the IEEE Transactions on Communications, and the IEEE Transactions on

Antennas and Propagation contain new research results in this area. Good collec-
tions of papers are given in the double issue of the IEEE Journal on Selected Areas

in Communications cited below.

L. J. Greenstein et al., eds., “Channel and Propagation Models for Wireless System
Design I and II,” IEEE Journal on Selected Areas in Communications, Vol.
20, Nos. 3 and 6, April 2002 and August 2002.

The interested student is also referred to the recent book

H. L. Bertoni, Radio Propagation for Modern Wireless Systems, Upper Saddle
River, NJ: Prentice Hall PTR, 2000.
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14.11 Problems

14.1 The lowpass transfer function models used for many time-invariant commu-
nication channels have a linear tilt in the amplitude response (in dB)

|H(f)| = k1 + k2f dB (14.82)

and a quadratic phase response of the form

∠H(f) = g1f + g2f
2 (14.83)

Develop a MATLAB FIR filter model for this transfer function. The tilt in
dB/Hz, and the maximum linear and quadratic phase offsets at the band edge
are parameters of the model.

14.2 In simulating multipath fading channels it is important to calibrate the sim-
ulations. It is a common practice to normalize the power profile p(τ) and the
doppler spectrum S(λ) in order to have unit areas.

(a) Find the value of a for normalizing an exponential power profile of the
form

p(τ) = a exp
(
−aτ2

)
(14.84)

(b) Find the value of K needed for normalizing the Jakes doppler spectrum.

(c) Find the area under the Ricean doppler spectrum defined by (14.61).

14.3 Simulate the impact of the linear amplitude tilt and the quadratic phase
distortion on a QPSK (LPE) signal with the following parameters: Symbol
rate = 1MS/sec, linear tilt = 2dB/MHz, parabolic phase shift = π/8 radians
at 1Mhz. No transmit filter; receive filter is an ideal integrate and dump
detector.

14.4 In order to validate the results of simulating the performance of a communica-
tion system operating over fading channels, we often compare the performance
of the simulated systems against similar systems operating over ideal AWGN
channels and/or over a Rayleigh fading channels with ideal phase references.
Compare the BER versus Eb/N0 performance of a QPSK system operating
over an AWGN channel with an integrate-and-dump receiver with a differen-
tial QPSK system over a Rayleigh fading channel with AWGN. The received
signal (bandpass case) is of the form

y(t) = Rk cos (2πfct + φk + θk) + n(t), kTs ≤ t ≤ (k + 1)Ts (14.85)
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where Ts is the symbol duration, n(t) represents the AWGN, and φk repre-
sents the differential QPSK modulation. In addition, Rk and θk represent the
amplitude and phase associated with the Rayleigh fading. Assume that Rk

and θk change slowly with respect to the symbol rate.

14.5 Create a MATLAB simulation model for any two of the GSM models given
in Section 14.8. Run BER simulations using the appropriate parameters of
the GSM system for vehicle speeds of 25 and 100 MPH. Assume ideal SQRC
filtering in the transmitter and receiver and ideal synchronization.

14.6 Develop an approach for generating sampled values of a set of correlated
Gaussian processes each having a different PSD.

14.7 Rerun the MATLAB simulation given in Example 14.1 for different power
levels and differential delays and compare the results.

14.8 Extend the simulation given in Example 14.1 to a 6-ray model, and run BER
simulations for different power profiles as follows (Assume flat fading.)

(a) Uniform power over the 6 rays

(b) Exponentially decreasing power profile over the 6 taps with the last tap
at 10 dB below the first ray
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14.12 Appendix A: MATLAB Code for Example 14.1

14.12.1 Main Program

% File: c14_threeray.m

%

% Default parameters

%

NN = 256; % number of symbols

tb = 0.5; % bit time

fs = 16; % samples/symbol

ebn0db = [1:2:14]; % Eb/N0 vector

%

% Establish QPSK signals

%

x = random_binary(NN,fs)+i*random_binary(NN,fs); % QPSK signal

%

% Input powers and delays

%

p0 = input(‘Enter P0 > ’);

p1 = input(‘Enter P1 > ’);

p2 = input(‘Enter P2 > ’);

delay = input(’Enter tau > ’);

delay0 = 0; delay1 = 0; delay2 = delay;

%

% Set up the Complex Gaussian (Rayleigh) gains

%

gain1 = sqrt(p1)*abs(randn(1,NN) + i*randn(1,NN));

gain2 = sqrt(p2)*abs(randn(1,NN) + i*randn(1,NN));

for k = 1:NN

for kk=1:fs

index=(k-1)*fs+kk;

ggain1(1,index)=gain1(1,k);

ggain2(1,index)=gain2(1,k);

end

end

y1 = x;

for k=1:delay2

y2(1,k) = y1(1,k)*sqrt(p0);

end

for k=(delay2+1):(NN*fs)

y2(1,k)= y1(1,k)*sqrt(p0) + ...

y1(1,k-delay1)*ggain1(1,k)+...

y1(1,k-delay2)*ggain2(1,k);

end

%
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% Matched filter

%

b = -ones(1,fs); b = b/fs; a = 1;

y = filter(b,a,y2);

%

% End of simulation

%

% Use the semianalytic BER estimator. The following sets

% up the semi analytic estimator. Find the maximum magnitude

% of the cross correlation and the corresponding lag.

%

[cor lags] = vxcorr(x,y);

cmax = max(max(abs(cor)));

nmax = find(abs(cor)==cmax);

timelag = lags(nmax);

corrmag = cmax;

theta = angle(cor(nmax))

y = y*exp(-i*theta); % derotate

%

% Noise BW calibration

%

hh = impz(b,a); ts = 1/16; nbw = (fs/2)*sum(hh.^2);

%

% Delay the input, and do BER estimation on the last 128 bits.

% Use middle sample. Make sure the index does not exceed number

% of input points. Eb should be computed at the receiver input.

%

index = (10*fs+8:fs:(NN-10)*fs+8);

xx = x(index);

yy = y(index-timelag+1);

[n1 n2] = size(y2); ny2=n1*n2;

eb = tb*sum(sum(abs(y2).^2))/ny2;

eb = eb/2;

[peideal,pesystem] = qpsk_berest(xx,yy,ebn0db,eb,tb,nbw);

figure

semilogy(ebn0db,peideal,‘b*-’,ebn0db,pesystem,‘r+-’)

xlabel(‘E_b/N_0 (dB)’); ylabel(‘Probability of Error’); grid

axis([0 14 10^(-10) 1])

% End of script file.

14.12.2 Supporting Functions

A number of the supporting functions for this exmple appeared previously and are
not given here. These are:

qpsk berest.m Given in Chapter 10, Appendix C.
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vxcorr.m Given in Chapter 10, Appendix B.

random binary.m Given in Chapter 10, Appendix A.
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14.13 Appendix B: MATLAB Code for Example 14.2

14.13.1 Main Program

% File: c14_Jakes.m

% This program builds up a two-tap TDL model and computes the output

% for the two inpput signal of interest.

% Generate tapweights

%

fd = 100; impw = jakes_filter(fd);

%

% Generate tap input processes and Run through doppler filter.

%

x1 = randn(1,256)+i*randn(1,256); y1 = filter(impw,1,x1);

x2 = randn(1,256)+i*randn(1,256); y2 = filter(impw,1,x2);

%

% Discard the first 128 points since the FIR filter transient

% Scale them for power and Interpolate weight values

% Interpolation factor =100 for the QPSK sampling rate of 160000/sec;

%

z1(1:128) = y1(129:256); z2(1:128) = y2(129:256);

z2 = sqrt(0.5)*z2; m = 100;

tw1 = linear_interp(z1,m); tw2 = linear_interp(z2,m);

%

% Generate QPSK signal and filter it.

%

nbits = 512; nsamples = 16; ntotal = 8192;

qpsk_sig = random_binary(nbits,nsamples)+i*random_binary...

(nbits,nsamples);

%

%Generate output of tap1 (size the vectors first).

%

input1 = qpsk_sig(1:8184); output1 = tw1(1:8184).*input1;

%

% Delay the input by eight samples (this is the delay specified

% in term of number of samples at the sampling rate of

% 16,000 samples/sec and generate the output of tap 2.

%

input2 = qpsk_sig(9:8192); output2 = tw2(9:8192).*input2;

%

% Add the two outptus and genrate overall output.

%

qpsk_output = output1+output2;

%

% Generate the 1000 Hz complex exponential and run it through the TDL

% model. This could be done at the higher sampling rate of 16,0000
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% samples per sec or at a lower rate. At the lower rate the tap

% spacing must be recomputed in number of samples at the lower rate.

% Also the interpolation of the tap gain functions must now be at

% the lower rate. In this example we will use the higher sampling rate.

%

ts = 1/160000; time = (ts:ts:8200*ts);

cexp = exp(2*pi*i*1000*time);

input1 = cexp(1:8184); output3 = tw1(1:8184).*input1;

input2 = cexp(9:8192); output4 = tw2(9:8192).*input2;

%

% Add the two outputs and genrate overall output.

%

cexp_out = output3+output4;

[psdcexp,freq,ptotal,pmax] = linear_psd(cexp(1:8184),8184,ts);

[psdcexp_out,freq,ptotal,pmax] = linear_psd(cexp_out(1:8184),8184,ts);

%

subplot(2,1,1)

plot(freq(4100:4180), psdcexp(4100:4180)); grid;

xlabel(‘Frequency (Hz)’); ylabel(‘PSD’)

subplot(2,1,2)

plot(freq(4100:4180), psdcexp_out(4100:4180),‘r’); grid;

xlabel(‘Frequency (Hz)’); ylabel(‘PSD’)

figure; subplot(2,1,1)

plot(real(qpsk_sig(501:1000)),‘r’); grid;

xlabel(‘Sample Index’); ylabel(‘Direct Input’);

axis([0 500 -2 2])

subplot(2,1,2)

plot(real(qpsk_output(501:1000)));grid;

xlabel(‘Sample Index’); ylabel(‘Direct Output’);

figure;

plot(abs(output3(3000:6000))); grid

xlabel(‘Sample Index’); ylabel(‘Envelope Magnitude’)

% End script file.

14.13.2 Supporting Functions

jakes filter.m

% File: Jakes_filter.m

function [impw] = jakes_filter(fd)

% FIR implementation of the Jakes filter (128 points)

n = 512; nn = 2*n; % nn is FFT block size

fs = 0:fd/64:fd; % sampling frequency = 16*fd

H = zeros(1,n); % initialize H(f)

for k=1:(n/8+1) % psd for k=1:65

jpsd(k)=1/((1-((fs(k))/fd)^2)^0.5);
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if(jpsd(k)) > 1000

jpsd(k)=1000;

end

H(k)=jpsd(k)^0.5; % first 65 points of H

end

for k=1:n % generate negative frequencies

H(n+k) = H(n+1-k);

end

[inv,time] = linear_fft(H,nn,fd/64); % inverse FFT

imp = real(inv(450:577)); % middle 128 points

impw = imp.*hanning(128)’; % apply hanning window

energy = sum(impw.^2); % compute energy

impw = impw/(energy^0.5); % normalize

% End of function file.

linear psd.m

% File: linear_psd.m

function [psd,freq,ptotal,pmax] = linear_psd(x,n,ts)

% This function takes the n time domain samples (real or complex)

% and finds the psd by taking (fft/n)^2. The two sided spectrum is

% produced by shifting the psd.

% NOTE: n must be an even number, preferably a power of 2.

for k=1:n

y(k) = 0.;

end

for k=1:n

freq (k) =( k-1-(n/2))/(n*ts);

y(k) = x(k)*((-1.0)^k);

end;

v = fft(y)/n; psd = abs (v).^2;

pmax = max(psd); ptotal = sum(psd)

% End of function file.




