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Neurons are the cells of the nervous system involved in the processing of information. With 
their highly branched axons and dendrites they exchange electrical signals through a dense 
neuronal network of synaptic connections. Incoming electrical signals at an individual neuron 
are integrated by the dendritic trees and trigger this nerve cell to generate new electrical 
signals being relayed via the axonal processes to other neurons. The information processing 
characteristics of a neuron depend on this signal integration process, determined by the shape 
of dendrites and their electrophysiological properties (e.g., Mason and Larkman, 1990). 
Dendrites have a limited extension in space, while axons may run over long distances. 
Neurons appear in the nervous system with an enormous diversity in shapes, which is thought 
to contribute to their functional specialization. An illustration of this diversity is given in 
figure 10.1 showing dendritic shape differentiation in length scales and in the details of the 
branching patterns.   
 

 
 
Figure 10.1 
Neuronal branching patterns from different cell types in the nervous system,  (A) rat cortical layer 5 
pyramidal cells (adapted from Larkman and Mason, 1990), (B) rat cortical layer 2/3 pyramidal cells 
(adapted from Larkman and Mason, 1990), (C) newborn kitten α -motoneuron (adapted from 
Uhlfhake and Cullheim, 1988) , (D) cat deep superior colliculus neurons (adapted from Schierwagen 
and Grantyn, 1986, and Schierwagen, 1986) and (E) rat cerebellum Purkinje cell (adapted from Berry 
and Bradley, 1976a). 

 
Neurons attain their shapes through a developmental process of elongation and branching 

of their axonal and dendritic extensions (collectively called neurites). Shape differentiation 
must therefore find its origin in the details of this developmental process. How shape 
characteristics of neurons reflect developmental information is nevertheless a question 
difficult to solve, not only because of the complexity of dendritic shapes but also of the 
dynamic process of dendritic development. Theoretical and computational modeling 
approaches are required for the quantification of dendritic shapes and for quantifying the 
developmental process through which these shapes emerge.   
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Modeling in Biology 
 
In order to gain understanding of nervous system development and function, experimental 
work needs to be complemented by theoretical analysis and computer simulation. Even for 
biological systems in which all the components are known, computational models are 
necessary to explore and understand how the components interact to make the system work 
and how phenomena at different levels of organization or description are linked.  

A model can be considered as a theoretical / computational tool to implement 
quantitatively knowledge and hypotheses about a system and enabling the study of the 
properties of that system. Modeling approaches depend strongly on the questions being raised 
(see also Leonelli, this volume). Knowledge and hypotheses are products of the human mind. 
They originate from human understanding of nature but need models for quantitative 
implementation. Nature is explored through human observations and is represented by 
quantitative data. Model validation of the experimental data provides the basis for obtaining 
understanding from the data, thereby bridging human mind and nature (figure 10.2).   
 

  
Figure 10.2  
Role of a model as a tool to implement understanding from the human mind, to express hypotheses and 
to validate predictions against experimental data, originating from observations of nature. 
 

Biological systems are complex at any level of their structural and functional organization, 
from the molecular up to the behavioural level. They consequently represent systems of 
(almost) infinite dimensionality. Building models of biological systems thus requires a well-
thought approach to reduce this dimensionality to a meaningful and treatable level. Starting 
with a focus on selected mechanisms or phenomena, the level of dimensional reduction 
strongly depends on the particular research question and may range from the most 
reductionistic ‘conceptual’ models to complex but still computational treatable models. For 
instance, a typical method to reduce dimensionality is the statistical one in which the many 
degrees of freedom are lumped into a single probability function and the system is regarded as 
stochastic (Monte-Carlo approach). Other modeling approaches may preferably integrate all 
available knowledge aiming at studying the fine structure of the systems behavior. 
Biophysical models aim at understanding a well-defined system from the underlying 
biophysical laws of nature.  

Biological systems distinguish themselves from physical systems in that they show 
organization at all levels of spatial and temporal scales, apparent for instance in genetic 
regulation of protein synthesis at the molecular level, and in feedback, homeostatic and 
adaptive mechanisms throughout the organism. Of course, biological systems are subjected to 
(bio)physical constraints which, for instance, becomes apparent when conservation laws 
result in limiting resources and competitive phenomena. 
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Biology of Neurite Outgrowth and Neuronal Morphogenesis 
 
Neurite Outgrowth and Branching 
Neurons grow out by a process of elongation and branching of their neuritic extensions. These 
processes are governed by the dynamic behavior of growth cones, highly motile structures at 
the tips of outgrowing neurites. Neurite elongation requires the polymerization of tubulin into 
cytoskeletal microtubules. Branching occurs when a growth cone, including its actin 
cytoskeletal meshwork, splits in two parts while partitioning the number of microtubules, and 
each daughter growth cone continuing to grow on their own (e.g., Black (1994); Kater et al., 
(1994); Kater and Rehder, (1995); Letourneau et al., (1994). Growth cones may also retract 
by microtubule depolymerization, or may redirect their orientations. The dynamic behavior of 
a growth cone results from the integrated outcome of many intracellular mechanisms and 
interactions with its local environment. These include, for instance, the exploratory 
interactions of its filopodia with a variety of extracellular (e.g., guidance, chemorepellant, 
chemoattractant) molecules in the local environment (e.g. Kater et al., 1994, McAllister, 
2002; Whitford et al., 2002), receptor mediated trans-membrane signaling to cytoplasmic 
regulatory systems (e.g. Letourneau et al., 1994), intracellular regulatory genetic and 
molecular signaling pathways (e.g., Song and Poo, 2001), and electrical activity (e.g., Cline, 
1999; Ramakers et al., 1998, 2001; Zhang and Poo, 2001). 
 
Microtubule Cytoskeleton 
In addition to regulatory mechanisms, dendritic outgrowth is also subjected to constraints, 
limiting their modulatory responsiveness. For instance, neurite elongation proceeds by 
growing mitrotubules, which requires the production, transport and polymerization of tubulin 
cytoskeletal elements. The production rate of cytoskeletal elements will set an upper limit to 
the averaged total length increase of the dendrite. In addition, the division of flow of 
cytoskeletal elements at a bifurcation will modulate the elongation rate of the daughter 
branches. Earlier model studies of microtubule polymerization (neurite elongation) in relation 
to tubulin production and transport demonstrated how limited supply conditions may lead to 
competition between growth cones for tubulin, resulting in alternating advance and 
immobilization (Van Ooyen, 2001). Empirical evidence for such competitive behavior has 
subsequently been obtained from time-lapse studies of outgrowing neurons in tissue culture 
by Ramakers (see Costa et al., 2002).  
 
Synapse Stabilization 
Limiting resources may also lead to competitive phenomena between axons, where target 
derived neurotrophins are required for the maintenance and stabilization of synaptic axonal 
endings on target dendrites. Modeling studies have shown that the precise manner in which 
neurotrophins regulate the growth of axons determines what patterns of target innervation can 
develop (Van Ooyen and Willshaw, 1999). Taking a spatial dimension into account these 
authors show that the distance between axonal endings on the target dendritic tree mitigates 
competition and permits the coexistence of axons (Van Ooyen and Willshaw, 2000). These 
examples just illustrate the complexity of the outgrowth process in terms of involved 
molecules, interactions, signaling pathways and constraints.  

The integrated action and the details of all these intracellular and extracellular mechanisms 
will finally form the basis of dendritic morphological characteristics, of morphological 
differentiation between cell types and the diversity between neurons of the same type (e.g., 
Acebus and Ferrus, 2000).  
 
Modeling Neuronal Shape 
The complexity of dendritic shape has already for a long time been a challenge to 
computational modelers to extract regularities or common features and to synthesize realistic 
structures. Present studies show high levels of sophistication in the realism of reconstruction 
of dendritic trees including also the 3D orientation of branches and environmental influences 
(e.g., Ascoli et al., 2001; Ascoli 2002a,b; Samsonovich and Ascoli, this Volume). An 
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analytical approach was used by Kliemann (1987), Carriquiry et al., (1991) and Uemura et al. 
(1995) who considered the segments at a given centrifugal order as individuals of a 
generation, which may give rise to individuals in a next generation (i.e., by producing a 
bifurcation point with two daughter segments). Mathematically, such a dendritic 
reconstruction could be described by a Galton-Watson process, based on empirically obtained 
splitting probabilities for defining per generation whether or not a segment will be a terminal 
or an intermediate one. Tamori (1993) used a set of six 'fundamental parameters' to describe 
dendritic morphology, and analyzed branch angles using a principle of least effective volume. 
Growth models have been applied by e.g., Smit et al., 1972; Berry and Bradley, 1976b; Van 
Pelt and Verwer, 1983, Ireland et al., 1985, Horsfield et al., 1987 and Nowakowski et al., 
1992. The growth model reviewed in this chapter is developed to answer the question whether 
morphological details and variability observed in dendritic branching patterns can be 
understood quantitatively in terms of a minimal set of growth rules.  
 
Parametrization of Dendritic Shape 
A first step requires the parametrization of dendritic shape, i.e. the reduction of morphological 
complexity into a set of well-defined shape parameters. Dendritic shape can be quantified in 
terms of the number of branch points, number of segments, length of segments, the 
connectivity pattern of segments (topological structure), segment diameters, curvature of 
segments and embedding in 3D space.  Experimentally reconstructed dendrites show 
characteristics and variability in all these measures (e.g., Ascoli et al., 2001, Uylings and Van 
Pelt, 2002; Scorcioni et al., 2004; Samsonovich and Ascoli, this Volume), which require 
modeling studies to make specific choices on shape parameters to investigate. 
  
Assumptions and Structure of the Model 
The second step is to develop the model structure on the basis of well-defined assumptions. In 
our approach dendrites are described as binary rooted trees. Intermediate and terminal 
segments are distinguished and labeled with a centrifugal order indicating the number of 
segments on the path from the root to the segment. As discussed above dendrites develop 
from initial protrusions from the cell body into branched and elongated structures through 
dynamic actions of growth cones. Although these actions may include forward migration and 
branching but also retraction or complete disappearance, at a sufficient coarse time scale the 
net outcome is still a growing dendrite with increasing length and number of branches, as is 
schematically illustrated in figure 10.3.  
 

 
Figure 10.3 
(A) Basic actions of a growth cone, splitting of a growth cone resulting in neurite branching, and 
migration of a growth cone, resulting in neuritic elongation, (B) Schematic illustration of the branching 
and elongation process mediated by growth cones. Initial protrusions from the cell body develop into 
mature dendritic trees through a process of growth cone elongation and branching. 
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In the model description a phenomenological approach is used in which not the intra- and 
extracellular mechanisms and processes are modeled themselves but their final outcome. To 
this end, the detailed dynamic actions of outgrowing neurites are coarse-grained and modeled 
by sustained processes of elongation and branching. The multitude of mechanisms involved in 
growth cone behavior (see previous section) justifies a stochastic description in which 
terminal segments elongate and branch with given probabilities per unit of time. These 
elongation and branching probability functions form the basic components of the model. The 
challenge is to find minimal but sufficient expressions for these functions to describe 
morphological characteristics and variability. When successful, these functions reflect 
important biological properties in the development of neuronal morphology. Branching and 
elongation are assumed to be independent making it possible to study both processes 
separately.  
 
Variation in Topological Tree Types 
To study the variation in the connectivity pattern of segments, dendrites will be reduced to 
binary tree types, ignoring any metrical property, as is illustrated in figure 10.4. Only a finite 
number of tree types are possible for a given number of segments. A branching event in a 
given tree increases its number of branch points and segments with one. Dependent on the 
branching segment, the given tree transforms into one of the tree types in the next row in 
figure 10.4. Not all transitions are possible between tree types at successive rows. The dashed 
arrows in figure 10.4A denote all possible transitions when branching is allowed at any 
segment in a tree. When branching is restricted to terminal segments only (as in the dendritic 
growth model), this will further reduce the number of possible transitions (figure 10.4B).  
 

 
 
Figure 10.4 
Possible transitions between topological tree types by branching of (A) any of the segments in the tree, 
or (B) of one of the terminal segments only. 
 

In the stochastic branching process, each segment in a tree has a given probability to be 
selected for branching, which will add to the probability of the transition of that tree to one of 
its successors (outgoing dashed arrows for a given tree type in figure 10.4). The figure 
illustrates that different paths starting from the single segment may end in a particular tree 
type. A given number of branching events will result in one of the trees at a row (with a 
number of terminal segments equal to one plus the number of branching events). The 
probability that a given tree type is obtained thus results from the probabilities of all the 
possible paths, and thus of all the transitions (growth steps) in these paths. Both the number of 
possible paths and the probability of each growth step depend on the specific rules for 
branching of the individual segments in the branching tree. The eventual probability 
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distribution of tree types can be obtained by enumerating all the growth paths and their 
associated probabilities.  

In a series of studies these probabilities have been calculated for a number of branching 
rules, i.e. (i) random segmental branching when each segment has the same probability to be 
selected for branching, (ii) random terminal branching when only terminal segments can be 
selected for branching with equal probabilities, and (iii) a branching scheme where the 
probability of branching is modulated by the position of the segment in the tree (e.g., Van Pelt 
and Verwer, 1986). These studies have demonstrated how the topological variation between 
tree types depends on the specific rules for branching of the individual segments (e.g., figure 
10.5).  
 

 
 
Figure 10.5 
Probabilities of tree types grown with the random segmental growth (rsg) and the random terminal 
growth (rtg) mode of branching (Van Pelt and Verwer, 1983). 
 

In an extensive study of experimental reconstructed motoneurons Dityatev et al. (1995) 
showed that the model, as simple as it is, successfully described the topological variability in 
a large variety of motoneuronal dendrites. Additionally, the analysis of reconstructed 
dendritic branching patterns has shown that their topological variation is consistent with the 
terminal branching mode, which is in agreement with the process of neurite outgrowth where 
growth cones at the neuritic tips are the sites of branching. The analysis of tree-type 
frequencies in terms of the mode of branching can be applied to other natural branching 
patterns as well, such as rivers systems. Where the branching process in river systems is more 
difficult to investigate, given the time scale of their development, the topological analysis 
suggested a process of terminal branching with a preference for the distal parts of the river as 
an alternative to the mostly studied random segmental growth mode (Van Pelt et al., 1989). 
This finding was a support for the headward network growth hypothesis, adopted by many 
geomorphologists.   
 
Variation in the Number of Terminal Segments 
The probability distribution of topological tree types has been obtained for a growth process 
with a given number of branching events. The occurrence of a branching event, however, is 
also stochastic, implicating that after a given time interval trees have been obtained with a 
varying number of terminal segments. For the calculation of the terminal segment number 
distribution in a population of trees, we will ignore the topological differentiation and label a 
tree only by its terminal segment number. This process requires a description in time with 
branching probabilities of segments defined as functions of time. In addition, we assume that 
the branching probability per unit of time of a terminal segment may depend on the 
momentary number of terminal segments in the growing tree. The stochastic nature of the 
branching process implicates that varying number of branching events occurs in a growing 
tree in a given time interval.  
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Figure 10.6 
Trees with n terminal segments may originate from trees of different size, dependent on the number of 
branching events per time interval. 
 

This is illustrated in figure 10.6 showing that trees with different number of terminal 
segments at time t may give rise to trees with n terminal segments at time point t + ∆ t, 
dependent on the number of branching events in time period  ∆ t. All these possibilities 
contribute to the probability of trees with n terminal segments at time t. 

For the calculation of the distribution one needs to include all the possible growth 
sequences in a certain period of time. To this end Van Pelt and Uylings (2002) used the 
recurrent equation  
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with ),( tnPtree  the probability of having a tree with n terminal segments at time t, and 

)|( ntps  denoting the probability of branching of a terminal segment, averaged over all n 

terminal segments in the tree. A tree with n terminal segments at time tt ∆+  emerges when j 
branching events occur in time interval ],[ ttt ∆+  in a tree with n-j terminal segments. The 
recurrent equation expresses the probabilities of all these possible contributions from 

2/,...,0 nj = . The last two terms express the probability that, in a tree with n-j terminal 
segments, a number j of them will branch while the remaining n-2j terminal segments will not 

do so. The combinatorial coefficient ��
�

�
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�

� −
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jn
 expresses the number of possible ways of 

selecting j terminal segments from the existing n-j ones. Note that the probability distribution 
of trees with varying terminal segment numbers is normalized at each time point t and thus 

obeys 1),(
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tnP
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n
tree , t∀  with maxn denoting the maximal possible terminal segment 

number at time t.  
Finally, the branching probabilities of segments per unit of time need to be defined in 

order to solve the recurrent equation. Here, we make some explicit assumptions. All the tips 
of a dendritic tree are assumed to participate in the branching process. Each tip is assumed to 
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branch with a certain probability per unit of time that may change during the outgrowth 
process. The time-dependent branching probability of a tip is assumed to consist of a time-
dependent baseline branching rate function )(tD , a term dependent on the total number of 

tips En−  with a free parameter E, and a term dependent on the position of the tip γS−2  with 
γ  denoting the number of segments on the path from the root to the segment (centrifugal 
order), and S indicating a free parameter (this dependency was already mentioned in the 
section on the topological variation). The choice for implementing n-dependency by the term 

En−  was made for its simplicity, its modulatory power and attractive behavior at E=0, and at 
E=1 when, with 1/n, the branching probability becomes inversely related to the number of 
segments. Then, the total branching rate in a growing dendrite is independent of its increasing 
number of terminal segments. 

The choice for implementing position dependency by the term γS−2  was inspired by the 
binary nature of the branching structure. its modulatory power and the attractive behavior at 
S=0, and at S=1, when γ−2 illustrates the distribution of some conserved quantity over the 
segments at different centrifugal orders. These choices for the model structure have been 
made in order to investigate whether the position of a segment in the tree or the total number 
of segments influence the branching probability of the individual segments.   
 

)(/2)(),|( tCntDntp SE
s

γγ −−=      (10.2) 
 

The position dependent term γS−2  actually implements a particular branching scheme for 
the segments in a tree, defining the topological variation as is discussed and illustrated in the 
previous section and in figure 10.4. For S=0 the branching scheme becomes the random 
terminal mode of growth. The term C(t) normalizes at each point in (developmental) time the 
position-dependency of all tips. Then, the term )(/2 tCSγ−  only contributes to the topological 
variation and not to the growth rate of the tree (the increase in number of tips in the tree per 
unit of time). Thus, the mean branching probability of a terminal segment, averaged over all 
terminal segments is given by  
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Inserting this expression into equation (10.1) yields 
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Introducing the function �= dttDtB )()( , with dttDtdB ).()( = , and taking 

ttDt
dt

tdB
tB ∆=∆=∆ ).(

)(
)(   we obtain 
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Each iteration thus only depends on the value )(tB∆ . For a given time period T and a 
given time step size t∆  we have tTN ∆= /  iterations, with the function )(tB  incrementing 
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with )()( TBtB
N

=∆� . For sufficiently small time steps t∆ , the outcome of the iterations 

should not depend on the actual stepsize t∆  but only on the sum of steps )(tB∆ , thus on the 
value )(TB . This implicates that the terminal segment number distribution at time t=T is 
determined only by the function value B(T), and not by the detailed shape of the function 
D(t). The recursion can now be simplified by taking a number of cN  constant steps cB∆ , 

such that c

N

c BB
c

=∆�  as 
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with a time period associated with this number of iterations equal to �∆=
c

c

N

B tT . 

An example of the family of distributions obtained for B=6 and for several values of the 
parameter E is given in figure 10.7. 
 

 
 
Figure 10.7 
Frequency distributions of the terminal segment number of trees obtained for the parameter value B=6 
and for different values of the parameter E. Note, that the mean and the width of the curves (SD) 
decrease with increasing values of the parameter E. For E=0, the distribution gets an monotonically 
decreasing shape. 
 

The curves in figure 10.7 show the effect of the parameter E on the shape of the terminal 
segment number distribution. The value E=0 results in a monotonically decreasing function 
(with a long tail exceeding the size of the figure) while for positive values of E a modal shape 
is obtained with decreasing mean and standard deviation for increasing values of E. Actually 
a direct relation exist between the parameter pair (B, E) and the mean and standard deviation 
of the terminal segment number distributions, allowing a mapping of (B, E)-space onto 
(mean, SD)-space (Van Pelt et al., 1997). Empirical distributions of the terminal segment 
number do not show exponential shapes. They all have a clear modal shape, indicating that a 
zero value for parameter E is not realistic, but that E should be positive. For positive values of 
E the branching probability of a terminal segment decreases with increasing number of tips 
(equation 10.2), suggesting some competitive mechanism in the branching process.  
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Empirical distributions for the terminal segment number have been analysed for a number 
of different cell types. All these empirical distributions could be matched with model 
distributions by optimizing the values for the parameters B and E (Van Pelt et al., 1997). This 
is a remarkable result for a model that is based on only a few basic assumptions of the 
branching process. A scatter plot of the optimized parameter values in (B,E)-space showed a 
strong clustering per cell type, indicating that these values provide a significant 
characterization of cell types on the basis of the shape of their branching patterns (Van Ooyen 
and Van Pelt, 2002).   
 
Growth Curves of the Number of Terminal Segments 
During outgrowth the terminal segment number distribution in a population of dendrites will 
change with time reflecting in its mean and standard deviation the increase in the number of 
terminal segments. At each point in time the shape of the distribution is determined by the 
parameter values B and E, with B also a function of time ( �= dttDtB )()( ). The growth of a 

population of dendrites thus can be calculated when the time course of the function D(t) is 
known. The function D(t), however, is unknown and represents all factors influencing the 
growth process not covered by the dependence on the number of terminal segments. The 
function D(t) thus represents an essential determinant of the outgrowth process.  

Van Pelt and Uylings (2002) calculated dendritic growth curves for different choices of the 
function D(t). It was shown that a constant function D(t) resulted in an exponentially 
increasing growth curve while an exponential decreasing function τ/)( tcetD −=  resulted in 
an asymptotic shape for the growth curve. Experimental data on the growth of the mean 
number of terminal segments in populations of dendrites at different time points during 
development did not showed an exponential growth pattern. In fact, the experimental data was 
in good agreement with the growth curve predicted by the exponential decreasing function 
D(t). These results indicate that the baseline branching rate function D(t), representing the 
basic drive for branching of a neuron is not constant but rapidly decreasing with time elapsing 
from the start of outgrowth (Fig. 10.8).  
 

 
Figure 10.8 
Growth curves of the population mean and standard deviation (SD) of the terminal segment number in 
dendritic trees during their outgrowth (Van Pelt and Uylings, 2002). The data points and SD bars 
originate from reconstructed dendrites of rat cortical multipolar nonpyramidal cells at  several time 
points during their development (Parnavelas and Uylings, 1980; Uylings et al, 1980). The model 
growth curves (continuous curve for the mean and dashed lines for the SD-values) are calculated for 
parameter values E=0.05, B=1.12, and assuming for panel (A) a constant baseline branching rate 
function (see horizontal line in top of panel), and panel (B) an exponential decreasing baseline 

branching rate function τ/)( tcetD −=  with d7.3=τ . With the latter choice an excellent agreement 
is obtained between model predictions and experimental data both in the time course of the mean but 
also of the SD values. Left ordinate scale refer to the number of terminal segments. Right ordinate scale 
refers to the baseline branching rate function.  
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From the recursion in equation (10.1), an expression can be derived for the time pattern of 

the mean number of terminal segments per tree )(tn , averaged over the population of trees, 

as )()(
)( 1 tntD

dt
tnd E−=  (publication in preparation). In previous studies we have 

investigated the growth equation EtntD
dt

tdn −= 1)()(
)(

 for the growth of a virtual tree with a 

real variable )(tn  for its number of terminal segments. In this equation the discrete process of 
adding integer numbers of terminal segments per growth step has been changed into a 
continuous process of adding infinitesimal values to a virtual number of terminal segments. 
The growth pattern of the virtual tree coincides with the population mean for the parameter 
values E=0 or E=1.  

The accuracy with which the growth function of the virtual tree approximates the 
population mean growth function for other values of the parameter E is presently under study. 
The analytical treatability of the virtual tree growth function made it possible to investigate 
quantitatively the effect of different baseline branching rate functions on the virtual tree 
growth patterns (Van Pelt and Uylings, 2002; 2003). These studies showed that even 
decreasing power functions for the baseline branching rate were not able to suppress the 
growth rate of the tree to zero values. Indeed, exponential functions were able to compensate 
the proliferation of branching segments and force the tree growth rate to zero values, and 
terminating the growth phase.    
 
Neurite Elongation 
The lengths of segments in a dendritic tree are determined by both the branching rates and the 
elongation rates of neurites. The distribution of segment lengths in a tree, and its 
developmental changes with time, is thus the outcome of a complex integrated process of 
branching and elongation rates during development. So far we have dealt with the branching 
process and we were able to derive quantitative details in terms of baseline branching rate 
functions and size dependencies from experimental dendritic reconstructions. This approach 
thus also holds promises for the challenge to derive quantitative details of the elongation 
process, using these model-based approaches.  

In a recent study a first attempt was made to estimate elongation rates from an 
experimental data set of rat multipolar nonpyramidal neurons (Van Pelt and Uylings, 2003). 
In particular the question was addressed whether elongation rates were constant during the 
growth of a dendrite or would reflect competitive effects because of the proliferation of 
elongating neurites. The elongation rate is assumed to depend on the number of terminal 
segments Ftnvtv −= )()( 0 , with 0v  denoting the elongation rate of the initial segment at the 
start of the branching process, and with a dependence on the number of terminal segments 
modulated by the exponent F. Using the virtual tree growth function for this segment number, 
an estimate could be formulated for the total tree length growth function, 
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(Van Pelt and Uylings, 2003), with 0L  denoting the initial length of daughter branches after a 
branching event. Comparison with the observed growth function suggested a small 
competitive effect in the elongation rate (figure 10.9). These rat multipolar nonpyramidal 
dendritic trees are, however, small with on the average about three terminal segments per 
dendrite. Developmental data sets of larger trees are therefore required to show more clearly 
any possible competitive effect in the elongation rate.  
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Figure 10.9 
Mean and SEM (data points) of the total length of dendritic trees of rat cortical multipolar 
nonpyramidal cells at several time points during development (Parnavelas and Uylings, 1980; Uylings 
et al, 1980). The tree length growth function (solid line) has been obtained using the optimized 
parameter values for the branching process and by fitting the tree growth length function to the data 
points, resulting in optimized parameter values 100 =L  µ m, 73.0=F  and 1.80 =v  µ m/day 

(Van Pelt and Uylings, 2003). The corresponding elongation rate function Ftnvtv −= )()( 0  is shown 
as a dashed line. 
 

The model-based analysis of segment length distributions has also focused the attention on 
the elongation process during and following a branching event. When a branching event is a 
point process in time, and the daughter branches immediately continue their outgrowth, one 
expect a monotonous decreasing length distribution with the highest probabilities for the 
shortest segments figure 10.10A.  
 

 
Figure 10.10 
Segment lengths distributions in S1-rat cortical layer 2/3 pyramidal cell basal dendrites (Uylings et al., 
1994) of intermediate segments (A and B, plotted with different scales) and terminal segments (C). 
Model predictions obtained for optimized parameter values without (A) and with (B, C) initial lengths 
of daughter segments after a branching event (Van Pelt et al., 2001). 
 
Observed segment length distributions, however, have a modal shape in contrast to these 
expectations. To answer this question it is important to realize that in the model the branching 
process is reduced to a point process both in time and in space. A biological growth cone, 
however, has a spatial extent, while its branching proceeds during a certain period in time. To 
solve this problem we have assumed that after a branching event in the model the daughter 
branches already appear with a certain initial length (figure 10.11), resulting in a model length 
distribution closely matching the observed one (figure 10.10B). Nowakowski et al. (1992), 
alternatively, assumed in their model description a transient reduction in the branching 



  

 

13 

13 

probability. Both approaches resulted in a good description of the intermediate segment 
length distribution. 

 
 
Figure 10.11 
Schematic view of the initial length assumption of daughter segments after a branching event to 
comply with the non-infinitesimal character of branching events in space-time. 
 

Terminal segments are generally longer than intermediate ones, as also shown in figure 
10.10B and 10.10C. This may occur, for instance, when dendritic development proceeds in 
two different phases, the first one showing neurites to branch and elongate, followed by a 
second phase with neuritic elongation only, as is the case in rat pyramidal cell basal dendrites. 
Assuming different elongation rates during both phases, the observed segment length 
distributions could accurately be reproduced for these cell types. Even with constant 
elongation rates during dendritic development, changing branching rates will influence 
segment length distributions in dendritic trees in a complex, nontrivial way. For studying 
these questions a good description of the branching process is required. Therefore, we are 
now at the beginning of quantitative exploration of the elongation rates, with the distributions 
of observed dendritic shape parameters as a wealthy source of information.   
 
Variability in the Shape of Dendritic Trees 
An impression of the shape properties and variability is given in figure 10.12, illustrating a 
population of model generated dendrograms reflecting the properties of cat deep layer 
superior colliculus neurons (Van Pelt et al., 2001). The examples show the variation in the 
number of terminal segments per tree and in the length of both intermediate and terminal 
segments. Segment diameters have been assigned to the segments according to the following 
rule. Terminal segments are first assigned a mean diameter of 1.05 µ m, followed by the 

calculation of the diameter of a parent segment pd  from the diameters of its daughters 1d  

and 2d  using the branch power rule eee
p ddd 21 += , with the branch power e randomly 

sampled from a normal distribution with mean=1.47 and SD=0.3 (Schierwagen and Grantyn, 
1986) .  
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Figure 10.12 
Illustration of morphological variability in a set of model dendrites generated using parameter values 
optimized for dendrites of cat superior colliculus neurons (Schierwagen and Grantyn, 1986; Van Pelt et 
al., 2001). Variability is shown in the number, the length and the connectivity pattern of the segments. 
Terminal segment diameters have been randomly drawn from a normal distribution. Parent segments 
have been assigned a diameter using a power law relation with the daughter segment diameters, with a 
branch power randomly drawn from a normal distribution (see text). The number of terminal segments 
of each tree is indicated at the root of the tree.  
 
Conclusion 
Mathematical modeling contributes significantly to the understanding and the quantitative 
description of biological structures and processes. This has been illustrated in this chapter for 
the shape and variability of dendritic branching patterns. The modeling approach has 
demonstrated that (i) randomness in elongation and branching is sufficient to explain the 
variability in the ultimate shapes, (ii) the branching probability depends on the momentary 
number of terminal segments in the growing tree, and (iii) the branching probability depends 
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on an intrinsic component (basal branching rate function) that rapidly (as strong as 
exponentially) decreases with time of development. Ongoing studies of segment length 
distributions are expected to clarify whether neurite elongation rates are also subjected to 
competitive influences due to the proliferation of the number of segments in the growing tree. 
For these modeling studies dendritic shape complexity was reduced down to skeleton trees 
maintaining segment number, segment length and segment connectivity (topology).   

The conclusions from these modeling studies need to be followed by experimental 
investigations for the cell biological mechanisms underlying the basal branching rate and the 
dependencies on the number of terminal segments. Clearly, the modeling approach was 
essential to unravel the influence of the branching and elongation processes on the segment 
length structure in dendritic trees.  
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