
Brian Lee Yung Rowe

Modeling Data With
Functional Programming In R

2

Preface

This book is about programming. Not just any programming, but program-
ming for data science and numerical systems. This type of programming
usually starts as a mathematical modeling problem that needs to be trans-
lated into computer code. With functional programming, the same reasoning
used for the mathematical model can be used for the software model. This not
only reduces the impedance mismatch between model and code, it also makes
code easier to understand, maintain, change, and reuse. Functional program-
ming is the conceptual force that binds the these two models together. Most
books that cover numerical and/or quantitative methods focus primarily on
the mathematics of the model. Once this model is established the computa-
tional algorithms are presented without fanfare as imperative, step-by-step,
algorithms. These detailed steps are designed for machines. It is often difficult
to reason about the algorithm in a way that can meaningfully leverage the
properties of the mathematical model. This is a shame because mathematical
models are often quite beautiful and elegant yet are transformed into ugly
and cumbersome software. This unfortunate outcome is exacerbated by the
real world, which is messy: data does not always behave as desired; data
sources change; computational power is not always as great as we wish; re-
porting and validation workflows complicate model implementations. Most
theoretical books ignore the practical aspects of working in the field. The
need for a theoretical and structured bridge from the quantitative methods
to programming has grown as data science and the computational sciences
become more pervasive.

The goal is to re-establish the intimate relationship between mathematics
and computer science. By the end of the book, readers will be able to write
computer programs that clearly convey the underlying mathematical model,
while being easy to modify and maintain. This is possible in R by leverag-
ing the functional programming features built into the language. Functional
programming has a long history within academia and its popularity in in-
dustry has recently been rising. Two prominent reasons for this upswing are
the growing computational needs commensurate with large data sets and
the data-centric computational model that is consistent with the analytical
model. The superior modularity of functional programs isolates data man-
agement from model development, which keeps the model clean and reduces
development overhead. Derived from a formal mathematical language, func-
tional programs can be reasoned about with a level of clarity and certainty

i

ii

not possible in other programming paradigms. Hence the same level of rigor
applied to the quantitative model can be applied to the software model.

Divided into three parts, foundations are first established that uses the
world of mathematics as an introduction to functional programming concepts
(Chapter 2). Topics discussed include basic concepts in set theory, statistics,
linear algebra, and calculus. As core tools for data scientists, this material
should be accessible to most practitioners, graduate students, and even up-
per class undergraduates. The idea is to show you that you already know
most of the concepts used in functional programming. Writing code using
functional programming extends this knowledge to operations beyond the
mathematical model. This chapter also shows counter examples using other
programming styles, some in other languages. The point isn’t to necessarily
criticize other implementation approaches, but rather make the differences
in styles tangible to the reader. After establishing some initial familiarity,
Chapter 3 dives into functions, detailing the various properties and behav-
iors they have. Some important features include higher-order functions, first-
class functions, and closures. This chapter gives you a formal vocabulary for
talking about functional programs in R. This distinction is important as other
functional languages have plenty more terms and theory ignored in this book.
Again, the goal is how to leverage functional programming ideas to be a bet-
ter data scientist. Finally, Chapter 4 reviews the various packages in R that
provide functionality related to functional programming. These packages in-
clude some built-in implementations, paradigms for parallel computing, a
subset of the so-called Hadleyverse, and my own lambda.r package, which
offers a more comprehensive approach to writing functional programs.

While the first part provides a working overview of functional program-
ming in R, Part II takes it a step further. This part is for readers that want
to exploit functional programming principles to their fullest. Many topics in
Part I reference deeper discussions in Part II. This canon begins by exploring
the nature of vectorization in Chapter 5. Often taken for granted, we look at
how colloquial vectorization conflates a few concepts. This chapter unravels
the concepts, showing you what can be done and what to expect with each
type of vectorization. Three primary higher-order functions map, f old, and
f ilter follow. Chapter 6 shows how the concept of map appears throughout R,
particularly in the apply family of functions. I show how to reason about data
structures with respect to the ordinals (or index) of the data structure. This
approach can simplify code by enabling the separation of data structures, so
long as an explicit ordinal mapping exists. While f old is more fundamental
than map, its use is less frequent in R. Discussed in Chapter 7, f old provides a
common structure for repeated function application. Optimization and many
iterative methods, as well as stochastic systems make heavy use of repeated
function application, but this is usually implemented as a loop. With f old, the
same function used to implement a single step can be used for multiple steps,
reducing code complexity and making it easier to test. The final function of
the canon is f ilter, which creates subsets using a predicate. This concept is so

iii

integral to R that the notation is deeply integrated into the language. Chapter
8 shows how the native R syntax is tied to this higher-order function, which
can be useful when data structures are more complex. Understanding this
connection also simplifies porting code to or from R when the other language
doesn’t have native syntax for these operations.

Programming languages can’t do much without data structures. Chapter 9
shows how to use native R data structures to implement numerous algorithms
as well as emulate other data structures. For example, lists can be used to
emulate trees, while environments can emulate hash tables.

The last part focuses on applications and advanced topics. Part III can act
as a reference for implementing various algorithms in a functional style. This
provides readers with tangible examples of using functional programming
concepts for algorithm development. This part begins by proposing a simple
model development pipeline in Chapter 11. The intention is to provide some
reusable structure that can be tailored to each reader’s needs. For example, the
process of backtesting is often implemented in reverse. Loops become integral
to the implementation, which makes it difficult to test individual update steps
in an algorithm. This chapter also shows some basic organizational tricks to
simplify model development. A handful of machine learning models, such
as random forest, are also presented in Chapter 11. Remarkably, many of
these algorithms can be implemented in less than 30 lines fo code when
using functional programming techniques. Optimization methods, such as
Newton’s method, linear programming, and dynamic follow in Chapter 13.
These methods are usually iterative and therefore benefit from functional
programming. State-based systems are explored in Chapter 12. Ranging from
iterative function systems to context-free grammars, state is central to many
models and simlations. This chapter shows how functional programming can
simplify these models. This part also discusses two case studies (Chapter 14
and Chapter 15) for implementing more complete systems. In essence, Part
III shows the reader how to apply the concepts presented in the book to
real-world problems.

Each chapter presents a number of exercises to test what you’ve learned.
By the end of the book, you will know how to leverage functional program-
ming to improve your life as a data scientist. Not only will you be able to
quickly and easily implement mathematical ideas, you’ll be able to incre-
mentally change your exploratory model into a production model, possibly
scaling to multiple cores for big data. Doing so also facilitates repeatable
research since others can review and modify your work more easily.

iv

Contents

I Foundation 1

1 Introduction 3
1.1 The model development workflow 4
1.2 Language paradigms . 6
1.3 Imperative versus declarative algorithms 7
1.4 Elements of a functional programming language 9
1.5 Review of object-oriented programming 13
1.6 Syntax, notation, and style . 17
1.7 Examples and package dependencies 18

2 The functional programming language called mathematics 19
2.1 The declarative nature of set theory 20
2.2 Statistics . 21

2.2.1 The mean and imperative loops 21
2.2.2 Covariance and declarative functions 23
2.2.3 Symbolic conveniences in linear regression 26
2.2.4 Probability distributions and taxonomies 27

2.3 Linear algebra . 31
2.3.1 Dispatching the dot product 32
2.3.2 Matrix multiplication as object-oriented programming 34
2.3.3 Matrix factorization and collaboration 36
2.3.4 The determinant and recursion 38

2.4 Calculus . 39
2.4.1 Transforms as higher-order functions 39
2.4.2 Numerical integration and first-class functions 42

2.5 Summary . 43
2.6 Exercises . 44

3 Functions as a lingua franca 45
3.1 Vectorization . 48
3.2 First-Class Functions . 50
3.3 Closures . 53
3.4 Functions as factories . 57
3.5 Mediating iteration . 58
3.6 Interface compatibility . 61

v

vi

3.7 Codifying behavioral changes 63
3.8 Inversion of control via callbacks 65
3.9 State representation . 68
3.10 Mutable state . 72
3.11 Summary . 75
3.12 Exercises . 75

4 Alternate functional paradigms 77
4.1 The built-in functional programming canon 78
4.2 Infix ”pipe” notation . 80
4.3 The lambda.r syntax and type system 83

4.3.1 Pattern matching . 83
4.3.2 Guard statements . 86
4.3.3 Types and type constraints 88
4.3.4 Type variables . 94

4.4 The MapReduce paradigm . 96
4.5 The split-apply-combine paradigm 103
4.6 The tidyverse canon . 107
4.7 Summary . 109
4.8 Exercises . 109

II The Canon 111

5 Vector Mechanics 113
5.1 Vectors as a polymorphic data type 115

5.1.1 Vector construction . 117
5.1.2 Scalars . 118
5.1.3 Atomic types . 120
5.1.4 Coercion . 121
5.1.5 Concatenation . 122

5.2 Set theory . 127
5.2.1 The empty set . 127
5.2.2 Set membership . 129
5.2.3 Set comprehensions and logic operations 130
5.2.4 Set complements . 131

5.3 Indexing and subsequences . 133
5.3.1 Named indices . 134
5.3.2 Logical indexing . 136
5.3.3 Ordinal mappings . 138
5.3.4 Sorting . 139

5.4 Recycling . 139
5.5 Exercises . 141

vii

6 Map Vectorization 143
6.1 A motivation for map . 143

6.1.1 Map implementations 145
6.2 Preservation of cardinality . 146

6.2.1 Functions as relations 146
6.2.2 Demystifying sapply 148
6.2.3 Computing cardinality 149
6.2.4 Idempotency of vectorized functions 150
6.2.5 Identifying map operations 152

6.3 Order invariance . 153
6.4 Function composition . 156

6.4.1 Map as a linear transform 158
6.4.2 Multivariate map . 159

7 Fold vectorization 161
7.1 A motivation for f old . 161

7.1.1 Initial values and the identity 163
7.1.2 Fold implementations 167
7.1.3 Ordinal maps . 169
7.1.4 Data structure preservation 170
7.1.5 Identifying and correcting bad data 171

7.2 Merging data frames . 175
7.2.1 Column-based merges 176
7.2.2 Row-based merges . 180

7.3 Sequences, series, and closures 182
7.3.1 Constructing the Maclaurin series 183
7.3.2 Multiplication of power series 185
7.3.3 Taylor series approximations 186

8 Filter 189
8.1 Subsetting notation . 190
8.2 Predicates . 190

8.2.1 Partitions . 192
8.2.2 Using filters . 192

8.3 Mapping to ordinals . 193
8.3.1 Using which to extract ordinals 194

8.4 Context-aware data fills . 194
8.5 Exercises . 195

9 Canonical Data Structures 197
9.1 Primitive operations . 198

9.1.1 The list constructor . 198
9.1.2 Raw element access . 200
9.1.3 Selecting subsets of a list 202
9.1.4 Replacing elements in a list 203

viii

9.1.5 Removing elements from a list 204
9.1.6 Lists and NULLs . 204
9.1.7 Concatenation . 205

9.2 Comparing lists . 206
9.2.1 Equality . 207
9.2.2 Orderings . 208
9.2.3 Metric spaces, distances, and similarity 209
9.2.4 Comparing other spaces 212

9.3 Map operations on lists . 213
9.3.1 Applying multiple functions to the same data 214
9.3.2 Cardinality and null values 215
9.3.3 Hierarchical data structures 216

9.4 Fold operations on lists . 219
9.4.1 Abstraction of function composition 219
9.4.2 Merging data . 220

9.5 Function application with do.call 220
9.6 Emulating trees and graphs with lists 223

9.6.1 Modeling the binomial asset pricing model using trees 225
9.7 Data Frames . 227

9.7.1 Concatenation in 2 dimensions 228
9.8 Map processes . 229
9.9 Fold processes . 229
9.10 Exercises . 229

10 Advanced Functional Programming 231
10.1 Recursion . 231
10.2 Fixed point combinators . 233
10.3 Continuations . 235
10.4 Lazy Evaluation . 237
10.5 Monads . 237
10.6 Computational Graphs . 237
10.7 Summary . 237
10.8 Exercises . 237

III Application 239

11 Machine Learning Algorithms 241
11.0.1 Modeling random forest with trees 241

12 State-Based Systems 247
12.1 Using Closures for State Management 248

12.1.1 Generators . 249
12.1.2 Memoization . 251

12.2 Deterministic systems . 253
12.2.1 Iterative function systems 254
12.2.2 Conway’s Game of Life 255

ix

12.2.3 Context-free grammars 261
12.3 Finite State Machines . 267
12.4 Probabilistic Systems . 274

12.4.1 Markov chains . 274
12.4.2 The Chinese restaurant process 277
12.4.3 Kalman filters . 282

12.5 Exercises . 282

13 Optimization Methods 283
13.1 Root finding with Newton-Raphson optimization 283
13.2 The power method . 284
13.3 Linear programming . 284
13.4 Dynamic programming and the Bellman operator 284
13.5 Markov decision processes . 284
13.6 The gradient and Hessian . 284

14 Case Study: The optim function 285

15 Case Study: Ebola Situation Report ETL 287
15.1 Standardized transformations 287

15.1.1 Data extraction . 288
15.1.2 Data normalization . 293

15.2 Cleaning data . 300
15.2.1 Fixing syntactic and typographical errors 302
15.2.2 Identifying and filling missing data 306

15.3 Validation . 310
15.3.1 Internal consistency . 310
15.3.2 Spot checks . 312
15.3.3 Configuration management 314

16 Epilogue 317

A A lambda calculus primer 319
A.1 Reducible expressions . 320
A.2 Church numerals . 323

Bibliography 327

x

List of Figures

1.1 An idealized model development process based on Box’s role
of statistics in scientific learning. 5

2.1 The map operation maps a function to a set of values 25
2.2 The zip operation constructs a single vector of tuples from a set

of vectors. 26
2.3 Java class hierarchy for distributions. Object is the root class

for all Java objects. Dashed boxes indicate abstract classes that
cannot be instantiated. 28

2.4 Java class hierarchy for different statistics. In OOP, even
simple functions and metrics are forced into a class hi-
erarchy, which ultimately have no relationship with the
underlying mathematical concepts. In this example, the
AbstractStorelessUnivariateStatistic is an implemen-
tation artifact unrelated to univariate statistics. 29

2.5 Comparison of operations for two interfaces in the Apache
Commons Math library. The primary difference is that types
change from int to double. 30

2.6 Convolution as a computational graph 40
2.7 Regression analysis with Box-Cox transform as a computa-

tional graph. To predict a value, the model is applied to new
data X� followed by an inverse Box-Cox transformation. . . . 41

2.8 Comparison of residuals before (left) and after (right) a Box-
Cox transformation. New predictions on the model must have
inverse transform applied to get correct value. 42

3.1 Simple functions versus a closure. Left: A standard function
only has access to variables within its own scope. Any refer-
ences to variables outside the function scope will be searched
recursively until the global environment is reached. Right: Clo-
sures reference variables in their enclosing scope. This environ-
ment is bound to the function, even after the enclosing function
has been executed. With lexical scoping, any variable not in the
current scope will be recursively searched in the parent scope
until the global environment is reached. 53

xi

xii

3.2 Relationship between the call stack frames and lexical scopes.
Both are accessible from the current frame. The lexical scope
assumes this code is bundled in a package. 55

3.3 Precision-recall curve for the adult dataset 64
3.4 The model_pipeline as an example of inversion of control . . 66
3.5 Simulated time series with corresponding exponential moving

average (dotted line) . 74

4.1 A visual depiction of a layered approach to function develop-
ment. The outer layers provide convenient interfaces for each
domain case, while the inner layers are pure mathematical
functions. 91

4.2 The MapReduce method parallelizes data processing over mul-
tiple map and f old stages. Data is first partitioned and then
sent to multiple map processors. The results are collected and
grouped by key. Then these keys are partitioned and sent to a
set of f old jobs. 97

4.3 Two approaches to applying a function to a set 104
4.4 Batting averages for each player classification 105

5.1 Partial type coercion hierarchy for concatenation 121
5.2 Panel data as the partition of a set. The partition is defined

based on the value of the group column. 128
5.3 Convert a time into a decimal hour 140

6.1 The graph of f over a set X . 144
6.3 Comparing two ’graphs’ of the same function 154
6.4 Zip converts column-major data into a row-major structure.

Column-major data structures give fast sequential access along
column indices. A row-major structure optimizes for row ac-
cess. 159

7.1 How f old operates on a vector input x. The result of each appli-
cation of f becomes an operand in the subsequent application 162

7.2 Iterated application of union over X 165
7.3 Comparing the alignment of a derived time series 168
7.4 Cumulative death values are inconsistent with daily dead to-

tals and need to be fixed. 172
7.5 Two approaches to combining tabular data together. Adding

new features to existing samples is a join, while increasing the
sample for the same features is a union. 176

7.6 A set-theoretic interpretation of join operations based on table
indices. A full join (not shown) is a combination of both a left
and right outer join. 177

7.7 The parse_nation function modeled as a graph. 182
7.8 The Maclaurin series approximation of ex about 0. 184

xiii

7.9 Approximation of cos(x) about x = 2 187

8.1 A predicate partitions a set into two subsets 192

9.1 Excerpt from A Tree For Me . 211
9.2 Using a list, multiple functions can be applied to the same

object via lapply . 214
9.3 When cardinality is lost, the ordinals are also lost 216
9.4 An excerpt of a JSON structure from the govtrack.us API . . 218
9.5 A cartoon tree . 224

12.1 A small subset of the World Cities dataset 250
12.2 The Heighway dragon in paper 254
12.3 Four iterations of the Heighway dragon 256
12.4 Final state of Game of Life . 257
12.5 Two matrices showing a shift ”East” and how that encodes the

state of a particular neighbor. Shifting the board matrix in each
of eight directions effectively creates a tensor. The sum over
the tensor coordinates is equal to the neighbor count at each
cell. 259

12.6 A cartoon CFG that parses ”a man walks in the park with a dog” 262
12.7 The parse tree for ”a man walks in the park with a dog” 264
12.8 A simulated price series . 268
12.9 A trading strategy represented by a FSM 269
12.10A trading strategy represented as a set of state transitions . . . 270
12.11Generating events based on channel location 271
12.12Trading signals for a time series 273
12.13A random realization of text based on The Sun Also Rises . . . 275
12.14A realization of the Chinese restaurant process. Each point

represents the table that a given patron is seated. 279
12.15The probabilities associated with the 11th patron sitting at ex-

isting tables 1-4 or new table 5. As dictated by exchangeability,
all the probabilities are the same for each congruent table per-
mutation. 281

15.1 Ebola situation report table . 288
15.2 Portion of the Liberia Ministry of Health situation report web

page . 289
15.3 How xpathSApply transforms an XML document. Boxes rep-

resent functions, and arrows represent input/output. 290
15.4 Modeling conditional blocks as trees 294
15.5 Mapping a partition to a configuration space simplifies trans-

formations . 295
15.6 Raw extract of PDF situation report. Numerous words are split

across lines due to formatting in the source PDF. 296

xiv

15.7 Constructing table boundaries by shifting a vector. The first
n−1 indices represent the start index, while the last n-1 indices
are used as corresponding stop indices. 297

15.8 Parsed data.frame from unstructured text 301
15.9 Common syntax errors in Liberian situation reports 302
15.10The control flow of a sequence of if-else blocks 304
15.11Using ifelse to simplify control flow 305
15.12Histogram of patients lost in follow up in Nimba county . . . 308
15.13Using ordinals to map functions to columns 310
15.14A table in the Liberia Situation Report containing cumulative

counts . 311
15.15A transformation chain mapping file names to configurations 315

Listings

2.1 Naive implementation of the mean using a loop 22
2.2 A declarative implementation of the mean using fold 22
2.3 A loop implementation of covariance 23
2.4 Covariance using native R functions 24
2.5 An attempt at declarative notation with a loop 24
2.6 Using functional primitives to implement covariance 25
2.7 Implementation of zip . 25
R/math as fp.R . 25
3.1 A rudimentary model processing pipeline 48
3.2 A function to summarize model performance 50
3.3 Implementation of Winsorization 54
3.4 Adding Winsorization to the income_pipeline 56
3.5 Winsorization as a single function 56
3.6 Function to normalize a number of columns in the adult

dataset . 58
3.7 An implementation of stochastic gradient descent for logistic

regression . 60
3.8 Facade for training over multiple epochs with logistic regres-

sion . 60
3.9 An implementation of k-fold cross-validation 63
3.10 Compute and plot the precision-recall curve based on a set of

cutoff points . 65
3.11 L2 regularization for SGD . 67
3.12 A resource management function 69
3.13 Using a closure to manage external resources 71
3.14 Logistic regression using global assignment operator 73
3.15 A map implementation of an EMA uses the gloabl assignment

operator to append each incremental value to s. This code is
unsafe, since it can lead to side effects. 74

3.16 In a f old implementation of an EMA, the closure only reads
variables. Read operations have no side effects and are there-
fore safe. 74

R/funs lingua franca.R . 75
4.1 EMA using Reduce . 79
4.2 Get position without a loop . 80
4.3 The algae L-system produces a sequence of characters whose

length corresponds to the Fibonacci sequence. 86

xv

xvi

4.4 A new function clause for algae provides the wiring to auto-
matically iterate over the L-system. The %isa% operator tests
whether an object is an instance of a particular type. 87

4.5 A generalized using implementation with a custom exit han-
dler . 93

R/using.R . 93
R/using.R . 94
R/using.R . 94
4.6 Remove punctuation from sentences 98
R/wordcount.R . 98
R/wordcount.R . 98
4.7 Implementation of a key-value data structure 99
R/mapreduce.R . 99
4.8 Intermediate higher-order function that manages iteration

based on job length. The function processes each partition in
succession. In the end, the lists are concatenated into a single
list. 100

R/mapreduce.R . 100
R/mapreduce.R . 101
R/baseball.R . 102
R/baseball.R . 102
R/baseball.R . 106
5.1 Loading the diabetes dataset . 126
R/combinator.R . 233
R/combinator.R . 233
R/combinator.R . 234
R/combinator.R . 234
R/combinator.R . 234
R/combinator.R . 235
11.1 The make_tree function for a random forests implementation 244
12.1 Initial implementation of the rules of Life 258
R/gol.R . 260
R/gol.R . 261
12.2 A function to apply productions to a sequence of tokens. Unlike

true shift-reduce parsers, passes of the parser hold the size of
the token buffer constant. 263

R/cfg.R . 265
12.3 Parse a complete sentence . 266
12.4 Apply unit productions . 267
R/trading fsm.R . 269
R/trading fsm.csv . 270
R/trading fsm.R . 270
R/trading events.csv . 271
R/trading fsm.R . 271
R/trading fsm.R . 272

xvii

R/trading fsm.R . 272
R/trading fsm.R . 272
R/trading fsm.R . 273
R/markov chain.R . 275
R/markov chain.R . 276
R/markov chain.R . 276
R/markov chain.R . 277
R/chinese.R . 278
R/chinese.R . 278
R/chinese.R . 279
R/chinese.R . 279
R/chinese.R . 280
R/chinese.R . 282
R/math as fp.R . 283

xviii

List of Tables

1.1 Primitive types across different programming languages. In
Python and Java, primitives types are scalars. 14

1.2 Packages used in the book . 18

3.1 In-sample performance of logistic regression 61

5.1 Logical operators given input(s) of length n 131

12.1 Time to read and select the same country subset from World
Cities. Without memoization, the time increases linearly based
on the number of iterations. Memoization incurs the cost of
reading from the file system once per country, which is then
amortized across all subsequent calls. 252

xix

xx

Part I

Foundation

1

1
Introduction

As data scientists, computational scientists, and quantitative analysts (herein
just data scientist) it’s easy to think of modeling as a strictly mathematical
exercise. It’s easy to focus on this part and ignore the fact that we spend
most of our time programming. Famously called ”the sexiest job of the 21st
century” [16], it’s particularly easy to ignore the decidedly unsexy 80% of
data science: writing programs to clean, transform, and move data around.
That means the majority of a data scientist’s time is spent programming. And
the cruel reality is that the worse you are at programming, the more time you
spend doing it. Given this perverse imbalance, it’s useful investing some time
honing our programming skills to even out the time spent modeling versus
the time spent writing code. A good way to do this is by writing programs
with functional programming (FP) in mind. This is the practical motivation
for this book.

It’s likely that most of what you know about programming and software
design doesn’t apply to data science. Many academic programs focus on web
development or mobile app development. These curricula tend to focus on
object-oriented programming, which is well suited for GUI applications that
deal with digital analogues to real world phenomena. Even server side sys-
tems may use classes to organize groups of operations and maintain state.
While this approach can be effective, it works less well for systems built for
data science. To be clear, I am talking about model pipelines, batch process-
ing jobs, and even real-time predictive models built by data scientists. This
distinction is important because systems built by professional programmers
have design goals different from computational systems, which may warrant
the use of object-oriented programming.

What makes programming for data science different from systems or app
development? As hinted above, the entities modeled are significantly differ-
ent. The reason is that much of data science programming is manipulating
data and transforming it with mathematical operations. It’s quite possible
that a data science script or program can be reduced to a long sequence of
repeated function application or extended function composition. Unlike a
GUI window that needs to know what is inside it, a linear operator doesn’t
need to know anything about it’s operands to function. This is different from
object-oriented programming, where associated data structures and opera-
tions must be defined in advance. Object-oriented design (OOD) requires
up-front planning of how a program or system will be used. Without this

3

4 Modeling Data With Functional Programming In R

design stage, many object-oriented systems end up being fragile, difficult to
understand, and difficult to change.

Software design constitutes part of the software development process. But
data scientists aren’t professional programmers, just like most of us aren’t
professional drivers. Like driving, programming is a skill used to accomplish
another task. And like driving, there’s a minimum competency we need to
have to avoid unnecessary risk and expense. Poorly designed software is
expensive to operate and change. Therefore, we need to write code good
enough to make our lives (and those around us) better, while staying focused
on our work as data scientists.

One aspect of this philosophy is to understand the model development
process and how it differs from conventional software development. Usually,
a project starts as an idea or hypothesis that warrants investigation. This first
phase is more exploratory in nature. If the analysis yields a promising result,
more time and energy might be invested. At this stage, data is probably
stored in flat files with few external resources used. Eventually the model
might mature into something that runs in a production environment. Model
development thus begins more ad hoc than a typical software development
project. Rather than designing software at the beginning, it’s more likely that
it will happen further in the process once the model shows promise. Hence,
early on it’s more important to plan for change rather than design a system
architecture.

Another significant difference between data science programming and
typical programming is around the programming lifecycle. Professional soft-
ware development focuses on automated operation of systems. The system is
designed with this intention from the start, so attention is paid to how bits of
code are organized. Data science programs typically start as an exploratory
exercise. Many experiments will result in nothing, so the code will be thrown
away. Some survive the gauntlet and emerge as the vehicle for repeatable
science. Others reach a higher level of transcedence, becoming operational
code that runs in a production environment. Hence data science programs
often have a changing raison d’être depending on the research stage. How
we write the code determines how long it takes for code to metamorphose
from one stage to the next. Of course, this pupa feeds on our time to fully
transform, which can be quite costly.

1.1 The model development workflow

Let’s look at the model development process in more detail. Borrowing the
iterative learning process described by Box [9], Figure 1.1 depicts an iterative
model development process that starts with ideas or an initial theory based on
current knowledge. In the first cycle, model design is minimal and instead the

Introduction 5

Ideas
Hypothesis Data Results Application

Model
design

Tuning and
validation Operationalize

FIGURE 1.1: An idealized model development process based on Box’s role of
statistics in scientific learning.

focus is on understanding the data. This leads to formulating a hypothesis,
which leads to model design and feature engineering. The model is then
trained, tuned, and validated producing some results. Until the results are
satisfactory, the cycle repeats, with each pass bringing more maturity and
stability to the process. As a project matures, not only does the code mature,
but data sources also become more formal. During exploration and initial
model development, data are usually stored in flat files, parameters are hard
coded, and there is just one way to run a model. As we explore additional
features and other models, the processing pipeline essentially stays the same,
but steps in the pipeline are swapped. Once good enough, the model will be
promoted. The next chapter of its life will be as part of an application or run
as a production system on its own. During this phase, the model must be
operationalized to withstand the demands of a production system. The cost to
operationalize and integrate a model can be great, so this investment should
occur only after the model has proven itself. The approved models take
one of two paths. Either they are maintained by data scientists themselves
or are handed off to a technology team that (possibly) ports it to another
language and prepares it for production. Either choice leads to a period
of clean-up to make the original code easier to understand, more robust,
and possibly support alternate data sources. Poorly written code leads to
questions and bugs, both of which are expensive to address. Unit tests and
other techniques borrowed from software engineering are employed to ensure
that the process works as expected. The amount of effort is commensurate
with how clean the original code is. This can seem overwhelming when
functions are long and interrelated bits of logic are strewn about the function.
Functional programming breaks apart these functions into bite-sized pieces.
By virtue of their size, small functions can usually do just one thing. Hence,
small functions help isolate different types of logic, further clarifying the
purpose of each function.

Like survival of the fittest, though, not all models survive. If results do
not improve after a few cycles, the best choice may be to abandon a project.
In this case, hopefully parts of the model or code can be re-purposed for a
different project. This is only practical if the logic and functions associated
with the model are self-contained and easy to reuse. The fact that model

6 Modeling Data With Functional Programming In R

development and science in general can lead to many dead-ends clearly
changes the way software is written. The optimal workflow is also different
and must emphasize ease of readability and reuse over performance and
stability.

Most software today is developed iteratively, a few features at a time.
At the beginning, a so-called minimally viable product is built, which is a
stripped down version of some future software vision. This system is meant
to be immediately used by people, so it needs to have a certain level of ro-
bustness and reliability. The cycle usually encompasses a handful of activities:
gather requirements, design, implement, test, deploy, collect feedback/data.
This process also repeats itself. Over time, the software gradually improves
converging to what the end user wants. Throughout the process, each itera-
tion produces working (i.e. usable) software. For this process to be effective,
a bit of design precedes each implementation.

In sum, both type of software development must deal with change. Tradi-
tional software design places more emphasis on organization, stability, and
structure than model development. The onus is thus on the data scientist to
effectively manage change and prepare for eventual operationalization. One
key to managing this evolving code is simplicity. It’s well understood that
complex systems are more brittle and harder to change than simple systems.
The same is true of models and code. Following the advice of Einstein, code
should be as simple as possible but no simpler. Using functional program-
ming techniques can help simplify code and promote reuse by facilitating
modularity and reducing dependencies across functions.

1.2 Language paradigms

Two related concepts are discussed throughout the book. The first is how al-
gorithms are written. Imperative algorithms are most common and explicitly
describe control structures and variable manipulation. On the other hand,
declarative algorithms describe what operations to perform (the results you
want) instead of how to perform the operations. Take for example calculating
the mean of the elements in a list. We normally think of the algorithm along
the lines of Algorithm 1.2.1. This type of algorithm details how each variable
is used to arrive at a final computed result.

Algorithm 1.2.1: mean(x)

total← 0
for xi in x

do
�
total← total + xi

return (total/length(x))

Introduction 7

Usually though, we’re thinking of it in terms of Algorithm 1.2.2. Yes, the
second algorithm is just mathematical notation, which is the point. Histori-
cally, many algorithms were imperative out of necessity. Now, programming
languages are far more expressive and can represent more complex opera-
tions without having to detail the movement of every bit of memory in the
computer. Consequently, our algorithms should follow suit and utilize more
declarative notation in their definitions.

Algorithm 1.2.2: mean(x)

return (
�

xi/|x|)

One argument for imperative algorithms is that it’s easy to determine the
time complexity of an algorithm. This is useful. Algorithmic complexity of
declarative algorithms is also easy to work out. In some cases it can be easier
since the operations occurring within iterations is so concise. Furthermore,
with big data solutions often hiding the implementation of algorithms in the
name of computational performance, the value of big O calculations on local
code is minimized. Platforms like TensorFlow, Ufora, and H2O all follow this
trend.

Related to algorithm style is the programming language paradigm, which
focuses on how code is structured. Common paradigms include procedural
programming, object-oriented programming, and functional programming.
Procedural programs are traditional programs that use procedures as the
core organizational unit. Languages suh as C, Pascal, and Fortran are proce-
dural. Object-oriented programming structures code into classes from which
objects are instantiated. Java, C++, and Python are object-oriented, though
Python supports multiple language paradigms. Functional programming is
like procedural programming in that functions are the base building block.
However, functional programming makes heavy use of concepts rooted in
the lambda calculus [13] and has a more declarative structure. Other features
like closures, are prevalent in functional programming but rare in procedural
languages.

1.3 Imperative versus declarative algorithms
Algorithms not only contribute heavily to the data scientist’s arsenal but
are now a large part of contemporary life. Algorithms today are far more
sophisticated than in the past. Despite this prevalence and advancement, how
we describe algorithms is still quite primitive. Look at any paper describing a
numerical method, and the algorithm is described imperatively. One thesis of
this book is that describing algorithms imperatively conditions us into writing
code imperatively. This seems strange, since much of math is declarative.

8 Modeling Data With Functional Programming In R

Even programming languages are becoming more expressive and declarative,
thanks to plentiful and cheap computing resources. This trend is not new. Ever
since punchcards and assembly language, computer scientists have strived
to make programming languages more expressive. Advances in just-in-time
compilation enable programmers to focus on application logic instead of
algorithm efficiency since code is optimized on the fly. The significance of
compiler improvements is that more programs can be described declaratively,
with the actual operations determined by the compiler. These observations
point to a world where imperative algorithms become increasingly obsolete.

Mathematical notation relies extensively on symbolic logic, which is
declarative in nature. Operations are often described symbolically, where the
implementation is assumed. For example, the expected value of a variable X
is E[X] =

�
i p(xi)xi for all xi ∈ X. We do not need to describe all the operations

associated with
�

for people to know what this operation signifies. Symbolic
notation is declarative in that it describes what the operation does, but not
how to achieve the result. Without declarative notation, many operations we
take for granted become complicated. For example, suppose every time we
reference matrix inversion we need to explicitly detail the steps associated
with the operation. Clearly that would be annoying and possibly even hide
the value of the work we are doing. Declarative notation enables us to move
beyond these details to focus on the essence of mathematics. The same is true
of its software counterpart.

How we describe algorithms is not just a cosmetic concern. As model-
ers, we are natives of mathematics. It is part of our DNA and nature. Much
of our work is representing real-world problems as mathematical problems.
By extension our solution is mathematical, so why not the algorithm? When
computers had limited resources (or when computers were people), excruci-
atingly detailed step-by-step algorithms were required out of necessity. Algo-
rithms like matrix factorization are quite mechanical, while others are more
declarative. For example, the power method for finding the eigenvector asso-
ciated with the dominant eigenvalue can be found by repeatedly applying the
recurrence relation xn = Axn−1 until it converges. A typical algorithm describ-
ing this method looks like Algorithm 1.3.1. In this first version, the algorithm
details the moving around of data between variables. This is characteristic
of imperative loops. The problem with algorithms described in this manner
is that they rely heavily on manipulating variables and their indices. This
has nothing to do with math and is instead a function of how the computer
accesses and manipulates data.

Introduction 9

Algorithm 1.3.1: power(A, x0, tolerance)

error←∞
while error > tolerance

do

x1 ← Ax0
x1 ← x1

||x1 ||
error← x1 − x0
x0 ← x1

return (x0)

An alternative representation is Algorithm 1.3.2, which uses recursion to
model the recurrence relation. This has a simplifying effect since each iteration
of the function is self-contained. Since the variables are scoped for a single
iteration only, there is no need to manage variables explicitly. The temporary
variable x1 is used as a convenience but isn’t necessary. Notice how the body of
this algorithm essentially reduces to a chain of repeated function application.

Algorithm 1.3.2: power(A, x0, error, tolerance)

if error ≤ tolerance
then return (x0)

x1 ← Ax0
return (power(A, x1

||x1 || , x1 − x0))

Data science is filled with iterative methods like this. From transforming
all records in a dataset, to optimizing functions, training a model over mul-
tiple epochs, iteration is central to it all. Throughout the book we’ll see how
declarative algorithms simplify the translation of mathematical ideas into
code and solve numerous other problems along the way.

1.4 Elements of a functional programming language

We’ve established that writing good programs makes pragmatic sense. A
more philosophical perspective is that algorithms have always been a part of
mathematics, so writing good programs is good math. Going further, one re-
sult of the lambda calculus is the Curry-Howard Isomorphism, which shows
that programs are equivalent to proofs. [46] Most of the functions we write
probably won’t satisfy the criteria for this to work. Even so, the idea is attrac-
tive because it hints that we can reason about our programs in a way that gets
us to absolute certainty. This perspective can help change the way we look at
the role of code in our models.

Functional programming uses plain old functions as the base building

10 Modeling Data With Functional Programming In R

block. The simplicity of this approach compared to object-oriented program-
ming induces many profound changes in program design and structure. Most
significant is that FP enforces modularity and isolation, promoting not just
reuse but parallelization. In the age of big data, parallelizing code is a ne-
cessity. Writing programs in a functional style enables a seamless transition
between a single processing node and multiple processing nodes. Another
benefit of the FP style is that there is a clear separation between data and
functions. In OOP systems, a class defines both the data and the methods
(aka functions) that operate on it. Modularity exists via class hierarchies and
design patterns but at the cost of interdependence. These dependencies make
it difficult to reuse a class in a different context or in isolation (apart from
the rest of the class). This again becomes a challenge when distributing work
across multiple compute nodes. From a portability perspective, it is easier
to just send data as opposed to a language-specific object containing data,
state, and functions. Since data and functions are discrete first-class entities
in functional programming, there is more flexibility in how each are used.
This independence may seem subtle but it echoes the ethos of mathemat-
ics, where functions operate on specific mathematical entities irrespective of
the application or domain. For example, an eigenvalue decomposition works
on any square matrix whether this matrix represents a graph, a utility ma-
trix, or a covariance matrix of asset returns. The same is true in functional
programming.

Functions serve many purposes, and depending on how they are used,
they are called something different. When functions are treated as values and
passed as arguments to other functions, they are called first-class. If a func-
tion is created without binding it to a variable, it is known to be anonymous.
Functions that retain state from surrounding scopes are called closures. Fi-
nally, functions that take other functions as arguments or return functions
are known as higher-order functions. 1 Like stem cells, functions in R have
maximum potential and can take on any of these traits. It’s not uncommon
for higher-order functions to return a closure. Functions like aggregate rou-
tinely take anonymous functions as an argument. Such heavy use of functions
leads to the idea that functions help define atomic units of work. This leads
to the idea of modularity.

A natural artifact of functional programming, modular programs com-
prise many small functions that can easily be rearranged and reused. This
works because higher-order functions provide much of the wiring to accom-
plish common tasks, such as iteration, transformation, and grouping. In R this
is seen most clearly with functions like apply and aggregate. Both of these
functions are variations on the canonical functional map, detailed in Chapter
6. As the name suggests, map implements a mapping from an input to an
output. This concept is firmly seated in the mathematical idea of a function,
where a function maps one set to another set. In a vectorized language like

1Also known as a functional. We use these two terms interchangeablely.

Introduction 11

R, many functions behave this way natively, such as the algebraic operators.
When native vectorization is not available, map provides the wiring to quickly
endow vector semantics to any function. Due to complex data structures, this
is surprisingly often, and the battery of apply functions is testament to the
variations occurring in R.

A more primitive functional is f old, from which map can be implemented.
Discussed in Chapter 7, f old implements iterated function application. Like a
swiss-army knife, f old can be used in nearly any situation. A general pattern
revealed in the book is how map is used to transform individual datum, while
f old is used to transform systems of data. Many mathematical systems or
processes can be modeled as a f old operation, though we don’t always look
at them from this perspective. Just like map, f old has roots in mathematics, this
time via inductive processes. The incremental value of a series can be defined
in terms of the previous incremental value. An arbitrary term in a series can
be modeled as xi = f (i, xi−1). This representation is valid for both summation
and product series, as well as stochastic processes and iterative systems like
the Kalman filter. For example, one series expansion of pi

4 is defined as the

series
�∞

i=0
(−1)i

2i+1 . Each term in the series can be defined in terms of the previous

term: xi = xi−1 +
(−1)i

2i+1 . It’s trivial to then tie this back to an iterated function
representation. Another powerful application of f old is aggregation, which
can be considered a special case of an inductive process. Instead of retaining
all elements of a sequence, only the final value is kept. This is similar to the
difference between cumsum and sum. One consequence is that many aggregate
statistics like variance can be reformulated as an inductive f old process.

Extending induction further, state-based systems can be modeled using
f old operations. The general formulation is that the current state of an arbi-
trary system Xt is a function of its prior state Xt−1. In other words, Xt = f (Xt−1).
This implies that given some initial state X0, the state at Xn is an n-fold func-
tion composition f (n)(X0). This simple observation demonstrates that any
iterative system can be represented as a f old operation. It’s easy to convince
yourself that simple deterministic systems like iterative function systems
(IFS) fit within the f old model, but what about parsers and machine learn-
ing models? To answer that, let’s look at another simple state-based system.
Markov chains are like an IFS since they don’t take external input and evolve
based on a set of rules. The difference is that the rules are probabilistic in-
stead of fixed. Finite state machines also evolve over time, although based on
external input. Their representation is Xt = f (at,Xt−1), which is the standard
form of f old. That’s why this formula is also used to represent an infinite
series. Context-free grammars also rely on state. Both parsing and language
realization evolve according to their internal state. How these systems utilize
state are detailed in Chapter 12. Machine learning models are all state-based
systems. The process of training a model is no more than updating a state
until it reasonably describes data. Chapter 11 deconstructs and reformulates
the random forest algorithm in this manner.

12 Modeling Data With Functional Programming In R

The last canonical higher-order function is f ilter. As the name suggests,
f ilter removes elements from a vector or list based on specified criteria. While
it operates on individual elements, unlike map the output cardinality is not
equal to the input. Hence, f ilter sits somewhere in between map and f old. The
f ilter concept, detailed in Chapter 8, is deeply integrated into R via subsetting
notation. This notation is a syntactic convenience, which is generalized by the
use of a predicate. In fact, a f ilter process is equivalent to using a predicate
with map. Recognizing this equivalence can simplify code and present reuse
opportunities. With these three functionals, all other iterative operations can
be easily implemented.

Native vector operations are a key feature of R. Most general purpose
languages define scalars as primitives. However, languages (or libraries) de-
signed for numerical analysis often use vectors as primitives. It turns out that
vector operations implicitly use functional programming concepts since the
mechanics of iteration are implied in the operations. This makes R particu-
larly well-suited for a FP style since so many operations already fit within
this paradigm. Chapter 5 explores the behavior of this foundational structure,
connecting the semantics of vector operations with functional programming.
You’ll find that fluency in functional programming concepts is a short stroll
from native R semantics. Embracing the FP features of R will vastly simplify
your code, freeing you up to do more of the science in data science.

Vectors only support values of the same mode. Hence, a logical vector only
supports TRUE, FALSE, and the logical NA. These cannot be used in a numeric
vector. When all elements are of the same type, using a vector is appropriate.
Accessing arbitrary elements within a vector is fast, as are native vector
operations. Despite this performance improvement, there are times when we
want to hold values of different types in the same structure. Mathematically,
a tuple usually represents this concept, while in R this is implemented by the
list type. 2 Chapter 9 shows that lists behave similarly to vectors. The main
difference is that subsetting is different from element access, so additional
syntax exists to differentiate between the two operations. Since lists can hold
arbitrary objects (including other lists), lists are also used to pack function
arguments. The most common case is when using do.call, discussed in
Section 9.5. This technique is used when a function is called dynamically, or
when arguments to a function are constructed dynamically. Lists act as the
building block for creating more complex data structures. To illustrate this
idea, Section 9.6 shows how to implement trees and graph structures using
lists.

Another core data structure in R is the data frame, which represents
tabular data. Chapter 9 discusses how the subsetting concepts for vectors and
lists are extended into two dimensions. The same approach works for matrices
and higher-dimensional arrays that represent tensors. Iteration also needs to

2In many functional languages, the list is a generic container that holds multiple elements.
Typically it is implemented as a linked list, where each element contains the actual value plus a
pointer to the next element in the list.

Introduction 13

be modified to handle an extra dimension. R approaches this numerous ways,
based on different apply functions. The eponymous apply function operates
on rows or columns of a data frame, where as sapply operates on an index
and mapply operates on a slice of a data frame. Knowing when to use each
function depends on style but also the types contained in the data frame.

1.5 Review of object-oriented programming

Much of the personal computer revolution began at Xerox PARC. Object-
oriented programming also has roots at PARC, specifically with the Smalltalk
language [24]. While not the first object-oriented language, Smalltalk was
the first one to heavily incorporate GUIs into the programming model. This
original form of object-oriented programming was based on message passing
between objects. The point was how to enable self-contained modules to
communicate with each other, as opposed to worrying about how to manage
the internal properties and behaviors of the modules [23]. The idea was to
delegate the dispatching of a concrete function to an object that had its own
context and knew which function made the most sense. With GUIs, this is
quite compelling, since events can occur on one part of an interface that can
affect objects elsewhere on the screen. The object triggering the event often
has no idea how other objects will handle the event, providing a compelling
use case for embedding functions directly with the state they use.

Messages in Smalltalk were simply identifiers followed by additional
parameters. The recipient would then decide how to react to the message. In
other words, message passing is a way to delegate control to other software
components. These days this is a common practice when interacting with
web-based APIs: we send a message describing what we want, plus a payload
of supporting details and get something back. How the service constructs the
rsponse isn’t our concern, so long as it’s correct. This sounds awfully similar
to how we’ve been characterizing declarative programs. This concept even
makes its way into R via S3 and S4 generics. The delegation occurs through
the use of special functions (e.g. UseMethod for S3) that are responsible for
dispatching to the correct function.

Contemporary object-oriented programming extends these concepts to
create a different beast altogether. Languages like Python, Java, C++ 3 use
the same conceptual model with minor differences between them. To begin,
there is a concept of a class hierarchy. Classes represent a template defining
members of the class, including properties and methods (operations) on the
member. This structure resembles the Linnaeun taxonomy, where all living
creatures belong in the hierarchy. Common properties, such as the number

3I’m explicitly omitting C# since most data scientists don’t use it.

14 Modeling Data With Functional Programming In R

R Python Java
numeric vector int int
numeric vector float float
numeric vector double double
character vector char char
character vector string java.lang.String
logical vector bool boolean
N/A tuple N/A
list list Array
environment dict java.util.HashMap
matrix N/A N/A
array N/A N/A
data.frame N/A N/A

TABLE 1.1: Primitive types across different programming languages. In
Python and Java, primitives types are scalars.

of legs, are grouped together in a parent class. As an example, the order
Crocodilia is a member of the class Repitilia. One commonality of reptiles is
that they have four legs, 4 so this property might be set in Repitilia to avoid
repetition in subclasses.

In software, this taxonomy defines your universe of types, built on top
of the primitive types in the language. Table 1.1 compares primitive types in
a few languages. Irrespective of the language, variables can only be created
based on existing types. In dynamically typed languages, this is done behind
the scenes, whereas in statically typed languages, it is explicit. In strict 5 object-
oriented languages like Java, variables can only be instantiated from classes
defined in the hierarchy. This variable (or object) is called an instance of the
class. For example, creating a software crocodile looks like

CrocodylusPorosus crocodile = new CrocodylusPorosus();

in Java. Python is less verbose, partly due to dynamic typing.

crocodile = CrocodylusPorosus()

You might wonder if it’s possible to create instances higher up in the tax-
onomy. For example, is it possible to instantiate an object of type Repitilia?
Clearly, this class is a man-made fabrication, and it would be meaningless
to create such an ”animal”. Classes that cannot be instantiated are called ab-
stract. In Java, the compiler ensures that any class marked as abstract cannot
be instantiated. In Python the same behavior can be emulated using the abc

module.

4Snakes are an exception, though they descend from four legged reptiles.
5The technical term is ”pure”, but technically Java is not pure, so I use ”strict” as a compromise

to distinguish it from Python.

Introduction 15

New object instances are created via a special method called the construc-
tor. This method is defined inside the class and details how to create objects
of the given class. In Python, this function is named __init__ and takes at a
minimum a parameter named self 6, which represents the new object. To il-
lustrate, suppose gender must be given when calling the CrocodylusPorosus
constructor. This property is assigned to self in the constructor.

class CrocodylusPorosus:
def __init__(self, gender):

self.gender = gender
self.energy = 1

The newly instantiated object will have this attribute attached to it. Object
properties can represent attributes of the object or its state. The number of
legs, gender, and eye color are all attributes of a crocodile while the last time
she ate is part of her internal state. All of these properties are specific to each
crocodile and are accessed directly or via a method. The former is popular
in Python and is known as inspection, while the latter is standard in Java and
is called invocation. Invocation is considered safer, since a class can define
appropriate default values. For example, suppose some crocodiles are tagged
with a unique id to understand their behavior. Among a group of crocodiles
some have tags and some don’t. In Python, we can simply attach this property
to the tagged crocodiles.

crocodile.id = 32423

This flexibilty is convenient but presents a problem when we attempt to access
the id of an untagged crocodile.

>>> crocodile_1 = CrocodylusPorosus(’female’)
>>> crocodile_1.id
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AttributeError: CrocodylusPorosus instance has no attribute ’id’

In Java, this approach is not allowed and results in a compiler error. If one
class is used to represent all crocodiles, a tag id must be added as a property
for all crocodiles. Otherwise, a new class must be created that extends the
original class and introduces the new property. This new class is a subclass of
the parent, inheriting its properties and methods. The same approach works
in Python.

class TaggedCrocodylusPorosus(CrocodylusPorosus):
def __init__(self, gender, tag):

CrocodylusPorosus.__init__(self, gender)
self.tag = tag

The methods of a class follow a similar design process. Suppose we want
to know how hungry a crocodile is. We can define a method is_hungry that

6This name is not enforced by the interpreter, but it is a standard convention.

16 Modeling Data With Functional Programming In R

returns true or false based on the amount of energy the crocodile has. Thanks
to inheritance, instances of TaggedCrocodylusPorosus will also have this
method defined.

class CrocodylusPorosus:
def __init__(self, gender):

self.gender = gender
self.energy = 1

def is_hungry():
if self.energy < 6: return true
return false

This instance method only knows about the energy associated with each specific
instance. For simulations, this can be quite useful since numerous agents can
be creatd where each is responsible for managing its own state. 7

Continuing this process, it’s easy to see how class hierarchies are born.
Over time, properties and methods migrate between classes until they find
some equilibrium between generalization and specificity. As more classes are
created, each expects to operate on specific other classes, creating an ever
expanding web of dependencies. Hence, any change to one class may affect
all other classes that depend on it. This is why design is so important in
object-oriented systems.

Let’s return to message passing. Earlier, I said that S3 generics resem-
ble message passing. S3 is a dispatching system that connects methods with
different classes. A function is first registered as being an S3 method by dele-
gating the dispatching to the UseMethod function. A concrete implementation
is based on the type of the first argument. The UseMethod function uses this in-
formation to dispatch the underlying function implementation. For example,
we can create crocodiles using this approach.

CrocodylusPorosus ← function(gender)
UseMethod("CrocodylusPorosus")

CrocodylusPorosus.character ← function(gender) {
o ← list(gender=gender, energy=1)
class(o) ← ’CrocodylusPorosus’
o

}

Calling this function produces objects with the class CrocodylusPorosus.
Suppose we want to implement a method to enable our digital crocodile

to eat. Let’s call this function eat. Let’s also register this function as an S3
method.

eat ← function(animal, food) UseMethod("eat")

This setup allows us to treat eat as a message to animal. In essence we are

7Indeed, this was one of the driving motivations for the original object-oriented programming
language, SIMULA.

Introduction 17

saying we want the recipient of the message to handle eating the way that is
most appropriate for it. Importantly, as the calling function (message passer),
we don’t know what that entails.

S3 solves this by defining separate methods for each recipient type. For
crocodiles we can define it as

eat.CrocodylusPosorus ← function(animal, food) {
prey ← c("Tapirus indicus", "Tragulus napu", "Homo Sapiens")
if (! class(food) %in% prey) stop(sprintf("A %s is inedible", class(food)))
add_energy(animal, get_energy(food))
die(food)
animal

}

Notice that after some rearranging, this is semantically similar to the Smalltalk
message passing syntax animal eat: prey. This also looks eerily similar to
infix notation. We’ll see in Chapter 4 that extending the message passing con-
cept to multiple arguments is equivalent to pipe notation. One argument of
this book is that object-oriented programming is largely unnecessary for data
science. Through numerous examples, we’ll see how dats science problems
can be solved simply and quickly using FP principles.

1.6 Syntax, notation, and style
As the centerpiece of the book, functions can be described in various ways.
From a mathematical perspective, a function is generally characterized by its
domain and range (co-domain). For a function f , it is described in the abstract
as f : X → Y, meaning f maps elements of X to elements of Y. If a function
has multiple inputs, the input domains are separated by the × symbol. For
example, + : R × R → R describes the addition operator over the reals.
Functions that take vector arguments use a superscript to indicate the length
of the vector. The summation operator can be characterized as

�
: Rn → R,

indicating that the length of the input is arbitrary. From a computer science
perspective, this description of a function is essentially its signature, less any
variable names.

To improve readability, different fonts are used to represent different en-
tities within the text. When referring to the language, R is typeset using a
sans serif font. Code listings use a fixed width font. References to vari-
ables, functions, and packages within the prose also use a fixed width font.
Mathematical expressions and objects are italicized. When switching between
mathematical objects and their code counterparts, I maintain font consistency
to help distinguish the context. In general, code is provided inline, as this is
more conversational. That said, breaking up a function into too many lit-
tle pieces can impede understanding. Thankfully, functions are meant to be

18 Modeling Data With Functional Programming In R

Package Purpose
caret Model developent and tuning
dplyr Data manipulation
futile.logger Logging
lambda.r Functional programming dispatching and type system
lambda.tools Collection of functions for functional programming
magrittr Infix pipe notation
plyr Data manipulation
purrr Collection of functions for standardized development
rmr2 MapReduce implementation for RHadoop project
zeallot Pattern matching for assignment

TABLE 1.2: Packages used in the book

short, so they can usually be listed in toto. Code examples may also depict
the result of a command in the R console. In these situations, executed code
is preceded by a > character, which represents the console prompt. One last
note about code listings is that a ligature is used for the assignment operator.
Hence, instead of <-, the symbol ← is used. Not only is this more readable,
but it also serves a pedagogical purpose. Anecdotally, I’ve seen that pro-
gramming concepts are better retained when manually typed versus simply
copying and pasting code. Readers that want complete, executable listings
can always reference the examples online 8.

The canonical higher order functions are always italicized. This helps
avoid confusion with other meanings for these words. It also reinforces the
canonical nature of these higher-order functions.

1.7 Examples and package dependencies
A number of packages are referenced in this book. A handful are written by me
to support my own model development. Table 1.2 lists packages referenced
and their purpose. Readers should be able to install and load libraries. If not,
a number of introductory texts on R are available.

8An open source project with all code listings is available at ??

2
The functional programming language
called mathematics

We hinted that mathematical notation has a lot in common with functional
programming. The connection is far deeper, extending all the way to the
lambda calculus, which is a formal mathematical system for defining math-
enatics itself, all based on functions. This book will stay closer to the surface,
showing how functional programming concepts aid the model development
process. The more you appreciate the connection between math and func-
tional programming, the easier it will be to implement mathematical ideas.
This chapter works through a number of examples in various disciplines to
highlight this connection. Where appropriate we’ll touch on the related FP
concepts and point the reader to the chapter where it’s discussed in more de-
tail. We’ll also occasionally juxtapose functional implementations with plain
imperative code or object-oriented code. These counterexamples will aid in
internalizing the differences between the approaches. One conclusion is that
mathematical structures are not as compatible with the object-oriented ap-
proach. This stems from the fact that functions and objects are distinct entities
(though functions are objects), just like in functional programming. In con-
temporary OOP, classes are structures that contain both data and operations
on the data. This makes for some strange operations as we’ll see in this chap-
ter.

As we work through comparisons between language paradigms, keep in
mind that there are two scenarios we’re balancing. The first is as the user of
an existing library or code that is written in a functional style. Understanding
functional programming concepts will help you utilize these functions to
their fullest. The second is writing your own algorithms or libraries. Here
you also need to consider other users of your package, so the details of the
implementation are important not just to you but to your users that want
to understand what your function or model is doing. You want to optimize
readability of the code with ease of use and maintainability. Another goal
is to limit the requirements necessary to use your package. Box said that
”Almost never is an experimental result put to use in the circumstances
in which it was obtained” [9]. We can say the same about mathematics and
mathematical software. This approach is most open and can lead to surprising

19

20 Modeling Data With Functional Programming In R

and wonderful new uses. 1 The less opinionated your package, the more
possibilities you create.

2.1 The declarative nature of set theory
Controversial when first introduced by Georg Cantor, set theory is now so
ubiquitous that it is often taken for granted. Even business students get a taste
of set theory via Venn diagrams. Much of set theory is described declaratively.
Given two sets X and Y along with an entity x, simple operations like set
membership x ∈ X, intersection X ∧ Y, and union X ∨ Y are all represented
declaratively. Construction of sets is also declarative, most commonly seen
in set builder notation. For example, the squares can quickly be defined
{x2 : x ∈ W}. This notation is flexible and can contain predicates, another
aspect of functional programming. Discussed in Chapter 8, predicates are
functions that return a logical value. Subsetting notation makes heavy use
of predicates. A set that can be defined with predicates is the set of prime
numbers. This set is described as all numbers whose only positive divisors are
one and itself. We define the set of prime numbers as P = {p ∈ N | p is prime}.
This set can be used without necessarily constructing it, which is good since
it’s infinite. Of course, many sets are infinite. The combination of symbolic
and declarative notation allows us to make use of such sets even though it’s
impossible to completely itemize them.

A sequence is a function that maps ordinals to a set. Many sequences
are defined inductively, which is declarative, since the actual mechanics of
constructing the set are implied. The well known Fibonacci numbers are
defined by the following equations.

F0 = 1
F1 = 1
Fn = Fn−1 + Fn−2

If a number x is a member of this set, we denote it as x ∈ F. If x also happens
to be a prime number, we say x ∈ F ∧ x prime. With this concise description,
conceptually we know what the elements of this set are, without having to
construct it nor detail the algorithm to calculate its members. This is central to
the difference between declarative algorithms that describe what the result of
an operation is versus imperative algorithms that describe how to manipulate

1This happened to me, with my tawny package. Initially designed to clean covariance
matrices of asset returns via random matrix theory and shrinkage estimation, the interface
expected a data frame of asset returns. It turned out that numerous practitioners in computational
psychology wanted to use the same methods, which led to removing those data type constraints
to expand the utility of the package.

The functional programming language called mathematics 21

data structures to achieve a specific result. In R this same expression is denoted
x %in% F &&is.prime(x). Most programming languages support logical
expressions that are quite similar to their mathematical counterparts. R takes
this concept a step further by utilizing the results of logical expressions as
predicates to other operations.

Subsetting uses this concept extensively. For example, suppose we want
to describe the set of all prime Fibonacci numbers. There are numerous ways
to do this. Using our definition of primes from before, this is simply F ∧ P.
Alteratively, set builder notation allows us to describe each element explicitly:
{x | x ∈ F∧x is prime}. For this second approach, the R syntax again mimics this
notation: x[x %in% F &is.prime(x)]. When reading the above expression,
did you stop to consider how the primes are computed? If not, then you
experienced the benefit of declarative code. Expressions like these are easy to
understand because they focus on describing what the set is as opposed to the
implementation details of how to construct the set within the programming
language.

2.2 Statistics

Descriptive statistics are a staple of data science and often one of the first tools
used to characterize data. Rarely do we need to implement these functions
from scratch. In this section that’s precisely what we’ll do since their simplic-
ity reveals the connection between mathematical expressions and functional
programs more clearly. Seeing this relationship is a necessary ingredient for
quickly translating mathematical ideas into code reality.

2.2.1 The mean and imperative loops

Let’s start by examining the mean of some univariate data. Assuming zero
knowledge of R idioms, how might we implement the mean of a vector? The
mean is typically defined

1
n

n�

i

xi

for a vector of length n. A common approach is to initialize a temporary
variable and loop through each element, adding it to the temporary variable.
The final step divides this sum by the number of elements. The algorithm
might be codified as in Algorithm 1.2.1. A working implementation is nearly
verbatim. This coding style is called imperative because each step of the algo-
rithm is explicit. Imperative algorithms tell the computer how to manipulate
variables and memory to achieve a specific result. The hallmark of imper-

22 Modeling Data With Functional Programming In R

ative code are loops and repeated variable assignment. Usually temporary
variables are updated based on some repeated operation.

mean.i ← function(x) {
sum ← 0
for (xi in x) sum ← sum + xi
sum / length(x)

}

LISTING 2.1: Naive implementation of the mean using a loop

Both procedural and object-oriented paradigms are imperative in nature. The
difference between these paradigms is structural, in terms of how code is
organized, as opposed to how algorithms are implemented.

In contrast, declarative programs express what a computation should do
as opposed to how. Function implementations appear to be more symbolic,
closer to mathematical notation. Functions are also used more frequently to
group units of computation together. For example, the declarative implemen-
tation of mean uses f old and a closure2 to mediate the loop operation.

mean.d ← function(x) {
fold(x, function(xi,sum) xi + sum, 0) / length(x)

}

LISTING 2.2: A declarative implementation of the mean using fold

Fold abstracts iterated function application, adding the next element in the
sequence to the accumulated result. In other words,

function(xi, sum) xi + sum

is applied to each element of x along with the accumulated value or state. At
the end of the iteration, the final value is returned. In this expression, f old
is computing the sum of x. This works by expanding

�n
i xi = ((((0 + x1) +

x2) + ...) + xn). Coming from an imperative background, this may seem like a
strange way to implement the summation operator. Chapter 7 devotes time
to discussing the motivation behind this approach. For now, let’s focus on
encapsulating the implementation in its own function.

sum.d ← function(x) fold(x, function(a,b) a + b, 0)

The mean can now be written

mean.d ← function(x) sum.d(x) / length(x),

which is notationally similar to the underlying mathematical expression.
The function f old is known as a higher-order function, or functional,

because it operates on functions. Higher order functions can also return func-
tions. The many uses of these special functions are discussed in Chapter 3.

2For now, a closure can be thought of as an anonymous function. The semantics of closures
will be discussed in more detail in Chapter 3.

The functional programming language called mathematics 23

Functional languages typically have a small set of standard higher order func-
tions that act as building blocks for more complex operations. We’ll explore
the canonical set of functions in Chapters 6 - 8.

Back to the implementation, notice that no variables are overwritten. Vari-
ables in functional programs tend to have a scope so limited that updating
the value of a variable is unnecessary. Some pure functional languages do
not even allow multiple assignemnt to variables, which provides a strong
guarantee on deterministic behavior. The benefit is that functions are easier
to understand since the variables have limited scope to change. Hence, there
is no need to scan lines and lines of code to determine the behavior of a
function.

2.2.2 Covariance and declarative functions

In the previous section, we pretended that we were ignorant of the native
vectorization in R. This momentary suspension of disbelief allowed us to
distinguish between imperative and declarative algorithms that operate on
vectors. Building on this knowledge, let’s implement the covariance of two
variables X and Y. Recall that covariance is defined

Cov(X,Y) =
1
n

n�

i=1

(xi − x̄)(yi − ȳ).

for two random variables X and Y of equal length. The implementation is
similar to mean.i since there is a summation involved in the calculation.
There’s more setup, though, since we need to subtract the means and take the
product of each element-wise pair (xi, yi).

cov.ia ← function(x,y) {
sum ← 0
ux ← mean(x)
uy ← mean(y)
for (i in 1:length(x)) {
sum ← sum + (x[i] - ux) * (y[i] - uy)

}
sum / length(x)

}

LISTING 2.3: A loop implementation of covariance

The summation operator is a frequent actor in mathematical expressions,
but its meaning can get buried in the implementation, particularly as the sum-
mand gets more complicated. When embedded in a loop, another implication
is that each implementation of the summation loop must be tested each time.
A better approach is to encapsulate the summation operator so it takes any
vector expression and sums the elements. A native R approach does just this.
Syntactically, this version looks closer to the mathematical expression than
the imperative algorithm.

24 Modeling Data With Functional Programming In R

cov.r ← function(x,y)
sum((x - mean(x)) * (y - mean(y))) / length(x)

LISTING 2.4: Covariance using native R functions

The similarity is more than cosmetic. Our expression is now declarative,
where the implementation is a detail as opposed to the main focus.

Using vectorization may seem like cheating, but as we’ll see in this book,
vectorization is actually functional programming in disguise. Functional pro-
gramming gives us a framework for applying the same vectorization concepts
to data structures and functions that are not natively vectorized. Does that
mean we can simply use vectorized functions in imperative code to make it
declarative? For example, how can we transform the imperative implemen-
tation to leverage sum? To use sum, we need to pass it a vector. Instead of
updating a temporary variable, now we need to create a temporary vector. At
each iteration, the intermediate term is appended to this vector. Finally, this
vector is passed to sum to produce the desired result.

cov.ib ← function(x,y) {
z ← c()
ux ← mean(x)
uy ← mean(y)
for (i in 1:length(x)) {
z ← c(z, (x[i] - ux) * (y[i] - uy))

}
sum(z) / length(x)

}

LISTING 2.5: An attempt at declarative notation with a loop

But that didn’t do anything to simplify the code! We simply replaced one
temporary variable for another. The reason the code is still imperative is
that we’re still using loops and explicitly interacting with each individual
vector element. Code written this way is the programming version of micro-
management. What’s better is to describe the transformations you want to
make on data and allow the interpreter to handle the details. This is how SQL
queries work, where you specify the data you want, and the query engine
figures out how to efficiently retrieve the results. It’s only when the query
engine gets confused that you care about the implementation. We already
saw how f old can be used to mediate a loop. Another approach is to use
map, which applies a closure to every element in a vector, or map(f ,X) =
(f (x1), f (x2), ..., f (xn)) for xi in X. The idea is that each pair of elements in X
and Y are passed to the closure f and their product of differences computed,
just like in the updated imperative implementation. The only wrinkle with
this approach is that map operates on a univariate closure. If we want to pass
more than one argument to f , we need to wrap them up in a tuple, which
is what zip does. Shown in Listing 2.7, this function is a staple of functional

The functional programming language called mathematics 25

x1 f y1

x2 f y2

x3 f y3

· · · · · ·
xn f yn

FIGURE 2.1: The map operation maps a function to a set of values

languages and has the signature zip : Xn×Yn → (X,Y)n. Putting it all together
(and using sapply as our map implementation), we have

cov.da ← function(x,y) {
ux ← mean.d(x)
uy ← mean.d(y)
sum(sapply(zip(x,y),
function(xy) (xy[1] - ux) * (xy[2] - uy))) / length(x)

}

LISTING 2.6: Using functional primitives to implement covariance

This implementation avoids loops and reassignment. Indexes are used to
grab the x and y values in the ”tuple”. One thing to note is that using array
indices is not anathema to functional programming. However, the variable
being indexed has a limited scope, namely within the closure. This is a form
of protection since the indexing is independent of the source variables X and
Y, and are not affected if they change.

zip ← function(x,y) {
lapply(1:length(x), function(i) c(x[i], y[i]))

LISTING 2.7: Implementation of zip

It turns out that zip isn’t used much in R because sapply isn’t the only map
implementation. The functionmapply is designed to handle multivariate data,
so it can be used directly to simplify the implementation.

cov.db ← function(x,y) {
ux ← mean.d(x)
uy ← mean.d(y)
sum(mapply(function(a,b) (a-ux) * (b-uy), x,y)) / length(x)

}

The vast array of map-like functions in the apply family can be daunting at
first. It’s important to remember that R is a pragmatic language, and these
variations are designed to minimize the amount of code necessary to create
your models. The drawback is that it can be more challenging to learn. Chapter

26 Modeling Data With Functional Programming In R

x1 x2 x3 x4 · · · xn

y1 y2 y3 y4 · · · yn

zip (x1, y1) (x2, y2) (x3, y3) (x4, y4) · · · (xn, yn)

FIGURE 2.2: The zip operation constructs a single vector of tuples from a set
of vectors.

6 details the various map implementations and discusses when to use one over
another.

2.2.3 Symbolic conveniences in linear regression

Consider the swiss dataset that comes bundled with R. This dataset lists the
standardized fertility measure and socio-economic indicators for the French-
speaking provinces of Switzerland, circa 1888 [18]. We can use a multiple
regression to explore how these socio-economic factors influence the fertility
rate. This relationship can be described as

fertility = α + βa agriculture + βe education + βc catholic + �

Conveniently, R provides the so-called formula notation for specifying mod-
els, which closely maps to the mathematical expression. Formula notation
derives from [55], originally appearing in older statistical computing systems
Genstat and GLIM.

lm(Fertility ∼ Agriculture + Education + Catholic, data=swiss)

For sake of comparison, the Python package scikit-learn uses a more
traditional object-oriented interface. [10] The approach mirrors most object-
oriented libraries: create an object representing the model, and then call meth-
ods on that instance.

model = linear_model.LinearRegression()
model.fit(X_train, y_train)

On the surface it’s not so different, except two steps must be taken instead
of one. An object of class LinearRegression must first be constructed and
then the model fit to the data. Also, the data needs to be partitioned explicitly
between predictors and response variables. The predictors are exactly the
contents of X_train, as opposed to a specified subset. In this example it’s not
too troubling, but in cases where you want to consider different variables as
the responses, it can be annoying to perform inline slicing to extract a specific
subset. In general, a 4-tuple must be defined that encompasses the training
and test sets for the response and predictor variables.

To see how the object-oriented paradigm begins to break down, let’s com-
plicate things by a hair. Suppose we want to ignore the intercept term. In R
we specify it in the formula by adding a 0 term.

The functional programming language called mathematics 27

lm(Fertility ∼ 0 + Agriculture + Education + Catholic, data=swiss)

With scikit-learn, you might think that you specify this option in the fit

method. This is wrong, as it happens to be an argument of the constructor:

model = linear_model.LinearRegression(fit_intercept=False)
model.fit(X_train, y_train).

Surprises like this typically occur in the name of consistency. One of the
challenges with object-oriented programming is deciding which variables
are properties of an object versus arguments to a function. In this case,
LinearRegression is a subclass of LinearModelwhich defines the fit(X,y)
method. For the sake of interface consistency, all subclasses must conform to
this signature. The difficulty is that models don’t really conform to a taxonomy
based on their specification. Models certainly have precedent and descend
from other methods, but this doesn’t necessarily dictate what parameters a
model requires. While it might make sense to include fit_intercept in this
method, any parameters specific to LinearRegression need to find a differ-
ent home. The next best location is in the model object. On the other hand, the
declarative approach has no such issue since there is no distinction between
the model and the fit. Hence, there is no explicit object constructor in the first
place. More importantly, the formula interface accommodates details specific
to different models without cluttering up the function signature. We also
leave the implementation details of extracting the response and explanatory
variables from the dataset to the function. Hence, the only thing we need to
focus on is how to specify the model!

2.2.4 Probability distributions and taxonomies

Say we have a random variable X that is normally distributed according to
N(0, 1). The general specification for a Gaussian variable is indistinguish-
able from a function signature: N(µ, σ). If we want a binomially distributed
variable instead, we denote this as B(n, p). Again, the notation looks like a
function signature. Painfully obvious, yet not all software representations are
consistent with this notation.

Users of R know that sampling from a distribution follows the naming
convention "r", distribution in EBNF 3, such as rbinom for the binomial
distribution. For example, generating 100 samples from a 10 trial binomial dis-
tribution with P(success) = 0.5 looks like x ←rbinom(100, 10, .5). Aside
from random sampling, other properties of a probability distribution are ob-
tained by using a different prefix in the function name. For each distribution,
the density function starts with ”d”, the distribution function uses ”p”, while
”q” is used for the quantile function. This convention is easy to understand
and easy to remember.

In an object-oriented world, naming conventions are often eschewed in fa-

3Extended Backus-Naur Form is a common syntax for describing syntax.

28 Modeling Data With Functional Programming In R

Object

AbstractIntegerDistribution

BinomialDistribution PoissonDistribution

AbstractRealDistribution

NormalDistribution UniformRealDistribution

FIGURE 2.3: Java class hierarchy for distributions. Object is the root class
for all Java objects. Dashed boxes indicate abstract classes that cannot be
instantiated.

vor of explicit class hierarchies. This is the case with Java, where the binomial
distribution is part of a larger hierarchy (see Figure 2.3) that includes both
interfaces and abstract base classes across separate branches for discrete and
continuous distributions. Interfaces declare a set of operations that classes
must implement, while abstract base classes implement common operations.
This class hierarchy can give a sense of order, but like other man-made tax-
onomies it’s dangerous to treat it as an absolute truth. Class hierarchies are
supposed to facilitate modularity and reusability, particularly around method
implementations. One can argue that the mean is common to all distributions,
so it can be implemented in the abstract base class. But why does the mean
need to be associated with a distribution? Can’t the mean be calculated against
any vector of data, not just those associated with a distribution?

Ultimately, this is a core problem of class hierarchies: their imposition of
structure incorrectly presume an optimal design. Taxonomies can work well
when all elements to be classified are known in advance. Each element must
also cleanly belong to a group in the taxonomy. But things quickly get messy
when exceptional cases are encountered. The chimeric platypus wreaked
havoc in the Linnaeun taxonomy for decades [22]. In software these tax-
onomies can complicate the design of software by imposing artificial bound-
aries between sets of properties and operations. Like the platypus, mathemat-
ical objects end up getting tangled up in these taxonomies with properties
strewn across multiple branches. The consequence is that more time is spent
fixing the taxonomy than doing data science.

Earlier we showed how to sample from the binomial distribution. Let’s
turn our attention to the normal distribution and summarize the empirical
distribution for a given realization of a random variable from N(0, 1). The
R approach is to apply a chain of functions to transform a simple model
specification into the summary object.

> summary(ecdf(rnorm(100)))
Empirical CDF: 100 unique values with summary

Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.8350 -0.3155 0.2129 0.1376 0.7431 2.0880

The functional programming language called mathematics 29

Object

AbstractUnivariateStatistic

AbstractStorelessUnivariateStatistic

Min Mean Max

Percentile

Median

FIGURE 2.4: Java class hierarchy for different statistics. In OOP, even simple
functions and metrics are forced into a class hierarchy, which ultimately have
no relationship with the underlying mathematical concepts. In this example,
the AbstractStorelessUnivariateStatistic is an implementation artifact
unrelated to univariate statistics.

The equivalent Java code is

NormalDistribution n = new NormalDistribution();
double[] samples = n.sample(100);
EmpiricalDistribution d = new EmpiricalDistribution();
d.load(samples);
d.sampleStats();

Clearly the Java version requires more work. To be fair some of the work
is associated with static typing, 4 but most of the code is related to creating
and manipulating objects. The resulting algorithm is thus quite different from
the original mathematical description. The question to ask yourself is: does
the extra structure aids in modeling and memory retention or is it simply an
artifice that impedes the translation of ideas into code?

Another wrinkle with the Java version versus the R summary is that
the computed statistics don’t include the median. The median is a curious
statistic because it’s calculation cannot be described directly as an algebraic
expression. Instead, the median m is defined declaratively, insomuch that the
implementation is implied:

P(X ≤ m) ≥ 1
2

and P(X ≥ m) ≥ 1
2

In R the median is given by an eponymous function. The Java approach is to
introduce another class hierarchy [2] depicted in Figure 2.4. Computing the
median requires creating an object that represents the median and then calling

4With static typing, the type of a variable is specified explicitly, which enables the compiler
or interpreter to check for type compatibility. In functional languages like ML and Haskell, this
information can be inferred via Hindley-Milner type inference.

30 Modeling Data With Functional Programming In R

IntegerDistribution
double cumulativeProbability(int x)

double getNumericalMean()
double getNumericalVariance()

int sample()
int[] sample(int sampleSize)

RealDistribution
double cumulativeProbability(double x)

double density(double x)
double getNumericalMean()

double getNumericalVariance()
double sample()

double[] sample(int sampleSize)

FIGURE 2.5: Comparison of operations for two interfaces in the Apache Com-
mons Math library. The primary difference is that types change from int to
double.

a method to compute it on a set of data. From an ontological perspective,
there might be reason to organize these different statistics into a taxonomy.
However, what is the value when you simply want to compute a statistic on
data?

Median median = new Median();
median.evaluate(samples);

Notice how much extra structure is required in the OOP approach. For a single
statistic it might seem insignificant, but imagine doubling the number of lines
in your complete codebase! One implication is that it takes more effort to
change the design if new requirements crop up. We’ve already established that
the beginning of data science projects are more uncertain than comparable
software projects, so the likelihood that an initial design will persist through
the code lifecycle is low.

Why does Java need such a complex taxonomy of classes? A common
theme in software development is the DRY principle, or don’t repeat your-
self. This is another way of saying that a software design should maximize
modularity and reuse. If your starting point is a class hierarchy, then common
attributes and methods naturally group together, while bespoke elements ap-
pear as terminals in the hierarchy. It’s easy to see that as the number of types
increase, the depth of the hierarchy will increase to capture shared attributes.
One complication with Java is that primitive types are not objects but are
distinct entities outside the class hierarchy. For mathematical functions this
means that a concept like a random number generator will have a different
signature if it produces continuous numbers versus integer values. We see this
in Figure 2.5, where two parallel class hierarchies exist to support continuous
and discrete distributions. Even though sample() is associated with both the
IntegerDistribution and RealDistribution, they are distinct methods.
Indeed, while the operations are conceptually the same, most of the methods
defined by these interfaces have different signatures.

If this all seems overwhelming and a bit of a distraction from data science,
that’s the point I’m making. The difference between a professional program-
mer versus a data scientist is that programmers are paid to build systems,
whereas data scientists are paid to build models. Same tools, different goals.
Data scientists still need to write good code, but for different reasons. Object-

The functional programming language called mathematics 31

oriented languages are designed for system development and GUIs, where
behaviors and operations are planned in advance. The scientific method is
much messier and often requires changing approaches, comparing methods,
and running the same model with varying parameters or different sets of
data. For the data scientist, good code is quick to write, easy to modify, and
easy to tie back to the underlying mathematical model. This long-winded
discussion about Java and OOP is a siren song for those looking to create
complex class hierarchies in R.

2.3 Linear algebra
The last section discussed how object-oriented programming introduces un-
necessary structures that contradict the structures inherent in mathematics.
This isn’t to say that all structure is bad. The world of mathematics is replete
with interesting and distinct structures. Many fields define specialized enti-
ties, or types, for which certain operations apply. Linear algebra is one such
field where properties and operations exist only for specific types. 5 For exam-
ple, the determinant is undefined for vectors. It seems reasonable to prevent
functions from operating on invalid types. The object-oriented approach uses
a class hierarchy to define valid operations on specific types with optional
static type checking to ensure compile-time argument compatibility.

All that is really needed to achieve type safety is for operations to be aware
of the types they can operate on. Focusing just on type awareness means we
can decouple operations from classes. The S3 class system works this way. De-
scribed as an object-oriented type system, how S3 dispatches functions actually
resembles functional programming. For example, the determinant is imple-
mented only for objects of class matrix. This type awareness is instilled in
UseMethod, which searches for a specially named function based on the type
of the first argument. Given a function determinant and an argument x, the
evaluated function is "determinant", class(x) in EBNF, where class(x)
is the class, or type, of the object. If determinant is applied to a variable
whose class isn’t matrix, an error will result.

> determinant(1:3)
Error in UseMethod("determinant") :
no applicable method for ’determinant’ applied to
an object of class "c(’integer’, ’numeric’)"

In many ways, dispatching dictates how functions are defined and used.
R has many dispatching systems that tend to be conflated with class/type
systems, including S3, S4, and ReferenceClasses, all of which are built-in.

5I use type and class interchangeably, though ”class” is typically reserved for object-oriented
programming.

32 Modeling Data With Functional Programming In R

We’ll touch on a few of these dispatching approaches in this section as well
as compare them to the pandas package [35], which implements data frames
in Python.

2.3.1 Dispatching the dot product

For two vectors a and b, their inner product is a · b = �i aibi. The mathe-
matical representation is unencumbered by the mechanics of a programming
language. We usually don’t even consider the algorithmic details of the dot
product. Rather, we just know that a · b is the dot product of two vectors and
yields a scalar. Since the operator is only defined for vectors, using anything
else is non-sensical. When implementing the dot product in a programming
language, this knowledge must be codified to ensure proper behavior. Not
only do we need to consider how the function will handle different argu-
ments, but how to call the function as well.

In R, the dot product is represented by %*%, where any function that begins
and ends with% acts as an infix operator. This syntax produces an R expression
very similar to the mathematical expression: a %*%b. How does R know what
function to call? 6 For native R functions, the mechanics of dispatching consist
of the following steps: lookup the function, and if it exists, call it. To illustrate
let’s implement an R function that simply uses the %*% operator.

dot ← function(a,b) a %*%b

Suppose we want to prevent invalid arguments from calling the under-
lying function. In the age of web services and distributed computing, this
situation is common. We may write an R wrapper to exexute a job on a vir-
tual cluster in the cloud. Doing so not only costs money but takes time, and
the last thing you want is to kick off a big job only to discover the process
died due to some silly data issue the next morning. In this toy example two
common problems can arise. First, the vectors may not be numeric. This is
an example of having a type mismatch. The second scenario is when the vec-
tors have incompatible lengths. Neither of these situations occur in our pure
mathematical utopia, but the real world is riddled with such issues. To solve
the first problem, we can explicitly check the type of each argument.

dot ← function(a,b) {
if (!(class(a) %in% ’numeric’ && class(b) %in% ’numeric’))
stop("Both arguments must be numeric vectors")

a %*% b
}

This is slightly different from the S3 approach, where only the type of the first
argument can be matched.

dot ← function(a,b) UseMethod("dot")

6The %*% operator is a primitive function that calls Fortran code. Thus the details are slightly
different from a native R function, but conceptually the mechanics are the same.

The functional programming language called mathematics 33

dot.numeric ← function(a,b) a %*%b

The dispatching is handled by UseMethod, which maps a function to a type.
This can be seen by looking at the result of

> methods(dot)
[1] dot.numeric

The output indicates that whenever x is a numeric vector, dot(x,y) will call
dot.numeric(x,y). But this doesn’t protect against the type of the second
argument. Errors won’t be discovered until the underlying implementation
is executed. Languages that use dynamic typing are usually weakly typed
and have this issue including R and Python. The implication is that type
safety must be implemented explicitly in a preamble to the function. This
isn’t necessarily bad, since it balances fast prototyping with robustness later
on, when a program is ready for production.

With the S4 class system, the types of all function arguments can be spec-
ified, emulating strong typing. In contrast to weak typing, strongly typed
languages disallow any type mismatches. However, the price paid for this
explicit type safety is unintuitive syntax.

setGeneric("dot.s4", function(a, b) {
standardGeneric("dot.s4")

})

setMethod("dot.s4", signature(a="numeric", b="numeric"),
function(a, b) { a %*% b })

With S4, we can prevent calls with incorrect argument types from executing
the function.

> dot.s4(1:3, letters[1:3])
Error in (function (classes, fdef, mtable) :

unable to find an inherited method for function ‘dot.s4’
for signature ‘"integer", "character"’

Checking whether inputs are well-formed is common in many native R
functions. One advantage of static type checking is that the compiler or in-
terpreter does this for you. In R, many functions have a de facto preamble
devoted to type checking. These preambles often muddy the function im-
plementation. Type checking logic quickly mixes with dispatching logic and
even model logic, so it’s unclear what the purpose of a function is. The built-in
optim function suffers from such an identity crisis. In Chapter 14 we’ll cri-
tique this function to explore other issues in its implementation. The biggest
drawback of strong typing is that if you commit to it too early in the model
development process, you may end up giving yourself more work. Until you
know exactly how the model will run as a repeatable process, it’s guaran-
teed that functions and components of the model will change. Adding type
constraints this early on can often break code in places where weak typing is
more permissive.

34 Modeling Data With Functional Programming In R

Type checking cannot protect against all data integrity issues. It is power-
less when two vectors have incompatible lengths. Type checking also won’t
prevent you from attempting to invert a singular matrix. Situations like this
require additional constraints on the variables, typically added as extra con-
ditional expressions in the function preamble. For the dot product, the lengths
of the two arguments must be equal.

dot ← function(a,b) {
if (length(a) != length(b)) stop("Incompatible lengths")
a %*% b

}

In other cases, the lengths of vectors don’t necessarily need to be equal. Rather,
they need to be compatible according to vector recycling rules. 7 One way to
check this is by computing the greatest common divisor of the lengths, which
must be greater than one.

A dispatching system consistent with functional programming is pro-
vided by lambda.r, which is discussed more thoroughly in Chapter 4. This
library introduces new syntax for optionally specifying type constraints that
dictates what arguments are supported by the function. In this way, func-
tion authors can decide if they want the flexibility and simplicity of a stan-
dard function or strong typing similar to what is provided by S4 or Refer-
enceClasses. The philosophy is that model logic should be segregated from
data manipulation logic. Lambda.r focuses on transforming common data
integrity logic into declarative statements. This approach frees data scientists
from needlessly worrying about data integrity details of algorithms.

dot(a,b) %::% numeric : numeric : numeric
dot(a,b) %as% a %*%b

This type constraint is similar to the conditional expression, except it is declar-
ative in nature. It also encompasses the return type of the function, which is
useful not only in type inference systems, but as self-documenting code. An-
other benefit is that the type constraint can be added as necessary without
affecting the body of the code. When we implement models, we need to think
about both the correctness of the implementation and also how people inter-
act with our functions. Even if you are not developing a formal package for
publication, these considerations are relevant.

2.3.2 Matrix multiplication as object-oriented programming

The mechanics of matrix multiplication extend the dot product for vectors.
Given two matrices A and B with product C = AB, each element of C is
defined Ci, j = Ai,∗ · B∗, j. In other words, each element Ci, j is the dot product
of the ith row vector of A with the jth column vector of B. The notation is

7By default, R will repeat the elements of a smaller vector to match the length of a longer
vector if the shorter length divides the longer length.

The functional programming language called mathematics 35

consistent with what we expect multiplication to look like. In R the notation
is the same as with the dot product.

> a ← matrix(1:6, ncol=3)
> b ← matrix(6:1, nrow=3)
> a %*% b

[,1] [,2]
[1,] 41 14
[2,] 56 20

How does a typical object-oriented framework represent this operation?
The answer is dictated by the mechanics of dispatching, which we can see
from the Python package pandas. Recall that object-oriented programming
typically defines classes with associated methods, or bound functions. When
using an instance of a class, the first argument to a method is the object itself.
This poses an ontological dilemma: how should binary operators be repre-
sented? Purists of OOP tend to favor internal consistency over consistency
with mathematical notation. For two DataFrames a and b that represent ma-
trices, the answer is a.dot(b). 8 But this is inconsistent with mathematical
notation. Worse, algebraic operations are conflated in the class definition of
DataFrame with operations for loading and exporting the data contained in
the structure. This organizational strategy contributes to the ambiguity of
what a class is supposed to represent. Is it meant to represent a pure mathe-
matical computation, a container of data, or both?

It’s possible to model matrices this way with ReferenceClasses as well.
ReferenceClasses implement object references for instance variables while
largely preserving S4 syntax for defining classes [?].

Matrix ← setRefClass("Matrix",
fields="data",
methods=list(

initialize=function(x, ncol=NULL, nrow=NULL) {
if (is.null(ncol) && is.null(nrow))

stop("Either ncol or nrow must be set.")
if (is.null(ncol)) ncol ← length(x) / nrow
if (is.null(nrow)) nrow ← length(x) / ncol
if (nrow * ncol != length(x)) stop("Incorrect dimensions")
data � matrix(x, ncol=ncol, nrow=nrow)

},
dot=function(y) data %*% y$data

)
)

Using this class looks similar to the pandas formulation.

> a ← Matrix$new(1:6, ncol=3)
> b ← Matrix$new(6:1, nrow=3)

8One can parry that it ”reads” the same, but we’ve seen elsewhere the negative structural
impact of this approach.

36 Modeling Data With Functional Programming In R

> a$dot(b)
[,1] [,2]

[1,] 41 14
[2,] 56 20

What this example shows is that programming languages allow us to model
computations however we want. It’s up to the data scientist to ensure that
the approach is efficient and faithful to the underlying mathematical repre-
sentation.

For completeness, here is the same implementation using the R6 package
[12]. This package attempts to create a syntax for class definition that is more
intuitive and similar to the syntax of Java or Python.

Matrix ← R6Class("Matrix",
public=list(

data=NULL,
ncol=NULL,
nrow=NULL,
initialize=function(x, ncol=NULL, nrow=NULL) {
if (is.null(ncol) && is.null(nrow))

stop("Either ncol or nrow must be set.")
if (is.null(ncol)) ncol ← length(x) / nrow
if (is.null(nrow)) nrow ← length(x) / ncol
if (nrow * ncol != length(x)) stop("Incorrect dimensions")
self$data ← matrix(x, ncol=ncol, nrow=nrow)

},
dot=function(y) self$data %*% y$data

)
)

While the mechanics of class definition is different, the usage is identical.

> a ← Matrix$new(1:6, ncol=3)
> b ← Matrix$new(6:1, nrow=3)
> a$dot(b)

[,1] [,2]
[1,] 41 14
[2,] 56 20

Both of these approaches gives us a syntax in R that feels more like object-
oriented code. You might protest and ask why you would do such a thing in
the first place. Again, that is precisely the point. These counterexamples are
meant for you to question their utility in terms of implementing mathematical
ideas. In the right places, object-oriented designs can add value. It’s important
though to know when such an approach is counterproductive.

2.3.3 Matrix factorization and collaboration

It is often said that data science is a collaborative effort. What’s interesting
about collaboration is that it demands coordination. Working alone is simple

The functional programming language called mathematics 37

from a process perspective. Adding a second person immediately requires ef-
fort to coordinate work and manage changes to models and code. Functional
programming is useful in this context since functions are discrete entities. In
object-oriented programming the atomic unit is the class, since it cannot be
divided into smaller constituents. To see why, what happens if you separate
an instance variable from a class? Obviously it’s no longer a part of the class,
which means it cannot be removed. The more properties and methods in
the class, the harder it is to collaborate. The reason is that methods tend to
operate on the same shared internal state of the class. Changes to an instance
property can propagate to multiple methods. Hence, when multiple people
work on the same class, coordination issues quickly arise. Java addresses this
issue by using interfaces to separate properties and method implementations
that are class specific. At other times, class hierarchies attempt to create mod-
ularity. Python, on the other hand, has the concept of mix-in to help solve this
problem.

In systems development, an implementation is singular, insomuch that
only one algorithm is created. Over time the algorithm may change, but effec-
tively there is only one at any given time. In computer science, mathematics,
and data science, multiple algorithms exist to solve the same problem. For
example, there are numerous algorithms to sort a list. The same is true of
matrix inversion. There is no one right way to invert a matrix. Depending on
the problem, the LU decomposition might be the best approach, whereas for
a sparse matrix, another method might be suitable. In cases where a matrix is
singular but you still want an inverse, a pseudoinverse can be appropriate.

Example 2.1. Suppose Alice is the author of our matrix class and chose to use
the LU decomposition to invert the matrix. Bob comes along and wants to
use Newton’s method. Where does this go? Bob might propose adding a new
method inverseNRM that implements the algorithm. Bob might also suggest
adding a method parameter to the current inverse to choose the algorithm.
This could work, but Alice notes that Newton-Raphson is an approximate
method, so an extra argument is required to specify the number of iterations
or tolerance to use in the calculation. The ellipsis argument can be used to
pack these arguments together, but Alice doesn’t want to update the package
every time someone wants a new matrix inversion method. Bob agrees and
wonders if a subclass is better. He could name it MatrixNRM but doesn’t like
creating a whole new subclass just to overwrite one method. Besides, the
same thing could happen with a linear solver, which would lead to a mess of
classes.

Alice has a flash of inspiration and decides to define a new class that
represents the LU decomposition. Then users pass their matrix object into the
constructor and get the inverse from this new object. This approach handles
any number of matrix factorizations and algorithms for finding the inverse.
Now the problem is how to communicate this change to all the users of
her package. This is the approach of the Apache Commons Math package.
By creating a separate class for the LU decomposition, the decomposition

38 Modeling Data With Functional Programming In R

is decoupled from the matrix. The object-oriented way decouples functions
from classes, though new classes must be created to house the orphaned
function!

�

2.3.4 The determinant and recursion

Recursion is a common theme of mathematics and computer science. Func-
tional programs tend to use recursion more often than imperative programs
that tend to favor loops. From a data science perspective, recursive functions
are useful because they can simplify certain types of algorithms. Iterative
algorithms, can often be simplified by implementing a single iteration step
first. A second, higher level function can mediate the sequence of steps. This
description essentially describes the iterated function application that f old
mediates. The Fibonacci sequence, the Newton-Raphson method for root
finding, along with the pseudoinverse of a matrix can be formulated this
way.

The determinant is a property of a matrix that among other things tells us
whether a matrix A is invertible. Unlike the other quantities discussed, the de-
terminant det(A) is usually not defined symbolically. Instead the determinant
is typically described algorithmically. For example, given a matrix

A =

a b c
d e f
g h k

the calculation of the determinant is described thus [30]:

We go across the first row of the matrix A, (a b c). We multiply each
entry by the determinant of the 2×2 matrix we get from A by crossing
out the row and column containing that entry. Then we add and
subtract the resulting terms, alternating signs (add the a-term, subtract
the b-term, add the c-term).

In symbolic form, it’s easy to see the self-referential nature of the definition.
Like the Fibonacci sequence, each term refers to itself multiple times.

det(A) = a det
�
e f
h k

�
− b det

�
d f
g k

�
+ c det

�
d e
g h

�

Computing the determinant is a classic recursive definition despite not being
described that way. In essence, the determinant can be defined

det(A) =
�

i

−1i+1i det(A−1,−i),

The functional programming language called mathematics 39

where A−i,− j is a matrix formed by removing row i and column j. For this
definition notice that native vectorization can’t really help us much. That’s
okay because this definition is easily implemented using f old.
det ← function(A) {

fold(1:ncol(A), function(i,s) s + (-1)ˆ(i+1) * i * det(A[-1,-i]))
}

Alternatively we can use the sum function in conjunction with map. We’ll
see in Chapter 7 why this is an equivalent expression.
det ← function(A) {

sum(sapply(1:ncol(A), function(i) (-1)ˆ(i+1) * i * det(A[-1,-i])))
}

In the case of the determinant, the halting criterion is dictated by the size
of the matrix. For algorithms like Newton-Raphson, additional information
must be provided to tell the algorithm when to stop. A common approach is
to iterate over an explicit sequence of ordinals. This can be combined with a
tolerance to terminate early once an acceptable level of convergence has been
achieved.

2.4 Calculus
So far we’ve seen mathematical functions that operate on specific types of
objects. Full of surprises, the mathematical world has a bewildering array of
functions and operators, including higher-order functions. Recall that these
functions operate on other functions. A related concept is the first-class func-
tion, which means a function can be treated as a value. The derivative, integral,
and their variants are all higher-order functions since they take functions as
arguments and also return functions. Consequently, the argument to these
functions is a first-class function.

2.4.1 Transforms as higher-order functions

The derivative and integral both take functions as operands so conceptually
these functions are being treated as data. The Leibniz notation for the deriva-
tive hints at this concept: d f

dx ≡ d
dx f . Conceptually this is no different from

writing the derivative as a function d(f) ≡ d
dx f for the univariate case. The

derivative not only takes a function as input but returns a function. Take for
example the polynomial function f (x) = ax3 − bx + 4. When referring to this
function as f , we are implictly treating it like a first-class entity. This becomes
explicit when we apply the derivative to f :

f � =
d

dx
f .

40 Modeling Data With Functional Programming In R

f h F

g h F

· F −1

FIGURE 2.6: Convolution as a computational graph

The indefinite integral is like the derivative since it both takes a function
as input and returns a function. From calculus we know that the integral is the
inverse of the derivative and vice versa. We can think of this pair of functions
as a transform and its inverse transform. This concept is useful in numerous
fields, including data science, computer science, and electrical engineering. It
is often easier to operate on an equation in a transformed space, so you need
the inverse transform to recover the result in the correct space. Convolution is
an example, where convolution in the time domain becomes multiplication in
the frequency domain, and vice versa. More formally, for a Fourier transform
F ,

F { f ⊗ g} = F { f } · F {g},
and

F { f · g} = F { f } ⊗ F {g}.
The same holds for the Laplace transform.

Suppose there’s additional work to do in the frequency domain, which is
embodied by a function h. Our expression becomes

F {h ◦ f ⊗ h ◦ g} = F {h ◦ f } · F {h ◦ g}.

To recover the transformed convolution simply requires applying the inverse
transform on both sides to get

h ◦ f ⊗ h ◦ g = F −1{F {h ◦ f } · F {h ◦ g}}.

This sequence of operations boils down to multiple function composition,
which can be expressed as a simple computational graph (see Figure 2.6).

In data science, a common transform is the Box-Cox transform. When
data does not satisfy normality assumptions, this transform can help reshape
the data to minimize skew and produce normal residuals. A transformed
response is then fit to the predictors. The resulting model is thus in the trans-
formed space, so when applied to new data, the result must be transformed
with an appropriate inverse transformation. Figure 2.7 depicts the overall
process. To make this more concrete, let’s analyze the built-in trees dataset.
We want to fit a linear model Volume ∼ β0 + β1Height + β2Girth + �. Doing

The functional programming language called mathematics 41

λ

y Box-Cox y ∼ β0 + βX

X

predict

X�

Box-Cox−1 y�

FIGURE 2.7: Regression analysis with Box-Cox transform as a computational
graph. To predict a value, the model is applied to new data X� followed by
an inverse Box-Cox transformation.

so yields non-normal residuals, suggesting that a Box-Cox transformation is
appropriate (see Figure 2.8). The Box-Cox transform is defined

BC(y;λ) =
�

yλ−1
λ if x � 0

ln y if x = 0

Ignoring the piecewise definition at 0, a naive version of the Box-Cox trans-
form is

bc_xform ← function(y, lambda) (yˆlambda - 1) / lambda.

We also need the inverse transform.

bc_iform ← function(y, lambda) (lambda * y + 1)ˆ(1/lambda)

To get the actual value, we find the maximum log likelihood using

boxcox(Volume ∼ log(Height) + log(Girth), data=trees,
lambda=seq(-0.25, 0.25, length=10)).

A simple way to use the Box-Cox transformation applied to volume is to
create a new variable.

trees$V1 ← bc_xform(trees$Volume, -0.08333333)

Now fit the model.

model.bc ← lm(V1 ∼ log(Height) + log(Girth), data = trees)

As expected, the residuals of the new model (Figure 2.8) look much better.
In a real analysis we would be more rigorous in verifying their normality.
Finally, let’s create some new data and predict the tree volume.

> nd ← data.frame(Girth=10, Height=70)
> bc_iform(predict(model.bc, newdata=nd), -0.08333333)
[1] 14.63051

42 Modeling Data With Functional Programming In R

−2 −1 0 1 2

−1
0

1
2

3

Normal Q−Q Plot

Theoretical Quantiles

Sa
m

pl
e

Q
ua

nt
ile

s

−2 −1 0 1 2

−2
−1

0
1

Normal Q−Q Plot

Theoretical Quantiles

Sa
m

pl
e

Q
ua

nt
ile

s
FIGURE 2.8: Comparison of residuals before (left) and after (right) a Box-Cox
transformation. New predictions on the model must have inverse transform
applied to get correct value.

2.4.2 Numerical integration and first-class functions

A well known application of Monte Carlo simulation is numerical integra-
tion. By randomly throwing darts on a grid, the integral of a function is the
proportion of darts under the curve (represented by the function) versus the
total thrown. This approach predates computers and was first explored by
Buffon and his eponymous needle to estimateπ. Buffon’s method was to draw
parallel lines on a plane separated by a constant distance d. Using a needle of
length l < d, Buffon determined the probability of the needle crossing 0 or 1
lines as

p0 = 1 − 2rθ
p1 = 2rθ

where r = l/d and θ = 1/π [45]. Solving for θ and then substituting, we get
π̂ = 2r

p1
. Hence, the value of π can be determined by counting the number of

times the needle crosses a line. As the number of trials increases, the estimate
converges to the true value of π.

As a thought experiment Buffon’s needle is quite compelling, but conduct-
ing the experiment ourself seems a bit tedious. Thankfully we have computers
to do our bidding, and they can run the simulation for us in a fraction of the
time. Instead of using a needle, we can randomly simulate coordinates on a
plane. Then we can estimate π by counting the points inside the unit circle.
The area of a circle is πr2. By carefully choosing random values in the range
[0, 1], the area reduces to π4 . This can be implemented using

g ← function(k) {

The functional programming language called mathematics 43

n ← 10ˆk
f ← function(x,y) sqrt(xˆ2 + yˆ2) <= 1
z ← f(runif(n),runif(n))
length(z[z]) / n.

}

We can get successively better approximations by iterating over a sequence
of exponents.

a ← sapply(3:8, g)
> a*4
[1] 3.188000 3.126800 3.131800 3.143452 3.141161 3.141364

No matter the function we want to integrate, the algorithm is essentially
the same. We can generalize the function by passing the predicate as an
argument. Doing so takes advantage of an anonymous function to simplify
the logic.

g ← function(k, f) {
n ← 10ˆk
z ← f(runif(n),runif(n))
length(z[z]) / n

}

As we increase the number of samples, our estimates begin to converge
towards the true value of π.

a ← sapply(3:8, function(k) g(k, function(x,y) sqrt(xˆ2 + yˆ2) <= 1))
> a*4
[1] 3.224000 3.152800 3.145080 3.140936 3.142540 3.141622

2.5 Summary

Much of functional programming you already know from mathematics. Us-
ing these concepts in your code keeps the implementation closer to the math-
ematical expression. This makes the code easier to understand. Extending
these concepts to the rest of your code improves modularity and reliability of
the code.

Benefits aside, programs shouldn’t blindly be implemented in a FP style.
Code designed for their side effects often have a more intuitive implementa-
tion using object-oriented code, such as file descriptors or GUIs.

44 Modeling Data With Functional Programming In R

2.6 Exercises
Exercise 2.1. Implement standard deviation using a declarative approach

Exercise 2.2. Implement the dot product using a declarative approach

Exercise 2.3. Implement the determinant using an imperative approach.
What did you notice is different about the implementation?

Exercise 2.4. Implement the Newton-Raphson algorithm for finding the pseu-
doinverse of a matrix.

3
Functions as a lingua franca

It is no secret that modeling data involves a lot of data processing. The mental
effort is colloquially split 20% to 80% between data processing and modeling.
Program code is curiously the opposite, with data processing taking up the
majority of the effort and lines of code. This is due to the steps involved and
the inherently messy nature of data versus the pure and ideal world of math-
ematical models. As data moves between libraries, components, and systems,
the formats and data structures are often incompatible. Coercing these dis-
parate pieces of software to cooperate requires ad hoc data transformation to
mold data into the correct structure. For simple exercises this isn’t much of a
problem. More ambitious projects have greater complexity and thus presents
a greater challenge. Collaboration is often necessary to complete these larger
data science initiatives. Good code structure and modularity are no longer
nice to have but are essential to project success. Performance tuning also re-
quires modular code, making it easier to isolate bottlenecks in a model. With
functional programming, just a few concepts solve the bulk of application
design problems seen in data analysis. This small kernel of concepts and
techniques is fast to learn. Model implementations are usually streamlined in
the process. The end result is more time doing science and less time wrangling
data.

As a paradigm, functional programming is not language-specific. Rather,
functional programming is a philosophy for structuring programs based on
function composition. In addition to function composition, functional pro-
gramming comprises a (mostly) standard set of syntactic and semantic fea-
tures. Many of these concepts originate from the lambda calculus, a math-
ematical framework for describing computation via functions. While each
functional language supports a slightly different set of features, there is a
minimal set of overlapping concepts that we can consider to form the basis
of functional programming. This set consists of first-class functions, closures,
and higher-order functions. 1 Once these concepts are mastered, it is easy to
identify situations that can benefit from their use in any language. In princi-
ple this is the same as learning the syntax of a new language: you begin by
looking for the delimiter for statements, expressions, and blocks as well as
how to create variables and call functions. These conceptual building blocks

1Other concepts include lazy evaluation, currying, partial application, pattern matching, and
tail recursion. Readers interested in exploring these topics are encouraged to read [].

45

46 Modeling Data With Functional Programming In R

of a language act as a lingua franca irrespective of the specific language in
question. The same is true within a language paradigm. The semantics of
classes and objects in an object-oriented language act as a lingua franca in the
world of object-oriented programming, while the function exclusively serves
this purpose in a functional programming paradigm.

Loosely the dual of the previous chapter, this chapter focuses on functional
programming concepts and less on the related mathematics. Since iteration is
so fundamental to data science, a brief overview of vectorization is presented
in Section 3.1. Vectorized operations implicitly use map and f old on their argu-
ment(s) and is a core piece of functional programming in R. Our everyday use
of vectorization is what makes adopting additional functional programming
concepts so compelling. Without native vectoriztion, a higher-order function
must be used explicitly in conjunction with a first-class function to achieve
the same vectorized properties. Any scalar function can become vectorized
using a combination of the three canonical functionals.

Section 3.2 introduces the computer science concept of a first-class cit-
izen, which is an essential ingredient to functional programming. Having
first-class status is what allows functions to be passed as arguments to a
higher-order function or as a return value. Functions in R are also referred to
as closures, but not all functions are closures. Described in Section 3.3, these
special functions reference variables in their enclosing scope. Closures often
act as disposable adapters between two different function signatures. Every
higher-order function defines its own specific signature for its function argu-
ment. These signatures are designed to be as general as possible, resulting
in incompatibilities with many existing functions. For example, functions for
map must be univariate, while functions to f old must be bivariate. But func-
tions don’t always have signatures compatible with map and f old. Even if a
function has a signature matching a particular higher-order function, it’s rare
that it also satisfies the signature of another higher-order function. Functions
with a different signature need to be wrapped in another function that has the
correct signature. Hence, closures act as the glue between arbitrary first-class
functions and the specific function signatures that functionals expect.

Closures are the multi-function tool of functional programming. Usually a
one or two line closure can solve most interface compatibility issues. Closures
can also help generalize a function, by exposing a callback function to control
certain aspects of a transformation. But without their higher-order function
counterpart, closures aren’t nearly as exciting. There’s a special symbiosis
between these two types of functions, and they must be used in conjunction
to realize their full value. A higher-order function, also called a functional is any
function that takes a function as an operand, returns a function, or both. Any
generalized function becomes a higher-order function by virtue of adding a
function to its signature. We’ve already seen how higher-order functions can
mediate iteration and also transform functions. Higher-order functions can
also act as function factories, producing the closures that another functional
requires. This pattern is discussed in Section 3.4. Functions can have an array

Functions as a lingua franca 47

of options to finely control their behavior. The more parameters, the less likely
the defaults will suit your needs. Section 3.7 shows how to use a closure to
codify these behavioral changes.

In general higher-order functions provide the machinery for transforming
data in a repeatable way. Since data analysis involves many individual records
having the same general structure (e.g. vectors or table-like structures), it is
beneficial to divide data processing into a function that is responsible for
manipulating a single record at a time, and a function that is responsible for
iterating over all records. The first function is a first-class function passed
to the second function, which is a higher-order function. This separation of
concerns appears in Section 3.2 with mean and apply, respectively. Data can be
partitioned in various ways, so R conveniently provides numerous map-like
functions to mediate the iteration.

With a core set of semantic constructs, it is unnecessary to learn additional
patterns and frameworks. And since functional programming concepts tran-
scend specific programming languages, the same approaches can be used
irrespective of the language. This is all the more important as state of the
art machine learning algorithms are being developed in various languages.
The end result is more time spent modeling and less on the dirty work of
data transformation. To illustrate their use, we’ll use a logistic regression as a
backdrop. The adult dataset [33] assigns income as a binary class explained
by numerous factors. For each person in the dataset, numerous demographic
variables such as age, gender, education, race, native country are collected.
Logistic regression is a good starting point for two class prediction problems.
For pedagogical reasons, we’ll use stochastic gradient descent to fit the re-
gression instead of the closed form solution. Creating this model will show
how functions serve so many different purposes.

The higher level lesson of the chapter is that functional programming
facilitates change. Unlike pure software development, data science begins as
an unstructured, exploratory exercise. Over time as hypotheses are validated,
a process that starts off ad hoc becomes more structured. Once an initial
model shows promise, changes are focused on tuning. Model inputs stabilize
as do the corresponding transformations. At this point it can make sense to
wrap the whole processing chain into a single pipeline function. Once the
full pipeline is automated and repeatable, it’s easy to create variations to
tune the model. The whole model pipeline will itself be encapsulated in a
function income_pipeline as shown in Listing 3.1. At its most basic, this
function is responsible for loading data and fitting the model and evaluating
its performance. As a first cut, we’re just measuring in-sample performance.
Over the course of the chapter, we’ll fill in the details of the functions and
improve the pipeline as our needs change and grow.

48 Modeling Data With Functional Programming In R

income_pipeline ← function(...) {
df ← load_income()
m ← logistic(income ∼ age + education.num + hours.per.week,

df, ...)
p ← do_predict(m, df)
list(model=m, performance=performance(p, df$income))

}

LISTING 3.1: A rudimentary model processing pipeline

3.1 Vectorization

A common description of R is that it is a vectorized language. Primitive
operators and functions natively work on vectors instead of scalars. The
result is compact code that more closely resembles the notation of vector
math. In the general univariate case, many vectorized functions take the
form f : Xn → Yn, where X represents an arbitrary input domain, and Y
is an arbitrary range, possibly the same as X. Compare this signature to a
generic unary scalar functions, which have the form g : X → Y. Operating
on a vector of values requires applying the function to each input element
often as a loop. Leveraging vectorization is central to writing good R code.
Loops are often unnecessary since they are implied in each operation. Like
mathematical vectors, R vectors have specific behaviors and properties that
can be exploited. This section highlights some basic concepts to facilitate the
discussion for the remainder of the chapter. a full treatment of the mechanics
of vectorization in given in Chapter 5.

We saw in Section 2.2 that statistics like the mean and covariance typ-
ically assume vector arguments (in the guise of random variables). These
statistics take the form f : Xn → Y, since they aggregate a set of values
into a single value. Metrics like distance behave the same way, except they
are bivariate and look like f : Xn × Xn → Y. Iterative methods, such as
optimization and simulation, also rely heavily on sequence data types. The
most obvious effect of vectorization is that algebraic operations become sim-
pler. For example, normalizing a dataset x can be simply accomplished using
(x - mean(x)) /sd(x). Notice how this function behaves the same for all
x, so long as |x| > 1. Compare this to a non-vectorized approach that must ex-
plicitly subtract the mean and divide by the standard deviation for each value
in x. This is similar to how a covariance matrix is simpler when described
in matrix notation over individual elements. In element-wise, or scalar, form
the covariance of two vectors is

Σi, j =
1

n − 1

�

k

(xi,k − µi)(xj,k − µ j).

Functions as a lingua franca 49

Constructing the complete covariance matrix requires iterating over all the
rows and columns of the matrix. For a set of vectors, matrix notation describes
the complete covariance matrix as

Σ =
1

n − 1
XTQX,

where Q is a projection operator that subtracts the mean of X from each series.
This second definition is clearly more compact and efficient in conveying the
meaning of the operation. We are trying to achieve this same compactness
and clarity in our code.

Vectorization isn’t limited to mathematical operations. Indeed, most built-
in functions in R have vector semantics, extending this notational efficiency
throughout the language. Consider parsing operations that frequently use
regular expressions to find elements that satisfy a specific pattern. In lan-
guages like Python and PERL, regular expressions operate on single strings.
To operate on a list of strings requires looping over each element. In R regular
expressions are applied to a vector, so the same task can be accomplished in
a single operation. A toy example is extracting all elements of the education
column of the adult dataset that begin with ’B’ or ’M’ using grep, such as

> grep(’ˆ[BM]’, adult$education).

The first argument is a scalar that represents the regular expression. This
pattern is applied to each element of the input vector, which in this case
contains entries like ”10th”, ”Bachelors”, and ”Some-college”. The result is
a vector of ordinals pointing to all elements that match the pattern. This
signature is different from the earlier algebraic functions and looks like grep :
string × stringn → Nm. Even with these simple examples, it’s clear that
iteration is at the heart of data science. The canon of higher-order functions
all focus on specific ways to iterate over data. When a function is not natively
vectorized nor preserve vectorization, these higher-order functions effectively
transform it into a vectorized function. In other words, combining map and a
scalar function yields map : (g : X→ Y) × Xn → Yn.

Example 3.1. Before developing our model to predict income, it’s useful to
think about how we’re going to evaluate the model. Some common measures
include overall accuracy, precision, and recall. With these metrics we can also
compute the F1 score and the ROC curve. These metrics can all be computed
based on the confusion matrix. Vectorization simplifies the calculations, mak-
ing them almost trivial. The approach is to compute the contingency table first.
Then the different measures simply sum different elements of the matrix and
divides by a different sum of cells. Hence, the whole operation uses map and
f old implicitly. sum is an example of a f old computation since it is a binary
operator with the signature sum : Rn → R. Vector division is a binary map
operation and looks like / : Rn × Rn → Rn. This simplifies into a univariate
map operation by wrapping the two operands in a tuple. The signature thus

50 Modeling Data With Functional Programming In R

performance ← function(pred, obs) {
cm ← table(pred, obs)
list(confusion=cm,
accuracy=sum(diag(cm)) / sum(cm),
precision=cm[2,2] / sum(cm[2,]),
recall=cm[2,2] / sum(cm[,2]))

}

LISTING 3.2: A function to summarize model performance

becomes / : Rn×n → Rn. Coincidentally, this new signature is the same as the
diag function.

�

3.2 First-Class Functions
A cornerstone of computer science, the lambda calculus defines functions as
so-called lambda abstractions [13, 6], which is synonymous with anonymous
functions. The identity function I : X → X is defined λx.x. This lambda
abstraction is equivalent to function(x) x in R. Function application works
viaβ-reduction, which replaces variables in a function definition with concrete
values. In the application λx.x[x = 2], all occurrences of x are replaced by 2
in the function body, yielding 2. The same works in R using parentheses to
delineate expressions:

> (function(x) x)(x=2)
2

Anonymous functions are convenient for throw-away glue code. Other times,
we want functions to stick around longer. An alternative is to name the
function. A simple way to name a function is to assign the lambda abstraction
to a variable, as in I = λx.x. This is normally how we work with functions in
R.

I ← function(x) x

Once this function is assigned to a variable we can use it like any other value.
For instance, we can pass the function as an argument to another function,
and we can store the function in a data structure, like a list. Functions that
satisfy these properties are called first-class.

Both the lambda calculus and Turing machines treat functions like any
other data that can be manipulated by a program. In the definition of the

Functions as a lingua franca 51

lambda calculus, Λ consists of lambda terms that are either lambda abstrac-
tions (functions) or variables [6]. Consequently, functional languages treat
everything as data. It’s thus easy to take this for granted in R, but in lan-
guages like Java, functions are not first-class. The reason is one of design, as
opposed to functionality, since even at the hardware level, data and instruc-
tions are ultimately both represented as a sequence of bits (data). Fundamen-
tally, there is not much to distinguish functions from data. In Chapter 2 we
saw that mathematics has a similar point of view. First-class functions are not
only consistent with mathematics, they streamline model development by
enabling the creation of ad hoc interfaces and connectors between operations
in a pipeline.

Let’s explore these three properties in more detail. All functions are first-
class in R. [39] To see how functions behave like values, we define a univariate
function that increments its argument asλx.x+1. Also known as the successor
function, this function is used to produce the Peano numbers. In mechanical
terms, we are assigning a function to the variable named succ.

> succ ← function(x) x + 1

We’ve declared the variable succ and assigned a function as its value. This
function can now be used like any other variable. As mentioned above, one
requirement for being first-class is that a data structure must be able to store
the function as an element. Both built-in functions and user-defined functions
are first-class and can be stored in a list.

> some.funs ← list(sum, succ)
> some.funs
[[1]]
function (..., na.rm = FALSE) .Primitive("sum")

[[2]]
function (x)
x + 1

Our list some.funs contains two functions as elements. We can extract one
of the functions and assign it to a new variable. The new variable points to a
function and can be applied to an input like the original function.

> increment ← some.funs[[2]]
> increment(4)
[1] 5

Functions can also be passed as arguments to other functions. This is
common practice in R, and most users first encounter this with one of the
apply functions, such as sapply, mapply, or tapply. The eponymous apply
iteratively processes each element in an array, matrix, or data.frame. In
two dimensions, an element is meant to be a row (column) of the table-like
structure. The function passed to apply is sequentially applied to each row
(column) in the data structure. When operating on columns, apply has the

52 Modeling Data With Functional Programming In R

mathematical signature apply : Xn×m × Λ → Ym, where Λ denotes a lambda
abstraction (i.e. function). The actual signature of apply takes a data structure,
the margin, which controls whether the iteration is along rows or columns,
and a function that is applied to each row or column. Therefore, the function
is treated as a value that is passed into apply, which satisfies one of the
requirements for being first-class.

Let’s turn our attention to the primary case study of the chapter. Suppose
we want to predict income from the adult dataset [33], which is divided
into two classes: less than or greater than $50k per annum. This dataset is
a mix of categorical and continuous variables. For sake of simplicity, we’ll
focus on three continuous variables only: age, education level, and hours
worked per week. A plausible first step in the analysis is examining some
summary statistics. We can compute the mean of each variable using apply.
Each argument passed to mean is thus a column of the adult dataset.

> cols ← c(’age’,’education.num’,’hours.per.week’)
> apply(adult[,cols], 2, mean)

age education.num hours.per.week
0.2956388 0.6053726 0.4024232

Like its canonical brethren, the purpose of apply is to provide the machinery
around iteration, which is a generalized operation. This implies that given
constant data, the structure of the result of apply is the same, irrespective of
the function used. The only requirement is that the functions must all have the
same signature. The first-class function argument only needs to know how
to process a single element (in this case a vector) instead of a set of elements.
Segregating the mechanics of iteration from the model logic means that the
same function can be used for a single vector or multiple vectors without
modification or ceremony. As with map the first-class function argument is
meant to be univariate. If the function takes more than one variable, a closure
can be used to match the signatures. Section 3.6 elaborates on this technique.
For now, let’s see how the output structure is preserved by replacing the mean
with another statistic, like standard deviation.

> apply(adult[,cols], 2, sd)
age education.num hours.per.week

0.1868581 0.1715139 0.1259961

Both mean and sd have the same signature, namely f : Rn → R. Any function
with this signature will yield the same structure through apply, whereas a
function with a different signature will produce a different output structure.
For example, the successor function has the signature succ : N→ N. Using this
function results in apply : Rn×m ×Λ→ Rn×m, instead of apply : Rn×m → Rm.

Data-dependent return types can be confusing to newcomers. One advan-
tage of functional programming is that we can deduce output types by apply-
ing mathematical reasoning to our programs. Without writing any code, we
can deduce the types and shape of data moving through functions. Reasoning
about matrix dimensions is a similar exercise, except that now the operations

Functions as a lingua franca 53

local
variables

fu

nction block

Global environment

local
variables

fu

nction block local
variables

other variables

fu

nction block

enclosing scope

FIGURE 3.1: Simple functions versus a closure. Left: A standard function
only has access to variables within its own scope. Any references to variables
outside the function scope will be searched recursively until the global en-
vironment is reached. Right: Closures reference variables in their enclosing
scope. This environment is bound to the function, even after the enclosing
function has been executed. With lexical scoping, any variable not in the cur-
rent scope will be recursively searched in the parent scope until the global
environment is reached.

span more than just matrices. This concept is discussed more thoroughly in
Part II.

3.3 Closures

A closure differs from a basic function by having an associated external scope
bound to the function (see Figure 3.1). This means that variables can be
referenced outside the function scope and accessed as immutable values. The
significance is that the closure provides a way to track interstitial state strictly
within the context of the function in question. This is analogous to instance
objects holding state in object-oriented programming. In pure languages these
variables are immutable and within the closure the values are guaranteed to
be constant. This property is essential for deterministic behavior and local
reasoning of a program. In R, the default behavior is that variables in the
enclosed scope appear immutable. Attempting to reassign the value of one
of these variables results in a new variable that masks the variable in the

54 Modeling Data With Functional Programming In R

enclosing scope. Outside of the inner function block, the original value is
preserved. R is not a pure functional language, and Section 3.10 shows how
to override this default behavior with a special global assignment operator.

Consider our descriptive statistics for the income classification. The num-
ber of hours worked per week has extreme values such as 1 and 99. Ex-
treme values are known to hamper models, and Winsorization is one way to
improve their robustness. [29] Implementing and tuning the Winsorization
threshold can be accomplished with a closure, which is described in Listing
3.3. The idea is that we construct a function that applies Winsorization to our
data. In other words, we want to return a closure winsorize : R → Xn that
Winsorizes the w most extreme values. This closure doesn’t take x as an input
and must get it from the higher-order function winsorizer : Xn → Λ. 2

winsorizer ← function(x) {
function(w, scale=TRUE) {
bounds ← quantile(x, c(w/2, 1-w/2))
x[x < bounds[1]] ← bounds[1]
x[x > bounds[2]] ← bounds[2]
if (scale) x ← scale(x)
x

}
}

LISTING 3.3: Implementation of Winsorization

The returned function is a closure since it references the vector x defined
outside its body. This can be easily verified by debugging a call to the function.
Inside the function scope (environment in R terminology), only the variables
defined in the function signature exist.

> winsorize ← winsorizer(adult$hours.per.week)
> debug(winsorize)
> winsorize(.1)
Browse[2]> ls()
[1] "w" "scale"

So where isxdefined? To find the answer requires investigating the mechanics
of the R interpreter. When debugging code, ls is used to list the elements
within the current scope. Within a function, only the variables defined in the
function are visible, which is why only w and scale appear in the output
above. From the debugged function, external variables can be accessed two
different ways. One is via the call stack, which keeps track of the chain of
functions called to get to the current function. When variables along this
hierarchy are automatically visible, it is called dynamic scoping. Both Bash
and Lisp use dynamic scopes. Searching the call stack to find x is fruitless
though. Lexical scopes provide another path to variables based on the code

2The implementation below adds an optional argument scale discussed in Exercise 3.2.

Functions as a lingua franca 55

R GlobalEnv

income pipeline

winsorize

package

winsorizerC
al

ls
ta

ck
Lexicalscopes

FIGURE 3.2: Relationship between the call stack frames and lexical scopes.
Both are accessible from the current frame. The lexical scope assumes this
code is bundled in a package.

structure. To retrieve the contents of the enclosing scope requires moving up
the hierarchy of lexical blocks. This is done using the parent.env function.

Browse[2]> ls(envir=parent.env(as.environment(-1)))
[1] "x"

Variables are scoped lexically in R, which means the structure of the source
code determines where in the source a variable is visible. Code is visually and
syntactically divided into blocks (surrounded by curly braces { and }). Each
block has its own scope. Variables created in the block are destroyed at the
end of the block. Lexical scoping allows variables to be seen within a nested
block. If a variable is referenced but not found in the current scope, then the
enclosing scope is searched for the variable. This continues until the global
environment R_GlobalEnv is reached, at which point an error is printed if
the variable is still not found. Variables defined in unrelated scopes are still
not visible to each other. For example, variables defined in two independent
functions cannot be referenced by the other.

In the case of Winsorization, how does a closure benefit us? The censoring
will likely be codified in a pipeline in the final analysis. Once a threshold is
chosen, the code will likely be forgotten about and not modified. Creating a
closure to support multiple thresholds thus seems superfluous. During data
exploration and model development, though, the story is different. Before
codifying the censoring process, we need to choose the optimal threshold w
for Winsorization. Doing so requires holding all other parameters constant
while varying w. Winsorization isn’t particularly difficult to implement, but
it still takes up a few lines. Code that forms a single, atomic operation should
ideally be placed in its own function. If not, it can be difficult to know where
one operation ends and another begins. It’s also easier to replace one imple-
mentation with another when the code is already isolated in its own function.
Using a closure wraps up all this logic and data into a function that can be
called on demand.

The Winsorization threshold w can be tuned using this approach. The

56 Modeling Data With Functional Programming In R

same function w.hpw is used in each iteration. Thanks to immutability, we
know that the column value is constant at the beginning of each call.

income_pipeline ← function(...) {
df ← load_income()
w.hpw ← winsorizer(df$hours.per.week)
lapply(c(.05,.1,.15), function(w) {
df$hours.per.week ← w.hpw(w)
m ← logistic(income ∼ age + education.num + hours.per.week, df, ...)
p ← do_predict(m, df)
list(model=m, performance=performance(p, df$income))

})
}

LISTING 3.4: Adding Winsorization to the income_pipeline

Tuning the threshold merely requires iterating over some values with lapply

and calling and evaluating the model each time. This gives us a set of model
parameters and their corresponding in-sample performance. At a later stage,
we can compare the models to find which w works the best.

For sake of argument, let’s collapse the higher-order function and closure
into a single function. What does the function look like if we don’t return
a closure? Two changes are evident. First, the return value is no longer a
function but the return value of the closure instead. Also, the new function
signature is the union of the higher-order function and closure signatures.

winsorize ← function(x, w, scale=TRUE) {
bounds ← quantile(x, c(w/2, 1-w/2))
x[x < bounds[1]] ← bounds[1]
x[x > bounds[2]] ← bounds[2]
if (scale) x ← scale(x)
x

}

LISTING 3.5: Winsorization as a single function

This insight hints at the inverse process of dividing an existing function
into a higher-order function that returns a closure. Creating such a higher-
order function involves partitioning the function signature into two sets, one
for the functional and the other for the closure. The body of the closure
usually comprises the minimum logic required to process its arguments.
From a computational performance perspective, this minimizes the amount
of redundant work performed, since calculations occurring in the functional
are effectively cached when the closure is executed.

Functions as a lingua franca 57

3.4 Functions as factories
As we saw in the previous section, it can be beneficial to split a direct func-
tion call into two calls, one returning a function and the other calling the
returned function. The rationale is that by having two functions, it is easier
to understand the purpose of both via explicit separation of concerns. The
outer function acts as a constructor, or function factory, initializing certain val-
ues of the returned function. The general signature of a function factory is
f actory : X → Λ. The signature of the returned function in Λ is clean and
concise. Function factories can be useful when you want a function to be
called from a different context. In some other context, the data required to
call a function might not be easily accessible. Rather than modifying a whole
bunch of function signatures to accommodate a new parameter, it can be sim-
pler to just use a closure to codify this new behavior. This concept is explored
further in Section 3.7.

Function factories are particularly useful when a function must be called
multiple times and the cost of initializing data for the function is high. Other
times we want to break the dependence between conditioning data and using
the data. At times it can be impractical to carry around multiple sets of model
parameters to use at a later time. Function factories provide a convenient
way to handle these cases. A common scenario is when you want to control
graphical parameters to a function deep within a pipeline. Another example
is building Winsorization into a generic preprocessing step. Furthermore, we
want to test the model with and without Winsorization. A common approach
is to manipulate the data frame for each model run. This requires resetting
the data back to its original state. A naive approach might reload the data
from an external data source after each model run, which can be costly from
a time perspective. A better approach is to use a closure that retains a copy of
the original, unaltered dataset. Each call with a different configuration results
in only the desired transformations and not the cumulative effects. Our initial
version of the winsorizer takes this approach. However, it only handles a
single column. It’s better to extend the interface to accept a complete data
frame and specify the columns to transform in the call to the closure. A new
normalizer function is responsible for applying Winsorization to multiple
columns in the data frame. It also scales each column to [0, 1] in preparation
of the logistic regression.
For a single data configuration, the call looks like

> n.fn ← normalizer(x)
> w ← c(hours.per.week=.1, age=.2)
> df ← n.fn(w)

This approach makes it easy to iterate over these different data representa-
tions. In this implementation, the Winsorizer takes the complete data frame
instead of a column (see Exercise 3.3). The original Winsorizer only took a sin-

58 Modeling Data With Functional Programming In R

normalizer ← function(x) {
wf ← winsorizer(x)
cols ← c("age","education.num","hours.per.week")
function(w, col=names(w)) {
if (length(w) > 0) {
x ← fold(col, function(n, acc) { acc[,n] ← wf(n, w[n]);

acc }, x)
}
fold(cols, function(col,acc) { acc[,col] ← scale(acc[,col

]); acc },x)
}

}

LISTING 3.6: Function to normalize a number of columns in the adultdataset

gle vector, whereas with the normalizer we want to specify all the columns
that require Winsorization in a single call. We can retain the whole data frame
in the winsorizer, since then we can wrap the set of transformations into
a f old operation. A named vector conveniently specifies all the columns to
be Winsorized. Different configurations can be held in a list, one for each
parameter set.

> configs ← list(c(),
+ c(hours.per.week=.1),
+ c(hours.per.week=.1, age=.2)
+)

Finally, we use lapply to run the model against each set of parameters .

> n.fn ← normalizer(x)
> dfs ← lapply(configs, function(cfg) n.fn(cfg))

When variables have different types, a list must be used instead of a vec-
tor. This opens up the possibility of using do.call to directly unpack the
arguments from the list. This technique is described in Section 9.5.

3.5 Mediating iteration
The canonical higher-order functions provide simple frameworks for man-
aging iterative processes. These functions take care of the mechanics of
iteration and leave the element-level transformation to the closure argu-
ment. Many machine learning techniques are iterative in nature and ben-
efit greatly from these functions. To illustrate, let’s classify the income
groups of the adult dataset using logistic regression. Our simple model
is income = θ0 + θ1 age + θ2 education + θ3 hours per week + �.

Functions as a lingua franca 59

We can implement this ourselves using stochastic gradient descent (SGD).
[8, 56] Convergence is generally faster with SGD than normal gradient descent
at the cost of stability. An iterative method, SGD updates the coefficients θ
after each iteration based on the gradient of the cost function. Alternatively,
θ can be updated by maximizing the gradient of the likelihood function. The
update rule is given by θ := θ+ α∇θ�(θ), where � is the log likelihood. Given
the current sample x and response y, each element of θ is updated by the
simplified expression

θ j := θ j + α(y − hθ j (x))xj, (3.1)

where hθ j (x) is the model. The learning process over the whole dataset is
described in Algorithm 3.5.1. The algorithm starts by computing the error of
the estimate. Next is a function to compute the update step. This function
takes the input and output along with the estimated coefficients, applying
the gradient to all dimensions simultaneously. One epoch of SGD can be
described as a f old operation over the per element update rule.

Algorithm 3.5.1: LogisticSGD((X,Y),θ0,α)

error← λy, x,θ.sigmoid(θTx) − y)
step← λy, x, (θ, �).θ − α error(y, x,θ)x
fold(λr,m.step(ry, rx,m), (X,Y), (θ0, �))

Iterative algorithms like SGD typically describe all iterations as loops,
which then get translated into code. This is rather inefficient since it’s easier to
think about a single iteration first and then implement the wiring for multiple
iterations. Functional programming gives us a programming paradigm that
is consistent with our thought process. As an added benefit, having an explicit
function at the incremental level makes it easier to test code, since the function
is scoped to a single atomic operation.

The implementation in Listing 3.7 is slightly different from the algorithm.
The error is computed directly instead of being wrapped in a function. In this
case it’s computationally more efficient since the gradient is computed in two
parts. There’s also initialization code that is present. we want to collect the
errors from each iteration. This is added to the list, which acts as a 3-tuple.
The point is that implementations do not need to match algorithms verbatim.
Performance and other pragmatic reasons often act as wedges that separate
an algorithm from its code counterpart. This function represents the pure
mathematical portion of the implementation. The gradient is computed based
on the data, and then a new estimate is returned. It’s completely ignorant of
anything related to the adult dataset and the wiring to implement formula
notation. As the saying goes, this ignorance is bliss because the code is self
contained and free of dependencies. Hence it’s easy to test this function and
also reuse it in other scenarios.

Now, if logistic_sgd is to remain blissfully ignorant, some other func-
tion needs to shoulder the burden of wiring the model specification with the

60 Modeling Data With Functional Programming In R

logistic_sgd ← function(X,Y, init=NULL, alpha=.1) {
step ← function(x,y,fit) {
error ← sigmoid(x %*% fit$w + fit$b) - y
fit$w ← as.vector(fit$w - alpha * error * x)
fit$b ← as.vector(fit$b - alpha * error)
fit$error ← c(fit$error,error)
fit

}

if (is.null(init)) init ← list(b=0, w=rep(0, ncol(X)))
init$error ← NULL
fold(t(cbind(Y,X)), function(r,m) step(r[-1], r[1], m), init)

}

LISTING 3.7: An implementation of stochastic gradient descent for logistic
regression

SGD implementation. Training typically occurs over multiple epochs, and
logistic_sgd only provides a single epoch. Another function is necessary
for managing epochs. We’ll call this function logistic, and place the respon-
sibility of mapping a user friendly interface to it. This function also prints the
sum of squared errors for each training epoch.

logistic ← function(formula, data, alpha=0.1, epochs=10) {
tm ← terms(formula)
response ← rownames(attributes(tm)$factors)[1]
predictors ← attributes(tm)$term.labels
fold(1:epochs, function(i, acc) {
errors ← acc$error
fit ← logistic_sgd(data[,predictors],data[,response], acc,

alpha)
fit$error ← c(errors, sum(fit$errorˆ2))
flog.info("[%s] error=%s", i, fit$error[length(fit$error)

])
fit

}, NULL)
}

LISTING 3.8: Facade for training over multiple epochs with logistic regression

By dividing the code into multiple small functions, it’s easy to rearrange
the pieces. If we ever want to use a different iterative optimization method,
we just swap out logistic_sgd with something else, like logistic_nr, for
Newton-Raphson optimization. Exercise 3.10 explores the changes required
to support arbitrary optimization algorithms.

The model pipeline in Listing 3.1 sequences all the steps from loading
data to fitting the model to evaluating performance. Calling the function

Functions as a lingua franca 61

Model Accuracy Precision Recall
SGD 0.7902948 0.6374491 0.2995791
Built-in 0.7815111 0.6718676 0.1812269

TABLE 3.1: In-sample performance of logistic regression

m ←income_pipeline(epochs=5) yields both the model parameters and
performance metrics. It compares well with the stock logistic regression im-
plementation. Both results are summarized in Table 3.1. For the comparison,
we use glm to train the model. Then we get the in-sample predictions by using
.5 as the cutoff between classes.

> adult ← load_income()
> m2 ← glm(income ∼ age + education.num + hours.per.week, adult,
+ family=binomial)
> p2 ← ifelse(predict(m2, adult) >= 0.5, 1,0)
> performance(p2, adult$income)

We implemented logistic regression in two functions with about 10 lines
each. A production quality implementation will require more code to handle
categorical data and multiple classes. Nonetheless, the conciseness of our
toy version shows how most iteration problems can quickly be solved using
the canonical higher-order functions. Over time, code tends to become more
modular since functions naturally isolate different computing tasks.

3.6 Interface compatibility
Typical model development partitions a dataset into a training set and a test
set. A separate test set is a better indication of model generalizability versus
in-sample testing. However, for small datasets, it can be problematic to set
aside a portion of the data for testing, since that data could be used for training.
Cross-validation gets around this issue by partitioning the training data into
k disjoint folds. Each fold is reserved as a test set against the remainder, which
acts as the training set. The model is thus trained k times and the parameters
averaged across folds to produce final model parameters. In other words,
cross-validation both regularizes the model in addition to enabling use of the
full dataset for training.

Most algorithms for k-fold cross validation start with a loop. This seems
natural since there are k iterations of the training process. However, such al-
gorithms tend to get bogged down in the implementation. As usual, it’s hard
to see how the algorithm works when it’s obscured by the thick underbrush
of programming language mechanics. An algorithm based on functional pro-
gramming takes advantage of set theory and lambda abstractions to simplify

62 Modeling Data With Functional Programming In R

it. Algorithm 3.6.1 describes the k-fold cross-validation in just four steps,
where the emphasis is on the partitioning of the data and evaluating the
model. Loops, intermediate variables, and initialization are all unnecessary.

Algorithm 3.6.1: xvalidate(model, data, k)

X← partition(data, k)
Θ← map(λx.model(data − x),X)
Y← map(λx,θ.predict(x,θ), zip(X,Θ))
P← map(λx, y.performance(x, y), zip(X,Y))
return (Θ̄,P)

One reason why this algorithm is so concise is that it leverages the im-
plied ordinals between variables (see Section 6.3). Since the output of map is
consistent with the order of its input, the ordinals are identical. Hence, it’s
easy to combine these vectors together in other operations. We could have
created a one-off cross validation implementation, but there’s a clear reason
for making it general. Doing so is straightforward, since all that is required is
defining the signature of the closure as f : Xm×n × Θk. The input is simply a
data frame or matrix of observations, while the idealized output is a vector of
model parameters. Irrespective of the model being used, it’s possible to create
a closure with the appropriate signature. This guarantees that our function is
universal.

All function arguments have an implied signature based on how they are
called. How do we call this generic version of cross-validation? We need to
match the function call with the logistic regression. Any time a higher-order
function specifies a function signature that is different from the signature of
the function we want to pass to it, a closure is used to bridge the gap in
signatures. The key is that the signature of the closure must always match the
expected signature, while the higher-order function generating the closure
can be arbitrary. Once again the corresponding R code in Listing 3.9 deviates
from the idealized algorithm. The main reasons are related to logging and
creating compatible data structures that are ignored in the algorithm. Another
difference is the partition operation. Instead of partitioning the data explicitly,
it returns sets of indices. This simplification makes it easy to use tapply to
mediate both the partitioning of data and the iteration. If we want, we can use
a similar approach as logistic and create a separate function to manage each
epoch. In this case it manages an individual fold of the cross validation. The
drawback of not using a closure is that additional arguments must be added
to the signature. This is the cost of independence and should be weighed
carefully.

To use this function, we can simply swap it into the income_pipeline

and re-run. This gives us a new model and corresponding performance.

Functions as a lingua franca 63

xvalidate ← function(model, data, k) {
part ← (1:nrow(data)) %% k
tuple ← tapply(1:nrow(data), sample(part,length(part)),

function(idx) {
flog.info("Train on fold leaving out %s samples", length(

idx))
th ← model(data[-idx,])
flog.info("Predict on out-of-sample data")
y ← do_predict(th, data[idx,])
names(y) ← idx
list(model=th, pred=y)

})

flog.info("Merge out-of-sample predictions")
pred ← do.call(rbind, lapply(tuple,
function(tpl) data.frame(idx=as.numeric(names(tpl$pred)),

y=tpl$pred)))
data$pred ← pred$y[order(pred$idx)]
perf ← performance(data$pred, data$income)

flog.info("Construct final model")
model ← colMeans(do.call(rbind, lapply(tuple, function(tpl)

{
c(tpl$model$b, tpl$model$w)

})))

list(model=model, performance=perf)
}

LISTING 3.9: An implementation of k-fold cross-validation

3.7 Codifying behavioral changes
Functions don’t need to be higher order to be useful. Plain old functions
are effective at changing the behavior of existing functions. Some common
examples are include handling NAs in a function or overriding default values
of model parameters. For example, the default behavior of mean is to return
NA if any NAs exist in the vector. At times it can be useful to override this
behavior. When the mean is used as an argument to a higher-order function,
though, the behavior is fixed according to the function defaults. Achieving a
different behavior requires wrapping the target function in another function,
such as

function(x) mean(x, na.rm=FALSE).

The advantage of using first-class functions is that the possibilities are infinite,

64 Modeling Data With Functional Programming In R

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

recall

pr
ec

is
on

FIGURE 3.3: Precision-recall curve for the adult dataset

so the author of a function does not have to guess at which implementations
to provide. Instead, a package author can focus on the ideal interface, know-
ing that a user of the package can use functional programming concepts to
conform any function interface to match the package interface.

Suppose we want to use a different set of performance metrics during
cross-validation. The current implementation uses the performance function,
implemented in Example 3.1. What if we want to produce the precision-recall
curve for our model, as shown in Figure 3.3? Two things need to happen.
Currently, the prediction returns the classes and instead needs to return the
class probabilities. We also need to add a performance function argument
to the interface, so it’s configurable. But notice that xvalidate must assume
an explicit signature for the new function. The obvious choice is to use the
same signature as what the current performance function uses. This is great
for backwards compatibility, but other functions might not have the same
signature. what information does our precision-recall function require? At
a minimum it needs the class probabilities and a vector of cutoff points.
We may also want to plot the curve. For convenience we’ll provide default
cutoff values at intervals of 0.1 and assume the user wants to plot the result,
similar to hist. One implementation is shown in Listing 3.10. This time an
anonymous closure is passed directly to sapply, since it’s so specific to the
map operation.

To use pr_curve, the prediction step needs to know to return the class

Functions as a lingua franca 65

pr_curve ← function(prob, obs, cutoff=(0:10)/10, plot=TRUE) {
pr.mat ← t(sapply(cutoff, function(ct) {
pred ← ifelse(prob <= ct, 0,1)
perf ← performance(pred,obs)
c(recall=perf$recall, precison=perf$precision)

}))
if (plot) plot(pr.mat, type=’l’, xlim=c(0,1), ylim=c(0,1))
invisible(pr.mat)

}

LISTING 3.10: Compute and plot the precision-recall curve based on a set of
cutoff points

probabilities instead of the output classes. With this small change, pr_curve
replaces the raw performance function directly.

> adult ← load_income()
> m ← logistic(income ∼ age + education.num + hours.per.week, adult)
> p ← do_predict(m, adult, cutoff=NA)
> pr_curve(p, adult$income))

When integrating this function into our pipeline, we don’t want to plot the
curve for each epoch. We also might want to include additional cutoff points
for greater resolution. The simplest way to do that is to create a closure that
wraps the call. This new function has the exact interface we require and also
the exact behavior we desire.

perf.fn ← function(prob, obs) {
pr_curve(prob, obs, (0:20)/20, FALSE)

}

Functions don’t always behave how we want. Despite this petulance, most
functions are flexible enough to accommodate our needs. A combination of
options, pre-processing, and post-processing, are usually sufficient in this
regard. It’s good practice to bundle these steps along with the function call in
its own function. It can then be easily passed as an argument to any higher-
order function.

3.8 Inversion of control via callbacks
Many R scripts are procedural in nature. They specify a sequence of tasks,
possibly organized by function. For ad hoc analysis or data processing, this is
usually sufficient. In these sorts of scripts, the control flow is described explic-
itly by the script. When projects grow in complexity, or common tasks need to

66 Modeling Data With Functional Programming In R

x Normalize Cross-Validate Evaluate
θ

performance

Winsorize Model Metric

Pipeline Framework

User-Defined Functions

FIGURE 3.4: The model_pipeline as an example of inversion of control

be executed efficiently, it can make sense to delegate control flow to a library
or framework. This is known as inversion of control (IoC), since the user code
is no longer managing the flow of control in the program. In this paradigm
user code focuses on logic specific to the data scientist’s model or application,
delegating the generic workflow to the framework. Web server frameworks
follow this pattern, where the mechanics of responding to the HTTP protocol
is handled by the framework. The user only needs to fill in her custom appli-
cation logic. In modern object-oriented programming languages, inversion of
control is often handled using decorations or annotations. In functional pro-
gramming or languages that don’t support annotations, callback functions
are used for the same purpose.

Inversion of control can appear at varying degrees of granularity. Most
server frameworks have absolute control over the whole program flow,
whereas map, f old, and f ilter are microcosms of this pattern. As we’ve seen,
these higher-order functions mediate various forms of iteration. The control
flow associated with iteration is the underlying loop along with any vari-
able initialization and management. This is all governed by the higher-order
function, which calls the first-class function at each step in the iteration. On a
larger scale, model processing pipelines have a similar structure. Frameworks
that implement specific workflows lay somewhere in between. An example
of this is creating a framework for tuning models, similar to the caret pack-
age [31]. With caret, optimizing tuning parameters and cross validation are
managed by the package. While control isn’t completely commandeered, a
significant portion of the workflow is handed off to caret.

> control ← trainControl("cv", 10, savePredictions=T)
> adult$income ← as.factor(adult$income)
> fit ← train(income ∼ age + education.num + hours.per.week,
+ data=adult, method="glm", family=binomial, trControl=control)

Our model pipeline for the adult dataset can also use IoC. We can make it
a generic framework by specifying additional arguments in the signature. At
a minimum we need to add arguments for the data and the model to use. We
can be a little ambitious and also add an argument to include a regularization
step. L2 regularization is a common regularization method that adds the L2

Functions as a lingua franca 67

L2 ← function(lambda) function(w) lambda * w

LISTING 3.11: L2 regularization for SGD

norm as a penalty term when minimizing the loss. The general form for a
model f with loss function V is

minf

n�

i

V(f (x̂i), ŷi) + ρR(f), (3.2)

where R is the regularization function. Notice that R is treated as a functional
taking the model function as input. In the case of L2 regularization on linear
models of the form f (x) = w · x, equation 3.2 simplifies to

minf

n�

i

V(w · x̂), ŷi) + ρ
�

i

w2
i , (3.3)

Once we introduce regularization into the processing flow, ideally we
go all in. Otherwise, we end up with esoteric bits of conditional logic that
muddy the code. It’s better to exploit mathematical properties to achieve the
same goal. We can use ρ = 0 to suppress the effect of regularization. From
an interface perspective supporting regularization requires adding two extra
arguments to the pipeline signature: the coefficient ρ and the regularization
function. This isn’t great, since the two variables must be consistent for regu-
larization to work properly. For example, what is the correct behavior when
ρ = 0 but R is non null? Using a function interface is useful though, since it’s
easy to swap out one implementation for another. If we want to use L1 regular-
ization instead, we simply replace R. Keeping R as part of the interface is thus
mandatory. However, we can include ρ in the regularization function and
remove it from the higher level interface. This is equivalent to creating a new
function λx.ρR(x). Alternatively, we can create a function factory that takes
the weight and returns the regularization function, which is λρ.λx.ρR(x), for
some regularizer R.

At this point income_pipeline is fast becoming a generic framework that
orchestrates the model fitting process. A name that reflects this generality
is model_pipeline, which we’ll use going forward. Users of this function
simply provide the data and model they want to use, and the framework
takes care of the rest. To fit a model to the adult dataset with 6-fold cross-
validation of logistic regression with L2 regularization looks like

> model_pipeline(income ∼ age + education.num + hours.per.week,
+ logistic, adult, reg.fn=L2(.2))

Example 3.2. Consider the baseball salary dataset. [51] This dataset com-
pares player salaries with their performance statistics. For compatibility rea-

68 Modeling Data With Functional Programming In R

sons, we’ll flip some of the variables around and predict whether a player was
a free agent in the 1992 season based on offensive performance and salary.

> uri ← "http://www4.stat.ncsu.edu/∼boos/var.select/baseball.txt"
> bb ← read.csv(uri, header=TRUE)
> model_pipeline(x14 ∼ x1 + x2 + x4 + x8 + y, logistic, bb,
+ scale.fn=scale.bb)

�

The beauty of a framework is that it handles all the details of encoding a
repeatable workflow. But as hard as they try, frameworks do not apply in all
situations. One solution is to declare your framework ”opinionated”, which
is an obtuse way of saying ”do it my way”. An alternative approach is to
provide sufficient hooks to enable users of the framework to customize the
behavior as they see fit.

3.9 State representation
In certain cases, retaining state over disparate operations is appropriate, par-
ticularly for representing external resources. These resources are often sin-
gletons in the physical world (or in the operating system environment), so
modeling them as a single shared object with state makes sense. An I/O con-
nection is a common example, where a resource is opened, read, and finally
closed. Here a file descriptor represents the state of the file and must be
managed accordingly. Making multiple connections to the same file can be
problematic and can result in consistency errors. Object-oriented paradigms
are often heralded for their ability to manage state. In an object-oriented
paradigm a class represents a generic file, and an instance of the class is a
specific file. This file object can then be opened, read, and closed. The power
of the object-oriented approach is that all resources, variables, and operations
associated with the file are encapsulated within the class definition. The chal-
lenge is that each resource and method returns arbitrary instances of other
classes. The pathological case results in an exceptionally granular class hi-
erarchy representing each and every concept within the language. Knowing
when to stop modeling the class hierarchy is one of the hardest problems
in designing object-oriented systems as one must balance reusability with
ease of use. Highly granular class libraries are good for reuse, but it leads
to exceptionally verbose implementations that are difficult to learn. In Java,
there are distinct classes for files, connections, streams, and buffers. Loading a
file in Java requires interacting with objects from each of these classes, which
means understanding how a file system is modeled along with their indi-
vidual APIs, in addition to the implicit state machines embedded within the

Functions as a lingua franca 69

using ← function(resource, handler, exit=close) {
on.exit(exit(resource))
tryCatch(handler(resource), error=stop)

}

LISTING 3.12: A resource management function

class. An example of this are connections that must be closed after opening.
When resources aren’t properly closed, it can lead to memory leaks as well
as running out of operating system resources. 3 Despite all this granularity,
you still have to manually manage the actual resources being modeled. The
saving grace is that all of the machinery for managing a resource can be en-
capsulated in a single class, which limits the hunt for documentation. On the
other hand, languages that favor monolithic classes (like Objective-C or the
pandas library in Python) are also difficult to learn because so many permu-
tations exist for performing an operation that it isn’t immediately obvious
which one to use. This is similar to the interface problem in Section 3.8 where
two arguments must be consistent for regularization to work properly.

So the benefit of object-oriented programming comes at the cost of com-
plexity. Not surprisingly, functional programming provides a liberating al-
ternative to the tyranny of all-encompassing class hierarchies. Indeed, to
implement a generic model pipeline requires exactly zero new types. Rather
than attempting to optimize an interface for the most common use cases,
functional programming interfaces are restricted in quantity. Since closures
are so easy to create (and their resources managed efficiently), it is often triv-
ial to conform two interfaces together on an ad hoc basis. The implication is
that flexibility is no longer a design decision for the package developer but a
simple compatibility problem for the package user. This approach preserves
a simple and clear interface for functions while avoiding the slippery slope
of optimal interface design.

In terms of state management, closures can provide the same encapsula-
tion as a class can. The key difference is that creating a closure does not require
a lot of ceremony defining classes and instantiating objects. Closures can be
created ad hoc as an anonymous function or more formally via a function
factory. Any resources defined in the closure can be automatically garbage
collected once all references to the closure are gone. The result is a simpler
code base since there are fewer formal type/class definitions.

To illustrate a functional programming approach to state management,
let’s implement a function that is inspired by the with keyword in Python.
A with statement automatically manages resources within the scope of a
block. When the end of the block is encountered or an error is encountered,

3This is true of most programming languages. In R, unused connections are eventually
garbage collected to prevent memory leaks.

70 Modeling Data With Functional Programming In R

the specified resource is automatically closed. 4 Since R defines with as a
technique to access objects in environments, we’ll call our version using,
which is shown in Listing 3.12. In the adult analysis, we didn’t say how to get
the data. Some data is available online. Due to authentication requirements,
read.csv cannot parse them directly. In these cases it’s necessary to open a
connection explicitly, passing the connection object to read.csv. Afterward
the resource must be closed. Socket connections work similarly and need to
be closed after use. Compressed files can be read directly by read.csv. For
sake of argument, we’ll pretend that compressed files must be read the same
way as other connections. 5 Compression is often used to minimize network
transfer. Once downloaded, the file is opened using gzfile. The connection
is then passed to read.csv, which reads the data. Finally the connection is
closed. The using function bundles this all together into a single function
call. Any handler can be passed to using, such as

df ← using(gzfile(’data/adult.data.gz’), load_income).

The value of a function like this is that any errors in the handler will auto-
matically close the resource. When code is meant to run automated, without
human intervention, handling resources and errors properly becomes critical.
If not, memory leaks can overwhelm the system or mysterious errors may
surface in data at some later point. It’s better to detect errors quickly and
halt processing altogether. For massive jobs this may be impractical. In these
cases it may be better to skip bad records/jobs and let the rest of the processing
continue.

One difference between using and Python’s with statement is that using
is a function call, whereas with is a language control structure. Depending on
your philosophical leanings this is either a benefit or drawback. One argument
for a control structure approach is that blocks of code can be expressed directly.
Our implementation wraps blocks up in a function, which can add a few
keystrokes. But this is superficial. With lazy evaluation (see Section 10.4),
literal blocks can be passed to a function.

Example 3.3. Exploratory analysis usually begins by visually inspecting data
to look for any obvious patterns or trends. For seasonal data, it can be useful
to plot the data various ways to get a complete picture. Sometimes a function
needs to change these parameters to display a custom plot. A good citizen
will ensure that the original parameters are restored once the function exits.
A typical implementation looks like

plot_result ← function(x) {
opar ← par(mfrow=c(2,2), ...)

4In Python,with operates on a callable object that has a__enter__ and__exit__ func-
tion defined. This interface simplifies closing resources, since the connection object is responsible
for both operations. It’s less direct in R, since this protocol doesn’t exist. In Section ??, we’ll see
how types can provide a similar system in R.

5This is simpler than setting up a protected server.

Functions as a lingua franca 71

open_resource ← function(resource, exit=close) {
function(handler, destroy=FALSE) {
if (destroy) return(exit(resource))
tryCatch(handler(resource),
error=function(e) { exit(resource); stop(e) })

}
}

LISTING 3.13: Using a closure to manage external resources

on.exit(par(opar))

models ← model_pipeline()
lapply(models, function(model) pr_curve(model$prob, model$obs)

}

The use of on.exit is required to properly account for errors that may arise
in the function. Without this inlcusion, the parameters will not be restored
properly if an error is encountered. This approach works well but is easily
overlooked. The same can be accomplished with using. 6

plot_result ← function(x) {
models ← model_pipeline()
using(par(mfrow=c(2,2)), function() lapply(models,

function(model) pr_curve(model$prob, model$obs), par)
}

Notice how this approach cleanly separates the mechanics of managing the
state of the graphics environment from the visualization code.

�

In the above cases no closure is required because the handler operation
is effectively atomic. What if the resource must stay open for an indefinite
period of time? Here a closure can be used to manage the resource. While the
above technique is useful for a fixed set of operations, it doesn’t work well
for arbitrary operations in disconnected control sequences. Taking a cue from
Javascript, we can overload a function with multiple behaviors to achieve the
desired behavior. Named parameters makes this a simple and safe exercise as
seen in Listing 3.13. The general approach is to define the default operation as
the primary interface for the signature. Other operations are then controlled
by optional arguments to the function.

Working with this function involves naming the returned function and
calling this in lieu of using. The advantage of open_resource is that all re-
sources can be managed consistently irrespective of the resource in question.
This reduces the number of idiosyncratic details to be remembered in the
language.

6The removal of the par lines in plot_handler is implied.

72 Modeling Data With Functional Programming In R

> cat("distribution,x\n", file="example.data")
> using.resource ← open_resource(file("example.data"))
> using.resource(readLines)
[1] "distribution,x"

> cat(sprintf("normal,%s\n",rnorm(2)), file="example.data")
> using.resource(readLines)
[1] "normal,1.35652438112218" " normal,1.19550937688085"

> using.resource(destroy=TRUE)

The recurring theme of separation of concerns is yet again the main benefit.
Clearly thinking about what is model logic versus general software machin-
ery provides an opportunity to cleanly implement models according to the
mathematical sequence of function composition. Once this distinction in code
purpose is made, it also becomes clear that much of the data management
machinery is general and can be easily reused at a level of sophistication
that exceeds granular functions. This is because we have encoded a process
workflow within a higher-order function and closure as opposed to a single
operation.

3.10 Mutable state

In the previous section, the state being managed was static. Once a file re-
source is opened, the resultant connection object doesn’t change state until
it’s closed. Some algorithms and systems have state that update throughout
the life of a process. The SGD algorithm is like this, where the state consists
of the vector of parameters Θ. Typically variables retained in a closure are
immutable, but with the special global assignment operator (or double arrow
operator) �, it is possible to change the value of a variable in an enclosing
scope.

Recurrence relations can befuddle data scientists new to functional pro-
gramming. These algorithms require updating values incrementally. While
most intermediate R users know to avoid loops, How to use a higher-order
function to solve the problem can be unclear to them. Most users reach for a
variant of apply and attempt to update the state of a variable at each time step.
We know that external variables referenced within a closure are immutable,
so the update will fail. It’s at this point where desperation sets in, the glass
cover broken, and the double arrow operator pulled into action.

In the case of the logistic regression, a typical solution is shown in List-
ing 3.14. The global assignment operator restricts modularity, since variable
references follow the lexical chain. If the step function were to be placed out-
side the logistic function, the variables b and w would be created and written

Functions as a lingua franca 73

logistic ← function(formula, data, alpha=0.1) {
tm ← terms(formula)
response ← rownames(attributes(tm)$factors)[1]
predictors ← attributes(tm)$term.labels
b ← 0
w ← rep(0, length(predictors))
step ← function(x,y) {
error ← sigmoid(x %*% w + b) - y
w � w - alpha * error * x
b � b - alpha * error
error

}
es ← apply(data[,c(response,predictors)], 1,
function(row) step(row[predictors], row[response]))

list(b=as.vector(b), w=w, error=cumsum(esˆ2))
}

LISTING 3.14: Logistic regression using global assignment operator

to in the global environment! the operator will continue to access enclosing
environments until a matching variable is found. If the global environment is
reached and no variable is found, one is created. Careless usage can therefore
result in variables being created in the global environment. This behavior is
not safe and is why the global assignment operator needs to be used sparingly
and with care.

Example 3.4. Exponential moving averages (EMA) can be used to help quan-
tify the trend associated with a non-stationary time series. Unlike a simple
moving average (SMA), EMAs require a complete history to be computed
correctly. 7 They are defined recursively based on a linear combination of the
current value and its previous value. Let xt be the value of the series at time
t. The EMA st is

s1 = x1 (3.4)
st = αxt + (1 − α)st−1, (3.5)

which points to the fact that its calculation requires a state. A closure can be
used to compute the value of the EMA over time.

> set.seed(235813)
> r ← rnorm(250, sd=.01)
> x ← 100 * cumprod(1+r)

A map implementation requires the global assignment operator, while a
f old implementation treats the accumulator as the state.

7The EMA can be considered a simple state-based system. Additional state-based systems are
discussed in Chapter 12.

74 Modeling Data With Functional Programming In R

0 50 100 150 200 250

80
85

90
95

10
0

Simulated time series and EMA

Index

x

FIGURE 3.5: Simulated time series with corresponding exponential moving
average (dotted line)

ema_map ← function(y, alpha) {
s ← y[1]
lapply(y[-1], function(yi) {
si ← alpha * yi + (1-alpha) * s[length(s)]
s � c(s,si)

})
s

}

LISTING 3.15: A map implementation of an EMA uses the gloabl assignment
operator to append each incremental value to s. This code is unsafe, since it
can lead to side effects.

Thankfully the double arrow operator is often unnecessary. State that updates
over time is more safely handled as a f old operation than map.

ema ← function(y, alpha) {
fold(y[-1], function(yi, s)
c(s, alpha * yi + (1-alpha) * s[length(s)]), y[1])

}

LISTING 3.16: In a f old implementation of an EMA, the closure only reads
variables. Read operations have no side effects and are therefore safe.

�

Functions as a lingua franca 75

3.11 Summary
The benefits of functional programming are legion, and this chapter high-
lighted many of these benefits. The catalyst is the simple idea that functions
are first-class, like any other data. Higher-order functions are a natural conse-
quence of this idea. This simple toolkit can be applied to virtually any situation
offering a clean separation of concerns between model logic, data manage-
ment logic, and application logic. The end result is a modular program with
a clear delineation between reusable pieces of data logic and model-specific
ad hoc pieces.

We also explored the mathematical connection with functional program-
ming concepts, which will facilitate model development in subsequent chap-
ters. The brief introduction to the lambda calculus provides a formal frame-
work for understanding function transforms within code, which can simplify
model implementation as well as provide insights into the model itself.

3.12 Exercises
Exercise 3.1. Describe the mathematical signature of the table function for
1 vector input and also for 2 vector inputs. Is there a general form for the
signature?

Exercise 3.2. The scale function is defined

scale.bb ← function(df) {
cols ← c(’y’,’x3’,’x4’,’x5’,’x6’,’x7’)
df[cols] ← lapply(cols, function(col) scale(df[,col]))

}

Identify the equivalent map and f old operations in the function.

Exercise 3.3. Modify the winsorizer function to take the full data frame. The
new signature should match winsorizer : Xn×m ×Λ.

Exercise 3.4. The scale parameter in the winsorize function assumes a
specific scaling algorithm. Change the interface to take a function instead.
What should the signature of the closure be?

Exercise 3.5. Example 3.1 discusses various methods of measuring model
performance. Implied in this discussion is a cutoff point of 0.5, but plots like
the ROC curve and the precision-recall curve require computing these metrics
over a number of cutoff points. Modify the performance function to support
a cutoff point.

76 Modeling Data With Functional Programming In R

Exercise 3.6. Continuing with Exercise 3.5, write a function that calculates
the ROC curve based on the output of the performance function.

Exercise 3.7. An alternative approach is to use lapply instead of f old in the
normalizer. We can still replace all specified columns at once, though the
usage changes slightly.

n.fn ← normalizer(x)
df[,names(w)] ← n.fn(w)

Modify the normalizer to use lapply instead of f old. How much difference
is there in the structure of the code? Which approach do you prefer? Why?

Exercise 3.8. The normalizer in Listing 3.6 is specific to the adult dataset.
Update the function to be generic.

Exercise 3.9. Add sampling to logistic_sgd, so the training set is ordered
randomly.

Exercise 3.10. The logistic function uses logistic_sgd to find the optimal
parameters of the logistic regression. Modify the function to support an arbi-
trary optimization function, such as Newton-Raphson. What else is needed
to make the function backwards compatible?

Exercise 3.11. In our version of cross validation, we call a function named
performance to evaluate the model. This simply returns the confusion matrix.
What if we want to compute some other statistic instead? The simplest option
is to add that function to the signature so that it becomes parameterized. To
preserve the original behavior, simply use the original function as the default
value. Anyone that wants different behavior provides their own function to
evaluate the performance.

4
Alternate functional paradigms

The R language provides a strong foundation for writing functional pro-
grams. Somewhat surprising is that R has also become a platform for intro-
ducing alternate functional programming paradigms. This is possible due
to its reflection capabilities and also an active user community focused on
improving the usability of the language. Many of these alternate paradigms
are borrowed from other languages and repurposed to be consistent with
R idioms. Some approaches are more obviously derived from functional
programming while others hide this relationship beneath layers of syntax.
This chapter reveals the connection between these alternate paradigms and
functional programming. Understanding this relationship not only highlights
how these packages work but also sheds light on when they are appropriate
to use.

Starting off, Section 4.1 briefly examines the built-in collection of higher-
order functions. These functions are borrowed from Lisp and include Map,
Reduce, Filter, Find, Position, and Negate. The first three functions ap-
pear in the canon described in Part II, illustrating how fundamental these
higher-order functions are to functional programming. Through language
extensions, R can appear more like other functional programming languages.
More than a facade, packages that introduce new syntax also introduce new
semantics. The magrittr package [48] discussed in Section 4.2 introduces
pipe notation. Related to arrows and monads in Haskell [], the syntax also
hints at computational graphs. Another language extension, lambda.r [43],
1 provides an alternate method for defining functions and types. Reviewed
in Section 4.3, this package aims to facilitate model development by replac-
ing the various object-oriented class and dispatching systems with a simpler,
FP-based system.

Functional programming concepts are also introduced via protocols or
patterns. Instead of new syntax, new functions are introduced, coupled with
a methodology. For example, the older plyr framework advocates the so-
called split-apply-combine approach for data manipulation. This approach
attempts to standardize data aggregation and is discussed in Section 4.5. It’s
similar to a GROUP BY query in SQL and by, aggregate, and tapply in
base R. These operations implicitly rely on function composition and map-
vectorization. The newer dplyr framework focuses exclusively on transfor-

1created by the author

77

78 Modeling Data With Functional Programming In R

mations of data frames using magrittr to mediate function composition. On
the other hand, purr is like plyr, and introduces a set of function primitives
to be used exclusively. These are meant to provide deterministic return types
to functions. These packages are discussed in Section 4.6. Another paradigm
targeting data processing workflows is the so-called MapReduce framework
discussed in Section 4.4. The framework provides a distributed version of
map and f old designed to process hundreds of gigabytes of data.

Moving on from the adult dataset, this chapter uses the baseball dataset
from the plyr package as the primary example. This dataset is different
from the baseball datsset described in Example 3.2. Instead of looking at
salaries, this dataset provides player statistics for each year in a player’s
career. Our analysis will begin by grouping the players into rookie, normal,
and veteran. For each group, we’ll calculate some aggregate statistics such as
batting average.

4.1 The built-in functional programming canon

Despite being part of the standard R library, Map and Reduce live in relative
obscurity, alongside their Lisp-inspired brethren Filter, Position, Find,
Negate [39]. For Map, the reason is fairly obvious, since the apply family
provides so many options for applying a function to a set. While prevalent
in mathematics, the f old/reduce concept is less understood outside of the
functional programming community. In concept Reduce works the same as
fold, except it provides options for iterating from either end of a vector
and whether to accumulate incremental results. The cost of this convenience
is complexity: Reduce requires 68 lines of code, whereas fold has 8 lines
spread over two function clauses. Numerous embedded conditional blocks
are required to handle two additional arguments. For an end user, does this
verbosity in the function matter? One argument for clean implementations
is debugging. When you get unexpected results it’s necessary to debug the
code to determine the cause. The more complicated the code is, the more
difficult it is to debug. This observation echoes Kernighan [28], who remarked
”everyone knows that debugging is twice as hard as writing a program in the
first place. So if you’re as clever as you can be when you write it, how will you
ever debug it?” Simplicity is thus preferred over complexity in most cases.
In other words, complexity is a cost to be minimized. To justify complexity,
the utility derived from it should be greater than its cost. For example, there
are two simpler alternatives to including an option for left or right iteration
for Reduce. One is to implement a reverse function that can be composed
with Reduce. Another is to provide left and right versions (which appear in
other languages). Both approaches simplify the implementation and doesn’t
require extra effort on the part of the end user.

Alternate functional paradigms 79

Whether to use one or the other is a matter of taste and philosophy. Some
prefer the swiss army knife approach, where a function has something for
everyone. This approach maximizes flexibility. Others prefer simplicity and
conciseness. This approach maximizes comprehension and flow, since fewer
options and concepts need to be mastered.

Example 4.1. Revisiting Example 3.4, the EMA can be implemented using
Reduce instead offold. As expected, there aren’t too many differences besides
cosmetic changes.

ema_red ← function(y, alpha) {
Reduce(function(s, yi)
c(s, alpha * yi + (1-alpha) * s[length(s)]), y)

}

LISTING 4.1: EMA using Reduce

The most significant difference is that Reduce uses the first two elements in
the first operation (when no initial value is provided), while fold makes this
explicit. This is a convenience but can hide the mechanics of the operation.

�

The built-in canon of higher-order functions include four additional func-
tions. Filter provides wiring for removing elements from a set. This function
is part of the canon written in this book and is discussed in Chapter 8. The
last two functions are designed for searching data structures. Find returns
the first element that satisfies the given predicate. On the otherhand Position
returns the associated index. Datasets are often loaded in toto in data science
and are partitioned in memory. This differs from database interactions, where
a query is executed on a server to provide the exact subset requested. From R,
these subsets are extracted using subsetting notation. The Filter concept uses
functions instead of inline expressions to partition the data. Filtering data is
so ubiquitous that we’ll see a similar function in dplyr. Suppose we have
a portfolio worth $100. Each day the net asset value (NAV) of the portfolio
moves around depending on the performance of the assets in the portfolio.
Using the NAV series from Example 3.4, we want to know the first time our
portfolio drops 5% in value. The Position function can do this. It returns the
index of the first value in a vector that satisfies a predicate.

> Position(function(a) a < 95, x)
[1] 22

Behind the scenes Position uses a loop to mediate the iteration. A more
faithful implementation can be accomplished using lapply along with a
continuation to exit early from lapply. Continuations are discussed further
in Section 10.3.

80 Modeling Data With Functional Programming In R

position ← function(f, x, nomatch=NA_integer_) {
callCC(function(k) lapply(seq_along(x), function(i) {
if (f(x[i])) k(i)
nomatch

}))[1]
}

LISTING 4.2: Get position without a loop

4.2 Infix ”pipe” notation

Like a mischievous deity, function composition appears in many forms. Even
in pure mathematical notation, function composition has two distinct syntac-
tic forms: as chained function application and as an infix operator. In either
form, the function precedence is right to left. This means that the right-most
function is applied to the operand, followed by the application of the second
right-most function, and so on. It happens that function application syntacti-
cally defines its arguments to the right of its name and is typically vocalized
as ” f of x” or ” f applied to x”. This arrangement has the unintended con-
sequence of right-to-left precedence for function composition. Some people
find this notation counterintuitive and would rather use left-to-right prece-
dence. While the difference is mostly syntactic, it’s worth exploring it further
to appreciate the implications of the style. Suppose we are fitting an error,
trend, seasonal (ETS) state space model to a time series x and want to apply
a Box-Cox transformation first. In standard function notation this operation
can be codified as ets(boxcox(x)). If this were a common operation we could
assign it to a new function h using the infix ◦ operator, such as h = ets◦ boxcox
or inline as (ets◦boxcox)(x). Note that this is still right-to-left precedence since
boxcox is applied to x first and then ets applied to that result.

Left-to-right precedence switches the order of operations so that operands
to the left are applied first. One example of left-to-right precedence comes in
the form of the pipe operator, derived from UNIX, where pipes direct the
standard output (stdout) of one command to the standard input (stdin) of
another. Pipe notation can be considered equivalent to function application
via the relationship f (x) = x| f . 2 UNIX shells have supported pipes for decades
[26], but the concept is relatively new to programming languages outside of
the shell. It may not be immediately obvious how pipe syntax represents
function composition, so let’s see what happens when a second function is

2In UNIX shells the correct syntax is actuallyecho $x | f, which ensures that the contents
of x are directed to stdout.

Alternate functional paradigms 81

added. This results in

x | g | f = (x | g) | f
= g(x) | f
= f (g(x)).

Syntactically the order of the functions is reversed, but due to precedence rules
the operation is the same. Let’s pretend that our Box-Cox transformation and
ETS fit are the UNIX commands boxcox and ets, respectively. The notation
for fitting the model becomes

echo $x | boxcox | ets.

To parse this syntax we read left-to-right so that the contents of x are first
sent to standard out via the echo command and then routed to the Box-Cox
transformation, and finally to the ETS model for fitting.

One benefit of pipe syntax is that it is consistent with how we model
data flow. Since we read (English) language and write code left-to-right, it’s
natural to think about time moving left to right across the page or screen.
This left-to-right precedence also appears in object-oriented programming
under the guise of ”method chaining”, where successive methods are called
on the return value of the previous method call. For example, assuming the
corresponding method exists on each return value, a popular representation
of function composition is x.boxcox().ets(). 3 The common theme is that
additional operations are appended to the end of the previous command
instead of explicitly passed as an argument to each successive operation.

The magrittr package implements pipe syntax in R with the infix oper-
ator %>% [48]. Aside from the visual consistency with chronological ordering,
why might you use this syntax over standard function composition? One ar-
gument is that long chains of traditional function composition can be difficult
to read. Infix notation attempts to make these transformation chains more
legible. For example, we might model a sequence of transformations as

x a b c d y

which is equivalent to y = d(c(b(a(x)))). With the magrittr infix notation the
chain looks similar to the illustration: y ←x %>% a %>% b %>% c %>% d.
Another way to preserve visual chronological order is with an interstitial
variable, such as

o ← a(x)
o ← b(o)
o ← c(o)
y ← d(o).

In this case we take advantage of top-to-bottom program flow to visually

3This syntax can seem convenient, but it is difficult to simultaneously generalize and maintain
consistency across object types.

82 Modeling Data With Functional Programming In R

indicate that a precedes b. This function composition can be implemented
with f old as well. The trick is to iterate over the set of functions so they are
passed in order as operands to the first-class function argument.

fs ← list(a,b,c,d)
y ← fold(fs, function(f,xx) f(xx), x)

Up until now the vector argument to f old has been a vector or list of values.
In this example we are passing a sequence of functions as the argument. This
is perfectly valid since in functional programming, functions are first-class.
Doing so opens up yet more types of calculations that f old can represent.
Choosing one representation over another becomes a matter of clarity and
style. Regardless of the approach taken what’s important is the equivalence
of the two representations.

Pipe notation shines when chaining numerous functions with arbitrary
length signatures. Suppose our processing pipeline is more involved, such as

x a b c d y

1 2 3 4

or y = d(c(b(a, 1), 2, 3)), 4) in function form. Some functions in the chain take
additional parameters besides the primary data argument. The correspond-
ing magrittr syntax is y ←x %>% a(1) %>% b(2,3) %>% c() %>% d(4).
This construction works by inserting the result of the previous function as
the first argument to the current function. In other words, x %>% a(1) ≡
a(x, 1). This is semantically equivalent to using f old with a data structure
that holds both the functions and their respective arguments. To illustrate
this equivalence, we create a function chain that mimics pipe notation. This
function takes a list of lists, where each inner list element represents a func-
tion call using the specified function and arguments. As with pipe syntax the
first argument is not specified in the configuration since it gets passed as the
result of the previous function call.

chain ← function(fs,x) fold(fs,
function(tpl,xx) do.call(tpl[[1]], c(list(xx),tpl[-1])), x).

Executing the series of functions requires encoding the functions in the list
structure and then calling each function in succession.

fs ← list(list(a,1), list(b,2,3), list(c), list(d,4))
chain(fs,x).

Here the pipe notation is more readable than a comparable f old implementa-
tion since the functions are not abstracted in a data structure. The drawback
with chaining functions this way is that an implicit function signature is de-
fined for each chained function. Every function must be defined consistently
so that the output of each function is compatible with the first argument of

Alternate functional paradigms 83

other functions. Hence, magrittr works well within a particular package
where functions are designed with pipe notation in mind. Functions that
don’t have a compatible function signature need to be wrapped in a closure
to rearrange the function arguments. This is similar to how the functions
are wired together with f old, so there is less benefit over other approaches
outside of the proscribed use case.

Another area where infix pipe notation is less successful is when the
function composition is dynamic. Section 12.2 implements Conway’s game
of Life is implemented. One approach to the epoch function encodes the rules
of Life as functions. The actual rules can then be specified at simulation time.
To implement this with magrittr requires wrapping the whole chained call
in a closure. For this type of dynamic function composition, a f old approach
can be more appropriate.

4.3 The lambda.r syntax and type system

magrittr provides syntax for chaining function calls together. How these
functions are identified and called still relies on the traditional dispatching
approaches of R, which are closely linked to the type systems in the language.
R has numerous dispatching/type systems including the built-in (and foun-
dational) S3 and S4 systems, a pass-by-reference system built atop S4 called
ReferenceClasses [11], plus a newer object system R6 built atop Reference-
Classes [12]. Each of these systems are based on object-oriented programming
concepts. The main idea with modern OOP is that variables and functions are
bound to objects as a way to organize code. Applications are written by com-
posing objects built from a taxonomy of classes where each class defines their
associated variables and functions. While meant to limit redundant struc-
tures and promote reuse, poorly designed OOP systems can actually increase
interdependencies that inhibit reuse. This emphasis on OOP is a shame since
so many language features in R hail from functional programming, as we’ve
seen. To fill this void, lambda.r was written as a dispatching and type system
based on functional programming principles and concepts, including pattern
matching, multipart functions, guard expressions, and type constraints.

4.3.1 Pattern matching

The foundation of lambda.r is function definition. Instead of explicitly as-
signing a variable to a function object, lambda.r introduces the %as% operator
to declaratively define functions. This is similar to how mathematical func-
tions are defined. 4 Let’s return to the Fibonacci sequence and define it using

4outside of the lambda calculus

84 Modeling Data With Functional Programming In R

function notation, so that

f ib(0) = 1
f ib(1) = 1
f ib(n) = f ib(n − 1) + f ib(n − 2),when n ≥ 2

for n ∈ N. With lambda.r the definition is virtually the same aside from the
use of %as% for the assignment operator and braces to handle scoping rules. 5

fib(0) %as% 1
fib(1) %as% 1
fib(n) %as% { fib(n-1) + fib(n-2) }

This simple example showcases a number of features of lambda.r includ-
ing multipart function definitions and pattern matching. Multipart functions
generalize the concept of piecewise functions, that have multiple definitions
depending on the input criteria. In the Fibonacci sequence example, when f ib
is applied to 0, the first function clause will match, yielding a result of 1. When
the argument is 1, the first function clause is skipped since it doesn’t match
the input. However, the second does, again resulting in 1. The last function
defines the argument as a variable n. This acts as a catch all definition for all
n � {0, 1}.

For a given function name, functions are evaluated lexically in the order
they are defined until a matching function is found or the set of available
functions is exhausted. If a function is defined early and has a liberal function
signature matching many combinations of parameters, it will take precedence
over variants defined later even if they have more restrictive signatures that
match the parameters. To illustrate, suppose the Fibonacci sequence imple-
mented 6

fib(n) %as% { fib(n-1) + fib(n-2) }
fib(0) %as% 1
fib(1) %as% 1.

The first clause fib(n) will always match, so the clauses fib(0) and fib(1)

will never be called.

Example 4.2. Multipart functions appear frequently in mathematics, particu-
larly to get around discontinuities in a function. For example, the sinc function
is discontinuous at 0 and is defined in two parts:

sinc(x) =

1, when x = 0
sin(x)

x , otherwise.

5Function bodies typically need to be surrounded in curly braces, with the exception of scalar
values and simple function calls.

6If following along in the R interpreter, the existing fib definition must be removed. When
defining lambda.r functions, the lexical order is maintained for each function clause. Signa-
tures that match existing function clauses will overwrite the previous definition. Whenever the
situation is ambiguous, a new clause is added to the function definition.

Alternate functional paradigms 85

The lambda.r counterpart is similar:

sinc(0) %as% 1
sinc(x) %as% { sin(x)/x },

which demonstrates how conditional expressions are naturally expressed
with pattern matching and declarative syntax. Conditional blocks are a tried
and true approach but also well known for being difficult to comprehend
[34]. While complexity is minor in trivial examples like this, real world func-
tions like Reduce and optim are difficult to understand, due to many nested
conditional blocks. This difficulty is typically quantified by cyclomatic com-
plexity, which is a graph-theoretic measure of software complexity [34]. This
measure shows how loops and conditional blocks add to the complexity of
a program. Nested conditional blocks are even worse as the cyclomatic com-
plexity grows. Guard statements help to reduce code complexity since the
code paths are isolated.

�

Strings can also be pattern matched within function definitions. Numerous
built-in functions switch logic on string arguments. For example optim and
glm use a string argument to indicate what algorithm is used. This choice
determines which other arguments are required, along with the allowable
values for the arguments. In optim, different blocks of code are executed
based on the method specified. It’s not always clear what is going on in such
a function, making it difficult to debug. As a user of such a function, it is
also difficult to know which combinations of arguments are allowed. The
complexity of the code can be minimized by separating the implementation
based on a string argument, like the optimization method. Not only does
each function clause define it’s own required arguments, it is also easier
to understand what the function is doing since there are fewer code paths.
The downside is that there may be some redundant code, but this is often
outweighed by the increased clarity of the definition. Section 14 rewrites
optim as a case study.

Example 4.3. Formal grammars have this form as well. Chapter 12 explores
many such systems. To whet our appetite, L-systems are simple grammars
used to simulate natural looking plants and vegetation. L-systems begin with
an axiom, followed by a set of productions, or re-write rules. Consider a sys-
tem for ”growing” algae, defined by the axiom A along with two productions:
A → AB and B → A. This can be implemented using pattern matching as
shown in Listing 4.3. Whenever the character "A" is encountered, the first
clause is triggered, returning c("A", "B"). If algae is called with "B", then
"A" is returned. Any other input will result in an error.

The actual sequence is generated with a call to f old. Within each f old
iteration is a call to lapply, which maps each token in the input to a sequence.
The unlist function collapses the list structure into a vector.

86 Modeling Data With Functional Programming In R

algae("A") %as% c("A", "B")
algae("B") %as% "A"

LISTING 4.3: The algae L-system produces a sequence of characters whose
length corresponds to the Fibonacci sequence.

> fold(1:3, function(i,x) unlist(lapply(x, algae)), "A")
[1] "A" "B" "A" "A" "B"

These operations preserve order, so the sequence remains equivalent, despite
the change in data structure. This preservation, or order invariance, is a useful
property of R operations and is discussed in Section 6.3. The f old operation
applies this transformation 3 times, using the output of one iteration as the
input to the next. While the algae system is remarkably simple, it exhibits a
fascinating property. The length of each production corresponds to a number
in the Fibonacci sequence. For example, three successive iterations correspond
to the Fibonacci number 5, while four iterations results in a sequence of length
8.

�

4.3.2 Guard statements

Executing different function variants within a multipart function sometimes
requires more detail than simple pattern matching. For example, what hap-
pens if fib is applied to a negative number? Guard statements extend the
pattern matching concept to support any logical predicate that state the con-
ditions for execution. They are defined in an additional clause of the function
definition specifying one or more boolean guard expressions. Guards are
analogous to pre-conditions in languages like Eiffel [36]. 7 They also behave
like assertions in Python, except that they are evaluated before the function
is executed and their scope is segregated from the main function body. To
illustrate, the first two clauses of the Fibonacci sequence definition can be
defined as a single clause with a single guard expression.

fib(n) %when% { n < 2 } %as% 1

A guard expression can also make function clauses independent of the lexical
evaluation order by placing a more restrictive constraint around the accept-
able input for a given clause.

fib(n) %when% { n >= 2 } %as% { fib(n-1) + fib(n-2) }

Defining fib with the above two function clauses, the order of the clauses no
longer matters.

7lambda.r also supports post-conditions with the%must% clause. See [43] for more details.

Alternate functional paradigms 87

Guard statements support an arbitrary number of guard expressions, sep-
arated by either a new line or a semi-colon. These predicates must all return
true if and only if the given function clause executes. This implies that mul-
tiple guard expressions are logically combined with a conjunction. Hence,
the two guard expressions in the following definition of fib are evaluated as
n ≥ 2 ∧ n ∈ N.

fib(0) %as% 1
fib(1) %as% 1
fib(n) %when% {

n >= 2
is.numeric(n)

} %as% { fib(n-1) + fib(n-2) }

The value of this approach is that it cleanly separates different types of logic.
Logic that ensures all arguments are well-formed goes into the guard state-
ment, while logic related to the actual computation goes in the function body.
Without the explicit separation of concerns, commingled logic quickly be-
comes difficult to decipher and a burden to maintain. When no function
clauses match the arguments, an error is produced. Halting the processing
prevents errors from propagating through the model undetected.

> fib(-1)
Error in UseFunction(fib, "fib", ...) : No valid function for ’fib(-1)’

Example 4.4. The Lindemayer system used an external f old to mediate the
iteration. This can be added to algae to make the function more convenient
to use. The end user mostly wants to specify the number of iterations and
possibly change the initial conditions. With an extra function clause and a
guard statement, this high-level interface is juxtaposed with the production
rules.

algae(n, init="A") %when% {
n %isa% numeric
n > 0

} %as% {
fold(1:n, function(i,x) unlist(lapply(x, algae)), init)

}

LISTING 4.4: A new function clause for algae provides the wiring to automat-
ically iterate over the L-system. The %isa% operator tests whether an object
is an instance of a particular type.

Now we just call algae(3) to get the character sequence corresponding to
three iterations of the system.

> algae(3)
[1] "A" "B" "A" "A" "B"

�

88 Modeling Data With Functional Programming In R

Example 4.5. Section 12.3 describes a simple stock trading system. The model
includes a location function

L (xt) =

0, if b− > b+

−1, if xt < b−

1, if xt > b+

0, otherwise

that specifies the location of the current price vis-a-vis a channel. The channel
is a tuple (b−, b+) and envelops the price series representing the lower and
upper bounds. This function returns four values, based on specific logical
conditions. A typical solution uses conditional blocks within the body of the
code.

location ← function(x,b) {
if (b$lower > b$upper) 0
else if (x < b$lower) -1
else if (x > b$upper) 1
else 0

}

This approach is sufficient but also establishes a poor foundation. Starting
with conditional blocks is no better than a straw house: good for basic shelter
but isn’t sturdy enough to build higher. Multipart functions cleanly separate
scope between clauses, encouraging separation of concerns from the ground
up. Using guard statements in four distinct clauses conveniently captures the
logic distinguishing the different function clauses.

location(x,b) %when% { b$lower > b$upper } %as% 0
location(x,b) %when% { x < b$lower } %as% -1
location(x,b) %when% { x > b$upper } %as% 1
location(x,b) %as% 0

�

4.3.3 Types and type constraints

Most of the concepts in this book can be derived from the untyped lambda
calculus. In practice, the typed lambda calculus is preferred since it is more
general and provides the foundation for modern functional programming
languages. Types provide context to data. Consider data stored in a vector.
Structurally, a vector is a sequence of values. But what this sequence repre-
sents is unknown. A type provides this information, so two vectors can be
distinguished programmatically. Functions can use type information to re-
strict arguments to specific sets of values and also for dispatching a specific
function according to the type of each argument. For example we’ve seen
how apply requires an array, an integer, and a function as its arguments. If

Alternate functional paradigms 89

these type requirements are not satisfied, the call to apply will fail. This is
one of the few areas where R behaves like a strongly typed language, but this
type checking is usually function specific.

R provides a number of built-in types such as primitive vector types
like character, numeric, logical and their descendants array and matrix

as well as more general list and data.frame types. Another common
type that is less well known is the environment, which is the only built-
in hash table in R. It’s also possible to create user-defined types. Base R
provides the S3 and S4 object systems for defining types (aka classes).
The beauty of S3 is its simplicity. The concept of type is just an attribute
on an object. This class attribute is used by the S3 system to call func-
tions specific to the type. When calling an S3 function, say f(x), the func-
tion f actually dispatches to another function having a name equivalent
to sprintf("%s.%s", deparse(substitute(f)), class(x)). For exam-
ple, if x is a matrix, then the function f.matrix will be called. If no such
function is defined an error results. S4 is more robust but suffers from be-
ing cumbersome to use. [?] The newer ReferenceClasses attempts to address
some of the warts of S4 and provide property access via a pointer reference
[11], making objects mutable. lambda.r introduces its own type system that
integrates with the previously described function dispatching system. The
goal of the lambda.r type system is to provide a syntax that is easy to use
and consistent with functional programming principles.

Types in lambda.r are defined via a constructor. This function knows how
to create objects of a given type. All values returned by the type constructor
are automatically assigned the proper type. A trivial example is creating an
Integer type that simply returns the value provided to the constructor.

> Integer(x) %as% x

Instances of the Integer type are created by calling this constructor. In the
following example, x will have type Integer.

> x ← Integer(5)

Behind the scenes, the returned type is simply an S3 object, so the same
class function can be used to inspect the type. One difference between S3
and lambda.r is that types in lambda.r must start with a capital letter. This
convention is used by lambda.r to automatically anoint capitalized functions
as type constructors. It also visually separates type constructors from other
functions, making it easier to distinguish them in code.

Types in isolation aren’t particularly useful. That changes when they are
used to dispatch functions via type constraints. These optional declarations
precede a function definition and specify the type for each argument as well
as the return type. When the function is called, the type of each argument
is compared with the type constraint. If the types don’t match, an error is

90 Modeling Data With Functional Programming In R

raised. 8 Similarly, if the type of the return value doesn’t match the stated
type, an error is raised. Type constraints start like a function definition but
instead of the %as% operator, the %::% operator is used, followed by a list of
colon-separated types. Built-in types are supported just like custom lambda.r

types. Type constraints must be declared prior to the function definition. Once
declared, the constraint is greedy and will retain scope until another type dec-
laration with the same number of parameters is declared or an incompatible
signature is encountered.

Example 4.6. The Fibonacci sequence can be reimplemented using the
Integer type. The reasoning is that the original fib function accepts more
than integers, which can result in infinite recursion. We previously protected
ourselves from this situation with a guard statement.

fib(n) %::% Integer : Integer
fib(0) %as% Integer(1)
fib(1) %as% Integer(1)
fib(n) %as% { fib(n-1) + fib(n-2) }

The call fib(1) will fail because 1 is not of type Integer.

> fib(1)
Error in UseFunction("fib", ...) : No valid function for ’fib(1)’

Properly typing the argument by calling fib(Integer(1)) will give the
correct output. Note that pattern matching works even with the custom type.

> fib(Integer(1))
[1] 1
attr(,"class")
[1] "Integer" "numeric"

�

The benefit of type constraints is that they provide explicit strong typing
to functions when needed. For interactive languages like R, over-eager type
checking can be a drag on productivity. Optional type constraints provide
extra safety or more granular function dispatching only as necessary. Unlike
standard type checking in R, which is embedded in the function body, type
constraints are self-documenting. Just by looking at the function signature, it’s
clear what types a function expects so that guesswork is kept to a minimum.

Example 4.7. Typing in the name of a lambda.r function into the console
prints information about the function, including any type constraints and
associated function clauses. For example, entering fib results in

8unless there are multiple type constraints. In this case all type constraints with compatible
function signatures will be evaluated before an error is raised.

Alternate functional paradigms 91

step fn

w
ra

pper function

do
m

ai
n

A
PI 1 dom

ain
A

PI2

FIGURE 4.1: A visual depiction of a layered approach to function develop-
ment. The outer layers provide convenient interfaces for each domain case,
while the inner layers are pure mathematical functions.

> fib
<function>
[[1]]
fib(n) %::% Integer:Integer
fib(0) %as% ...
[[2]]
fib(n) %::% Integer:Integer
fib(1) %as% ...
[[3]]
fib(n) %::% Integer:Integer
fib(n) %as% ...,

which shows how the type constraint propagates to all compatible func-
tions. Hence, every clause of fib requires an argument of type Integer. The
describe function is used to show the actual function body.

In addition to the function, the clause number specified by the printed
output must be provided.

> describe(fib, 2)
function(.lambda_1) { Integer (1) }
attr(,"topenv")
[1] "<environment: R_GlobalEnv> "
attr(,"name")
[1] "fib"

�

A common use for type constraints is working with arguments of differ-
ent types. From a portability perspective, functions should be written with
the most granular arguments possible. For models, this usually means pure
mathematical vectors along with model parameters. These act like the greatest
common factors when considering reuse. Mathematical models are context
agnostic, while composite data structures are often domain specific. In con-
trast, convenience often dictates using composite structures. Which is the

92 Modeling Data With Functional Programming In R

better approach? Type constraints are great for the indecisive because you
get the best of both worlds: a granular interface that’s portable and broadly
useful, plus a version specific to your use case. Figure 4.1 shows this layered
approach to model design. At the center is the pure mathematical model,
which is likely defined at the individual step or epoch level. Surrounding this
is usually a wrapper function that has a more convenient interface (see the
algae L-system as an example). A final layer provides domain-specific con-
veniences, such as data loading, parsing, and transformation logic to ensure
the inputs are properly formed.

Example 4.8. Building on the Fibonacci sequence example, a new user might
not be familiar with the Integer type and may try to call fib using a numeric
value. From a usability perspective, adding a separate function clause to
handle this scenario is beneficial.

fib(n) %::% numeric : Integer
fib(n) %when% { is.integer(n) } %as% fib(Integer(n))

Now any built-in numeric value is converted to Integer automatically. This
new clause is the high-level interface, while the earlier definitions represent
the pure model. Multiple purposeful function interfaces provide a clean sep-
aration of concerns between the mathematical logic of the function and the
data manipulation logic.

�

Type constraints are compatible with all native types. One slight excep-
tion is the function type. Due to the precedence rules of the parser, functions
cannot syntactically be declared in a type constraint. lambda.r addresses
this issue by defining the Function alias to represent the function type. This
approach is consistent with the convention that types in lambda.r are capi-
talized. An example of this usage is in the lambda.tools package [44], which
defines a number of useful higher-order functions. The familiar f old func-
tional defines a type constraint that uses the Function type.

fold(x, fn, acc, ...) %::% . : Function : . : ... : .

This type constraint spans two separate function clauses, one for one-
dimensional objects and another for tabular data. It also introduces two other
symbols within the type constraint. The first is the . (dot) type, which effec-
tively means ”don’t care” or ”ignore”. In cases where the type of an argument
cannot be known in advance, the dot type tells lambda.r to ignore this ar-
gument in the type constraint. Similar to the dot, the ... (ellipsis) type tells
lambda.r that a particular argument corresponds to the ellipsis in the func-
tion signature. Functions making use of the ellipsis have a curious signature
because the cardinality of the argument list is not fixed. It is bounded from be-
low but unbounded from above. Since type constraints match explicit typed
function signatures with an argument list, the ellipsis adds unwelcome wrin-
kles to the computational model. The corresponding ellipsis type smooths

Alternate functional paradigms 93

out these wrinkles and tells lambda.r to just match additional arguments to
the ellipsis without further type checking.

Example 4.9. In Section 3.9, the using function simplified opening and clos-
ing resources. Unfortunately, R has no consistent way to handle external
resources, so this function doesn’t scale beyond file-like connections. For ex-
ample, functions to open images, like png, don’t return a connection object.
These functions are called for their side effects. In this case, graphics output
that normally goes to the screen are redirected to the newly created resource.
To close the resource, a call to dev.off() is made instead of close. Incon-
sistencies like this can plague permissive languages like R, blocking the path
to mastery. Custom types help tame the wildness of the language by consol-
idating the various resources in a simple type hierarchy. With this approach
all resources can be conveniently opened and closed using using.

The strategy is to reimplement using so it can close any resource. Instead
of close, we’ll define a homonymous replacement klose. This function will
use type constraints to specify different behaviors for different objects, like
files or graphics devices. There’s no need to reimplement file-like connections,
so klose just needs to be backwards compatible. However, we do need to
create types for all graphics devices, such as Png to wrap png. We’ll also create
a base type GraphicsDevice that these devices will inherit, which simplifies
our implementation later on.

Let’s look at our new version of using first in Listing ??. Two small
changes are all we need. The first is changing the default exit function to
klose as mentioned above. The other change is more subtle. What is the
point of having resource as an explicit statement? The reason is connected
to lazy evaluation. Including this line ensures that the resource function is
evaluated when we need it. Lazy evaluation is an advanced programming
concept and is discussed in Chapter 10.

using ← function(resource, handler, exit=klose) {
on.exit(exit(resource))
resource
tryCatch(handler(resource), error=stop)

}

LISTING 4.5: A generalizedusing implementation with a custom exit handler

Before creating the png wrapper, let’s create the base GraphicsDevice type
first. This type is abstract, since it does not correspond to any actual graph-
ics devices. It’s definition is simple and uses the ellipsis argument to create
a list. The net effect is that calls to this function produce a list with type
GraphicsDevice. Most base classes follow this pattern if they are only pro-
viding taxonomic structure and not functionality.

GraphicsDevice(...) %as% list(...)

The Png type extends GraphicsDevice by calling the type constructor at

94 Modeling Data With Functional Programming In R

the end of its body. This ensures that the returned object is also of type
GraphicsDevice. The connection with R’s graphics system is through the
png call, which creates the actual graphics device. Any subsequent plotting
in the handler will now be captured.

Png(path, width, height, ...) %as% {
png(path, width, height, ...)
GraphicsDevice(path=path, width=width, height=height)

}

Finally, the klose function closes the resource after the handler finishes. This
multipart function has two clauses for the two types of objects it supports.
The first are graphics devices, which extend our custom abstract type and are
closed by dev.off. File-like objects use the system’s close function, since
there’s no reason to re-write the default behavior. Type constraints are self-
documenting and simplify code using lexical structure in place of nested
conditional blocks.

klose(object) %::% GraphicsDevice : .
klose(object) %as% dev.off()

klose(object) %::% connection : .
klose(object) %as% close(object)

This simple framework comprises two type constructors and two func-
tions. In all it’s 13 lines of code. Its petiteness belies its power. Our resource
management framework provides a consistent way to interact with arbitrary
resources in R. To see how this eases working with devices, let’s render the
simulated time series of Example 3.4 to a PNG.

using(Png("ts.png", 800,600), function(o) plot(x))

We can also write the raw data to a file, using the same syntax. Now there
is only one syntax to remember irrespective of the type of resource. More
importantly, we’re guaranteed that resources are properly closed after their
use.

using(file("ts.data"), function(o) write(x,o))

This framework easily extends to support not only additional graphics de-
vices (see Exercise 4.7) but also other I/O like database connections.

�

4.3.4 Type variables

Type constraints are a powerful component of lambda.r. The use of type
constraints make R code strongly typed and more self-documenting. How-
ever, blanket use of strong typing comes at the cost of slower development.

Alternate functional paradigms 95

Selective use of the dot type can balance type safety with ease of use. But the
dot type can also be too liberal at times. In these situations, a type variable can
be an effective compromise between ample structure and flexibility. 9 These
special variables act as placeholders within a type constraint. Any single
lowercase letter appearing in a type constraint is treated as a type variable.
Type variables enforce type consistency across the function argument(s) and
return value, while allowing the actual type to be arbitrary. Mathematically
these functions have the form f : X → X in the univariate case, where X is
arbitrary. For example, in the Fibonacci sequence example, the type constraint
can be re-written as fib(n) %::% a : a. The type variable a indicates that
the actual types can be arbitrary so long as the input and the return value
have the same type.

Example 4.10. Suppose we want a more general way to specify
Lindenmayer systems. An end user wants to generate a sequence
based on a model and the number of iterations. One approach
is to dump all the model parameters into the function signature,
like lsystem(n, axioms, productions, constants). This seems simple
enough, but some systems have additional model parameters, like an angle
for rotating a drawing head. There are a few ways types can model this sys-
tem. The most application-specific is to define an Algae type. This type can
hold all model parameters. The matching signature is lsystem(n, model),
where model ∈ LSystem. This function is responsible for wiring calls over
multiple iterations.

lsystem(n, model) %::% numeric : LSystem : character
lsystem(n, model) %as% {

fold(1:n, function(i,x) render_step(x, model), model$init)
}

A second, lower level function manages each step of the system. For algae,
this is nothing more than calling the algae function. For other systems it
might involve translating symbols into drawing commands.

render_step(x, model) %::% Algae : character
render_step(x, model) %as% {

algae(1,x)
}

Notice that now we need to create types for each model, which seems
excessive. This libertine approach will eventually catch up with us, manifest-
ing as a rigid, yet brittle code base. The reason is that we used a function
to encode the production rules. In this case we lose generalization, whereas
using a data structure to represent the rules is more general. The current type
constraint also only works for character-based L-systems. Replacing this with
a type constraint quickly extends the function to support numeric L-systems.

Eschewing a large type hierarchy, we can use a single type to represent

9Type variables in lambda.r are not as theoretically rigorous as those found in Haskell.

96 Modeling Data With Functional Programming In R

the L-system. The lsystem signature is largely the same except we ignore the
return type. Type variables can be added to render_step indicating that the
input and output must share a type. Hence, the function only enforces type
consistency between input and output.

lsystem(n, model) %::% numeric : LSystem : .
lsystem(n, model) %as% {

fold(1:n, function(i,x) render_step(x, model), model$init)
}

render_step(x, model) %::% a : LSystem : a
render_step(x, model) %when% {

! model %hasa% angle
} %as% {

unlist(lapply(x, function(xx) model$productions[xx]))
}

�

lambda.r is a comprehensive framework for writing numerical mod-
els and systems in a functional style. Many of the features are exclusive to
lambda.r and offer a simpler and more convenient alternative to the object-
oriented approaches within the language.

4.4 The MapReduce paradigm
A popular technique for processing data is colloquially known as MapRe-
duce [17, 41]. This computing paradigm can process hundreds of gigabytes
of data across thousands of independent compute nodes As the name sug-
gests, it composes arbitrary map operations with reduce (aka f old) operations.
The simplest formulation is a single map stage followed by a reduce stage.
We already saw an example of this style of computation in the implementa-
tion of the stochastic gradient method for logistic regression in Listing 3.2.
Many data processing problems can be transformed into a MapReduce prob-
lem. MapReduce systems like Hadoop are known for requiring numerous
dedicated IT staff to manage them. These systems are also limited to batch
processing since the performance overhead is relatively large. So what is the
value of using MapReduce as a way to model a calculation? It turns out that
there are numerous problems where the cost of separating the data and paral-
lelizing the calculation is smaller than the cost of each incremental calculation
in the map stage. Since map operations are by definition independent of each
other, these calculations can easily be parallelized. Vector operations that can
be modeled by map are known as ”embarassingly parallel” since there is no
special logic or methodology needed to make these operations parallel. This

Alternate functional paradigms 97

A

P1

P2

. . .

Pn

B

map

map

. . .

map

sort

fold

. . .

fold

assemble

FIGURE 4.2: The MapReduce method parallelizes data processing over mul-
tiple map and f old stages. Data is first partitioned and then sent to multiple
map processors. The results are collected and grouped by key. Then these keys
are partitioned and sent to a set of f old jobs.

is in contrast to hard parallelization problems, like matrix factorization, that
require effort to parallelize. Algorithm 4.4.1 shows how conceptually simple
MapReduce is when viewed through the lens of functional programming.

To understand how easy it is to distribute map processes, let’s consider a
set A. We know that we can partition A into any number of disjoint subsets
P1, · · · ,Pn, where A =

�n Pi. Now think of some function f : A → B that
operates on elements of A where B = f (A) is the graph of A. Suppose each
partition of A is on a separate compute node. Then B =

�n f (Pi). This result
shows that a partition of size n can be distributed to n independent compute
nodes and the answer will be the same as though it were computed on a
single node. What’s different about the set-theoretic reasoning and the real
world? When we replace sets with vectors, the only significant difference
is that duplicate values can exist. These duplicates don’t impact the inde-
pendence of the function application and thus don’t affect the partitioning
scheme. One other detail is that to construct the original image, ordinality
must be preserved. This is an important detail that may not matter for ab-
stract data processing but is significant if ordinals are used across objects and
calculations.

Algorithm 4.4.1: MapReduce(x, fmap, freduce, jobsm, jobsr)

partitionm ← partition(x, jobsm)
resultm ← map(fmap, partitionm)
groupr ← map(λ k.{(k, val(resultm)) : key(resultm) = k},unique(key(resultm)))
partitionr ← partition(groupr, jobsr)
reducer ← map(freduce, partitionr)
return (reducer)

While it is easy to distribute map processes, alas, the same is not true
of f old processes. A serial dependence exists in f old operations, preventing
them from being trivially separated. So what role do they play in distributed

98 Modeling Data With Functional Programming In R

computing? For a moment let’s pretend only map processes exist. What types
of operations are possible if our world is limited to map? Quite frankly, our
world is dull because all we can do is continually transform a given set on
a per element basis. If we add in f ilter, now we can selectively transform a
set and also control cardinality. But this is still limited. The inclusion of f old
enables aggregation similar to a GROUP BY clause in SQL. Without f old there
is no way to count elements within the MapReduce pipeline. So even though
a reduce stage provides no distribution of work, it does provide functionality
that is unavailable with map alone. MapReduce frameworks also include an
implied sorting operation that groups keys together to pass to the reduce
stage. This is a key step that makes this aggregation possible.

Example 4.11. The word count algorithm is considered the ”Hello, World”
equivalent for MapReduce. We’ll use the mapreduce function provided by the
rmr2package [5]. The basic idea is to take some document and count the word
frequency for each word appearing in the document. We’ll use an SEC 10-K
filing for Amazon as the document. Before executing the MapReduce job, we
clean the document by removing non-word characters that can confuse word
count algorithms. 10.

clean ← function(x) {
gsub(’[,.;:\’"()]’,’’,tolower(x))

}

LISTING 4.6: Remove punctuation from sentences

Let’s read in the 10-K filing and split on white space. To simplify the operation,
we concatenate the list of character vectors into a single character vector.

words ← using(file(’../data/amazon_10q.txt’),
function(rsc) do.call(c, strsplit(clean(readLines(rsc)), ’\\s’)))

Next we initiate the pipeline by calling mapreduce. To count the word occur-
rences, the map stage simply returns a key-value pair where the key is the
word itself and the value is 1. Once all words are processed, they are sorted
and aggregated by key. Each reduce job gets a vector of 1s that represent all
the occurrences of the given key. Hence, all the reduce function needs to do is
sum the 1s to obtain the actual count. The output is a list containing key-value
pairs that represent a word and the number of occurrences in the document.

o ← mapreduce(words,
map=function(k,v) keyval(v,1),
reduce=function(k,v) keyval(k,sum(v))

)

In native R counting words is a trivial exercise: table(words). Using MapRe-
duce, we need to let the framework manage the iteration and data manage-
ment. This is an example of inversion of control, (see Section 3.8) where the

10Blindly stripping all symbols from sentences also removes semantic information. This is not
recommended practice in most real-world situations

Alternate functional paradigms 99

end user only provides the domain-specific logic and leaves the rest to the
mapreduce framework. 11

�

To better understand how MapReduce works, we can implement an
in-memory version of the framework. We’ll replicate the interface of the
mapreduce function from the rmr2 package so any functions written for
our emulator can work in an actual MapReduce environment like Hadoop.
MapReduce jobs can operate at the individual record level and also at the
block level, depending on how the input and algorithms are designed. Our
implementation follows Algorithm 4.4.1, processing data at the individual
record level, so each row of the data frame is treated as a separate record.
A preliminary step is implementing the keyval list type used by mapreduce

as a standard object container. The keyval function creates simple key-value
pairs. This type wraps all data objects passing through the pipeline, providing
a dimension for grouping data.

keyval ← function(k,v) {
kv ← list(v)
names(kv) ← k
kv

}

LISTING 4.7: Implementation of a key-value data structure

Our in-memory mapreduce implementation leverages lambda.r to organize
the code. Different function signatures are syntactically separated, making
it easier to understand what each function clause is doing. The first clause
converts data frames into a compatible list structure. Just as easily, we could
have used a single function clause and called as.list on all input x. This is a
safe type coercion on lists, since they act as a fixed point of the function. This
observation is true for all target types and their corresponding type coercion
functions.

mapreduce(x, map, reduce, mjobs, rjobs) %::% data.frame :
Function : Function : a : a : .

mapreduce(x, map=NULL, reduce=NULL, mjobs=10, rjobs=2) %as% {
mapreduce(as.list(x), map, reduce, mjobs, rjobs)

}

The mjobs and rjobs specify the number of distributed workers that
operate on the map or reduce stage, respectively. Each worker gets a subset
of the data to process. Our in-memory version only uses a single thread, so
these parameters serve only to partition the dataset. But hold on, earlier we
claimed that f old processes cannot be distributed. What then is the purpose

11This implementation actually differs from standard implementations as blocks of data are
treated as a single object instead of record by record. For now, we’ll conveniently ignore this
semantic difference.

100 Modeling Data With Functional Programming In R

of multiple reduce jobs? Recall that there is an implied sorting step prior
to initiating the reduce stage. This serves to group values by key. Typically
multiple keys will exist, so that each key has a set of values associated with
it. Each pair of key and set of values corresponds to a single f old operation.
Hence, for k unique keys, there will be k reduce operations. These operations
are independent and can thus be partitioned similar to the map operations.

Before discussing the actual implementation, we first need to define a
helper function iter_fn, which manages applying a function to each input
partition. Most of this function is dedicated to identifying degenerate par-
titions and handling them in a logically consistent manner. The number of
partitions is dictated by the number of jobs per stage. By creating a separate
higher-order function, we guarantee that the user-defined function can oper-
ate on the elements within a partition without knowing anything about the
partitions themselves. In the map stage, this function is used to partition the
input based on the number of map jobs.

iter_fn ← function(f, x, job.length)
function(i) {
idx ← (job.length * (i-1) + 1) : (job.length * i)
do.call(c, lapply(x[idx], function(a) {
if (is.null(a)) return()
if (is.na(a)[1]) return()
if ("character" %in% class(a) && nchar(a)[1] == 0)

return()
f(names(a),a)

}))
}

LISTING 4.8: Intermediate higher-order function that manages iteration
based on job length. The function processes each partition in succession.
In the end, the lists are concatenated into a single list.

The first part of this implementation mediates the map job. The work is
predominantly tied to partitioning the data and ensuring results are well
formed. The end result is collected in mresult, which is a list of tuples R =
(K,V) whose original cardinals and ordinals are preserved.

mapreduce(x, map, reduce, mjobs, rjobs) %::% . : Function :
Function : a : a : .

mapreduce(x, map=NULL, reduce=NULL, mjobs=10, rjobs=2) %as% {
Map stage
if (!is.null(map)) {

flog.info("Start map phase")
mlength ← ceiling(length(x) / mjobs)
mresult ← do.call(c, lapply(1:mjobs, iter_fn(map, x,

mlength)))
names(mresult) ← NULL
mresult ← unlist(mresult, recursive=FALSE)
mresult ← mresult[!sapply(mresult, is.null)]

Alternate functional paradigms 101

Sort
flog.info("Start sort")
x ← tapply(mresult, names(mresult),I)

}

Once the output set is reconstructed from the partitions, the results are
grouped by key, using tapply and the identity function. Thus, all val-
ues Vk ⊂ V associated with a given key k are collected into a list so that
rk = (k,Vk) ∈ R̃. This simplified set of results R̃ is passed to the reduce stage.

Reduce stage
if (!is.null(reduce)) {

flog.info("Start reduce phase")
rlength ← ceiling(length(x) / rjobs)
rresult ← do.call(c, lapply(1:rjobs, iter_fn(reduce, x, rlength)))

x ← do.call(c, rresult)
x ← x[order(names(x))]

}
x

}

As with the map stage, the input set is partitioned and then the user-defined
reduce function applied to each key-value pair rk.

One detail worth exploring is the fact that the reduce stage doesn’t make
use of f old. How can this be given our claim that the two are equivalent?
The answer is that the wiring provided by the reduce stage operates at the
batch level. Each rk in R̃ is independent, whereas the values associated with
a given key are interrelated. That means the set R̃ can be partitioned just
like the map jobs. It is up to the reduce function passed as an argument to
mapreduce to operate appropriately. Unlike arguments to f old, this function
has the simplified signature f : Vn →W.

Example 4.12. A calculation that uses multiple key groups is determining
the batting average of baseball players according to their player class. This
problem extends an example in [52] that computes the career year of baseball
players. We define three player classes: rookies, who are playing in their first
year, lame ducks that are in their final year, and the rest as being in their
prime. The initial task is to append the career year yc and player classification
ξ to each player record. With this information we can calculate the batting
average for each group. This information doesn’t exist explicitly, so we add
these variables to each player partition. The career year for a given player is
defined yc = yi − y0 + 1, where y0 = min y is the first year a player played.

The player classification function uses this information to partition the

102 Modeling Data With Functional Programming In R

career years into 0 (rookies), 1 (prime), and 2 (lame ducks) and is defined

ξ(yc) =

0, when yc = 1
2, when yc = max yc

1, otherwise.

The implementation uses two vectorized ifelse expressions for performance
purposes.

player_class ← function(year) {
ifelse(year==1, ’rookie’,
ifelse(year==max(year), ’lame duck’, ’prime’))

}

The MapReduce version constructs a processing pipeline via mapreduce.
Data and functions need to conform to the MapReduce specification. The
map stage is responsible for computing both the career year and player class
for each record. It’s also responsible for assigning the player class as the key
used to sort records prior to the reduce stage. The reduce stage simply takes
each of these partitions and computes the aggregate batting average for each
player class.

batting_avg_mr ← function(baseball) {
bb ← by(baseball, baseball$id, I)
mapreduce(bb,
map=function(k,v) {
v$cyear ← v$year - min(v$year)
v$class ← player_class(v$cyear)
lapply(1:nrow(v), function(i) keyval(v$class[i], v[i,]))

},
reduce=function(k,v) {
flog.info("Operate on %s",k[1])
v ← do.call(rbind, v)
keyval(k[1], with(v[v$ab>0,], mean(h/ab)))

}
)

}

For comparison, the same calculation can be performed using a few appli-
cations of the built-in tapply. The career year is first added as a new column
to the baseball data frame. Not only does tapply mediate the map stage, but
it also serves the same function as the reduce stage, where the user-defined
reduce function is mean.

baseball$cyear ← do.call(c,
tapply(baseball$year, baseball$id, function(y) y - min(y) + 1))

Computing the player class follows a similar pattern. The index to tapply is
again the player id.

Alternate functional paradigms 103

baseball$class ← do.call(c, tapply(baseball$cyear, baseball$id,
player_class))

This function can be defined independently and called per player. Finally,
tapply uses the player class as the new index variable to compute the mean
batting average of each class.

with(baseball[baseball$ab>0,], tapply(h/ab, class, mean))

�

MapReduce systems can be intimidating due to their size and complexity.
Under the hood, there’s no magic and is simply a parallelized abstraction of
the standard set of functional programming primitives. Code written accord-
ing to FP principles can be trivially migrated from a single-threaded approach
to a distributed approach using MapReduce.

4.5 The split-apply-combine paradigm
Another data processing workflow is known as the split-apply-combine
paradigm and was popularized by the plyr package [52]. The basic idea
is to split a data frame (or other data structure) into separate groups, apply
a function to each group, and then reconstruct a final data frame. The same
general approach appears in tapply, mapply, and by, all of which partition
sets based on some index vector(s). This is equivalent to creating a partition
and applying a function to each partition in a map process. Recall the discus-
sion in Section 2.2 regarding the mechanics of map vectorization. 12 Figure
2.1 describes a function f : A → B that produces the formal map from A
to B when applying map f a for all a ∈ A. The split-apply process is similar
except the processed elements Ai ⊂ A are sets created by a partition function
p : X→ Nn. Figure 4.3 illustrates the difference between the two approaches.
Notice that by constructing p so that n = |A| yields a standard map process!

For data scientists, partitions are often synonymous with panels. Panel
data is segregated based on some variable or combination of variables, such
as gender and race. An index variable is convenient because it is a simplified
special case of the more general partition function. Indeed, given an ordinal
i and an index variable k, the corresponding partition function λi.k[i] can be
constructed.

To illustrate the relationship between indexes and partition functions, let’s
use the baseball dataset and calculate the career year again, as described
in Example 4.12. In the plyr formulation, indexing is specified using the

12See Chapter 6 for a complete treatment of map vectorization.

104 Modeling Data With Functional Programming In R

A B
f

(a) In a standard map process, the func-
tion argument operates on individual
elements, which is standard inlapply
operations.

A B
f

(b) In the split-apply-combine strategy,
the function argument instead oper-
ates on partitions of the set, which is
the protocol fortapply andby. In this
formulation, the output cardinality is
dependent on the closure: in many
cases (as shown above), the cardinal-
ity matches the number of sets and not
the total number of elements.

FIGURE 4.3: Two approaches to applying a function to a set

special . quoting function 13 that wraps the indexing columns to force delayed
evaluation. These columns partition the rows of the data frame by player.
Each subset is passed to the built-in transform function that attaches a new
column cyear to each subset, which represents the career year of a player for
a given year.

baseball ← ddply(baseball, .(id), transform, cyear=year - min(year) + 1)
baseball ← ddply(baseball, .(cyear), transform, class=player_class(cyear))

The same augmentation can be implemented using the built-in by function:

baseball ← do.call(rbind,
by(baseball, baseball$id, transform, cyear=year - min(year) + 1))

The primary difference is that by returns a list of data frames. To get a sin-
gle data frame requires a manual rbind-ing of the subsets. So plyr saves
us a few characters, which is always welcome. That said, it is also useful
to understand the foundational idioms of R, as reflected in the by syntax.
This example also illustrates how certain syntactic conveniences detract from
standard computer science principles. For example, many stock higher-order
functions utilize the ellipsis to pass additional parameters to the function
argument. It’s clearer using a closure to indicate the purpose of arguments.

baseball ← do.call(rbind,
by(baseball, baseball$id, function(bb) {

13not to be confused with the lambda.r dot type constraint

Alternate functional paradigms 105

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

Batting average

Batting average

D
en

si
ty

lame duck
prime
rookie

FIGURE 4.4: Batting averages for each player classification

bb$cyear ← year - min(year) + 1
bb$class ← player_class(bb$cyear)
bb

}))

If we want to use a more flexible partition function, it’s necessary to use by to
mediate the construction of an index via the partition function. An example
of this is calculating the performance of different player classes.

Moving on to the analysis, we measure player performance in terms of
batting average. A first pass simply asks whether rookies and lame ducks play
better or worse than prime players. We can answer this question by computing
the batting average in each player class, defined as µb = hits/at bats. For this
statistic, we only expect one value per class, so the daply function is used.
Initially we attached the player class to the baseball data frame and then
computed the statistic based on that. But what exactly is the player class? Put
simply, it is a partition function and can be used directly in the calculation of
the batting average.

by(baseball, player_class(baseball), function(b) mean(bh/bab)),

which looks a lot like

daply(baseball, .(class), function(b) mean(bh/bab)).

Unfortunately some players have 0 at bats for a given year, resulting in NA

for the mean. The quick and dirty solution is to specify na.rm=TRUE in the call
to mean, but this can hide valid data issues. A better approach is to remove
all years with 0 at bats before computing the mean.

106 Modeling Data With Functional Programming In R

daply(baseball[baseball$ab>0,], .(class), function(df) mean(dfh/dfab))

Adding the pre-filtering step removes some of the syntactic convenience of
plyr. At this point it’s actually simpler and cleaner to use native R idioms.

with(baseball[baseball$ab>0,], tapply(h/ab, class, mean))

Finishing off this example, let’s explore the distribution of batting av-
erages per player classification. In addition to plotting each distribution, it
would be nice to write code general enough that it can be used, even if the
number of player classifications change. Another player class worth explor-
ing is the set of players playing while injured, and also the set of players
playing a full year after a debilitating injury. The following function does this
by taking advantage of a generator discussed in Section 12.1.1 to create a set
of ordinals on the fly. These ordinals can then be used however we see fit.
In this case we use them to define unique line types for each player class.
Without the generator it would be necessary to manually mange an index
variable iterating over the ordinals and explicitly constructing subsets based
on the index. Alternatively, we can partition the data frame and then iterate
over the partition ordinals. Neither approach is as clean as using a generator
to manage the ordinals.

plot_batting_average ← function(baseball) {
plot(c(0,1),c(0,8), type=’n’,
main=’Player performance by player class’,
xlab=’Batting average’, ylab=’Density’)

lty ← seq.gen(1)
lgd ← with(baseball[baseball$ab>0,], tapply(h/ab, class,

function(x) {
l ← lty()
h ← hist(x, plot=FALSE)
lines(h$mids, h$density, lty=l)
l

}))
legend(’topright’, names(lgd), lty=lgd)

}

�

The split-apply-combine approach has more than a striking resemblance
to MapReduce. How do these two techniques differ or are the differences cos-
metic? In our original description of MapReduce, the map function operates
on each element of the input vector. Oftentimes this behavior is modified so
that f (a), a ∈ A is replaced with f (Pi), where Pi ⊂ A. Using this construction,
each partition is passed to a map job, to be reconstructed by a succeeding
reduce job. There isn’t much difference between the two paradigms aside
from split-apply-combine being designed for a single node while MapRe-
duce is designed for multiple nodes. But wait, a second look reveals that

Alternate functional paradigms 107

split-apply-combine describes a single type of computation. MapReduce is
more general and built atop the higher-order functions map and f old. Con-
sequently, MapReduce is not limited to a map job followed by a reduce job.
More complex pipelines can be constructed comprising multiple map and
reduce jobs.

4.6 The tidyverse canon
The so-called ”tidyverse” is a collection of packages designed to simplify and
standardize model development in R [7, 53]. This comprehensive approach
begins with a replacement for data frames called ”tibbles” and a set of pack-
ages that define a set of transformations on them. In some ways this is an
extension of the standardized transformations defined in the plyr package
both in the workflow (i.e. split-apply-combine) and in the function naming
conventions. The dplyr package introduces six functions: filter, select,
arrange, mutate, summarize, and group_by, which expands the operations
available in plyr. It also uses magrittr for sequencing chains of function
composition. We can recreate the batting averages across player class once
again. The %<>% operator included in magrittr indicates that baseball is both
the input and output of the transformation chain. The first operation parti-
tions the data by player id, followed by the addition of the career year variable.
The second transformation chain repeats the process to add the player class.

baseball %<>%
group_by(id) %>%
mutate(cyear=year - min(year) + 1) %>%
mutate(class=ifelse(cyear==1, 0, ifelse(cyear==max(cyear), 2, 1)))

The same technique filters out the bad records and computes the batting
average for each player class.

baseball %<>%
filter(ab>0) %>%
group_by(class) %>%
mutate(bat.avg=mean(h/ab))

Data transformation follows a structured, sequential process with dplyr. Like
MapReduce, the idea is that most problems can be framed according to the
semantics defined by the package, in this case six transformation functions, or
verbs. Once you’ve learned their semantics, in theory the time spent writing
data processing code is minimized. Debugging code should also be easier,
since the number of operations is intentionally limited. There are two draw-
backs to this approach. Packages with strict semantics shine when problems
fit within their structure. For problems that don’t fit neatly, it can require sig-
nificant mental gymnastics to reformulate a problem to be compatible. Strict

108 Modeling Data With Functional Programming In R

adherence to this workflow also leaves some strange syntactic artifacts that
are difficult to decipher. For example, certain operations require the piped
object, so the . is used to represent this value. To simplify the creation of
lambda abstractions, the ∼ character is repurposed from formula notation.
This overloading of operators can be confusing to newcomers. Furthermore,
when users learn packages with numerous innovations, the emphasis tends
to be on the framework mechanics and less on transferable computer science
concepts. This leads to vendor reliance and ultimately to lock-in that limits
future options.

An argument for using base R features is that they are stable. The R core
team is known for being conservative in changing the language as backwards
compatibility is considered sacred. Package development is typically less
conservative and dependent on the philosophy of the package maintainer.
Consequently, bugs can arise more frequently in addition to interfaces that
can change at inopportune moments with little advance warning. An example
of this is the pandas library in Python that has had many breaking changes
over it’s development.

The goal of the purrr package [54] is to guarantee constant output types
from map operations. Function composition requires that the output type from
one function must match the expected input type of the next function. To this
end, numerous map implementations are defined, where the name hints at
the output type. Suppose we predict batting average for each player class
based on other performance statistics. Inspired by the purrr documentation,
let’s assess the R2 of each model.

baseball %>%
split(.$class) %>%
map(∼ lm(bat.avg ∼ g + rbi + hr, data=.)) %>%
map(summary) %>%
map_dbl("r.squared")

Using a naming convention to indicate the argument types is reminiscent
of the naming conventions used in plyr. While admirable, this explicitness
is largely unnecessary. As we saw in Section 3.2, types can be deduced based
on the analysis of signatures. This process is similar to working out the final
dimensions of a matrix operation. For map processes, type stability can be
achieved with lapply or by setting simplify=FALSE with other members of
the apply family. On the other hand, the output type of f old operations is
csse-specific. If types need to be guaranteed, then a lambda.r type constraint
can be used on the wrapper function. Another approach is to construct a
monad to manage strong typing. This latter approach is more advanced and
is discussed in Section 10.5.

Alternate functional paradigms 109

4.7 Summary
It’s an exciting time for functional programming. Big data and distributed
computing have created an environment where functional programming
methods are essential to the data science curriculum. R has enjoyed the fruits
of this renaissance. Numerous packages have endowed R with additional
FP capabilities. Packages like magrittr and lambda.r add new semantics to
the language, while others like MapReduce and dplyr define structured ap-
proaches to computing based on FP principles. When choosing a framework
the question is whether the benefit outweighs the cost of adoption. There is
also the question of what long term effect simplifying frameworks have on
programming skill. On the one hand, performing data science in R should
be accessible. On the other, data scientists should be encouraged to become
better programmers and not rely on crutches. The choice is largely a matter
of philosophy and out of scope for this book.

4.8 Exercises
Exercise 4.1. Rewrite Reduce using lambda.r. How many clauses are appro-
priate? Is it better to use pattern matching or not?

Exercise 4.2. The Kronecker delta is defined δ(i, j) =

0, if i � j
1, otherwise

. Imple-

ment this function using guard expressions in lambda.r.

Exercise 4.3. Implement covariance of two variables as a MapReduce algo-
rithm.

Exercise 4.4. The astute reader might notice that although the fib function
is now restricted to an argument of Integer type, the Integer type has no
such type restriction. So all we’ve done is created the appearance of type
safety. Use a type constraint and/or guard statement to add type safety to the
Integer type constructor.

Exercise 4.5. Implement covariance of two variables using dplyr. How does
it compare to the MapReduce version?

Exercise 4.6. Assume lapply is a lambda.r function. Write the least permis-
sive but most general type constraint for lapply. Are there any cases that
won’t work with your implementation?

Exercise 4.7. Extend the resource management framework in Example 4.9 by
adding a Pdf type.

110 Modeling Data With Functional Programming In R

Exercise 4.8. Implement the dplyr function group_by as a f old operation.
What’s different about the implementation than the one in the package?

Exercise 4.9. Under what circumstances would it make sense to create custom
types for the baseball analysis?

