
Modeling Databases Using UML

Fall 2017, Lecture 4

There is nothing worse than a

sharp image of a fuzzy concept.

Ansel Adams
1

Software to be used in this Chapter…

• Star UML http://www.mysql.com/products/workbench/

• Visual Paradigm: http://www.visual-paradigm.com (CE)

2

Software to be used in this Chapter…

• Microsoft Visio has a UML-like set of

diagramming templates for databases

• For Macs OmniGraffle has UML or

spreadsheet templates that can be used

for ER diagrams

3

Recap: Steps in Database Design

Miniworld

Requirements
Analysis

Conceptual
Design

Functional
Analysis

Data Requirements

Functional Requirements

Logical Design

Conceptual Schema

Physical Design

Logical Schema

Transaction
Implementation

Application
Program Design

High LevelTransaction
Specification

Internal Schema

Application Programs

DBMS independent

DBMS dependent

this lecture

4

Object-Oriented Modeling

• Becoming increasingly important as

§ Object-Oriented and Object-Relational

DBMS continue to proliferate

§ Databases become more complex and have

more complex relationships than are easily

captured in ER or EER diagrams

5

Unified Modeling Language (UML)

• Combined three competing methods

• Can be used for graphically depicting

§ Software designs and interaction

§ Database

§ Processes

6

Object Benefits

• Encapsulate both data and behavior

• Object-oriented modeling methods can
be used for both database design and
process design

§ Real-World applications have more than
just the data in the database they also
involve the processes, calculations, etc
performed on that data to get real tasks
done

§ OOM can be used for more challenging and
complex problems

7

Unified Modeling Language (UML)

§ UML methodology
§ Used extensively in software design
§ Many types of diagrams for various

software design purposes
§ UML class diagrams

§ Entity in ER corresponds to an object in
UML

8

UML Classes

• A class is a named description of a set of
objects that share the same attributes (states),
operations, relationships, and semantics.

§ An object is an instance of a class that
encapsulates state and behavior.

• These objects can represent real-world things or
conceptual things.

§ An attribute is a named property of a class that
describes a range of values that instances of that
class might hold.

§ An operation is a named specification of a service
that can be requested from any of a class's
objects to affect behavior in some way or to
return a value without affecting behavior

9

10

UML Classes

• Attributes have types.

• PK indicates an attribute in the primary

key (optional) of the object.

• Methods have declarations: arguments

(if any) and return type.

UML Relationships

• An relationship is a connection between

or among model elements.

• The UML defines four basic kinds of

relationships:

§ Association

§ Dependency

§ Generalization

§ Realization

11

UML Diagrams

• The UML defines nine types of diagrams:

§ activity diagram

§ class diagram

• Describes the data and some behavioral
(operations) of a system

§ collaboration diagram

§ component diagram

§ deployment diagram

§ object diagram

§ sequence diagram

§ State chart diagram

§ use case diagram
12

Class Diagrams

• A class diagram is a diagram that shows

a set of classes, interfaces, and/or

collaborations and the relationships

among these elements.

13

14

Example: Bar Class

Bar

PK Name: string
Addr: string

setName(n)
setAddr(a)
getName() : string
getAddr() : string
sellsBud() : boolean

Class Name

Attributes

Methods

Differences from Entities in ER

• Entities can be represented by Class

diagrams

• But Classes of objects also have

additional operations associated with

them

15

Operations

• Three basic types for database

§ Constructor

§ Query

§ Update

16

Associations

• An association is a relationship that

describes a set of links between or

among objects.

• An association can have a name that

describes the nature of this relationship.

You can put a triangle next to this

name to indicate the direction in which

the name should be read.

17

Associations

• An association contains an ordered list

of association ends.

§ An association with exactly two association

ends is called a binary association

§ An association with more than two ends is

called an n-ary association.

18

Associations: Unary relationships

Person

Is-married-to

0..1

0..1

Employee

manages

*

0..1

manager

19

Associations: Binary Relationship

Employee Parking
Place

One-to-one

Is-assigned0..1 0..1

Product
Line Product

One-to-many

contains1 *

Student Course

Many-to-many

Registers-for* *

20

Associations: Ternary Relationships

Vendor Warehouse

* *
Supplies

Part

*

21

Association Classes

Student Course

Registers-for

* *

Registration

Term
Grade

CheckEligibility()

Computer Account

acctID
Password

ServerSpace
* 0..1

issues

22

Derived Attributes, Associations, and

Roles

Student

name
ssn
dateOfBirth
/age

Course
Offering

term
section
time
location

Registers-for
* 1

Course

crseCode
crseTitle
creditHrs

* *

Scheduled-for

{age = currentDate – dateOfBirth}

*
*

/Takes

/participant

Derived
attribute

Derived role

Derived association

23

Generalization

Employee

empName
empNumber
address
dateHired

printLabel()

Hourly Employee

HourlyRate

computeWages()

Salaried Employee

Annual Sal
stockoption

Contributepension()

Consultant

contractNumber
billingRate

computeFees()

24

25

Example: Association

Bar Beer

1..50 Sells 0..*

26

Comparison With E/R Multiplicities

E/R UML
0..* 0..*

0..* 0..1

0..* 1..1

27

Association Classes

• Attributes on associations are

permitted.

§ Called an association class.

§ Analogous to attributes on relationships in

E/R.

28

Example: Association Class

Bar Beer
1..50 0..*

Sells
price: float

29

Subclasses

• Like E/R, but subclass points to

superclass with a line ending in a

triangle.

• The subclasses of a class can be:

§ Complete (every object is in at least one

subclass) or partial.

§ Disjoint (object in at most one subclass)

or overlapping.

30

Example: Subclasses

Beer
name: string
manf: string

Ale

color: string

31

Conversion to Relations

• We can use any of the three strategies

outlined for E/R to convert a class and

its subclasses to relations.

1. E/R-style: each subclass’ relation stores

only its own attributes, plus key.

2. OO-style: relations store attributes of

subclass and all superclasses.

3. Nulls: One relation, with NULL’s as

needed.

32

Aggregations

• Relationships with implication that the

objects on one side are “owned by” or

are part of objects on the other side.

• Represented by a diamond at the end

of the connecting line, at the “owner”
side.

• Implication that in a relational schema,

owned objects are part of owner tuples.

33

Example: Aggregation

Beer
name: string
manf: string

Award
title: string
year: int

0..1 Won 0..*

34

Compositions

• Like aggregations, but with the

implication that every object is

definitely owned by one object on the

other side.

• Represented by solid diamond at

owner.

• Often used for subobjects or structured

attributes.

35

Example: Composition

Beer
name: string
manf: string

Award
title: string
year: int

1..1 Won 0..*

36

Conversion to Relations

• We could store the awards of a beer

with the beer tuple.

• Requires an object-relational or nested-

relation model for tables, since there is

no limit to the number of awards a beer

can win.

37

Example: Composition

Bar
name: string
phone: int

Addr
street:string
city: string
zip: int

1..1 Won 0..1

38

Conversion to Relations

• Since a bar has at most one address, it

is quite feasible to add the street, city,

and zip attributes of Addr to the Bars

relation.

• In object-relational databases, Addr can

be one attribute of Bars, with structure.

39

Chapter 10

Practical
Database

Design
Methodology

and Use of UML
Diagrams

40

Chapter 10 Outline

§ The Role of Information Systems in
Organizations

§ The Database Design
and Implementation Process

§ Use of UML Diagrams as an Aid to
Database Design Specification

§ Rational Rose: A UML-Based Design
Tool

§ Automated Database Design Tools
41

Practical Database Design
Methodology and Use of UML
Diagrams

§ Design methodology
§ Target database managed by some type of

database management system
§ Various design methodologies
§ Large database

§ Several dozen gigabytes of data and a
schema with more than 30 or 40 distinct entity
types

42

The Role of Information Systems in
Organizations

§ Organizational context for using
database systems
§ Organizations have created the position of

database administrator (DBA) and
database administration departments

§ Information technology (IT) and information
resource management (IRM) departments

• Key to successful business management

43

The Role of Information Systems in
Organizations (cont’d.)

§ Database systems are integral
components in computer-based
information systems

§ Personal computers and database system-
like software products

• Utilized by users who previously belonged to
the category of casual and occasional database
users

§ Personal databases gaining popularity
§ Databases are distributed over multiple

computer systems
• Better local control and faster local processing 44

The Role of Information Systems in
Organizations (cont’d.)

§ Data dictionary systems or information
repositories

• Mini DBMSs
• Manage meta-data

§ High-performance transaction processing
systems require around-the-clock nonstop
operation

• Performance is critical

45

The Information System Life Cycle

§ Information system (IS)
§ Resources involved in collection,

management, use, and dissemination of
information resources of organization

46

The Information System Life Cycle

§ Macro life cycle
§ Feasibility analysis

§ Requirements collection and analysis

§ Design

§ Implementation

§ Validation and acceptance testing

§ Requirements collection and analysis

47

The Information System Life Cycle
(cont’d.)

§ The database application system life
cycle: micro life cycle
§ System definition
§ Database design
§ Database implementation
§ Loading or data conversion

48

The Information System Life Cycle
(cont’d.)

§ Application conversion
§ Testing and validation
§ Operation
§ Monitoring and maintenance

49

The Database Design and
Implementation Process

§ Design logical and physical structure of
one or more databases
§ Accommodate the information needs of the

users in an organization for a defined set of
applications

§ Goals of database design
§ Very hard to accomplish and measure

§ Often begins with informal and
incomplete requirements

50

The Database Design and
Implementation Process (cont’d.)

§ Main phases of the overall database
design and implementation process:
§ 1. Requirements collection and analysis
§ 2. Conceptual database design
§ 3. Choice of a DBMS
§ 4. Data model mapping (also called logical

database design)
§ 5. Physical database design
§ 6. Database system implementation and

tuning
51

52

The Database Design and
Implementation Process (cont’d.)

§ Parallel activities
§ Data content, structure, and constraints

of the database
§ Design of database applications

§ Data-driven versus process-driven
design

§ Feedback loops among phases and
within phases are common

53

The Database Design and
Implementation Process (cont’d.)

§ Heart of the database design process
§ Conceptual database design (Phase 2)

§ Data model mapping (Phase 4)

§ Physical database design (Phase 5)

§ Database system implementation and
tuning (Phase 6)

54

Phase 1: Requirements Collection
and Analysis

§ Activities
§ Identify application areas and user groups
§ Study and analyze documentation
§ Study current operating environment
§ Collect written responses from users

55

Phase 1 (cont’d.)

§ Requirements specification
techniques
§ Oriented analysis (OOA)
§ Data flow diagrams (DFDs
§ Refinement of application goals
§ Computer-aided

56

Phase 2: Conceptual Database
Design

§ Phase 2a: Conceptual Schema Design
§ Important to use a conceptual high-level

data model
§ Approaches to conceptual schema design

• Centralized (or one shot) schema design
approach

• View integration approach

57

Phase 2: (cont’d.)

§ Strategies for schema design
• Top-down strategy

• Bottom-up strategy

• Inside-out strategy

• Mixed strategy

§ Schema (view) integration
• Identify correspondences/conflicts among

schemas:
• Naming conflicts, type conflicts, domain (value

set) conflicts, conflicts among constraints

• Modify views to conform to one another
• Merge of views and restructure

58

Phase 2: (cont’d.)

§ Strategies for the view integration process
• Binary ladder integration

• N-ary integration

• Binary balanced strategy

• Mixed strategy

§ Phase 2b: Transaction Design
§ In parallel with Phase 2a
§ Specify transactions at a conceptual level
§ Identify input/output and functional

behavior

§ Notation for specifying processes 59

Phase 3: Choice of a DBMS

§ Costs to consider
§ Software acquisition cost
§ Maintenance cost
§ Hardware acquisition cost
§ Database creation and conversion cost
§ Personnel cost
§ Training cost
§ Operating cost

§ Consider DBMS portability among different
types of hardware 60

Phase 4: Data Model Mapping
(Logical Database Design)

§ Create a conceptual schema and
external schemas
§ In data model of selected DBMS

§ Stages
§ System-independent mapping
§ Tailoring schemas to a specific DBMS

61

Phase 5: Physical Database Design

§ Choose specific file storage structures
and access paths for the database files
§ Achieve good performance

§ Criteria used to guide choice of physical
database design options:
§ Response time
§ Space utilization
§ Transaction throughput

62

Phase 6: Database System
Implementation and Tuning

§ Typically responsibility of the DBA
§ Compose DDL
§ Load database
§ Convert data from earlier systems

§ Database programs implemented by
application programmers

§ Most systems include monitoring utility
to collect performance statistics

63

Use of UML Diagrams as an Aid to
Database Design Specification
§ Use UML as a design specification

standard
§ Unified Modeling Language (UML)

approach
§ Combines commonly accepted concepts

from many object-oriented (O-O) methods
and methodologies

§ Includes use case diagrams, sequence
diagrams, and statechart diagrams

64

UML for Database Application
Design

§ Advantages of UML
§ Resulting models can be used to design

relational, object-oriented, or object-
relational databases

§ Brings traditional database modelers,
analysts, and designers together with
software application developers

65

Different Types of Diagrams in UML

§ Structural diagrams
§ Class diagrams and package diagrams

§ Object diagrams

§ Component diagrams

§ Deployment diagrams

66

Different Types of Diagrams in UML
(cont’d.)
§ Behavioral diagrams

§ Use case diagrams

§ Sequence diagrams

§ Collaboration diagrams

§ Statechart diagrams

§ Activity diagrams

67

68

Different Types of Diagrams in UML
(cont’d.)

69

Different Types of Diagrams in UML
(cont’d.)

70

Modeling and Design Example:
UNIVERSITY Database

71

72

73

Rational Rose: A UML-Based Design
Tool

§ Rational Rose for database design
§ Modeling tool used in the industry to

develop information systems
§ Rational Rose data modeler

§ Visual modeling tool for designing
databases

§ Provides capability to:
• Forward engineer a database
• Reverse engineer an existing implemented

database into conceptual design
74

Data Modeling Using Rational Rose
Data Modeler

§ Reverse engineering
§ Allows the user to create a conceptual data

model based on an existing database
schema specified in a DDL file

§ Forward engineering and DDL
generation
§ Create a data model directly from scratch

in Rose
§ Generate DDL for a specific DBMS

75

Data Modeling Using Rational Rose
Data Modeler (cont’d.)

§ Conceptual design in UML notation
§ Build ER diagrams using class diagrams in

Rational Rose
§ Identifying relationships

• Object in a child class cannot exist without a
corresponding parent object

§ Non-identifying relationships
• Specify a regular association (relationship)

between two independent classes

76

Data Modeling Using Rational Rose
Data Modeler (cont’d.)

§ Converting logical data model to object
model and vice versa
§ Logical data model can be converted to an

object model
§ Allows a deep understanding of

relationships between conceptual and
implementation models

77

Data Modeling Using Rational Rose
Data Modeler (cont’d.)

§ Synchronization between the
conceptual design and the actual
database

§ Extensive domain support
§ Create a standard set of user-defined data

types
§ Easy communication among design

teams
§ Application developer can access both the

object and data models
78

Automated Database Design Tools

§ Many CASE (computer-aided software
engineering) tools for database design

§ Combination of the following facilities
§ Diagramming
§ Model mapping
§ Design normalization

79

Automated Database Design Tools
(cont’d.)

§ Characteristics that a good design tool
should possess:
§ Easy-to-use interface
§ Analytical components
§ Heuristic components
§ Trade-off analysis
§ Display of design results
§ Design verification

80

Automated Database Design Tools
(cont’d.)

§ Variety of products available
§ Some use expert system technology

81

Summary

§ Six phases of the design process
§ Commonly include conceptual design,

logical design (data model mapping),
physical design

§ UML diagrams
§ Aid specification of database models and

design
§ Rational Rose and the Rose Data

Modeler
§ Provide support for the conceptual design

and logical design phases of database
design

82

