Modeling Ecosystems Virtual Lab

Directions

- 1. Open the Virtual Lab titled "Model Ecosystems".
- In this exercise, you will examine several model ecosystems and their characteristic plant and animal species. To begin, read the information in the "Field Guide" to learn more about the organization of five selected ecosystems. Read through all of the information in the "Question" (left side of page) and fill in the blanks on your answer sheet.
- 3. You are now ready to begin the activity. Start by selecting the ecosystem type that you would like to model from the pull down menu at the top of the screen. First read the field guide's information about that particular ecosystem.
- 4. Click and drag the various organisms to their correct locations within the different trophic levels of the pyramid. Once you have moved all of the organisms click the "Check" button and fix any incorrect choices if necessary.
- 5. List each of the organisms (by name) at each trophic level under the "Organisms:" area on Table 1.
- 6. Clicking on the "Pyramid of Numbers" will show the number of organisms at each trophic level within this type of ecosystem. Fill in this information from the pyramid on Table I below under the "Numbers:" area.
- 7. Clicking on the "Pyramid of Energy" will reveal how much energy is available at each trophic level. Fill in this information from the pyramid on Table 1 below under the "Energy:" area.
- 8. You must take one last step in the investigation of this ecosystem. It is important to determine the amount of energy that is transferred from one trophic level to the next. This is called the "Energy Conversion Efficiency" (E.C.E.), and this ratio is determined by taking the energy value from the trophic level you are calculating the E.C.E. for and dividing it by the energy value of the level below it. Please do these calculations as directed below and input the data in Table I below.
- 9. When you are completely finished analyzing the ecosystem, you can click the "Reset" button and select another type of ecosystem from the pull down menu. Follow the directions above to investigate this ecosystem and the three that remain.
- 10. Answer Lab Questions 1-7 below.

Table 1

To complete the Table below, students should complete the following 4 steps.

- 1. List the organisms present in each ecosystem (i.e. hawks, snakes, etc.) under "Organisms:"
- 2. List the total number of organisms present at each trophic level in each Ecosystem under "Number:"
- 3. List the total energy at each trophic level in each ecosystem under "Energy:"

<u>Table 2</u>

Calculate and list the Energy Conversion Efficiency.

The E.C.E. can be calculated by taking the energy value from the trophic level and dividing it by the energy value of the level below it.

Example: E.C.E. = $\frac{\text{Energy of } 1^{\text{st}} \text{ Order Heterotrophs}}{\text{Energy of Producers}}$

Modeling Ecosystems Virtual Lab

		gy flow through an ecos	system?
Found on left hand side of webpa	-	community of living organis	ms
		The source of e	
	un's energy to produce food		
	Plants use the s	un s'energy to produce rood	in a process called
Organisms that use energy	gy from the Sun or energ	y stored in	compounds to
		s. They are also called	
because most other orga	inisms depend on autotro	ophs for	and
			n food may obtain nutrients
		troph that feeds only on pla	
		ores are also called	
		d on other herbivores are	
		order heterotrophs. A	
		of how	
move through an			
Each level of production	and consumption in a foo	od chain is a	level. The
		vel, the herbivores the	
followed by second and t			,
In a pyramid of energy, t	he energy moves in only	one direction and	at each
		r from one trophic level to t	
		ion transfer. The food consu	-
			Energy lost at each trophic
level enters the environn			
A pyramid of	is the weig	ht of living	at each trophic
level. Biomass is calculat	ted by finding the averag	e weight of each species at t	hat trophic level and
multiplying the weight by	y the estimated	of organis	ns in each population. In
	ecosystems, biom	ass decreases as the trophic	level increases. In aquatic
			more edible than land plants,
have a shorter	span and are more	e rapidly	·

Table 1

Ecosystem Type	Producers	1 st Order Heterotrophs	2 nd Order Heterotrophs	3 rd Order Heterotrophs
	Organisms:	Organisms:	Organisms:	Organisms:
Deciduous Forest				
	Energy:	Energy:	Energy:	Energy:
	Number:	Number:	Number:	Number:
	Organisms:	Organisms:	Organisms:	Organisms:
Hot Desert				
HOL Desert				
	Energy:	Energy:	Energy:	Energy:
	Number:	Number:	Number:	Number:
	Organisms:	Organisms:	Organisms:	Organisms:
Grassland				
	F	5	E	5
	Energy: Number:	Energy: Number:	Energy: Number:	Energy: Number:
	Organisms:	Organisms:	Organisms:	Organisms:
	Organishis.	organisms.	Organishis.	organisms.
Antarctic Ocean Shore				
	Energy:	Energy:	Energy:	Energy:
	Number:	Number:	Number:	Number:
	Organisms:	Organisms:	Organisms:	Organisms:
Freshwater Lake				
	Energy:	Energy:	Energy:	Energy:
	Number:	Number:	Number:	Number:

Table 2 – Energy Conversion Efficiency

	1 st Order Heterotroph		2 nd Order Heterotroph		3 rd Order Heterotroph	
Ecosystem Type	Decimal	%	Decimal	%	Decimal	%
Deciduous Forest	623/6011 = 0.104	10.4 %				
Hot Desert						
Grassland						
Antarctic Ocean Shore						
Freshwater Lake						

Analysis & Conclusion Questions:

- 1. Suggest reasons why the information represented in the pyramid of numbers of one of the ecosystems you studied may have not truly represented that ecosystem?
- 2. According to your data, what is the ratio of 3rd order consumers to producers? Explain your answer.
- 3. Compare and contrast two of the ecosystems you studied. How is the energy conversion efficiency similar or different? (Look at your percentages in Table 2.)
- 4. Does the population size increase or decrease at higher trophic levels in a pyramid of numbers for an ecosystem of a tree, insects (herbivores), and birds feeding on insects? Explain your answer.

- 5. What might happen to an ecological pyramid of numbers in a forest ecosystem if most of the deer were killed due to hunting by people and disease?
- 6. What could happen to an ecosystem if the decomposers disappeared?
- 7. Could there be a food chain without herbivores and carnivores? Explain.