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What is disease?  
Disease is an abnormal condition that impairs 
bodily functions
Infectious Disease is transmitted from one 
individual to another (airborne, waterborne, 
sexually transmitted, contact transmission)
Vectored Disease requires an agent to be involved 
in the transfer
Zoonotic Disease has a non human source
Pathogens cause Disease 
microparasites: virus, bacteria, protozoans, fungi
macroparasites: cestodes, nematodes, ticks, fleas 



Disease is an ecological process  



Basic Elements
define species: single pop, vectored system, 
ecological system 
disease categories: infected vs infectious, 
latent vs active, normal vs superspreader 
demographic categories: gender, age, other
interventions: vaccination, quarantine, drug 
regimens, circumcision,
time: fast diseases (e.g. pneumonia, influenza) 
vs. slow diseases (e.g. TB, HIV, leprosy).



Emerging Infectious Diseases:  
What?, Where? How? and Why?

Japanese color 
woodcut print 
advertising the 
effectiveness of 
cowpox vaccine 
(circa 1850 A.D.)

Cover: Vol 6(6), 2000
Emerging Infectious 
Disease (CDC Journal)



WHAT? (Definition from MedicineNet.com)

Emerging infectious disease: An infectious disease that has 
newly appeared in a population or that has been known for some 
time but is rapidly increasing in incidence or geographic range.

Examples of emerging infectious diseases include:
 * Ebola virus (first outbreaks in 1976)
 * HIV/AIDS (virus first isolated in 1983)
 * Hepatitis C (first identified in 1989)
 * Influenza A(H5N1) (bird ‘flu first isolated from humans in 1997)
 * Legionella pneumophila (first outbreak in 1976)
 * E. coli O157:H7 (first detected in 1982)
 * Borrelia burgdorferi (first detected case of Lyme disease in 1982) 
 * Mad Cow disease (variant Creutzfeldt-Jakob: first described 1996)



 More WHAT!
CDC National Center for Infectious Disease information list 

for emerging and re-emerging infectious diseases
drug-resistant infections, bovine spongiform encephalopathy (Mad cow 
disease) and variant Creutzfeldt-Jakob disease (vCJD), campylobacteriosis, 
Chagas disease, cholera, cryptococcosis, cryptosporidiosis (Crypto), 
cyclosporiasis, cysticercosis, dengue fever, diphtheria, Ebola hemorrhagic 
fever, Escherichia coli infection, group B streptococcal infection, hantavirus 
pulmonary syndrome, hepatitis C, hendra virus infection, histoplasmosis, 
HIV/AIDS, influenza, Lassa fever, legionnaires' disease (legionellosis) and 
Pontiac fever, leptospirosis, listeriosis, Lyme disease, malaria, Marburg 
hemorrhagic fever, measles, meningitis, monkeypox, MRSA (Methicillin 
Resistant Staphylococcus aureus), Nipah virus infection, norovirus (formerly 
Norwalk virus) infection, pertussis, plague, polio (poliomyelitis), rabies, Rift 
Valley fever, rotavirus infection, salmonellosis, SARS (Severe acute 
respiratory syndrome), shigellosis, smallpox, sleeping Sickness 
(Trypanosomiasis), tuberculosis, tularemia, valley fever (coccidioidomycosis), 
VISA/VRSA - Vancomycin-Intermediate/Resistant Staphylococcus aureus, 
West Nile virus infection, yellow fever



 More WHAT!
CDC National Center for Infectious Disease information list 

for emerging and re-emerging infectious diseases
drug-resistant infections, bovine spongiform encephalopathy (Mad cow 
disease) and variant Creutzfeldt-Jakob disease (vCJD), campylobacteriosis, 
Chagas disease, cholera, cryptococcosis, cryptosporidiosis (Crypto), 
cyclosporiasis, cysticercosis, dengue fever, diphtheria, Ebola hemorrhagic 
fever, Escherichia coli infection, group B streptococcal infection, hantavirus 
pulmonary syndrome, hepatitis C, hendra virus infection, histoplasmosis, 
HIV/AIDS, influenza, Lassa fever, legionnaires' disease (legionellosis) and 
Pontiac fever, leptospirosis, listeriosis, Lyme disease, malaria, Marburg 
hemorrhagic fever, measles, meningitis, monkeypox, MRSA (Methicillin 
Resistant Staphylococcus aureus), Nipah virus infection, norovirus (formerly 
Norwalk virus) infection, pertussis, plague, polio (poliomyelitis), rabies, Rift 
Valley fever, rotavirus infection, salmonellosis, SARS (Severe acute 
respiratory syndrome), shigellosis, smallpox, sleeping Sickness 
(Trypanosomiasis), tuberculosis, tularemia, valley fever (coccidioidomycosis), 
VISA/VRSA - Vancomycin-Intermediate/Resistant Staphylococcus aureus, 
West Nile virus infection, yellow fever
=: first recognized ’93, rodent excretions, rare but deadly



 More WHAT!
CDC National Center for Infectious Disease information list 

for emerging and re-emerging infectious diseases
drug-resistant infections, bovine spongiform encephalopathy (Mad cow 
disease) and variant Creutzfeldt-Jakob disease (vCJD), campylobacteriosis, 
Chagas disease, cholera, cryptococcosis, cryptosporidiosis (Crypto), 
cyclosporiasis, cysticercosis, dengue fever, diphtheria, Ebola hemorrhagic 
fever, Escherichia coli infection, group B streptococcal infection, hantavirus 
pulmonary syndrome, hepatitis C, hendra virus infection, histoplasmosis, 
HIV/AIDS, influenza, Lassa fever, legionnaires' disease (legionellosis) and 
Pontiac fever, leptospirosis, listeriosis, Lyme disease, malaria, Marburg 
hemorrhagic fever, measles, meningitis, monkeypox, MRSA (Methicillin 
Resistant Staphylococcus aureus), Nipah virus infection, norovirus (formerly 
Norwalk virus) infection, pertussis, plague, polio (poliomyelitis), rabies, Rift 
Valley fever, rotavirus infection, salmonellosis, SARS (Severe acute 
respiratory syndrome), shigellosis, smallpox, sleeping Sickness 
(Trypanosomiasis), tuberculosis, tularemia, valley fever (coccidioidomycosis), 
VISA/VRSA - Vancomycin-Intermediate/Resistant Staphylococcus aureus, 
West Nile virus infection, yellow fever
=: identified ’72, stomach flu on cruise ships, schools, hotels



 More WHAT!
CDC National Center for Infectious Disease information list 

for emerging and re-emerging infectious diseases
drug-resistant infections, bovine spongiform encephalopathy (Mad cow 
disease) and variant Creutzfeldt-Jakob disease (vCJD), campylobacteriosis, 
Chagas disease, cholera, cryptococcosis, cryptosporidiosis (Crypto), 
cyclosporiasis, cysticercosis, dengue fever, diphtheria, Ebola hemorrhagic 
fever, Escherichia coli infection, group B streptococcal infection, hantavirus 
pulmonary syndrome, hepatitis C, hendra virus infection, histoplasmosis, 
HIV/AIDS, influenza, Lassa fever, legionnaires' disease (legionellosis) and 
Pontiac fever, leptospirosis, listeriosis, Lyme disease, malaria, Marburg 
hemorrhagic fever, measles, meningitis, monkeypox, MRSA (Methicillin 
Resistant Staphylococcus aureus), Nipah virus infection, norovirus (formerly 
Norwalk virus) infection, pertussis, plague, polio (poliomyelitis), rabies, Rift 
Valley fever, rotavirus infection, salmonellosis, SARS (Severe acute 
respiratory syndrome), shigellosis, smallpox, sleeping Sickness 
(Trypanosomiasis), tuberculosis, tularemia, valley fever (coccidioidomycosis), 
VISA/VRSA - Vancomycin-Intermediate/Resistant Staphylococcus aureus, 
West Nile virus infection, yellow fever
=: mosquito vector, 1st case N.Am. ’99 now ≈ 15000 cases 500 deaths 



WHERE? 
Global trends in emerging infectious diseases
Jones et al. Nature 451, 990-993(21 February 2008)

all pathogen types: 1940-2004
335 events



WHAT? 
by decade
Jones et al. 
Nature 451, 
990-993(21 
February 2008)



WHAT? 
by decade
Jones et al. 
Nature 451, 
990-993(21 
February 2008)



WHAT? 
by decade
Jones et al. 
Nature 451, 
990-993(21 
February 2008)



HOW? 
• Contacts with 
wildlife 

• Vulnerability to 
infection  (elderly, 
HIV+)

• Strains evolving 
to resist 
treatments 

• Contact networks 
particularly global 
travel

• new diagnostic 
tools 

SARS 
Outbreak



Current risk of an EID zoonotic pathogen from 
wildlife  Jones et al. Nature 451, 990-993(21 February 2008)



Disease Categories and Transmission in 
Kermack-Mckendrick Models

W. O. Kermack and A. G. McKendrick:  A Contribution to the 
Mathematical Theory of Epidemics, I, II (endemicity), and III (endemicity cont.) 
I. Proc. R. Soc. Lond. A, 1927, 115, 700-721 (doi: 10.1098/rspa.1927.0118)
II. Proc. R. Soc. Lond. A, 1932, 138, 55-83 (doi: 10.1098/rspa.1932.0171)
III. Proc. R. Soc. Lond. A, 1933, 141, 94-122 (doi: 10.1098/rspa.1933.0106)

Hethcote, H. W. 2000. The mathematics of infectious disease. 
SIAM Rev. 42, 599–653. (doi:10.1137/S0036144500371907)



Disease Categories and Transmission
SIR Models

S: susceptible,    I: infected & infectious
R: “recovered & immune” (V) or “removed” (D)
N: Does N=S+I+V change with time?
Units: numbers vs. densities. vs proportions.
Transmission: mass action (densities of SxI)

frequency dependent (proportion of SxI)

Be Warned!: transmission = bSI holds for both 
frequency or mass action if N is constant or for 
variable N(t) if units are density (mass action) or 
proportions (frequency)



Epidemics with “lumped” demography

transmission rate
refraction rate (latent period)
reversion rate
natural mortility
disease induce mortality

µ
!I !V
!

!D !V

!

S: susceptible
E: exposed (infected) 
I: infectious
V: recovered immune 
D: dead
N: S+E+I+V
b0  bV: birth rate



Outline of remaining material
Preliminaries: 

Discrete versus continuous models in biology
Discrete versus continuous models in epidemiology
Discrete multi-compartment formulations based on 

probabilities
Case studies:

Bovine TB and Vaccination
Group structure and containment of SARS
TB and drug therapies, TB-HIV dynamics
General theory of heterogeneous transmission 

Goals:
Provide a flavor of how to incorporate complexity
Illustrate how output used to understand complexities
Lead you into some literature for you to explore further!



Continuous versus discrete models in biology
Simplest model: constant pop N = S + I;
S → I, transmission β S

N I:

dI

dt
= βI

(
S

N

)
= βI

(
1− I

N

)
, I(0) = I0.

Logistic model with solution:

I(t) =
I0N

I0 + (N − I0)e−βt

Discretized system ODE:

I(t + ∆t) ≈ I(t) + ∆tβI(t)

(
1− I(t)

N

)
.

Discretized Solution:

I(t + ∆t) =
I(t)N

I(t) + (N − I(t))e−β∆t

Which is more appropriate?

1

Text
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Continuous versus discrete models in biology
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Which is the 
better 

discretization 
scheme?



Continuous versus discrete models in biology

Time  (Δt=0.25) Time  (Δt=0.05)

Solid line:  Iteration using solution
Circles: Iteration using discretized equations 



Continuous 
Models 

with 
Demography

Elaborations:  
1. exposed class E

2. constant rate “exponential” transfers: → Weibull distribution
OR

→ “box car” staging: gamma distribution 

dS
dt

= f recruitment (S, I ,R) − f transmission (S, I ,R)S − µS

dI
dt

= f transmission (S, I ,R)S − α + µ( ) I

dR
dt

= α I − µR

f recruitment :  recruits and/or births 
µ:  natural mortality rate

α:  infectious →  removed/recovered



Some basics on discrete epi models

28
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density dependent—as in the function

fb(N) =
bN

1 + (N/Kb)γb
,

where we require b > µ (to ensure growth at low population densities) and γb > 1
(to ensure a sensible dependence on density—see [21]).

A treatment of age structure in the context of continuous time models is beyond
the scope of this exposition because, as with the inclusion of time delays, contin-
uous age- structure formulations are cast either in the context of McKendrick-von
Foerster partial differential or integro-differential equations [1, 10, 53]. The math-
ematical properties and numerical solutions of such systems are much more difficult
to obtain. Age structure, however, is easily incorporated in the context of discrete
models. Further, as argued in subsequent sections, discrete time models better re-
flect the fact that empirical data are typically values obtained from averaging rates
over predetermined discrete time intervals (e.g. daily, monthly, or annual birth,
death and infection rates, and so on).

6. Discrete Time Formulations

We can find solutions to continuous time formulations of dynamic processes,
such as the epidemiological models (2.1), (3.3) or (4.2), or we can, at least, analyze
their behavior using the tools of calculus. Data used to estimate the parameters in
these equations, however, are generally derived from events—such as births, deaths,
new cases, cures, numbers vaccinated—recorded over appropriate discrete intervals
of time (typically days for fast diseases such as SARS or influenza, weeks or months
for slower diseases such as tuberculosis or HIV, and years for vital rates in seasonal
breeders and long-lived species). Data reporting the proportion pµ of individuals
that die in a unit of time can be converted to a mortality rate parameter µ appearing
in a differential equation model of the form dN

dt = −µN by noting that the solution
to this equation over any time interval [k, k + 1] is N(k + 1) = N(k)e−µ. This
implies that the proportion of individuals dying is

(6.1) pµ =
N(k)−N(k + 1)

N(k)
=

N(k)(1− e−µ)
N(k)

= 1− e−µ

or, equivalently, µ = ln
(

1
1−pµ

)
.

It is often advantageous to formulate epidemiological and demographic models
in discrete time. The primary advantage of differential equation models disappears
once we resort to numerical simulation of systems rather than trying to obtain
analytical results, which are difficult if not impossible to obtain for most detailed
nonlinear models. Indeed, discrete time models can be implemented very naturally
and easily in computer simulations, while numerical solutions of differential equa-
tions requires algorithms that use discretizing approximations. Also parameters in
discrete time models can be more easily related to data that have been collated
over discrete intervals (e.g. vital and transmission rates, etc.).

Discrete time equations, however, cannot properly account for the interactions
of simultaneously nonlinear processes, such as individuals simultaneously subject to
the processes of infection and death: in each time interval we either first account for
infection and then natural mortality or vice versa. It does make a difference how we
schedule things [54]. Alternatively we can treat the two processes simultaneously,

Proportion that die or make transitions: e.g. mortality rate 

10 WAYNE M. GETZ AND JAMES O. LLOYD-SMITH

but then cannot accurately depict both processes occurring in one time step if
transition rates are state-dependent. A further challenge arises in discrete time
disease models because the force of infection depends on the size of the infectious
population at each moment, which cannot be updated over the course of a time
step. Fortunately, a good approximation can be obtained by using a piecewise
linear modeling approach, as follows.

First we write down the continuous time model of interest. Consider, for ex-
ample, equations (4.1) with a constant total recruitment rate λ to the susceptible
class and a constant per-capita natural mortality rate µ. Then, using the notation
τ(I, N) := pT C(N)I/N (see equation (3.1)), these equations become

(6.2)

dS

dt
= λ− µS − τ(I,N)S S(0) = S0

dE

dt
= τ(I, N)S − (δ + µ)E E(0) = E0

dI

dt
= δE − (α + µ)I I(0) = I0.

Now assume over a small interval t ∈ [k, k + 1] that the proportional change in τ
over this interval due to a change in I(t) is sufficiently small that τ(I(t), N(t)) is
well approximated by τk = τ(I(k), N(k)) (e.g. over the time interval the change
in τ(I(t), N(t)) may be a few percent, but our estimates of the parameters c′ and
pT in τ(I(t), N(t)), as defined by expression (3.2), may have uncertainties that are
several times as large). Obviously this assumption will influence the choice of time
step duration, with shorter time steps required for faster-growing epidemics. Then
replacing τ(I(t), N(t)) with the constant τk for t ∈ [k, k + 1], equation (6.2) is an
inhomogeneous linear system of ordinary differential equations, with solution given
by

(6.3)




S(k + 1)
E(k + 1)
I(k + 1)



 = exp{Ak}




S(k)
E(k)
I(k)



 +
(∫ 1

0
exp{Akt}dt

) 


λ
0
0



 ,

where

(6.4) Ak =




−(µ + τk) 0 0

τk −(µ + δ) 0
0 δ −(µ + α)



 .

Calculation of the exponential matrix function exp{Ak} and its integral requires
that we first find the eigenvalues and eigenvectors of the matrix Ak itself, which
is cumbersome to calculate and will generally not have a closed form solution for
systems with more than four disease classes (unless Ak is triangular, in which case
the eigenvalues are the diagonal entries themselves). The matrix exp{Ak} and its
integral can be calculated numerically, but this calculation will have to be performed
at each time step k, because of the dependence of τk on the current values of the
state vector (S(k), E(k), I(k))′ (here ′ denotes vector transpose).

A discrete version of equation (6.2) can be argued directly from first principles
under the assumptions that individuals are recruited at the beginning of time in-
terval [k, k + 1] and that individuals die at the same constant rate µ throughout

Continuous model SEI: 

MODELING THE INVASION AND SPREAD OF CONTAGIOUS DISEASES 11

the time interval [k, k + 1]. In this case we obtain the model
(6.5)


S(k + 1)
E(k + 1)
I(k + 1)



 =




(1− pµ)(1− pτk) 0 0

(1− pµ)pτk (1− pµ)(1− pδ) 0
0 (1− pµ)pδ (1− pµ)(1− pα)





×




S(k)
E(k)
I(k)



 +




(1− pµ)λ

0
0



 ,

which is iterated from the initial condition (S0, E0, I0)
′. The probabilities pπ are

related to the corresponding rates π using the relationship expressed in (6.1), viz.

(6.6) pπ = 1− e−π or 1− pπ = e−π, π = µ, α, δ, τk.

While equations (6.5) are an approximation to exact solution (6.3), which itself
is only exact if τ(I(t), N(t)) is replaced by the constant τk = τ(I(k), N(k)), it
is actually irrelevant how well equations (6.5) approximate equations (6.3) when
solved precisely. The reason for this is that equations (6.3) are derived from a
differential equation model that is not the “gold standard” for modeling epidemics;
but, instead, equations (6.3) represent a highly simplified model that does not
account for lags, latencies, or heterogeneity in the population being modeled—not
to mention higher order processes taking place on faster time scales (one of which is
the contact process discussed at the end of Section 3). No theoretical reason exists
to prefer differential equation models over difference equation models: both have
their strengths and weaknesses.

It is also worth noting at this point that all the deterministic models presented
above can be interpreted as representing expected numbers of individuals in what
are essentially stochastic epidemiological and demographic processes. Deterministic
models provide reasonable realizations of stochastic models either when the size of
the population is sufficiently large for the ‘Law of Large Numbers’ (proportions
approach probabilities in the limit as population size approaches infinity) to prevail
or they represent equations for the first order moments of the stochastic process
in question when second and higher order moments are neglected (e.g. see [11,
page 68]).

Discrete time models are more easily embedded in a Monte Carlo (i.e. sto-
chastic) simulation framework than continuous time models. First the effects of
demographic stochasticity can be simulated by treating the state variables as in-
tegers and then calculating the proportion that die as one realization of a set of
appropriate Bernoulli trials that will produce a binomial distribution of outcomes.
The underlying probabilities pπ themselves can be subject to stochastic variation
specified by some appropriate probability distribution, and Monte Carlo simulation
methods can be used to generate the statistics of associated distributions of possible
solutions to an equation (6.5) when the parameters are interpreted as probabilities
which themselves are drawn from statistical distributions.

Second, discrete time models are more flexible than ordinary differential equa-
tion models when it comes to fitting distributions reflecting the time spent in a
particular disease stage. As we have seen, staging in continuous model can lead to
gamma distributions on [0,∞) for the residence times of individuals in each disease
class. Thus staging in continuous models allows us to construct a process that has
a desired mean and variance, but also implies that the minimum time spent in a

Equivalent discrete SEI: note transmission depends on k: 
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Ex:  Use analytical/ numerical methods to
Characterize the distribution of R(t) in the SEnImR model with S(0) =
S0, Ei(0) = 0, i = 1, ..., n, Ij(0) = 0, j = 1, ...,m, R(0) = 0 in terms of β,
δ, µ, m and n for the continuous and discrete formulations and compare
(start with µ = δ = 1 and m = 1 and investigate in the discrete model δ < 1)

dS

dt
= −β

(
m∑

j=1

Ij

)
S

dE1

dt
= β

(
m∑

j=1

Ij

)
S − δE1

dEi

dt
= δ(Ei−1 − Ei), i = 2, . . . , n

dI1

dt
= δ(En − I1)

dIj

dt
= δ(Ij−1 − Ij), j = 2, . . . ,m

dR

dt
= δIm − µR

S(t + 1) = S(t)− β

(
m∑

j=1

Ij(t)

)
S(t)

E1(t + 1) = β

(
m∑

j=1

Ij

)
S + (1− δ)E1

Ei(t + 1) = δEi−1(t) + (1− δ)Ei(t)

i = 2, . . . , n

I1(t + 1) = δEn(t) + (1− δ)I1(t)

Ij(t + 1) = δIj−1(t) + (1− δ)Ij(t)

j = 2, . . . ,m

R(t + 1) = δIm(t)− µR(t)

1

Continuous

Characterize the distribution of R(t) in the SEnImR model with S(0) =
S0, Ei(0) = 0, i = 1, ..., n, Ij(0) = 0, j = 1, ...,m, R(0) = 0 in terms of β,
δ, µ, m and n for the continuous and discrete formulations and compare
(start with µ = δ = 1 and m = 1 and investigate in the discrete model δ < 1)

dS

dt
= −β

(
m∑

j=1

Ij

)
S

dE1

dt
= β

(
m∑

j=1

Ij

)
S − δE1

dEi

dt
= δ(Ei−1 − Ei), i = 2, . . . , n

dI1

dt
= δ(En − I1)

dIj

dt
= δ(Ij−1 − Ij), j = 2, . . . ,m

dR

dt
= δIm − µR

S(t + 1) = S(t)− β

(
m∑

j=1

Ij(t)

)
S(t)

E1(t + 1) = β

(
m∑

j=1

Ij

)
S + (1− δ)E1

Ei(t + 1) = δEi−1(t) + (1− δ)Ei(t)

i = 2, . . . , n

I1(t + 1) = δEn(t) + (1− δ)I1(t)

Ij(t + 1) = δIj−1(t) + (1− δ)Ij(t)

j = 2, . . . ,m

R(t + 1) = δIm(t)− µR(t)

1

Discrete

Characterize the distribution of R(t) in the SEnImR model with S(0) =
S0, Ei(0) = 0, i = 1, ..., n, Ij(0) = 0, j = 1, ...,m, R(0) = 0 in terms of β,
δ, µ, m and n for the continuous and discrete formulations and compare
(start with µ = δ = 1 and m = 1 and investigate in the discrete model δ < 1)

dS

dt
= −β

(
m∑

j=1

Ij

)
S

dE1

dt
= β

(
m∑

j=1

Ij

)
S − δE1

dEi

dt
= δ(Ei−1 − Ei), i = 2, . . . , n

dI1

dt
= δ(En − I1)

dIj

dt
= δ(Ij−1 − Ij), j = 2, . . . ,m

dR

dt
= δIm − µR

S(t + 1) = S(t)− β

(
m∑

j=1

Ij(t)

)
S(t)

E1(t + 1) = β

(
m∑

j=1

Ij

)
S + (1− δ)E1

Ei(t + 1) = δEi−1(t) + (1− δ)Ei(t)

i = 2, . . . , n

I1(t + 1) = δEn(t) + (1− δ)I1(t)

Ij(t + 1) = δIj−1(t) + (1− δ)Ij(t)

j = 2, . . . ,m

R(t + 1) = δIm(t)− µR(t)

1



First Case Study: 
Bovine TB in African Buffalo

Cross & Getz (2006) Ecological Modelling 196: 494-504. 

Important elements: 
Includes demography 

Herd structure: focus on one herd embedded in background 
prevalence assuming balanced movement into and out of 
herd

SVEID structure (Susc, Vaccinated, Exposed, Infected, 
Dead)



BTB model with demography & ecology
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Bovine TB model: X (susc), Y (infected), Z (infectious) & V (vac.), I (migr.)
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Efficacy of Vaccination
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Prevalence isopleths after 50 years:
calf only vaccination
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Second Case Study: SARS

Lloyd-Smith, Galvani, Getz (2003) Proc. Royal Soc. B 270: 1979-1989. 

Important elements: 
No demography but group structure for disease classes

Group structure relates to intervention and control strategies
Time iteration is daily: relates to reporting and data structure



Guangdong 
province, 

China A

Global emergence
of SARS, 2003 

Hotel M, 
Hong Kong

A

Adapted from Dr. J. Gerberding, Centers for Disease Control
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Morbidity & Mortality Weekly Report (2003)

SARS transmission chain, Singapore 2003



Health care workers (HCWs) comprised 18-63% of cases in 
 different locales 

• Main control measures were hospitalization and quarantine.
• Strict infection control implemented in hospitals, and contacts 

 with visitors were reduced.

Group-level heterogeneity for SARS

Community

SARS Patients

HCWs
ρβ

ρβ ηβ

κηβ

β



Detailed 
structure of 
SARS: results 
from daily 
iterated 
stochastic 
simulations



Equations: transmission hazard

18 WAYNE M. GETZ AND JAMES O. LLOYD-SMITH

and cij in expression (8.3) in terms of the basic transmission rate β (not to be con-
fused with the above transmission probabilities βij) and a collection of parameters
modifying transmission for different settings: ε, η, γ, κ, and ρ (all on the interval
[0, 1]). In particular, the reduced transmission rate of exposed (E) individuals (in-
cluded because the extent of pre-symptomatic transmission of SARS was unknown
when the model was created) is εβ. All transmission within the hospital setting
occurs at a reduced rate ηβ to reflect contact precautions adopted by all hospital
personnel and patients, such as the use of masks, gloves and gowns. Additionally,
quarantine of exposed individuals reduces their contact rates by a factor γ, yield-
ing a total transmission rate of γεβ, while specific isolation measures for identified
SARS patients (Im) in the hospital reduces their transmission by a further factor
κ. Finally, we considered the impact of measures to reduce transmission rates be-
tween HCWs and community members by a factor ρ. Under these assumptions,
the transmission hazards are:

τc =
β(Ic + εEc) + ρβ(Ih + εEh) + γβεEm

Nc

and
τh = ρτc +

ηβ(Ih + εEh + κIm)
Nh

,

where Ei and Ii, i = c, h, represent sums over all sub-compartments in the incu-
bating and symptomatic classes for pool j, and

Nh = Sh + Eh + Ih + Vh + Im

and
Nc = Sc + Ec + Ic + Vc + ρ(Sh + Eh + Ih + Vh).

The detailed form of the SID equations that were formulated are:
Community and HCW equations:

Si(t + 1) = exp (−τi(t)) Si(t)
Ei1(t + 1) = [1− exp (−τi(t))]Si(t)
Eij(t + 1) = (1− pj−1)(1− qij−1)Eij−1(t) j = 2, . . . , 10
Ii1(t + 1) =

∑10
j=1 pj(1− qij)Eij(t)

Ii2(t + 1) = (1− hi1)Ii1(t)
Ii3(t + 1) = (1− hi2)Ii2(t) + (1− r)(1− hi3)Ii3(t)
Iij(t + 1) = r(1− hi j−1)Ii j−1(t) + (1− r)(1− hij)Iij(t) j = 4, 5
Vi(t + 1) = Vi(t) + rIi5(t) + rIi

m5(t)






i = c, h,

Ei
m,j(t + 1) = (1− pc j−1)

(
Ei

m,j−1(t) + qj−1Ec j−1(t)
)

j = 2, . . . , 10
Ii
m1(t + 1) =

∑10
j=1 pj

(
Ei

mj(t) + qijEij(t)
)

Ii
m2(t + 1) = hi1Ii1(t) + Ii

m1(t)
Ii
m3(t + 1) = hi2Ii2(t) + Ii

m2(t) + (1− r)
[
hi3Ii3(t) + Ii

m1(t)
]

Ii
mj(t + 1) = r

[
hi j−1Ii j−1(t) + Ii

m j−1(t)
]

+(1− r)
[
hijIij(t) + Ii

mj(t)
]

j = 4, 5






i = c, h.

In the analysis presented here, the probabilities qij and hij vary between 0
and a fixed value less than 1 and account for delays in contact tracing or case
identification. In addition, we did not analyze scenarios where health care workers
are quarantined so that qhj = 0 for all j. Deterministic solutions to this SARS
model can be generated by directly iterating the above equations for specific sets
of parameter values and initial conditions. However, because SARS outbreaks were

h: health care workers; c: general community; m: managed patients
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Table 1. Summary of transmission and case-management parameters, including the range of values used throughout the study
and the three control strategies depicted in figure 3.

range figure 3 figure 3 figure 3
parameter symbol examined (1) (2) (3)

baseline transmission rate (day21) b 0.08–0.26 0.15 0.15 0.15
(R0 = 1.5–5) (R0 = 3) (R0 = 3) (R0 = 3)

factors modifying transmission rate, owing to:
pre-symptomatic transmission « 0–0.1 0.1 0.1 0.1
hospital-wide contact precautions h 0–1 0.5 0.9 0.5
reduced HCW–community mixing r 0–1 0.5 1 0.5
case isolation k 0–1 1 0.5 0.5
quarantine g 0–1 0.5 0.5 0.5

daily probability of:
quarantining of incubating individuals in the community q 0–1 0 0.5 0.5

(Ec)
isolation of symptomatic individuals in the community hc 0–1 0.3 0.9 0.9

(Ic)
isolation of symptomatic HCWs (Ih) hh 0.9 0.9 0.9 0.9

Hospital-wide contact precautions, such as the use at all
times of sterile gowns, filtration masks and gloves, modify
within-hospital transmission by a factor h. A final para-
meter r describes efforts to reduce contact between off-
duty HCWs and the community. Control parameters are
thus divided into those describing case-management mea-
sures (hc, hh, q, g, k) and those describing contact pre-
cautions (h and r).

The most difficult process to characterize in any epi-
demic is disease transmission. This can be divided into a
contact process and the probability of transmission given
contact. The former varies dramatically between com-
munities (owing to, for example, usage patterns of public
transport or housing density) and between diseases (owing
to different modes of transmission); the latter also
depends on both the disease (the proximity required for
transmission) and the community (cultural mores relating
to intimacy of contact and hygiene). Thus, transmission
rates are both disease- and community-dependent and will
vary from country to country, as well as between cities
within a region (Galvani et al. 2003). This geographical
variation translates directly into variations in the basic
reproductive number R0 of the epidemic, which is the
average number of secondary cases generated by a ‘typical’
infectious individual in a completely susceptible popu-
lation, in the absence of control measures (Diekmann &
Heesterbeek 2000). For instance, SARS is likely to have
different R0 values in Beijing and Toronto, owing to differ-
ences in cultural practices, environmental conditions and
population density. Such differences are confirmed by
Galvani et al. (2003), who report widely varying doubling
times for SARS outbreaks in six affected regions.

Recent analyses of SARS incidence data from Hong
Kong (Riley et al. 2003) and Singapore and other settings
(Lipsitch et al. 2003) report R0 to be 2.7 (95% confidence
interval (CI): 2.2–3.7) and ca. 3 (90% CI: 1.5–7.7),
respectively. As acknowledged by these authors, the esti-
mation of R0 is complicated by healthcare practices in
place before outbreaks are recognized—measuring a dis-
ease’s rate of spread in the true absence of control is rarely
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possible. In the case of SARS, non-specific control meas-
ures may have helped or hindered early epidemic growth:
hospitalization of symptomatic cases reduced transmission
to the general community, but put HCWs at risk owing
to unprotected medical procedures, possibly contributing
to so-called super-spreading events. (Note that the R0

reported by Riley et al. (2003) excludes such events.) Esti-
mates of R0 from data including non-specific control mea-
sures therefore could be biased in either direction. Taking
note of the confidence intervals cited above, R0 values
associated with SARS in different parts of the world could
easily vary from 1.5 to 5—roughly the same range as has
been estimated for influenza (Hethcote 2000; Ferguson et
al. 2003). SARS is thought to be primarily transmitted via
large-droplet contact, compared with airborne trans-
mission via droplet nuclei for influenza, but faecal–oral
and fomite transmission are suspected in some circum-
stances (Riley et al. 2003; Seto et al. 2003; Wenzel &
Edmond 2003).

To obtain some general results we evaluate control stra-
tegies for scenarios reflecting R0 values from 1.5 to 5, with
particular emphasis on R0 ~ 3, which is the current most
likely estimate for Hong Kong and Singapore. Because the
feasibility of implementing different control measures var-
ies from country to country (owing to public health infra-
structure, for instance, or concerns about civil liberties),
we evaluate the extent to which one control measure can
compensate for another. We distinguish the impact of two
types of delay in the control response: the delay in isolat-
ing (or quarantining) particular individuals, and the delay
in implementing a systemic control policy after the first
case arises. Finally, we consider the pathways of trans-
mission in our model, to obtain direct insight into the role
played by HCWs in containing the epidemic.

2. MODEL DESCRIPTION

Our model divides the population into an HCW core
group and the general community (denoted by subscripts
‘h’ and ‘c’, respectively); infected individuals may enter
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Table 1. Summary of transmission and case-management parameters, including the range of values used throughout the study
and the three control strategies depicted in figure 3.

range figure 3 figure 3 figure 3
parameter symbol examined (1) (2) (3)

baseline transmission rate (day21) b 0.08–0.26 0.15 0.15 0.15
(R0 = 1.5–5) (R0 = 3) (R0 = 3) (R0 = 3)

factors modifying transmission rate, owing to:
pre-symptomatic transmission « 0–0.1 0.1 0.1 0.1
hospital-wide contact precautions h 0–1 0.5 0.9 0.5
reduced HCW–community mixing r 0–1 0.5 1 0.5
case isolation k 0–1 1 0.5 0.5
quarantine g 0–1 0.5 0.5 0.5

daily probability of:
quarantining of incubating individuals in the community q 0–1 0 0.5 0.5

(Ec)
isolation of symptomatic individuals in the community hc 0–1 0.3 0.9 0.9

(Ic)
isolation of symptomatic HCWs (Ih) hh 0.9 0.9 0.9 0.9

Hospital-wide contact precautions, such as the use at all
times of sterile gowns, filtration masks and gloves, modify
within-hospital transmission by a factor h. A final para-
meter r describes efforts to reduce contact between off-
duty HCWs and the community. Control parameters are
thus divided into those describing case-management mea-
sures (hc, hh, q, g, k) and those describing contact pre-
cautions (h and r).

The most difficult process to characterize in any epi-
demic is disease transmission. This can be divided into a
contact process and the probability of transmission given
contact. The former varies dramatically between com-
munities (owing to, for example, usage patterns of public
transport or housing density) and between diseases (owing
to different modes of transmission); the latter also
depends on both the disease (the proximity required for
transmission) and the community (cultural mores relating
to intimacy of contact and hygiene). Thus, transmission
rates are both disease- and community-dependent and will
vary from country to country, as well as between cities
within a region (Galvani et al. 2003). This geographical
variation translates directly into variations in the basic
reproductive number R0 of the epidemic, which is the
average number of secondary cases generated by a ‘typical’
infectious individual in a completely susceptible popu-
lation, in the absence of control measures (Diekmann &
Heesterbeek 2000). For instance, SARS is likely to have
different R0 values in Beijing and Toronto, owing to differ-
ences in cultural practices, environmental conditions and
population density. Such differences are confirmed by
Galvani et al. (2003), who report widely varying doubling
times for SARS outbreaks in six affected regions.

Recent analyses of SARS incidence data from Hong
Kong (Riley et al. 2003) and Singapore and other settings
(Lipsitch et al. 2003) report R0 to be 2.7 (95% confidence
interval (CI): 2.2–3.7) and ca. 3 (90% CI: 1.5–7.7),
respectively. As acknowledged by these authors, the esti-
mation of R0 is complicated by healthcare practices in
place before outbreaks are recognized—measuring a dis-
ease’s rate of spread in the true absence of control is rarely
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possible. In the case of SARS, non-specific control meas-
ures may have helped or hindered early epidemic growth:
hospitalization of symptomatic cases reduced transmission
to the general community, but put HCWs at risk owing
to unprotected medical procedures, possibly contributing
to so-called super-spreading events. (Note that the R0

reported by Riley et al. (2003) excludes such events.) Esti-
mates of R0 from data including non-specific control mea-
sures therefore could be biased in either direction. Taking
note of the confidence intervals cited above, R0 values
associated with SARS in different parts of the world could
easily vary from 1.5 to 5—roughly the same range as has
been estimated for influenza (Hethcote 2000; Ferguson et
al. 2003). SARS is thought to be primarily transmitted via
large-droplet contact, compared with airborne trans-
mission via droplet nuclei for influenza, but faecal–oral
and fomite transmission are suspected in some circum-
stances (Riley et al. 2003; Seto et al. 2003; Wenzel &
Edmond 2003).

To obtain some general results we evaluate control stra-
tegies for scenarios reflecting R0 values from 1.5 to 5, with
particular emphasis on R0 ~ 3, which is the current most
likely estimate for Hong Kong and Singapore. Because the
feasibility of implementing different control measures var-
ies from country to country (owing to public health infra-
structure, for instance, or concerns about civil liberties),
we evaluate the extent to which one control measure can
compensate for another. We distinguish the impact of two
types of delay in the control response: the delay in isolat-
ing (or quarantining) particular individuals, and the delay
in implementing a systemic control policy after the first
case arises. Finally, we consider the pathways of trans-
mission in our model, to obtain direct insight into the role
played by HCWs in containing the epidemic.

2. MODEL DESCRIPTION

Our model divides the population into an HCW core
group and the general community (denoted by subscripts
‘h’ and ‘c’, respectively); infected individuals may enter
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case management (subscript ‘m’), representing quarantine
or case isolation. We categorized disease classes as suscep-
tible (Sc, Sh), incubating (Ec, Eh, Em ), symptomatic (Ic, Ih ,
Im ) and removed owing to recovery or death (Rc, Rh). The
model updates in 1-day timesteps, representing the small-
est interval for which people’s activities can be thought to
be equivalent. Substructures associated with daily move-
ments are summarized in figure 1, with details given in
the caption. Stochastic transitions of individuals between
classes, based on the probabilities shown in figure 1, were
implemented by Monte Carlo simulation.

The baseline transmission rate of symptomatic individ-
uals in the community, b, was chosen to produce the
range of R0 values used in our different scenarios (see next
paragraph). Given the possibility of pre-symptomatic
transmission of SARS (Cyranoski & Abbott 2003; Don-
nelly et al. 2003), our model allows transmission at a
reduced rate «b by incubating individuals. Disease trans-
mission occurs via the following pathways, with contri-
butions weighted as shown in figure 1d. The hazard rate
of infection for susceptibles in the community, rep-
resented by lc, contains contributions from unmanaged
incubating and symptomatic community members (Ec and
Ic), as well as off-duty HCWs (Eh and Ih). Quarantined
individuals (Em ) transmit to Sc at a reduced rate, reflecting
household contacts and breaches of quarantine. The
infection hazard rate for HCWs, lh, contains contri-
butions from workplace transmission risks, from isolated
patients (Im ) and unmanaged incubating and symptomatic
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Figure 1. Flow diagram of the transmission dynamics of a
SARS epidemic within a hospital coupled to that in a
community. (a) We modelled SARS transmission as an
SEIR process (S, susceptible; E, incubating; I, symptomatic;
R, removed) structured into an HCW core group (subscript
h), a community-at-large (subscript c), and a case-managed
group (subscript m) of quarantined (Em) and isolated (Im)
individuals. (b) Incubating individuals in all three groups
(Ex, where x = c,h,m) were further structured into 10
disease-age classes, with daily probabilities pi of progressing
to the symptomatic phase. Values of pi were interpolated
linearly between p1 = 0 and p10 = 1, yielding a distribution of
incubation periods consistent with data (see electronic
Appendix A, available on The Royal Society’s Publications
Web site). (c) Symptomatic individuals in all three groups
(Ix, where x = c,h,m) were structured into two initial
disease-age and three subsequent disease-stage classes (in
which individuals have a probability r of moving to the next
stage each day). Individuals leaving the final symptomatic
class (Ix5) go to Rc or Rh, depending on whether they
originated in Sc or Sh. Details of the incubating and
symptomatic substructures are discussed in electronic
Appendix A. Independent of the disease progression
described in (b) and (c), individuals can enter case
management with daily probabilities q for quarantine, or hc

and hh for isolation (in the community and HCW groups,
respectively). Individuals must already be in class Ic or Ih to
be isolated, so the soonest that an un-quarantined individual
can be isolated is after the first day of symptoms; individuals
in quarantine are assumed to move directly into isolation
when symptoms develop. (d ) The transmission hazard rates
for susceptible individuals Sj are denoted by lj ( j = c,h) and
depend on weighted contributions from community and
HCW sources as described in § 2 (and table 1). The
discrete-time stochastic formulation of our model allows for
the possibility of multiple infectious contacts within a
timestep, so for a susceptible individual subject to total
hazard rate lj the probability of infection on a given day is
1 2 exp(2l j ). (Note that the units of b are day21.) We
assume density-independent contact rates and random mixing
within each pool, so hazard rates of infection are dependent
on the transmission rate for each infectious class multiplied by
the proportion of the population in that class. Specifically,
defining the effective number of individuals in the hospital
mixing pool as N h = Sh 1 Eh 1 I h 1 Rh 1 I m and in the
community mixing pool as N c = Sc 1 Ec 1 I c 1 Rc 1 r(Sh 1
Eh 1 I h 1 Rh), the total hazard rates are lc = [b(I c 1 «Ec) 1
rb(I h 1 «Eh) 1 gb«Em]/N c and lh = rlc 1 hb(I h 1 «Eh 1
kI m)/N h. In simulations, the number of infection events in
each timestep is determined by random draws from
binomial (S j , 1 – exp(2l j)) distributions ( j = c,h). Equations
describing the model are given in electronic Appendix A.

co-workers (Eh and Ih), as well as from off-duty time in the
community. To describe case management and control of
the epidemic, we further modified transmission (figure 1d)
in terms of the parameters g, k, h and r introduced earlier
(see table 1). Specifically, in the healthcare environment,
transmission occurs at a rate of hb owing to hospital-wide
precautions, and transmission by isolated patients (Im ) is
further modified by the factor k. Transmission rates
between HCWs and community members are modified by
the factor r. Quarantine reduces contact rates by a factor
g, such that the net transmission rate of quarantined incu-
bating individuals (Em ) is g«b.



Epi Equations:

18 WAYNE M. GETZ AND JAMES O. LLOYD-SMITH

and cij in expression (8.3) in terms of the basic transmission rate β (not to be con-
fused with the above transmission probabilities βij) and a collection of parameters
modifying transmission for different settings: ε, η, γ, κ, and ρ (all on the interval
[0, 1]). In particular, the reduced transmission rate of exposed (E) individuals (in-
cluded because the extent of pre-symptomatic transmission of SARS was unknown
when the model was created) is εβ. All transmission within the hospital setting
occurs at a reduced rate ηβ to reflect contact precautions adopted by all hospital
personnel and patients, such as the use of masks, gloves and gowns. Additionally,
quarantine of exposed individuals reduces their contact rates by a factor γ, yield-
ing a total transmission rate of γεβ, while specific isolation measures for identified
SARS patients (Im) in the hospital reduces their transmission by a further factor
κ. Finally, we considered the impact of measures to reduce transmission rates be-
tween HCWs and community members by a factor ρ. Under these assumptions,
the transmission hazards are:

τc =
β(Ic + εEc) + ρβ(Ih + εEh) + γβεEm

Nc

and
τh = ρτc +

ηβ(Ih + εEh + κIm)
Nh

,

where Ei and Ii, i = c, h, represent sums over all sub-compartments in the incu-
bating and symptomatic classes for pool j, and

Nh = Sh + Eh + Ih + Vh + Im

and
Nc = Sc + Ec + Ic + Vc + ρ(Sh + Eh + Ih + Vh).

The detailed form of the SID equations that were formulated are:
Community and HCW equations:

Si(t + 1) = exp (−τi(t)) Si(t)
Ei1(t + 1) = [1− exp (−τi(t))]Si(t)
Eij(t + 1) = (1− pj−1)(1− qij−1)Eij−1(t) j = 2, . . . , 10
Ii1(t + 1) =

∑10
j=1 pj(1− qij)Eij(t)

Ii2(t + 1) = (1− hi1)Ii1(t)
Ii3(t + 1) = (1− hi2)Ii2(t) + (1− r)(1− hi3)Ii3(t)
Iij(t + 1) = r(1− hi j−1)Ii j−1(t) + (1− r)(1− hij)Iij(t) j = 4, 5
Vi(t + 1) = Vi(t) + rIi5(t) + rIi

m5(t)






i = c, h,

Ei
m,j(t + 1) = (1− pc j−1)

(
Ei

m,j−1(t) + qj−1Ec j−1(t)
)

j = 2, . . . , 10
Ii
m1(t + 1) =

∑10
j=1 pj

(
Ei

mj(t) + qijEij(t)
)

Ii
m2(t + 1) = hi1Ii1(t) + Ii

m1(t)
Ii
m3(t + 1) = hi2Ii2(t) + Ii

m2(t) + (1− r)
[
hi3Ii3(t) + Ii

m1(t)
]

Ii
mj(t + 1) = r

[
hi j−1Ii j−1(t) + Ii

m j−1(t)
]

+(1− r)
[
hijIij(t) + Ii

mj(t)
]

j = 4, 5






i = c, h.

In the analysis presented here, the probabilities qij and hij vary between 0
and a fixed value less than 1 and account for delays in contact tracing or case
identification. In addition, we did not analyze scenarios where health care workers
are quarantined so that qhj = 0 for all j. Deterministic solutions to this SARS
model can be generated by directly iterating the above equations for specific sets
of parameter values and initial conditions. However, because SARS outbreaks were

q: quarantine rates; h: hospitalization rates; r: recovery/death
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Table 1. Summary of transmission and case-management parameters, including the range of values used throughout the study
and the three control strategies depicted in figure 3.

range figure 3 figure 3 figure 3
parameter symbol examined (1) (2) (3)

baseline transmission rate (day21) b 0.08–0.26 0.15 0.15 0.15
(R0 = 1.5–5) (R0 = 3) (R0 = 3) (R0 = 3)

factors modifying transmission rate, owing to:
pre-symptomatic transmission « 0–0.1 0.1 0.1 0.1
hospital-wide contact precautions h 0–1 0.5 0.9 0.5
reduced HCW–community mixing r 0–1 0.5 1 0.5
case isolation k 0–1 1 0.5 0.5
quarantine g 0–1 0.5 0.5 0.5

daily probability of:
quarantining of incubating individuals in the community q 0–1 0 0.5 0.5

(Ec)
isolation of symptomatic individuals in the community hc 0–1 0.3 0.9 0.9

(Ic)
isolation of symptomatic HCWs (Ih) hh 0.9 0.9 0.9 0.9

Hospital-wide contact precautions, such as the use at all
times of sterile gowns, filtration masks and gloves, modify
within-hospital transmission by a factor h. A final para-
meter r describes efforts to reduce contact between off-
duty HCWs and the community. Control parameters are
thus divided into those describing case-management mea-
sures (hc, hh, q, g, k) and those describing contact pre-
cautions (h and r).

The most difficult process to characterize in any epi-
demic is disease transmission. This can be divided into a
contact process and the probability of transmission given
contact. The former varies dramatically between com-
munities (owing to, for example, usage patterns of public
transport or housing density) and between diseases (owing
to different modes of transmission); the latter also
depends on both the disease (the proximity required for
transmission) and the community (cultural mores relating
to intimacy of contact and hygiene). Thus, transmission
rates are both disease- and community-dependent and will
vary from country to country, as well as between cities
within a region (Galvani et al. 2003). This geographical
variation translates directly into variations in the basic
reproductive number R0 of the epidemic, which is the
average number of secondary cases generated by a ‘typical’
infectious individual in a completely susceptible popu-
lation, in the absence of control measures (Diekmann &
Heesterbeek 2000). For instance, SARS is likely to have
different R0 values in Beijing and Toronto, owing to differ-
ences in cultural practices, environmental conditions and
population density. Such differences are confirmed by
Galvani et al. (2003), who report widely varying doubling
times for SARS outbreaks in six affected regions.

Recent analyses of SARS incidence data from Hong
Kong (Riley et al. 2003) and Singapore and other settings
(Lipsitch et al. 2003) report R0 to be 2.7 (95% confidence
interval (CI): 2.2–3.7) and ca. 3 (90% CI: 1.5–7.7),
respectively. As acknowledged by these authors, the esti-
mation of R0 is complicated by healthcare practices in
place before outbreaks are recognized—measuring a dis-
ease’s rate of spread in the true absence of control is rarely
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possible. In the case of SARS, non-specific control meas-
ures may have helped or hindered early epidemic growth:
hospitalization of symptomatic cases reduced transmission
to the general community, but put HCWs at risk owing
to unprotected medical procedures, possibly contributing
to so-called super-spreading events. (Note that the R0

reported by Riley et al. (2003) excludes such events.) Esti-
mates of R0 from data including non-specific control mea-
sures therefore could be biased in either direction. Taking
note of the confidence intervals cited above, R0 values
associated with SARS in different parts of the world could
easily vary from 1.5 to 5—roughly the same range as has
been estimated for influenza (Hethcote 2000; Ferguson et
al. 2003). SARS is thought to be primarily transmitted via
large-droplet contact, compared with airborne trans-
mission via droplet nuclei for influenza, but faecal–oral
and fomite transmission are suspected in some circum-
stances (Riley et al. 2003; Seto et al. 2003; Wenzel &
Edmond 2003).

To obtain some general results we evaluate control stra-
tegies for scenarios reflecting R0 values from 1.5 to 5, with
particular emphasis on R0 ~ 3, which is the current most
likely estimate for Hong Kong and Singapore. Because the
feasibility of implementing different control measures var-
ies from country to country (owing to public health infra-
structure, for instance, or concerns about civil liberties),
we evaluate the extent to which one control measure can
compensate for another. We distinguish the impact of two
types of delay in the control response: the delay in isolat-
ing (or quarantining) particular individuals, and the delay
in implementing a systemic control policy after the first
case arises. Finally, we consider the pathways of trans-
mission in our model, to obtain direct insight into the role
played by HCWs in containing the epidemic.

2. MODEL DESCRIPTION

Our model divides the population into an HCW core
group and the general community (denoted by subscripts
‘h’ and ‘c’, respectively); infected individuals may enter
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Figure 2. (Caption opposite.)

owing to the deliberate importation of highly infectious
symptomatic cases into hospitals. In electronic Appendix
A, we test the robustness of this conclusion to changes in
case-management scenarios and R0. As expected, the role
of h and k in reducing R is diminished as hospitalization
rates become very low. However, in every scenario con-
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sidered the contribution to R owing to poor contact pre-
cautions in the hospital (h ! 1) is higher than that for any
other failure of transmission control, particularly if screen-
ing of HCWs for symptoms is poor. Some degree of
hospital-wide contact precautions is thus essential to com-
bating a SARS outbreak.

Individual runs:  Cumulative cases for different R (effective 
reproduction numbers--i.e. R0 when some control is applied)



Probability of epidemic containment for different effective  
R’s  

1984 J. O. Lloyd-Smith and others SARS transmission in a community and hospital

0 50 100 150 200
0

20

40

60

80

100
(a)

(c)

(e)

(d )

( f )

(b)

cu
m

ul
at

iv
e

ca
se

s

days since initial case

R = 2.0
R = 1.6
R = 1.2

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ili

ty
of

co
nt

ai
nm

en
t

reproductivenumber, R

0.8 1.0 1.2
0.6

0.7

0.8

0.9

1.0

Pr
(c

on
ta

in
m

en
t)

R

0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1.0 1.0

transmission in isolation,  

da
ily

pr
ob

ab
ili

ty
of

is
ol

at
io

n,
h c

da
ily

pr
ob

ab
ili

ty
of

is
ol

at
io

n,
h c

 = 1h h

k

transmission in isolation,  k

k

h

g

r

transmission in isolation,  k

4.0 3.0 2.5 2.0 R 0 =1.5

R0 = 5.0

R 0 =5.05.0

0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

 = 0.5

B

A

4.0 3.0 2.5 2.0

0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1.0

da
ily

pr
ob

ab
ili

ty
of

qu
ar

an
tin

e,
q

4.0 3.0 2.5 2.0

0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

varying parameter

re
pr

od
uc

tiv
e

nu
m

be
r,

R

Figure 2. (Caption opposite.)

owing to the deliberate importation of highly infectious
symptomatic cases into hospitals. In electronic Appendix
A, we test the robustness of this conclusion to changes in
case-management scenarios and R0. As expected, the role
of h and k in reducing R is diminished as hospitalization
rates become very low. However, in every scenario con-
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sidered the contribution to R owing to poor contact pre-
cautions in the hospital (h ! 1) is higher than that for any
other failure of transmission control, particularly if screen-
ing of HCWs for symptoms is poor. Some degree of
hospital-wide contact precautions is thus essential to com-
bating a SARS outbreak.
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Figure 2. (Caption opposite.)

owing to the deliberate importation of highly infectious
symptomatic cases into hospitals. In electronic Appendix
A, we test the robustness of this conclusion to changes in
case-management scenarios and R0. As expected, the role
of h and k in reducing R is diminished as hospitalization
rates become very low. However, in every scenario con-
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sidered the contribution to R owing to poor contact pre-
cautions in the hospital (h ! 1) is higher than that for any
other failure of transmission control, particularly if screen-
ing of HCWs for symptoms is poor. Some degree of
hospital-wide contact precautions is thus essential to com-
bating a SARS outbreak.
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owing to the deliberate importation of highly infectious
symptomatic cases into hospitals. In electronic Appendix
A, we test the robustness of this conclusion to changes in
case-management scenarios and R0. As expected, the role
of h and k in reducing R is diminished as hospitalization
rates become very low. However, in every scenario con-
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sidered the contribution to R owing to poor contact pre-
cautions in the hospital (h ! 1) is higher than that for any
other failure of transmission control, particularly if screen-
ing of HCWs for symptoms is poor. Some degree of
hospital-wide contact precautions is thus essential to com-
bating a SARS outbreak.



Probability of containment in terms of 
implementation of control after epi onset
Left: 3 strategies; Right: combined measure for 3 R0
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Figure 2. (a) Sample output from the model, showing
cumulative numbers of cases. Five realizations of the
stochastic model are shown for three values of R, to
highlight variability in outcomes and the increased
probability of fadeout for lower R. Several epidemics died
out immediately and cannot be resolved from one another
(one for R = 2, and two each for R = 1.6 and R = 1.2).
(b) The probability of epidemic containment (as defined in
the text) as a function of R, for a population of 100 000
with a single initial case. We set « = 0.1, and b was varied to
give the desired R values, with no control measures imposed.
Probabilities were calculated from 100 runs per R-value.
(c2e) Threshold control policies for containment of the
epidemic. Lines show R = 1 contours for scenarios where
R0 = 1.5 (green), 2 (blue), 2.5 (red), 3 (black), 4 (light blue)
and 5 (purple); parameter regions to the left of the lines
give R , 1. Not all cases appear because some are off the
scale. (c,d) The effect of varying hc (the daily probability
that symptomatic SARS cases in the community will be
isolated) and k (the modification to transmission owing to
case isolation procedures) for h = 1 and h = 0.5, respectively,
on the threshold where R = 1. From right to left, three lines
of each colour show the effects of increasing delays in case
isolation (i.e. each symptomatic individual has no possibility
of being isolated for 1, 2 or 3 days, respectively, but a
constant daily probability (hc) thereafter). Points in (d )
marked A, B and ¤ are described in § 3b. We assume no
quarantining (q = 0) and a fixed strategy of case isolation of
symptomatic hospital workers (hh = 0.9) starting after their
first day of symptoms. Other parameter values: r = 1, « = 0.1.
(e) The extent to which contact tracing and quarantine can
substitute for imperfect case isolation. Here, h = 0.5, r = 1,
g = 0.5, hc = 0.3 and hh = 0.9, so the case isolation strategy is
fixed (and assumed to commence after the first day of
symptoms), but the degree to which transmission is reduced
by isolation (k) varies. From right to left, two solid lines of
each colour represent 1-day and 5-day delays in contact
tracing before quarantining begins. Solid lines show the case
« = 0.1, when transmission can occur during the incubation
period. The dotted lines show the case « = 0 (please note
that in this case R0 = 2.44, 2.92 and 3.90, rather than 2.5, 3
and 4). ( f ) Sensitivity of effective reproductive number R to
the four transmission-control parameters. In all
cases R0 = 3, « = 0.1, q = 0.5, hc = 0.3 and hh = 0.9; all
parameters k, g, r, h were set to 0.5, then varied one at a
time.

(e) Control strategies and delays in
implementation

Having assessed the importance of various control mea-
sures alone or in pairs, we now consider the effects of inte-
grated control strategies on SARS outbreaks. We treat a
scenario with R0 = 3, similar to outbreaks in Hong Kong
and Singapore. The median and 50% confidence intervals
(i.e. the 25th and 75th percentile values) of cumulative
incidence indicate that such an epidemic is likely to spread
rapidly through the population if uncontrolled (figure 3a,
black lines). Control strategies emphasizing contact pre-
cautions (figure 3a, green lines) or quarantine and iso-
lation (figure 3a, red lines) both reduce the effective
reproductive number to R = 1.5, thereby substantially
slowing the epidemic’s rate of growth and increasing the
probability of containment. A combined strategy of con-
tact precautions and case-management measures reduces
R to below 1 (R = 0.84 in this case—blue lines in figure
3a), thereby leading to rapid containment of the outbreak
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Figure 3. (Caption overleaf.)

in 85% of simulations. Considering the elements of the
next-generation matrix (see figure 3 caption), we see that
control is finally achieved because simultaneous lowering
of k and h brought Rch and Rhh below 1. In all cases
Rcc , 1, thus transmission involving the high-risk HCW
pool is required to sustain the uncontrolled outbreaks.
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Figure 2. (a) Sample output from the model, showing
cumulative numbers of cases. Five realizations of the
stochastic model are shown for three values of R, to
highlight variability in outcomes and the increased
probability of fadeout for lower R. Several epidemics died
out immediately and cannot be resolved from one another
(one for R = 2, and two each for R = 1.6 and R = 1.2).
(b) The probability of epidemic containment (as defined in
the text) as a function of R, for a population of 100 000
with a single initial case. We set « = 0.1, and b was varied to
give the desired R values, with no control measures imposed.
Probabilities were calculated from 100 runs per R-value.
(c2e) Threshold control policies for containment of the
epidemic. Lines show R = 1 contours for scenarios where
R0 = 1.5 (green), 2 (blue), 2.5 (red), 3 (black), 4 (light blue)
and 5 (purple); parameter regions to the left of the lines
give R , 1. Not all cases appear because some are off the
scale. (c,d) The effect of varying hc (the daily probability
that symptomatic SARS cases in the community will be
isolated) and k (the modification to transmission owing to
case isolation procedures) for h = 1 and h = 0.5, respectively,
on the threshold where R = 1. From right to left, three lines
of each colour show the effects of increasing delays in case
isolation (i.e. each symptomatic individual has no possibility
of being isolated for 1, 2 or 3 days, respectively, but a
constant daily probability (hc) thereafter). Points in (d )
marked A, B and ¤ are described in § 3b. We assume no
quarantining (q = 0) and a fixed strategy of case isolation of
symptomatic hospital workers (hh = 0.9) starting after their
first day of symptoms. Other parameter values: r = 1, « = 0.1.
(e) The extent to which contact tracing and quarantine can
substitute for imperfect case isolation. Here, h = 0.5, r = 1,
g = 0.5, hc = 0.3 and hh = 0.9, so the case isolation strategy is
fixed (and assumed to commence after the first day of
symptoms), but the degree to which transmission is reduced
by isolation (k) varies. From right to left, two solid lines of
each colour represent 1-day and 5-day delays in contact
tracing before quarantining begins. Solid lines show the case
« = 0.1, when transmission can occur during the incubation
period. The dotted lines show the case « = 0 (please note
that in this case R0 = 2.44, 2.92 and 3.90, rather than 2.5, 3
and 4). ( f ) Sensitivity of effective reproductive number R to
the four transmission-control parameters. In all
cases R0 = 3, « = 0.1, q = 0.5, hc = 0.3 and hh = 0.9; all
parameters k, g, r, h were set to 0.5, then varied one at a
time.

(e) Control strategies and delays in
implementation

Having assessed the importance of various control mea-
sures alone or in pairs, we now consider the effects of inte-
grated control strategies on SARS outbreaks. We treat a
scenario with R0 = 3, similar to outbreaks in Hong Kong
and Singapore. The median and 50% confidence intervals
(i.e. the 25th and 75th percentile values) of cumulative
incidence indicate that such an epidemic is likely to spread
rapidly through the population if uncontrolled (figure 3a,
black lines). Control strategies emphasizing contact pre-
cautions (figure 3a, green lines) or quarantine and iso-
lation (figure 3a, red lines) both reduce the effective
reproductive number to R = 1.5, thereby substantially
slowing the epidemic’s rate of growth and increasing the
probability of containment. A combined strategy of con-
tact precautions and case-management measures reduces
R to below 1 (R = 0.84 in this case—blue lines in figure
3a), thereby leading to rapid containment of the outbreak

Proc. R. Soc. Lond. B (2003)

0 50 100 150 200
0

50

100

150

200

250

300

(a)

(b)

(c)

time (days)

cu
m

ul
at

iv
e

nu
m

be
ro

fc
as

es

no control Pr(cont.) = 16% (13, 19)
1: contact precautions = 21% (17, 24)
2: quarantineand isolation = 23% (19, 26)
3: combined measures = 85% (82, 88)

co
nt

ro
li

m
pl

em
en

te
d

0 50 100 150
0

0.2

0.4

0.6

0.8

1.0

delay in implementation (days)

pr
ob

ab
ili

ty
of

co
nt

ai
nm

en
t

control precautions
quarantine and isolation
combined measures

0 50 100 150
0

0.2

0.4

0.6

0.8

1.0

delay in implementation (days)

pr
ob

ab
ili

ty
of

co
nt

ai
nm

en
t

R0 = 2
R0 = 3
R0 = 4

Figure 3. (Caption overleaf.)

in 85% of simulations. Considering the elements of the
next-generation matrix (see figure 3 caption), we see that
control is finally achieved because simultaneous lowering
of k and h brought Rch and Rhh below 1. In all cases
Rcc , 1, thus transmission involving the high-risk HCW
pool is required to sustain the uncontrolled outbreaks.



Importance of HCW mixing restrictions ρ in 
preventing epidemics (control after 14 days): 

histograms -- 1 run; pie charts -- 500 runs
c=community pool,   h=hospital pool
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Figure 4. Importance of HCW mixing restrictions in
preventing SARS spread to the community. (a) and (b) show
two stochastic epidemics with identical disease parameters
and control measures, differing only in HCW-community
mixing precautions (r = 1 in (a) and r = 0.1 in (b)). Daily
incidence is shown, broken down by route of transmission
within or between the hospital and community pools. Inset,
pie-charts show average contributions of the different routes
of infection for 500 stochastic simulations of each epidemic
(standard errors for these proportions were estimated by
jack-knifing the simulation results, but in all cases were less
than one percentage point). Note that c-to-h transmission
includes hospitalized community members infecting the
HCWs caring for them. R0 = 3 in both cases, and other
parameters are from Scenario 1 of figure 3: « = 0.1, k = 1,
h = 0.5. q = 0, hc = 0.3, hh = 0.9, yielding R = 1.60 in (a)
({Rcc,Rch,Rhc,Rhh} = (0.55, 1.05, 0.23, 1.37)) and R = 1.39 in
(b) ({Rcc,Rch,Rhc,Rhh} = (0.57, 1.04, 0.02, 1.36)). The
control policy is implemented 14 days into the outbreak.

in the distribution of secondary cases leads to a reduced
probability of disease invasion. As we have not explicitly
incorporated such heterogeneity in our model, our assess-
ments of containment probabilities will be conservative to
the extent that SSEs are a normal part of SARS epidemi-
ology.

Proc. R. Soc. Lond. B (2003)

Third, the hospital pool is considered to include HCWs
and SARS cases, but other patients are not modelled
explicitly. Infection of other patients has played a signifi-
cant part in some outbreaks, though it will be less
important in hospitals that eliminate non-essential pro-
cedures while SARS remains a significant risk (Dwosh et
al. 2003; Maunder et al. 2003), and for regions that have
opened dedicated SARS hospitals or wards. Future work
on hospital-community SARS outbreaks could incorpor-
ate patient dynamics, and could also evaluate the effect of
staff reductions (Maunder et al. 2003) or of mass quaran-
tine of hospital staff following diagnosis of the first case
(as reported by Dwosh et al. 2003).

Some caution is required in identifying R0 in our model
with that obtained from incidence data for particular out-
breaks. As discussed already, reproductive numbers
derived from data inevitably incorporate some degree of
control owing to routine healthcare practices. We calcu-
late R0 from its formal definition, however, as the expected
number of secondary cases in the absence of control
measures (i.e. without hospitalization or any contact
precautions). While it is uncertain whether routine health
practices help or hinder the spread of SARS, we suspect
that estimates of R0 under our strict definition would be
somewhat higher than those reported for Hong Kong and
Singapore (which incorporate some measures, such as
hospitalization, from the outset). Of course this will
depend on the details of non-specific healthcare practices
in each setting, on assumptions regarding their effect on
SARS spread, and on how R0 is calculated (particularly
the treatment of SSEs).

The most successful examples of quickly controlling
SARS outbreaks (e.g. Hanoi and Singapore) show com-
mon features of stringent within-hospital contact pre-
cautions, and success in preventing leakage of infection
from hospitals back to the general community. The dif-
ficulty that Toronto health officials faced in containing
their SARS outbreak, meanwhile, testifies to the disease’s
potential for spread despite the implementation of inten-
sive control strategies. Unprecedented human mobility
means that emerging infectious diseases can rapidly
impact public health around the world. To contain out-
breaks of SARS, or other pathogens for which vaccines or
treatment are not available, requires aggressive case man-
agement measures complemented by contact precautions
to reduce transmission in healthcare settings.
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the extent that SSEs are a normal part of SARS epidemi-
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Third, the hospital pool is considered to include HCWs
and SARS cases, but other patients are not modelled
explicitly. Infection of other patients has played a signifi-
cant part in some outbreaks, though it will be less
important in hospitals that eliminate non-essential pro-
cedures while SARS remains a significant risk (Dwosh et
al. 2003; Maunder et al. 2003), and for regions that have
opened dedicated SARS hospitals or wards. Future work
on hospital-community SARS outbreaks could incorpor-
ate patient dynamics, and could also evaluate the effect of
staff reductions (Maunder et al. 2003) or of mass quaran-
tine of hospital staff following diagnosis of the first case
(as reported by Dwosh et al. 2003).

Some caution is required in identifying R0 in our model
with that obtained from incidence data for particular out-
breaks. As discussed already, reproductive numbers
derived from data inevitably incorporate some degree of
control owing to routine healthcare practices. We calcu-
late R0 from its formal definition, however, as the expected
number of secondary cases in the absence of control
measures (i.e. without hospitalization or any contact
precautions). While it is uncertain whether routine health
practices help or hinder the spread of SARS, we suspect
that estimates of R0 under our strict definition would be
somewhat higher than those reported for Hong Kong and
Singapore (which incorporate some measures, such as
hospitalization, from the outset). Of course this will
depend on the details of non-specific healthcare practices
in each setting, on assumptions regarding their effect on
SARS spread, and on how R0 is calculated (particularly
the treatment of SSEs).

The most successful examples of quickly controlling
SARS outbreaks (e.g. Hanoi and Singapore) show com-
mon features of stringent within-hospital contact pre-
cautions, and success in preventing leakage of infection
from hospitals back to the general community. The dif-
ficulty that Toronto health officials faced in containing
their SARS outbreak, meanwhile, testifies to the disease’s
potential for spread despite the implementation of inten-
sive control strategies. Unprecedented human mobility
means that emerging infectious diseases can rapidly
impact public health around the world. To contain out-
breaks of SARS, or other pathogens for which vaccines or
treatment are not available, requires aggressive case man-
agement measures complemented by contact precautions
to reduce transmission in healthcare settings.

The authors acknowledge discussions with A. Reingold, M.
Coffee, and C. Bauch, and useful comments from C. Dye, B.
Williams and an anonymous reviewer. Financial support was
provided by a Berkeley Fellowship (J.L.-S.), the Miller Insti-
tute for Basic Sciences at U.C. Berkeley (A.P.G.), and NIH-
NIDA grant no. R01-DA10135 (W.M.G.).
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Third Case Study: TB in Humans
Salomon, Lloyd-Smith, Getz, Resch, Sanchez, Porco, & Borgdorff, 
2006.  PLoS Medicine. 3(8), e273.

Sánchez M. S., J. O. Lloyd-Smith, T. C. Porco,B. G. Williams, M. W. 
Borgdorff,  J. Mansoer, J. A. Salomon, W. M. Getz, 2008. Impact of 
HIV on novel therapies for tuberculosis control.  AIDS 22:963-972.

Important elements: 
Includes important disease classes relating to latent vs. 

active, sputum smear positive vs. negative TB, DOTS vs 
Non-DOTS treatment, detectable vs. non-detectable

Follows a competing rates formulation
Time iteration is monthly: relates well to treatment regimen
TB in and HIV background
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TB-HIV CO-DYNAMICS
IN KENYA:

Monitoring Interacting Epidemics

Sánchez M. S., J. O. Lloyd-Smith, B. G. Williams, T. C. Porco, 
S. J. Ryan, M. W. Borgdorff,  J. Mansoer, C, Dye, W. M. Getz, 

2009.  Incongruent HIV and Tuberculosis Co-dynamics in 
Kenya: Interacting Epidemics Monitor Each Other.  Epidemics 

1:14-20.



Tuberculosis notification rate, 2004

The boundaries and names shown and the designations used on this map do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any 
country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.  
Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. 
 WHO 2005. All rights reserved
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HIV prevalence in adults, 2005

38.6 million people [33.4-46.0 million] living with HIV, 2005



Estimated HIV prevalence in new adult TB cases, 
2004

The boundaries and names shown and the designations used on this map do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any 
country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.  
Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. 
 WHO 2005. All rights reserved
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Case Study: Circumcision & HIV
Williams, B.G., Lloyd-Smith, J.O., Gouws, E., Hankins, C., Getz, 
W.M., Dye, C.,1, Hargrove, J., de Zoysa, I., Auvert, B, 2006. 
The potential impact of male circumcision on HIV incidence, HIV 
prevalence and AIDS deaths in Africa.  PLoS Medicine 3(7):e262.

Important elements: 
two sex model

circumcised versus uncircumcised male categories
Weibull



Circumcision reduces female to male transmission of HIV by 70%



Circumcision reduces female to male transmission of HIV by 70%
green: S. Af.; red. E. Af.; orange: cent. Af.; blue, W. Af.



Circumcision reduces female to male transmission of HIV by 70%% circumcised % prevalence 

MC equivalent to a vaccine with 37% efficacy

impact

Currently

%prevalence 
reduction

numbers
1000s p.y.



Stochastic models in 
homogeneous populations

Discrete Markov Chain Binomial Models 
Reed-Frost (class room lectures late 1920s at Johns Hopkins)

E.g. Daley and Gani’s book: Epidemic Modelling, 1999

Graph theory interpretations of Reed-Frost models
unidirected graph on  N  nodes, probability  p  of connections

Giant component iff   R0=pN>1 ⇒ z = 1 - exp(R0z) 
where  z  is expected value for (1-S∞)



Stochastic models in 
homogeneous populations

Continuous time stochastic jump process models
SIR + demography

 E.g  Ingemar Nasell, Math. Biosci. 179:1-19, 2002.

Stochastic simulation of discrete time equivalents of 
SIR models with demography (including age structure)
(e.g. HIV models, TB models, SARS models, bovine TB models)



Problem with homogeneity!

1. Variation in host behavior:  contact rates
2. Variation in host susceptibility:  probability of infection
3. Variation in intensity of host infectivity:  probability of 

infection
4. Variation in period of infectiousness: number of contacts 

and probability if infection
5. Several host strains with varying transmissibility and 

virulence.
6.  Lots of others!



Superspreaders: the effect of 
heterogeneity on disease emergence

Lloyd-Smith, J. O., S, J. Schreiber, P. E. Kopp, and W. M. Getz, 2006. Superpreading 
and the impact of individual variation on disease emergence. Nature  438:335-359.



We have discussed disease models that 
assume homogeneous

Heterogeneity and epidemiology

What about continuous variability among 
individuals within well-mixed groups?  

 Common approach: break population into many 
sub-groups, each of which is homogeneous.

What about populations with heterogeneity?
  



1.  Probability that I  infects k  individuals is qk :    q = qk{ }k=0

∞                            

2.   Probability generating function  gq(z) = qkz
k ,

k=1

∞

∑   0 ≤ z ≤ 1                          

3.   zn   is probability I(t) = 0 at generation  n :    zn = gq(zn−1),   z1= q0               

4.            gq(0) = q0 ,                gq(1) = 1,              gq′ (1)=R0                                  
5.  Each individual expects to infect  ν:  Poisson process:  gq(z) = e

ν (z−1)           

Invasion condition (infinite pop size assumption, fixed generation time):
 Determistic:  R0>1 
  Stochastic (homogeneous): R0>1 ⇒ prob{invasion}=1-1/R0

Homogeneous models of disease: Individual Level
Galton-Watson branching process theory:

A probability generating function approach



5.  Each individual expects to infect ν  (homogenous ⇒ Poisson process)
6.  If ν  is itself distributed (e.g. gamma) then process                               
                         is not Poisson (e.g negative binomial)  

Heterogeneous models of disease: 
     Individual Level

Offspring distribution:
 Distribution of cases 
 caused by particular 
 individuals

Parent distribution:
 Individual reproductive 

number ν



Standard Model  I 

Completely homogeneous population, all ν = R0

ν

Constant

Parent distribution
fν (x) = δ x − R0( )

Z  

Poisson

Offspring distribution
g(z) = e − x 1− z( ) fν (x)dx

0

∞

∫

= e −R0 1− z( )



ν

Exponential

Parent distribution fν (x) =
1
R0
e− x R0

Z  

Geometric

Offspring distribution
g(z) = e − x 1− z( ) fν (x)dx

0

∞

∫
= 1+ R0 1− z( )

Standard Model  II  (SIR) 

Homogeneous transmission, constant recovery



Gamma

Parent distribution
ν

fν (x) =
1

Γ k( )
kx
R0








k−1
k
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e−kx R0

New Model

Heterogeneous force of infection 
(superspreaders in right-hand tail)

Negative Binomial

Offspring distribution

Z

g(z) = e − x 1− z( ) fν (x)dx
0

∞

∫

= 1+ R0
k
1− z( )
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   greater individual heterogeneity (parameter k)
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Beijing: Shen et al. EID (2004) Singapore: Leo et al. MMWR (2003)

Empirical distributions
The unprecedented global effort to contain SARS generated extensive 
datasets through intensive contact tracing: unique opportunity to study 

individual variation in a disease of casual contact.

Superspreading events:  Definition?
 Useful  concept?

 

Currently not useful!
Should measure 
variation



Beijing SARS hospital outbreak, 2003
Number of secondary cases: note superspreader 

events in tail 

What fits best?

1. ν ~ constant
 ⇒ Z ~ Poisson 

2.  ν ~ exponential
  ⇒ Z ~ geometric

3.      ν ~ gamma
  ⇒ Z ~ negative binomial



Singapore SARS outbreak, 2003



Singapore SARS outbreak, 2003



Singapore SARS outbreak, 2003



Singapore SARS outbreak, 2003

ν  parent 
distribution

Z  offspring 
distribution

ΔAICc Akaike weight

ν ~ constant Poisson 250.4 < 0.0001

ν ~ exponential Geometric 41.2 < 0.0001

ν ~ gamma Negative binomial 0 >0.9999

Model selection strongly favours NB distribution with MLE 
parameters R0=1.63, k=0.16.



Singapore SARS outbreak, 2003

Parent distribution ν is highly overdispersed:  
variance-to-mean ratio = 16.4

ν



Singapore SARS outbreak, 2003

c.f. “20/80 rule”: 20% of cases cause 80% of transmission 



Evidence 
heterogeneity in 
other diseases

SARS, smallpox, 
monkeypox, pneumonic 
plague, avian influenza, 
rubella

All show strong evidence 
for individual variation

P = Poisson model for Z
 generally rejected

G = geometric model
NB = negative binomial 

model 





Revisiting the 20/80 rule



Superspreaders



How many cases make an SSE?

SARS, 2003:

Superspreading Events (SSEs)

• Z ≥ 8, Shen et al. Emerg. Infect. Dis. (2003)
• Z > 10 Wallinga & Teunis, Am. J. Epidem. (2004)
• Z ≥ 10 Leo et al. MMWR (2003)
• “many more than the average number”, Riley et al. Science(2003)

But what about measles (R0~18) or monkeypox (R0~0.8)?

How to account for the influence of stochasticity?

We need a general, scaleable definition of a SSE, based on probabilistic 
considerations.



1. Set context for transmission by estimating effective R0.

Proposed definition for superspreading events

2.  Generate Poisson  (R0) representing expected range in Z due to  
stochastic effects in absence of individual variation

3. Define an SSE as any case who infects more than Z(99) others, 
where Z(99) is the 99th percentile of Poisson (R0).



■ R0

+ 99th percentile
 of Poisson (R0)

♦ reported SSEs 

 SSEs with >1 
index case

Superspreading events (SSEs)



Calculate  R0  from data and  ZPois-99  using Poisson model
 (number of infections demarcating 99 percentile)

Fit negative binomial  NegB(R0,k)  to data

Construct cummulative distribution ΦNB(ZPois-99 ) 

Calculate proportion in tail beyond  ZPois-99

 ΨNB(ZPois-99 ) =1-ΦNB(ZPois-99 )  
     
Superspreader load (SSL) is 1-ΨNB(ZPois-99 ) /0.01

Superspreading Load



Predicting frequency of SSEs in Negative 
Binomial epidemics NegB(R0,k) 

NegB(10.3,1):   SSL≈18



How does this variability affect: 
• Probability of stochastic extinction? (infinite population)

• Timing of extinction? 
• Size of minor outbreak?  (i.e prior to extinction)

• Rate of growth if major outbreak occurs?

Implications for disease invasion
Data from 10 diseases of casual contact show that 
individual variability in  ν  is a universal phenomenon.

We explored these questions using 
branching process models for ν ~ 

gamma



Various Gamma distributions with R0=1.5

 Special cases:  k = 1    exponential   ν:  Geometric offspring dist.
   k=infty    constant        ν:  Poisson offspring dist.
             smaller  k greater variance in ν:   Neg Biomial offspring dist. more aggregated



Probability of 
disease extinction

Greater variation in ν 
favors stochastic 
extinction, due to 
higher Pr(Z=0).



Time to stochastic 
extinction

High variability in ν 
(small k) ⇒ 

extinction happens 
fast or not at all.
Implications for 

detection of emerging 
pathogens



Expected size of minor outbreak
(i.e. epidemic in infinite pop goes extinct)

R0 < 1 E(total # cases) = 1/(1-R0)

       i.e. independent of k

R0 > 1   E(total # cases)
 depends very weakly on k



Rate of growth of major epidemic

Greater variability ⇒ major outbreaks are rare but explosive!



• Data imply considerable heterogeneity in epidemics
• Heterogeneity needed to explain rare explosive 

outbreaks, as in SARS
• To estimate level of heterogeneity we need BOTH R0 

and p0 (proportion of cases NOT transmitting) or 
SSL statistic

• Control measures should target individuals in tails of 
parent distribution and hence reduce probability of 
explosive outbreaks 

How to do this an important area of research?  

Conclusion



Thanks! 
The End
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