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Modeling Inflation and Money Demand Using a Fourier-Series 
Approximation 

 
 

 
1. Introduction 

 

Consider the economic time-series model given by:  

yt = αt + βxt + εt  (1) 

where: αt is the time-varying intercept, xt is a vector containing exogenous explanatory variables 

and/or lagged values of yt, and εt is an i.i.d. disturbance term that is uncorrelated with any of the 

series contained in xt. The notation in (1) is designed to emphasize the fact that the intercept term 

is a function of time. Although it is possible to allow the value of β to be time-varying, in order 

to highlight the effects of structural change, we focus only on the case in which the intercept 

changes. If the functional form of αt is known, the series can be estimated, hypotheses can be 

tested and conditional forecasts of the various values of {yt+j} can be made. In practice, two key 

problems exist; the econometrician may not be sure if there is parameter instability and, if such 

instability exists, what form it is likely to take.  Parameter instability could result from any 

number of factors including structural breaks, seasonality of an unknown form and/or an omitted 

variable from a regression equation. 

The time-series literature does address the first problem in great detail. In addition to the 

standard Chow (1960) test and Hausman (1978) test, survey articles by Rosenberg (1973) and 

Chow (1984) discuss numerous tests designed to detect structural change. More recently, 

Andrews (1993) and Andrews and Ploberger (1994) have shown how to determine if there is a 

one-time change in a parameter when the change point is unknown, Hansen (1992) has 

considered parameter instability in regressions containing I(1) variables, Lin and Teräsvirta 
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(1994) showed how to test for multiple breaks, and Tan and Ashley (1999) formulated a test for 

frequency dependence in regression parameters.  

The second problem is more difficult to address since there are many potential ways to 

model a changing intercept when the functional form of αt is unknown. For example, it is 

possible to include dummy variables to capture seasonal effects or to represent one or more 

structural breaks. Similarly, the inclusion of additional explanatory variables may capture the 

underlying reason for the change in the intercept. The time-varying intercept may be estimated 

using a Markov-switching process or a threshold process. Yet another avenue for exploration is 

to let the data determine the functional form of αt. For example, the local-level model described 

in Harvey (1989) uses the Kalman Filter to estimate αt as an autoregressive (or unit-root) 

process. The purpose of this paper is to demonstrate how the misspecification problem can be 

alleviated by the use of a methodology that ‘backs-out” the form of time-variation. The modeling 

strategy is based on a Fourier approximation in that it uses trigonometric functions to 

approximate the unknown functional form.  

The choice of the Fourier approximation as the method for modeling the time-varying 

intercept is driven by two major considerations. First, it is well-known that a Fourier 

approximation can capture the variation in any absolutely integrable function of time. Moreover, 

there is increasing awareness that structural change may often be gradual and smooth 

(Leybourne et al., 1998, Lin and Teräsvirta, 1994), rather than the sudden and discrete changes 

that are usually modeled by conventional dummy variables. As will become apparent, the 

Fourier approximation is particularly adept at modeling this kind of time variation. Second, the 

Fourier approach needs no prior information concerning the actual form of the time-varying 

intercept αt. Traditional models using dummy variables or more recent developments based on 
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nonlinear deterministic time trends (Ripatti and Saikkonen, 2001) require that the form of the 

time variation be specified at the outset. There is also a need to discriminate among alternative 

specifications using standard diagnostic tools. As noted by Clements and Hendry (1998, pp. 168-

9), parameter change appears in many guises and can cause significant forecast error in practice. 

They also establish that it can be difficult to distinguish model misspecification from the problem 

of non-constant parameters.  

 The use of the Fourier approximation is now well established in the econometric 

literature as Gallant (1984), Gallant and Souza (1991), and Becker, Enders and Hurn (2004) use 

one or two frequency components of a Fourier approximation to mimic the behavior of an 

unknown functional form. Moreover, the problem of testing for trigonometric components with 

predetermined frequencies was tackled by Farley and Hinich (1970, 1975) in the context of a 

model with parameter trend. Similarly, a test for the significance of trigonometric terms in a 

regression equation with an unknown frequency component was introduced by Davies (1987). In 

fact, Davies’ (1987) results are an important building block in our methodology. Davies’ test is 

analogous to that of Tan and Ashley (1999) if their frequency band is restricted to a single 

frequency.  

There are many tests for parameter instability and it is not the intention of this paper to 

merely present the empirical properties of yet another. Instead, our proposed methodology is 

intended to be most helpful when it is not clear how to model the time-varying intercept. The 

novel feature of this approach is that it uses the time-varying intercept as a modeling device to 

capture the form of any potential structural breaks and, hence, lessen the influence of model 

misspecification.  
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The rest of the paper is structured as follows. Section 2 makes the simple point that a 

low-order Fourier approximation can mimic a time-varying intercept term. Davies’ (1987) 

method of selecting a single frequency component and testing its statistical significance is 

presented in detail. Section 3 illustrates the methodology using the U.S. inflation rate. In 

particular, we show that a linear specification is inappropriate since the intercept for the 1970’s 

and 1980’s is high relative to the rest of the sample period. Section 4 describes a method to select 

multiple frequency components so as to mimic the form of the time-varying intercept. In Section 

5, we estimate the demand for money (as measured by M3). In essence, we back-out the form of 

the so-called “missing money.” It is particularly interesting that the time-varying intercept 

suggests that money demand was never a stable function of the price level, real income and the 

short-term interest rate. There is the strong suggestion that the missing money has the same form 

as the major stock market indices. Conclusions and limitations of our work are discussed in the 

final section. 

2. Modeling with a Fourier Approximation 

If αt is an absolutely integrable function of time, for any desired level of accuracy, it is 

possible to write:1 

 
;   s ≤ T/2    (2)  
 

 

where: s refers to the number of frequencies contained in the process generating αt, k represents a 

particular frequency and T is the number of usable observations.  

Figure 1 illustrates the simple fact that use of a single frequency in a Fourier 

approximation can approximate a wide variety of functional forms. The solid line in each of the 

four panels represents a sequence that we approximate using a single frequency. We let the four 
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panels depict sharp breaks since the smooth Fourier approximation has the most difficulty in 

mimicking such breaks. Consider Panel a in which the solid line represents a one-time change in 

the level of a series containing 100 observations (T = 100). Notice that a single frequency such 

that αt = 2.4 – 0.705sin(0.01226 t) – 1.82cos(0.01226 t) captures the fact that the sequence 

increases over time (Note: k = 0.1953 and  2π*0.1953/100 = 0.01226). In Panel b, there are two 

breaks in the series. In this case, the approximation αt = 0.642 – 0.105sin(0.586 t) –

0.375cos(0.586 t) captures the overall tendency of the series to increase. The solid line in Panel c 

depicts a sequence with a temporary change in the level while the solid line in Panel d depicts a 

“seasonal” sequence that is low in periods 1 – 25 and 51 – 75 and high in periods 26 – 50 and 76 

– 100. Again, the approximations using a single frequency do reasonably well. It is interesting 

that the frequency used for the approximation in Panel d is exactly equal to 2.0 since there are 

two regular changes in the level of the sequence. 

 Note that the approximation can be improved by using more than one frequency. Suppose 

that the solid line in Figure 2 represents a sequence that we want to estimate. If we approximate 

this sequence with a single frequency (k = 1.171), we obtain the dashed line labeled “1 

Frequency.” If we add another frequency component using k1 = 1.171 and k2 = 2.72, the 

approximation is now depicted by the line labeled “2 Frequencies” in Figure 2.  

 Thus, each of these sequences can be approximated by a small number of frequency 

components. The point is that the behavior of any deterministic sequence can be readily captured 

by a sinusoidal function even though the sequence in question is not periodic. As such, the 

intercept may be represented by a deterministic time-dependent coefficient model without first 

specifying the nature of the nonlinearity. Since it is not possible to include all frequencies in (2), 

the specification problem is to determine which frequencies to include in the approximation. As 
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a practical matter, the fact that we use a small number of frequencies means that the Fourier 

series cannot capture all types of breaks. Figures 1 and 2 suggest that our Fourier approximation 

will work best when structural change manifests itself smoothly. 

Davies (1987) shows how to select the most appropriate single frequency and to test its 

statistical significance. Suppose the {ξt} sequence denotes an i.i.d. error process with a unit 

variance. Consider the following regression equation: 

sin(2 / ) cos(2 / )t k k tA kt T B kt T eξ π π= + +   (3) 

where: Ak and Bk are the regression coefficients associated with the frequency k.  

For any value of k, it should be clear that rejecting the null hypothesis Ak = Bk = 0 is 

equivalent to rejecting the hypothesis that the { tξ } sequence is i.i.d. Since the frequency k is 

unknown, a test of the null hypothesis involves an unidentified nuisance parameter. As such, it is 

not possible to rely on standard distribution theory to obtain an appropriate test statistic. Instead, 

if S(k) is the test statistic in question, Davies uses the supremum: 

 S(k*) = sup{S(k): L ≤ k ≤ U}     (4) 

where: k* = is the value of k yielding the largest value of S(k) and [ L, U ] is the range of possible 

values of k.  

 Davies reparameterizes (3) such that:  

 Et-1(ξt) = a1sin[ ( t - 0.5T - 0.5)θ ]  + b1cos[ ( t - 0.5T - 0.5 )θ ] (5) 

where: θ = 2πk/T so that the values of {ξt} are zero-mean, unit-variance i.i.d. normally 

distributed random variables with a period of oscillation equal to 2π/k (since θ = 2πk/T).  

 For the possible values of θ in the range [ L, U ] where 0 ≤ L < U ≤ π, construct: 

 
2 2

1 2
1 1

( ) sin[( 0.5 0.5) ] / cos[( 0.5 0.5) ] /
T T

t t
t t

S k t T v t T vξ θ ξ θ
= =

   = − − + − −      
∑ ∑   (6) 
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where: v1 = 0.5T - 0.5sin(Tθ)/sin(θ) and v2 = 0.5T + 0.5sin(Tθ)/sin(θ). 

 Davies shows that: 

 prob [  { S(k*): L ≤  θ ≤ U } > u ]    (7) 

can be approximated by:2 

 Tu0.5e-0.5u( U – L )/(24π)0.5 + e-0.5u (8) 

  Given T, U and L, critical values for S(k*) can be derived from equations (7) and (8). 

Note that Davies’ method is equivalent to estimating (3) for each possible frequency in the 

interval 0 < U – L ≤ T/2. The frequency providing the smallest residual sum of squares is the 

same k* yielding the supremum S(k*). It is this value of k* that is a candidate for inclusion in the 

time-varying intercept.  

 Becker, Enders and Hurn (2004) discuss a modified test version of the Davies (1987) test 

that can be used in a regression framework. Let the data generating process be given by yt = β0 + 

εt. To test for a structural break in the intercept, estimate the following regression equation by 

ordinary least squares (OLS) for each potential frequency k: 

 yt = β0 + β1sin(2kπt/T) + β2cos(2kπt/T) + εt (9) 

 Let the value k* correspond to the frequency with the smallest residual sum of squares, 

RSS*, and let *
1β  and *

2β  be the coefficients associated with k*. Since the trigonometric 

components are not in the data-generating process, *
1β  and *

2β  should both equal zero. However, 

the usual F-statistic for the null hypothesis * *
1 2β β= = 0 does not follow a standard distribution 

since the coefficients are estimated using a search procedure and k* is unidentified under the null 

hypothesis of linearity. The critical values depend on the sample size and the maximum 

frequency used in the search procedure; the critical values for the OLS procedure are reproduced 
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in Table 1. Note that this is a supremum test since k* yields the minimum residual sum of 

squares.  

2.2 Dependent error structures 

It is not straightforward to modify the Davies test or the Trig-test for the case of a 

dependent error process. Nevertheless, Enders and Lee (2004) develop a variant of the Trig-test 

when the errors have a unit root.  Suppose that {yt} is the unit-root process: yt =  β0 + µt, where     

µt = µt-1 + εt and that the researcher estimates a regression equation in the form of (9) by ordinary 

least squares (OLS) for each potential frequency k. Enders and Lee (2004) derive the asymptotic 

distribution of the F-test for the null hypothesis * *
1 2β β= = 0.  They tabulate critical values for 

sample sizes of 100 and 500 searching over the potential frequencies to obtain the one with the 

best fit (k*). As in Becker, Enders and Hurn (2004), their tabulated critical values, called F(k*), 

depend on sample size and the maximum frequency used in the search procedure. It should be 

clear that the F(k*) test is a supremum test since k* yields the minimum residual sum of squares. 

For a sample size of 100 using a maximum value of k = 10, Enders and Lee (2004) report the 

critical values of F(k*) to be 10.63, 7.78 and 6.59 at the 1%, 5%, and 10% significance levels, 

respectively.  

2.2 Power 

Four conclusions emerged from Davies’ small Monte Carlo experiment concerning the 

power of his test. First, for a number of sequences with structural breaks, the power of the test 

increases in the sample size T. Second, the power of the test seems to be moderately robust to 

non-normality. Third, if the frequency is not an integer, the use of integer frequencies entails a 

loss of power. Fourth, if the frequency is an integer, the power of the discrete form of the test 

exceeds that of the test using fractional frequencies. Moreover, as can inferred from equations 
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(7) and (8), increasing the size of U - L increases the probability of any given value of u. Thus, 

unnecessarily expanding the size of the interval will reduce the power of the test. Since we are 

considering a small number of structural breaks, it makes sense to use a small value of U since a 

structural break is a ‘low frequency’ event.  

 It is well known that the most powerful test for a one-time change in the mean is that of 

Andrews and Ploberger (AP) (1994). To further illustrate the power of Davies’ test, we 

performed our own Monte Carlo analysis using equation (1) such that:   

 xt and εt ~ N(0,1), β = 1 and: 

 




>∀
≤∀

=
40,
40,0

t
t

t δ
α  (10) 

 We considered values of k in the range [ 0, 1 ] in order to allow for the possibility of an 

infrequent change in the mean. After all, a frequency greater than one is not likely to replicate a 

single break. Table 2 shows the power of the AP and the Davies tests for different break sizesδ .  

 Of course, if it is known that there cannot be more than a single break in the intercept, the 

AP test is preferable to the Davies test. However, the Davies test does perform almost as well as 

the optimal test for a single break. We performed a second Monte Carlo experiment to validate 

the notion that a Fourier approximation can be especially useful to mimic a sequence with 

multiple breaks. As such, we modified the data generating process in (9) to have a second 

structural break: 

 




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=
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 As shown in Table 3, the Davies test still possesses reasonably high power, while the AP 

test has much weaker power compared to its power against a one time structural break.3 For 

reasonably sized values of δ, the power of the Davies test exceeds that of the AP test. 

 Finally, Becker, Enders and Hurn (2004) show that Davies’ test and their modification of 

the Davies’ test (called the Trig-test) can have more power than the Bai-Perron (1998) test when 

the number of breaks is unknown. They show that the Davies test and the Trig-test have the 

correct empirical size and excellent power to detect structural breaks and stochastic parameter 

variation of unknown form. 

3. A Structural Break in the Inflation Rate 

To illustrate the use of the test for a single frequency component, we update and extend 

the example of Becker, Enders and Hurn (2004). We consider the application of the test to 

multiple frequencies in Section 4. In order to use the test it is necessary to standardize the 

residuals to have a unit variance.4 A more important issue is that regression residuals are only 

estimates of the actual error process. Hence, an alternative to obtaining critical values from (7) 

and (8) is to bootstrap the S(k*) statistic. In order to illustrate the use of Davies’ test, we obtained 

monthly values of the U.S. CPI (seasonally adjusted) from the website of the Federal Reserve 

Bank of St. Louis (http://www.stls.frb.org/fred/index.html) for the 1947:1 to 2004:8 period. It is 

well known that inflation rates, measured by the CPI, act as long-memory processes. For 

example, Baillie, Han and Kwon (2002) review a number of papers indicating that U.S. inflation 

is fractionally integrated and Clements and Mizon (1991) argue that structural breaks can explain 

such findings; a break in a time-series can cause it to behave like a unit-root process.   
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 If we let πt denote the logarithmic change in the U.S. CPI, the following augmented 

Dickey-Fuller test (with t-statistics in parentheses) shows that the unit-root hypothesis can be 

rejected for our long sample:5 

∆πt = 0.603 – 0.173πt-1 + 
11

1
i

i

β
=
∑ ∆πt-i + et (12) 

         (3.17)   (-4.35) 
 

  
 The key point to note is that standard diagnostic checks of the residual series {et} indicate 

that the model is adequate. If ρi denotes the residual autocorrelation for lag i, the correlogram is: 

    ρ1    ρ2    ρ3     ρ4    ρ5    ρ6      ρ7     ρ8    ρ9     ρ10     ρ11   ρ12 
-0.007 0.013 0.034 -0.008 0.002 0.051 -0.019  0.012 0.028 -0.012  -0.039 0.077 

  

However, when we performed a Dickey-Fuller test using a more recent sample period 

(1973:1 - 2004:8), the unit-root hypothesis cannot be rejected. Consider: 

∆πt = 0.440 – 0.095πt-1 + 
11

1
i

i

β
=
∑ ∆πt-i + et (13) 

         (1.72)   (-2.08) 
 

 In order to determine why the unit-root hypothesis is rejected over the entire sample 

period but not the latter period, we performed additional diagnostic checks on (12). For example, 

the RESET test suggests that the relationship is nonlinear. Let ∆ ˆtπ  and t̂ε  denote the fitted 

values and the residual values of equation (12), respectively. We regressed t̂ε on all of the 

‘explanatory’ variables in (12) and on ∆ ˆ H
tπ . The idea of the RESET test is that this regression 

should have little explanatory power if the actual data generating process is linear. For values of 

H equal to 3, 4 and 5, the prob-values for the RESET test are 0.011, 0.002 and 0.000, 

respectively. Moreover, Hansen’s (1992) test for parameter instability has a prob-value that is 
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less than 0.01. Thus, both tests suggest that some form of nonlinearity might be present in (12). 

However, neither test suggests the nature of the nonlinearity.   

We standardized the residuals from (12) and, since we are searching for a small number 

of breaks, constructed the values of S(k) for integer frequencies k = [ 1, 8 ].6 The “best” fitting 

frequency was found to 1.00 and the sample value S(k*) = 11.02. If we use Davies’ critical 

values, this value of S(k*) has a prob-value of less than 1%. Our concern about the use of 

estimated error terms led us to bootstrap the S(k*) statistic using the residuals from (12). We 

found that 95% of the bootstrapped values of S(k*) exceeded 5.94 and 99% exceeded 8.82. 

Hence, there is clear evidence of a structural break in the inflation rate. Next, using k* = 1.0, we 

estimated the regression equation:7  

11

1
1

1.08 0.330sin(2 / ) 0.803cos(2 / ) 0.301 t -it t i t
i

 = t T t T     π π π π β επ−
=

∆ − − − + +∆∑  (14)  

          (4.89)  (-1.87)       (-4.06)  (-6.01) 
 
 

The time path πt is shown in Panel a of Figure 3 and the time path of 1.08 - 0.330 

sin(2πt/T) - 0.803 cos(2πt/T) is shown in Panel b. It is clear from examining the time-varying 

intercept, that the period surrounding the 1970’s and 1980’s is different from the other periods. 

Such a structural break can explain why the results of the Dickey-Fuller tests differ over the two 

sample periods. If we wanted to refine the approximation of the time-varying intercept, we could 

apply the test a second time. However, our aim has been to illustrate the use of the Davies’ test 

for modeling a break using a single frequency. The appropriate selection of multiple frequency 

components is addressed in the next section.8 

4. Selecting the optimal number of terms in the Fourier expansion 

 The Davies’ test and the Trig-test are appropriate when the null hypothesis is that the 

regression residuals are i.i.d. At the other extreme, the test of Enders and Lee (2004) is for the 
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case of a nonstationary error process.  Note that all three papers test for the presence of a single 

frequency component. Our aim is a bit different in that we seek to select multiple frequencies in 

situations where the null hypothesis may not be that of a unit root or i.i.d. errors. Hence, one 

difficulty we face is that the selection of multiple frequencies can entail problems concerning 

sequential testing. As discussed in Hendry (1995) and Davidson (2000), sequential testing may 

cause differences between the actual and the nominal size of the test, even if the individual tests 

have the correct size. The second problem we face involves the issue of dependent errors since 

there is no test for the presence of frequency components under the general case of stationary, 

but not necessarily i.i.d., errors. It might seem reasonable to use the block bootstrap of Künsch 

(1989) or the stationary bootstrap of Politis and Romano (1994) to sequentially test each 

frequency component to be included in the intercept. After all, Li and Maddala (1996) and 

Hansen (1999) indicate that bootstrapping methods can be applied in the presence of unidentified 

nuisance parameters. The problem is that these bootstrapping procedures are designed to 

replicate the autocorrelation pattern in the residuals as a feature of the model under the null 

hypothesis. Structural breaks in the intercept term, however, will tend to manifest themselves in 

the residual autocorrelations of the restricted model. As such, the power to detect significant 

trigonometric terms would necessarily be extremely small.  

 Our proposed method attempts to circumvent these two problems when selecting multiple 

frequencies. When the null hypothesis is that the errors are i.i.d. (as in the previous example 

concerning the inflation rate), it is possible to bootstrap individual and/or groups of selected 

frequency components. Thus, the reliance of multiple applications of the S(k*) statistic is 

avoided. When the null hypothesis does not require unit root or i.i.d. errors, bootstrapping the 

individual frequency components becomes problematic. Instead, we sequentially add frequencies 
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to (2) as long as one of the model selection criteria, such as the AIC or BIC, continues to decline. 

Our own preference is to use the BIC since it will select the more parsimonious model. At each 

step, the frequency that maximizes the statistic, S(k*) in (6) is chosen.9 Once all such frequencies 

are chosen (so that the BIC is as small as possible), we test the null hypothesis that all values of 

Ak = Bk = 0 by bootstrapping. We conjecture that bootstrapping is feasible since Enders and Lee 

(2004) show that the F(k*) statistic can be derived and tabulated even in the case of nonstationary 

errors.10  In summary, we select frequencies sequentially using Davis (1987) grid search method 

and the number of frequency components is selected by the BIC. We then bootstrap the joint test 

that all frequency components are equal to zero. Unfortunately, the nature of the bootstrapping 

method that is appropriate for one application may not be appropriate for the next. As such, we 

illustrate the method for the difficult case wherein estimated equation is thought to be a 

cointegrating relationship.   

   

5. Structural Breaks in the Demand for Money 

 As discussed in a number of survey articles, including those by Goldfeld (1976) and Judd 

and Scadding (1982), there is a vast literature indicating a breakdown in the simple money 

demand relationship. As such, it seemed reasonable to apply our methodology to see if it could 

facilitate the modeling of a notorious problem. Consequently we obtained quarterly values of the 

U.S. money supply as measured by M3, seasonally adjusted real and nominal GDP, and the 3-

month treasury bill rate for the period 1959:1 – 2004:2 from the website of the Federal Reserve 

Bank of St. Louis (www.stls.frb.org/index.html).11 We constructed the price level as the ratio of 

nominal to real GDP. As shown in Table 4, augmented Dickey-Fuller tests including a time trend 

in the estimating equation indicated that the logarithms of M3 (m), real GDP (y), and the price 
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level (p) do not act as trend stationary processes. Even though the trend was excluded for the 

interest rate, the 3-month T-bill rate (r) does not seem to exhibit any mean reversion.    

 We then estimated the simple money demand function (with t-statistics in parentheses): 

 
 mt = -0.128 + 1.01pt + 1.10yt + 0.005rt (15) 

       (-2.52) (24.73)   (19.77)    (2.54) 
 
 AIC = -41.50, BIC = -28.69  
 
 Although the price and income elasticities are statistically significant and are of the 

correct sign and magnitude, there are some serious problems with the regression equation. In 

addition to the fact that the interest rate semi-elasticity of demand is positive, the residuals are 

not well-behaved. For example, the autocorrelations of the residuals are quite high: 

ρ1   ρ2 ρ3 ρ4  ρ5 ρ6 ρ7 ρ8 
0.98 0.94 0.90 0.85 0.80 0.75 0.69 0.63 

 

 The impression that (15) is not a cointegrating vector is confirmed by the Engle-Granger 

(1987) test. Both the AIC and BIC selected a lag length of one. For this lag length, the t-statistic 

for the null hypothesis that the variables are not cointegrated is only –1.86. 

 Of course, a structural break or a missing variable may be one reason that the residuals of 

(15) appear to be nonstationary. At this point, it is not our aim to determine whether the residuals 

pass a test for white-noise. Equation (15) requires only that the residuals be I(0) so that it is not 

appropriate to use the Davies test. Instead, we want to determine the most appropriate frequency 

to include in our Fourier approximation of the intercept term. We used the standardized residuals 

{ξt} to construct the value S(k) shown in (6) for each fractional frequency in the interval [0, 5].12 

Since there are 182 observations, this is equivalent to searching over θ in the interval 0 to 0.173. 

The frequency yielding the largest value of S(k) is such that k* = 2.48 and an associated value of 
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S(k*) = 61.68. The AIC and BIC are −119.5 and −97.1, respectively. Since these values are lower 

than those from (15), as measured by the AIC and BIC, there is at least one frequency present in 

the regression residuals. We then used this frequency k* to estimate a money demand function in 

the form: 

 m = αt + α1p + α2y + α3r (16) 

where: αt = a0 + A1
*sin[ 2π(2.48)t/T ]+ B1

*cos[ 2π(2.48)t/T  ].  

 Table 5 reports these values along with the value of the AIC and BIC for the resulting 

regression. The table also reports the sample value of the F-statistic for the null hypothesis A1
* = 

B1
*  = 0. The residuals from (16) were again standardized and the procedure was repeated. As 

shown in the second row of Table 5, the new value of S(k*) is 81.24 with a k* = 1.64. We re-

estimated the entire money demand equation including the two frequencies in αt. We continued 

to repeat the process until we found no frequency that would reduce the AIC or the BIC. Since 

the sixth iteration increased the BIC (and, using Davis’ critical values), produced a value of sup 

S(k) that is not significant at conventional levels, we retained only the results from the first five 

iterations. The final estimate of the money demand relationship is: 

 
 
 mt = αt + 1.14pt + 0.891yt - 0.005rt (17) 

               (35.22)   (19.23)   (−7.11) 
 

where: αt = [ ]∑
=

++
5

1

**
0 )/2cos()/2sin(

i
iiii TtkBTtkAa ππ  

 
and: a0 = 0.685 with a t-statistic of 1.63 and the Ai

* and Bi
* are given in Table 5. The AIC and 

BIC (incorporating the fact that two additional coefficients plus the frequency are estimated at 

each new iteration) steadily decline as the number of iterations increases through iteration 5.13  
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The final model fits the data quite well. As in (15), the price and income elasticities are of 

the correct magnitude. However, the interest rate semi-elasticity of demand for money now has 

the correct sign with a magnitude that is 7.1 times its standard error. The residuals are well-

behaved. The last column of the table shows the t-statistic for the Engle-Granger (1987) 

cointegration test using the frequency components through iteration i. Notice that incorporating 

these frequency components enables us to reject a null hypothesis of no cointegration.14 Figure 4 

provides a visual representation of αt. The striking impression is that the demand for money 

generally rose from 1959 through 1987. At this point, the demand for money suddenly declined. 

The decline continued through 1995 and then resumed its upward movement.  

Another way to make the same point is to compare residuals (i.e., the ‘equilibrium 

errors’) from (15) and (17). As shown in Figure 5, the residuals from the Fourier model are only 

slightly better than those of the linear model over the first half of the sample period. The fact that 

the residuals of the linear model become highly persistent beginning in 1982 is consistent with 

the notion that (15) is not a cointegrating relationship. In contrast, the residuals of the Fourier 

model are not highly persistent and behave similarly throughout the entire sample period.     

5.1 The Bootstrap 

Supporting evidence for the significance of the selected trigonometric series can be 

gathered by testing the null hypothesis δ = 0 in the following cointegrated system: 

 yt = xtβ + dtδ + et (18) 

 xt = xt-1 + µt (19) 

where: xt is a vector of I(1) exogenous variables, dt is the vector containing the relevant sine and 

cosine terms in the Fourier expansion of the constant, et is the vector of residuals from the 

cointegrating regression and µt  is a vector of I(0) error terms. Small sample properties of 
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inference on δ can at times be unsatisfactory (Li and Maddala, 1997) and bootstrapping methods 

have been proposed to improve such inference.  

 Generating bootstrap critical values for inference in cointegrated equations is, however, 

not straightforward. Bootstrapping the significance of the test statistic for δ = 0 in equation (18) 

using only the empirical distribution of error process et is inappropriate since it ignores the 

possibility that the errors may be autocorrelated and that the regressors in xt might be 

endogenous in the sense that that the elements of µt are correlated with et. Li and Maddala (1997) 

and Psaradakis (2001) introduced bootstrap procedures to be applied in this framework. 

Although they do not provide a formal proof, they present simulation evidence to establish that 

the bootstrap procedure introduced here achieves significantly improved small sample 

inference.15  

A bootstrapping procedure allowing for autocorrelated residuals and endogeneity of xt is 

performed according to the following steps (Psaradakis, 2001): 

1. We estimate (18) and (19) using fully-modified least squares under the null hypothesis 
δ = 0 to obtain a consistent estimate of β. The estimated model yields the residual 
estimates: t̂e  and ˆ tµ . 
 
2. We draw bootstrap replications for the matrix of residuals *ˆ ˆ ˆ( , )t t te ′=µ µ . To account for 
all possible autocorrelations and crosscorrelations, we estimate *ˆ tµ as the VAR(p) system: 

* *
0

1

ˆ ˆ
p

t i t t
i

γ γ
=

= + +∑µ µ ε  (20) 

 
Resampling the estimated residuals from (20) yields the bootstrap estimates of *ˆ tµ .  
 
3. These bootstrap estimates are then used to construct the resampled values of xt and yt . 
Using the bootstrapped data, the model in (18) may be re-estimated and by repetition of 
this procedure the empirical distribution of the LR statistic for the null hypothesis δ = 0 
may be built up and a prob-value derived.  
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 When we preformed this procedure using the five frequency components reported in 

Table 5, we obtained a sample statistic with a prob-value of 0.000. As such, there is strong 

support for the claim that (17) forms a cointegrating relationship. 

 
5.2 The error-correction model 
 
 In the presence of αt, the four variables appear to form a cointegrating relationship; as 

such, there exists an error-correction representation such that m, y, p and r adjust to the 

discrepancy from the long-run equilibrium relationship. However, unlike a traditional error-

correction model, adjustment will be nonlinear since the constant in the cointegrating vector is a 

function of time. As such, we estimated the following error-correcting model using the residuals 

from (17) as the error-correction term. Consider: 

 
 ∆mt = -0.207ect-1 + A11(L)∆mt-1 + A12(L)∆pt-1 + A13(L)∆yt-1 + A14(L)∆rt-1  (21) 
  (-5.94)        (0.000)             (0.248)           (0.062)           (0.141) 
 

∆pt =  0.054ect-1 + A21(L)∆mt-1 + A22(L)∆pt-1 + A23(L)∆yt-1 + A24(L)∆rt-1  (22) 
  (3.02)         (0.742)       (0.000)            (0.306)          (0.254) 
 

∆yt = 0.091ect-1 + A31(L)∆mt-1 + A32(L)∆pt-1 + A33(L)∆yt-1 + A34(L)∆rt-1  (23) 
 (1.75)      (0.462)       (0.817)           (0.011)          (0.0030) 

 
∆rt =  0.676ect-1 + A41(L)∆mt-1 + A42(L)∆pt-1 + A43(L)∆yt-1 + A44(L)∆rt-1 (24) 
 (1.45)      (1.56)            (0.001)           (0.000)          (0.000) 

 

where: ect-1 = error-correction term (as measured by the residual from (17), Aij(L) = third-order 

polynomials in the lag operator L, parenthesis contain the t-statistic for the null hypothesis that 

the coefficient on the error-correction term is zero or the F-statistic for the null-hypothesis that 

all coefficients in Aij(L) = 0, and constant terms in the intercepts are not reported.  
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 Note that the money supply contracts and the price level increases in response to the 

previous period’s deviation from the long-run equilibrium. However, income and the interest rate 

appear to be weakly exogenous.  

5.3 The restricted model 
 
 One possible concern about the system given by (21) − (24) is money and the price level 

appear to be jointly determined endogenous variables.  Moreover, income is weakly exogenous 

at the 5% significance level but not at the 10% level. With several jointly endogenous variables, 

the single-equation approach to examining a cointegrating relationship may be inappropriate 

unless a fully modified least squares procedure, such as that developed by Phillips and Hansen 

(1990), is used.  For our purposes, it is convenient that the income and price elasticities of the 

money demand function are very close to unity. As such, it is possible for us to simply 

investigate the restricted money demand equation: 

 
 mpt = -0.425 + 0.005rt   (25) 
         (-31.50)   (2.53) 
 
 AIC = -26.63  BIC = -29.84 

where:  mpt = the logarithm of real money balanced divided by real GDP (i.e.,  mt – pt – yt).  

 In (25), the interest rate is weakly exogenous and the money supply, price level and 

income level all appear in the left-hand-side variable mt – pt – yt.  This regression suffered the 

same problems as the unconstrained form of the money demand function. After applying our 

methodology to the constrained money demand function we obtained: 

 
mpt = α(t) - 0.003rt  (26) 
                  (-3.82) 
 
AIC = -550.03  BIC = -499.57 
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and αt = has the same form as (17). 

The time path of αt (not shown) is virtually identical to that shown in Figure 4. The error-

correction model using the constrained form of the money-demand function is: 

 
∆mpt = -0.312ect-1 + A11(L)∆mpt-1 + A12(L)∆rt-1 (27) 
              (-6.98)         (0.000)              (0.000) 
 
∆rt = 2.75ect-1 + A21(L)∆mpt-1 + A22(L)∆rt-1   (28) 
           (0.677)      (0.098)          (0.000) 
 

where: ect-1 = error-correction term (as measured by the residual from (23), Aij(L) = third-order 

polynomials in the lag operator L, parenthesis contain the t-statistic for the null hypothesis that 

the coefficient on the error-correction term is zero or the F-statistic for the null-hypothesis that 

all coefficients in Aij(L) = 0, and intercepts are not reported.  

5.4 Integer Frequencies 
 
 In order to illustrate the use of integer frequencies and to compare the approximation to 

that using continuous frequencies, we re-estimated the money demand function using discrete 

frequencies in the expanded interval [ 1, 8 ] so that θ  ranges from 0.0345 to 0.241 in steps of 

0.0345.  

 The results from estimating the money demand function with integer frequencies are 

shown in Table 6. The form is the same as that in (17) except that discrete frequencies 1, 2, 3, 4, 

5 and 6 are used in the approximation for αt. The bootstrap methodology need not be modified in 

any important way when using integer frequencies. As a group, these six integer frequencies are 

statistically significant at conventional levels. Although the fit (as measured by the AIC and BIC) 

is not as good as that using continuous frequencies, the Engle-Granger test strongly suggests that 
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the residuals are stationary. The time-path of αt using discrete frequencies (not shown) is nearly 

identical to that obtained using fractional frequencies. 

5.5 Missing Variables 
 
 As suggested by Clements and Hendry (1998), a specification error resulting from an 

omitted variable can manifest itself in parameter instability. One major advantage of ‘backing-

out’ the form of αt is that it might help to suggest the missing variable responsible for parameter 

instability. Certainly, if a variable has the same time path as αt, including it as a regressor would 

capture any instability in the intercept. In terms of our money demand analysis, the inclusion of a 

variable having the time profile exhibited in Figure 4 might suggest the form of the missing 

money. To demonstrate the point, we included a time trend in the demand for money function 

such that: 

 αt = a0 + b0 t + (a1 + b1 t)d1 + (a2 + b2 t)d2  (29) 

where: d1 = 1 for 1982:2 < t ≤ 1995:2 and 0 otherwise 

 d2 = 1 for t > 1995:2 and 0 otherwise 

 Thus, instead of using our Fourier approximation, we represent αt by a linear trend with 

breaks in the intercept and slope coefficients occurring at the time periods suggested by Figure 4. 

The estimated money demand function is: 

 mt = αt + 0.807pt + 0.571yt - 0.004rt  (30) 
               (18.62)    (6.16)    (-3.89) 
 
αt = 2.49 + 0.008t + ( 1.65 - 0.014t )d1 + (-1.04 + 0.004t )d2 
       (3.79)   (6.57)    (21.14) (-22.34)        (-15.54)    (9.45) 

 
 AIC = -476.71   BIC = -447.88 

 The Engle-Granger test indicates that the residuals from (30) are stationary: with four 

lags in the augmented form of the test, the t-statistic on the lagged level of the residuals is –5.07. 
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As measured by the AIC and BIC, this form of the money demand function does not fit the data 

quite as well as those using the Fourier approximation. Moreover, the price and income 

elasticities have been shifted downward. One reason for the superior fit of the Fourier model 

might simply be the fact that breaks in the time trend are actually smooth rather than sharp.  

 Although the Fourier approximations have better overall properties than (30), we used a 

trend-line containing two breaks for illustrative purposes only. The point is that a Fourier 

approximation can be used to ‘back-out’ the time-varying intercept. As such, the visual depiction 

of the time-varying intercept can be suggestive of a missing explanatory variable. Of course, in 

addition to a broken trend-line, there are other candidate variables. Figure 4 suggests that the 

large decline in wealth following Black Monday in October of 1987 might have been responsible 

for the decline in money demand. As stock prices recovered, the demand for M3 seemed to have 

resumed its upward trend. There does not seem to be enough data to determine whether the stock 

market decline following the events of 9 September 2001 had a similar effect on money demand.  

6. Conclusion 

In the paper, we developed a simple method that can be used to test for a time-varying 

intercept and to approximate its form. The method uses a Fourier approximation to capture any 

variation in the intercept term. As such, the issue becomes one of deciding which frequencies to 

include in the approximation. The test for a structural break works nearly as well as the Andrews 

and Ploberger (1994) optimal test if there is one break and can have substantially more power in 

the presence of multiple breaks. Perhaps, the most important point is that successive applications 

of the test can be used to ‘back-out” the form of the time-varying intercept.  

A number of diagnostic tests indicate that a linear autoregressive model of the U.S. 

inflation rate (as measured by the CPI) is inappropriate. It was shown that our methodology is 
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capable of ‘backing-out’ the form of the nonlinearity. We also explored the nature of the 

approximation using an extended example concerning the demand for M3. Using quarterly U.S. 

data over the 1959:1 – 2004:2 period, we confirmed the standard result that the demand for 

money is not a stable linear function of real income, the price level and a short-term interest rate. 

The incorporation of the time-varying intercept resulting from the Fourier approximation appears 

to result in a stable money demand function. Moreover, the magnitudes of the coefficients are 

quite plausible and all are significant at conventional levels. The form of the intercept term 

suggests a fairly steady growth rate in the demand for M3 until late-1987. At that point, there 

was a sharp and sustained drop in demand. Money demand continued to decline until mid-1995 

and then resumed its upward trend. The implied error-correction model appears to be reasonable 

in that money and the price level (but neither income nor the interest rate) adjust to eliminate any 

discrepancy in money demand.  

 There are a number of important limitations of the methodology. First, in a regression 

analysis, a structural break may affect the slope coefficients as well as the intercept. Our 

methodology forces the effects of the structural change to manifest itself only in the intercept 

term. A related point is that the alternative hypothesis in the test is that the residuals are not 

white-noise. It is quite possible that the methodology captures any number of departures from 

white-noise and places them in the intercept term. Third, we have not addressed the issue of out-

of-sample forecasting. Although the Fourier approximation has very good in-sample properties, 

it is not clear how to extend the intercept term beyond the observed data. Our preference is to use 

an average of the last few values of αt for out-of-sample forecasts. However, there are a number 

of other possibilities that are equally plausible. Anyone who has read the paper to this point can 
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certainly add to the list of limitations. Nevertheless, we believe that the methodology explored in 

this paper can be useful for modeling in the presence of structural change.  
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Table 1: Critical Values for the F* Test with i.i.d. errors 
 

 
 T = 50 

 
T = 100 

 
T = 250 

 
T = 1000 

Maximum Frequency = T/2 
 

90% 
 

5.81 
 

6.37 
 

  7.17  
 

  8.53  
 

95% 
 

6.72 
 

7.19 
 

7.94 
 

9.25 
 

99% 
 
  8.87  

 
9.09 

 
9.72 

 
10.95 

Maximum Frequency = T/4 
 

90% 
 

4.95 
 

5.61 
 

6.44 
 

7.80 
 

95% 
 

5.84 
 

6.46 
 

7.19 
 

8.53 
 

99% 
 

8.08 
 

8.31 
 

8.92 
 

10.21 
Maximum Frequency = T/12 

 
90% 

 
3.54 

 
4.27 

 
5.19 

 
6.69 

 
95% 

 
4.38 

 
5.09 

 
5.94 

 
7.44 

 
99% 

 
6.27 

 
6.95 

 
7.65 

 
9.17 
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Table 2: Power of the Andrews-Ploberger and Davies Tests with One Break 

Andrews δ  = 0 δ  = 0.5 δ  = 1 
1% 0.008 0.115 0.652 
5% 0.043 0.274 0.825 
10% 0.094 0.399 0.896 
Davies δ  = 0 δ  = 0.5 δ  = 1 
1% 0.007 0.105 0.585 
5% 0.047 0.290 0.794 
10% 0.096 0.409 0.891 
Table 1: Reports size (δ  = 0) and power statistics for Andrews and Davies 
test applied to the process in (11 and 12). Significance evaluated by means 
of bootstrap. 

 
 

 
Table 3: Power of the Andrews-Ploberger and Davies Tests with Two Breaks 

Andrews δ  = 0 δ  = 0.5 δ  = 1 
1% 0.008 0.026 0.103 
5% 0.043 0.103 0.294 
10% 0.094 0.185 0.443 
Davies δ  = 0 δ  = 0.5 δ  = 1 
1% 0.007 0.074 0.444 
5% 0.047 0.213 0.671 
10% 0.096 0.335 0.772 
Table 2: Reports size (δ  = 0) and power statistics for Andrews and Davies test 
applied to the process in (14). Significance evaluated by means of bootstrap. 

 
 
 

Table 4: Results of the Dickey-Fuller Tests 
 

Variable     Lags t-statistic 
∆m 1 -1.20 
∆y 2  -3.03 
∆p 3 -1.62 
∆r 3 -1.67 

 

Critical values for the Dickey-Fuller test are -3.99, -3.43 and -3.13 at the 1%, 5% and 10% 
significance levels, respectively. Since the test for the interest rate did not include a deterministic 
time trend, the appropriate critical values for the ∆r equation are -3.46, -2.88 and -2.57 at the 1%, 
5% and 10% significance levels, respectively. 
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Table 5: Results of the Successive Iterations 

Iteration S(k*) *
ik  AIC BIC *

iA  *
iB  F(k*) t 

1 
 

61.69 
 

2.48 
 

−119.5 
 

−97.1 
 

−0.003 
(0.0056)

−0.058 
(0.0057)

51.88 −2.07 
 

2 
 

81.24 
 

1.64 
 

−336.9 
 

−304.8 
 

−0.080 
(0.0039)

  0.043 
(0.0088)

208.77 −3.54 
 

3 
 

72.32 
 

3.73 
 

−511.4 
 

−469.8 
 

  0.009 
(0.0019)

−0.039 
(0.0024)

145.16 −4.55 
 

4 
 

45.79 
 

4.75 
 

−572.3 
 

−521.1 
 

−0.004 
(0.0016)

−0.014 
(0.0017)

38.14 −5.56 
 

5 
 

  2.48 5.00 −596.8 −535.9   0.003 
(0.0038)

−0.028 
(0.0051)

15.47 −5.75 

6   0.03 
 

4.24 
 

−592.6 
 

−522.1 
 

  0.009 
(0.0155)

  0.012 
(0.0158)

0.87 −5.84 
 

 
 
NOTE: Davies critical values for S(k*) are 10.58, 12.09, 13.59 and 15.55 at the 10%, 5%, 2.5% 
and 1% significance levels, respectively. We do not bootstrap the S(k*) statistic for the individual 
frequency components. Standard errors of the estimated coefficients are in parentheses. Critical 
values for the F(k*) test are 10.63, 7.78 and 6.59 at the 1%, 5%, and 10% significance levels, 
respectively. t is the sample value of the Engle-Granger statistic for the null hypothesis of non-
stationarity of the regression residuals. 

 
Table 6: The Approximation with Discrete Frequencies 

Iteration S(k*) *
ik  AIC BIC *

iA  *
iB  F(k*) t 

1 55.33 3 −108.3 −85.9 −0.026 
(0.0065)

0.048 
(0.0060)

43.27 −2.81 

2 48.90 2 −210.7 −178.6 0.049 
(0.0054)

0.044 
(0.0046)

70.80 −4.52 

3 44.84 1 −435.9 −394.2 0.084 
(0.0119)

−0.049 
(0.0058)

220.40 −3.82 

4 50.21 5 −506.2 −454.9 −0.014 
(0.0021)

−0.013 
(0.0020)

44.24 −4.90 

5 33.08 6 −547.8 −486.9 0.005 
(0.0012)

0.012 
(0.0012)

25.14 −5.56 

6 26.76 4 −625.9 −555.4 −0.015 
(0.0020)

−0.014 
(0.0017)

48.75 −6.41 

7 1.78 7 −623.0 −542.9 −0.002 
(0.0017)

−0.002 
(0.0015)

1.39 −6.65 

 
NOTE: See notes for Table 5 

 



 32

Endnotes 
 

                                                 
1 Let the function αt have the Fourier expansion: 

sin cosk k0t
k=1

2 k 2 k      =  +    t +   t A BT T
π πα α

∞  • •  
∑  

 
and define Fs(t) to be the sum of the Fourier coefficients: 






 ••∑  t
T

k2  B + t
T

k2  A  = (t)F     kk

s

=1k
s

ππ cossin  

 
Then, for any arbitrary positive number h, there exists a number N such that: 

 
| αt - Fs(t) |  ≤ h for all s ≥ N. 

2  Since the approximation works extremely well, even for a sample size of 16, we use only the 
approximate forms of the test statistic. Also note that θ need not be chosen such that k is an 
integer; in fact, below we illustrate that fractional values of k can provide good approximations 
to changes in the conditional mean of a series. 
 
3 The Andrews-Ploberger test is only included for illustrative purposes--it is well known that it is 
not the optimal test for a double break. 
 
4 If T is large, the assumption of the known variance is overly strong; the asymptotic results go 
through using the estimated variance.  
 
5 The AIC select the 12-lag specification while the BIC selects a model with 11-lagged changes. 
The essential results are virtually identical using either specification.  
 
6 The results are similar if we use fractional frequencies.  
 
7 Since we searched over the various frequencies to find the best fit, a number of the t-statistics 
we report do not have their usual interpretation.  
 
8 The point of this section was to illustrate Davies test for a structural break. When we applied 
the Davies test to the standardized residuals of (14), we obtained k* = 2.0 and S(k*) = 4.95. 
Using Davies’ critical values and the bootstrapped critical values, the second frequency was not 
significant at conventional levels. By way of comparison, the successive applications of the AP 
test indicated only a one-time shift in the intercept occurring in 1967:5 
 
9 Note that this method selects the identical frequencies as using the OLS-based Trig-test or the 
method suggested by Enders and Lee (2004) for their F(k*) statistic. 
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10 Note that the Enders and Lee (2004) critical values are not directly applicable to our study of 
the money demand function. Their critical values are derived from a univariate framework and 
not from a cointegrated system. Nevertheless, the fact that there is a distribution of the unit-root 
case suggests that there is a distribution for the case of cointegrated variables.  
 
11 Almost identical results to those reported below hold if we use M2 instead of M3.  
 
12 We used a maximum value of k = 5 since we wanted to consider only ‘low frequency’ changes 
in the intercept. Also note that we searched at intervals of 1/512. The results turn out to be 
similar if we use integer frequencies.  
 
13  Also shown in Table 5 is the sample value of F(k*).  It is interesting to note that these values 
of F(k*) exceed the critical values reported by Enders and Lee (2004) through iteration 5. 
 
14 It is not our intention here to provide a new test for cointegration. Note that the critical values 
for the Engle-Granger test may depend on the inclusion of the frequency components. After all, 
the frequency components were chosen by means of a grid search so as to provide the component 
with the best fit. A proper cointegration test would bootstrap the critical of the Engle-Granger 
test statistic. However, that would take us far beyond the purpose of this paper.  
 
15 To the best of our knowledge, no theoretical arguments are available yet, to establish whether 
this, or any other bootstrap procedure, generates consistent inference in the context of 
cointegrated regressions. 



Figure 1: Four Fourier Approximations to Changes in the Mean
Panel a: Permanent Change in the Mean
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Panel c: A Temporary Change in the Mean
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Panel b: Two Breaks in the Mean
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Panel d: Seasonal Changes in the Mean
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Figure 2: Increasing the Number of Freqencies
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Figure 3: A Structual Break in U.S. Inflation?
Panel a: The U.S. Inflation Rate
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Panel b: The Time-Varying Coefficient
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Figure 4: Intercept of the Demand for Money
(5 Frequencies)
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Fourier Linear

Figure 5: Equilibrium Errors from the Linear and Fourier Models

1959 1963 1967 1971 1975 1979 1983 1987 1991 1995 1999 2003
-0.20

-0.15

-0.10

-0.05

-0.00

0.05

0.10

0.15




