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Abstract— Performance improvements for computational 
sciences such as biology, physics, and chemistry are critically 
dependent on advances in multicore and manycore hardware. 
However, these emerging systems require substantial 
investment in software development time to migrate, optimize, 
and validate existing science models. The focus of our study is 
to examine the step--by-step process of adapting new and 
existing computational biology models to multicore and 
distributed memory architectures. We analyze different 
strategies that may be more efficient in multicore vs. manycore 
environments.  Our target application, Kingen, was developed 
to simulate AMPAR ion channel activity and to optimize 
kinetic model rate constants to biological data.  Kingen uses a 
genetic algorithm to stochastically search parameter space to 
find global optima.  As each individual in the population 
describes a rate constant parameter set in the kinetic model 
and the model is evaluated for each individual, there is 
significant computational complexity and parallelism in even a 
simple model run. 
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I.  INTRODUCTION 
Ion channels are trans-membrane proteins that open and 

close to regulate the flow of ions (currents) across 
membranes in all cells. These ionic currents are critical to 
intra- and inter-cellular signaling. Ion channels are especially 
suitable biological entities for computational studies through 
kinetic modeling.  These kinetic features critically influence 
the temporal coding of cell-signaling information. AMPA 
receptors (AMPARs), ligand-gated ion channels activated by 
the timed release of the neurotransmitter glutamate, are 
responsible for nearly all fast excitatory neuronal signaling in 
the central nervous system.  Understanding the detailed 
kinetic properties of these receptors underlies our 
understanding of neurodevelopment, sensory processing, 
learning/memory and pathological states such as epilepsy 
and intellectual disability. 

Simulations of ion channel kinetics allow the 
investigation of how different inputs (e.g. for AMPARs, the 
alteration of the relative amount and temporal characteristics 
of glutamate stimulation) influence reaction rates and 
transition states of the kinetic scheme.  A kinetic scheme 
(model) describes states, or conformations of the protein 
(open, closed, or desensitized), and the transition rates 

between them (timing of the switching from one state to 
another). Our goal is to rapidly optimize (fit) rate constants 
of the receptors to experimental kinetic data. Numerous 
studies have demonstrated that these receptors activate, 
deactivate and desensitize in a complex fashion.  Previously 
published kinetic schemes are unable to simultaneously 
describe all key biological characteristics of AMPAR that 
underlie complex neuronal signaling.     

Implementation and optimization of kinetic schemes 
were initially coded sequentially and were found to be 
prohibitively time consuming (> 30 days). The execution 
time was so prohibitive to prevent its usefulness to explore 
the implications and validate existing and alternative models, 
to test a broader range of parameter sets and to conduct 
sensitivity analyses.  An efficient method for modeling and 
simulation is a tremendous advantage to researchers. 

We developed a process to adapt scientific applications 
to parallel architectures.  We integrated a strategy 
recommended by Intel engineers and conducted our analysis 
level-by-level starting with system level analysis and drilling 
down to progressively finer levels of analysis (Fig. 1).  There 
is, of course, some interplay and overlap between the levels 
but the approach defines a meaningful framework within our 
overall process.   

 
Figure 1.  Model illustrating the process we followed to characterize, 

profile, optimize, and port our application to parallel architectures.  

Case studies continue to play an important role in 
addressing programming challenges in HPC and in maturing 
computational science [1].  We re-iterate the importance of 
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integrating analysis and performance optimization in 
transition plans to parallel architectures which are too often 
ignored or under-prioritized in practice.   We achieved 
important gains by following the left-hand side of Fig. 1 
from system-level to optimization-level analysis through 
sequential execution on CPU that was magnified in parallel.  
Careful analysis identified where the application spends 
more than 95% of its time (after optimization) which is never 
obvious through manual source code inspection alone for 
anything beyond a simple example.  (It is easy for developers 
to think they fully understand their application’s behavior but 
they are usually wrong and best practices dictate getting the 
data [2].)   

We are researching how to leverage more advanced and 
difficult to exploit parallelism in our hotspot region which 
guarantees high returns on our efforts. We are examining our 
straight-forward implementation of a self-scheduling 
algorithm (or master-slave algorithm) using MPI since we 
discovered limitations with some workloads under genetic 
algorithm optimization that need to be explored further and 
we are porting the application to GPU. 

This paper is organized as follows.  Section 2 includes 
background and a brief discussion of related work. Section 3 
demonstrates characteristics of Kingen through workload 
characterization and the methodology we used for 
application profiling.  Section 4 describes our computing 
framework for kinetic simulations on multicore and cluster 
architectures including a coarse-grained parallel 
implementation of the model, developed using Intel’s 
Threaded Building Blocks (TBB) on multicore systems and 
MPI on a 204-core cluster. In section 5 we explore our 
ability to efficiently port applications that scale with 
massively parallel architectures.  

II. BACKGROUND AND RELATED WORK 
In this section we briefly summarize research efforts 

related to high performance kinetic modeling and application 
profiling and workload characterization.   

A. High Performance Ion Channel Kinetic Modeling 
Researchers in [3] developed software called kinetic 

preprocessor (KPP) that was designed as a general analysis 
tool to aid simulation of chemical kinetic systems.  They 
maintain computational efficiency in generated code but 
don’t explicitly support emerging architectures.  However, 
[4] extended KPP to generate optimized code for multicore 
platforms and compared their implementation for the 
Weather Research and Forecast with Chemistry model on 
three multicore platforms:  GPUs, Cell Broadband Engine, 
and quad-core CPUs. 

   Neural simulations that exploit multicore architectures 
are explored in-depth in [5].  They focus on solving linear 
systems of equations in parallel and automatic load-
balancing.  Ion channel modeling is one component in 
systems modeling of many types (the neural cell as a system, 
a network of cells involved in the same function as a system, 
etc.) and progress made at this level facilitates modeling at 
other levels. 

B. Application Profiling and Workload Characterization 
Analyzing program behavior is critically important to 

optimization goals and in guiding porting efforts to parallel 
architectures.  Research in parallel debugging, performance 
prediction, auto-tuning, scheduling, as well as practical 
application in administration of HPC installations 
(supercomputing centers), all rely on application profiling 
and workload characterization.  In general, the complexities 
of emerging systems are under intense scrutiny to address 
that errors are so easy to make, yet so difficult to understand 
and isolate.   

C. Analysis Tools 
There are many different analysis tools available that 

vary by compatibility, type of information, level of detail, 
runtime impact on code, scalability, and ease of use [6].  Yet, 
few agree that the tools they use in HPC satisfy all their 
needs.  There is a strong need for tools that are non-intrusive, 
easy to use, and correct.  

For this analysis we used Pin [7].  PIN is a JIT-based 
instrumentation engine that supports binary introspection on 
the IA32, EM64T, IPF and XScale platforms via the use 
of Pin Tools that export a rich user interface. Without 
applying instrumentation, the system can be viewed as a 
native-to-native binary translator. Pin performs various 
optimizations such as code caching, trace linking, inlining, 
register allocation and liveness analysis on the generated 
code to minimize the overhead incurred at run-time. 

III. APPLICATION CHARACTERIZATION AND PROFILE 
Successful porting of scientific applications to multicore 

and manycore architectures heavily depends on primary 
characteristics of the application.  We profiled Kingen and 
characterized our typical workload to optimize the 
application for performance and to identify how best to map 
it to parallel architectures.   

A. System Level Analysis 
Performance increase is the driving factor for 

parallelizing an application, so a first check when porting a 
program to parallel architectures should be on thread 
utilization.  Kingen’s thread profile (across all cores, the 
threads are fully utilized 93% of the time, underutilized 
4.8%, and serial 1.65%) demonstrates that all available cores 
are kept busy most of the time indicating that Kingen is 
processor-bound.  Stalls due to memory or disk requests 
can’t be happening very often and the way to increase 
performance for this application is through more cores. 

B. Application Level Analysis 
There are no system level concerns, so we continue with 

application level analysis.  To port our application, it was 
important to understand where it spends most of its time 
during execution to focus on those regions of code that are 
actually impacting performance.   

Our runtime is dominated by the simulation loop where 
each chromosome is evaluated.  We removed code 
redundancies in this loop and the overhead inherent in 
function calls. These manual optimizations had a significant 
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impact on performance as shown in Fig. 2.  We are currently 
evaluating parallel options to address the bottleneck in the 
simulation loop. 

During analysis of the runtime hotspots, we also looked 
at cycles per instruction retired (CPI) and at floating point 
(FP) related metrics since it is clear Kingen is very compute-
intensive due to its dependence on FP operations. Through 
experimentation on how to reduce the CPI and FP 
performance impacting issues it became clear we needed to 
upgrade our compiler and establish a new baseline.  The 
upgrade changed, among other things, the instruction set 
default to require Intel SSE2 instead of X87 instructions.  
Significant FP operations affecting performance were 
addressed by upgrading an optimizing compiler.   

 
Figure 2.  Speed-ups achieved by upgrading the compiler and through 

manual tuning. 

IV. COMPUTING FRAMEWORK 
   We implemented Kingen on several different multicore 

architectures:  four cores on 32-bit windows and 64-bit linux 
(Intel Quad Q6600), eight cores on 32-bit windows (Intel 
X5355) and a 204-core linux based cluster.  We evaluate our 
parallel implementation, speedup, and computational 
complexity in the following subsections.  

A. Kingen Description 
Kingen simulates AMPAR ion channel activity and 

optimizes kinetic model rate constants to biological data.  
Kingen uses a genetic algorithm to optimize (fit) the rate 
constants of AMPA receptors.   GAs are based on Darwinian 
evolution and are increasingly used to solve hard problems 
of practical interest in diverse fields [8].  GAs are known for 
their ability to find optimal solutions within a defined 
parameter space from initial random populations [9].   
Kingen approximates the solution of a system of linear 
differential equations that kinetically describe AMPAR-
mediated ionic currents using the Runge-Kutta 4th order 
method.   

Kingen was carefully restructured to be a highly 
parallelized program (shown in Fig. 3).  This program is 
designed to study AMPARs but the approach is also 
applicable to other types of ion channels [10, 11].   

   

 
Figure 3.  Pseudo-code of coarse-grained  multicore TBB parallelism.  

Each chromosome in the population describes a rate constant parameter set 
in the kinetic model and the program evaluates each individual in parallel.   

B. Coarse-grained Multicore TBB Implementation 
TBB is developed by Intel as a template library that 

extends C++ [12].  TBB abstracts CPU resources and allows 
parallelism to be expressed with constructs that were 
designed to be familiar to C++ developers. 

We implemented coarse-grained parallelism with 
parallel_for, a TBB template function that parallelizes loops 
that have independent iterations.  We parallelized the loop 
that iterates over each chromosome to evaluate each 
chromosome’s “fitness”.  The iteration space is broken up 
into chunks of work and TBB runs each chunk on a separate 
thread.   

Kingen’s coarse-grained parallelism encloses a great deal 
of computation complexity.  Fig. 4 is a graph of time as a 
function of the number of chromosomes being evaluated in 
each generation.  The computation complexity between 
generations under several computing frameworks is apparent 
as the problem size starts to grow exponentially quickly. 

 

 
Figure 4.  Computational complexity.  Genetic algorithms rely on genetic 

diversity to improve convergence.  As you increase the number of 
individuals per generation the problem starts to grow exponentially. 

C. 204-Core Cluster with MPI Implementation 
We also ported Kingen to a Linux-based computing 

cluster that has 17-nodes (1 master, 16 compute nodes) with 
2 x 2.2 GHz AMD Opteron six core processors per node. 

initialize chromosomes, model parameters, and random numbers 
for (int i = 0; i < number of generations;  i++){ 
     // PARALLEL EXECUTION 

For (int a = 0; a < number of chromos; a++) { 
     ic50 error 

ec50 for peak error 
ec50 for steady error  

             entry to desensitization error  
tau error 
 recovery from desensitization error 

} 
// Genetic algorithm runs sequentially  
genetic algorithm 
     pick N random chromosomes and select best among them  
    apply mutation operator 

        apply crossover operator 
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The cluster computing power includes 204 cores (12 core 
on master node and 192 cores on compute nodes).   The 
cluster enables us to examine much larger populations in the 
genetic algorithm.  This is quantified in Fig. 4 where you can 
see how many individuals we can use in each generation on 
the cluster before our execution time grows exponentially 
(~600).   

We parallelized the application at the same coarse-
grained level as we did on the multicore architectures using 
MPI and a master-slave algorithm to automatically handle 
load distribution to the available cores.  As soon as a given 
compute core is done processing one chromosome it sends 
its results back to the master, and the master, knowing which 
core just became available for more work, sends that core 
another chromosome to be processed.  This algorithm is 
elegant in that no one compute node is ever held up waiting 
for some other process to finish.  Each compute core gets 
more work assigned as soon as it has completed its task for 
as long as there are more chromosomes to process. 

D. Fine-grained Parallel Opportunities? 
Speedup analysis on the cluster indicates that our coarse-

grained parallelism can be too coarse when working on 
multicore and smaller scaled systems.  On more moderately 
parallel systems (as opposed to massively parallel systems) 
common in many research departments and test frameworks 
it makes sense to explore dynamic scheduling algorithms 
and/or finer-grained parallel approaches within the 
application.  For example, we calculate the error for a given 
rate constant (chromosome) many times under different 
conditions for many different kinetic processes and at 
different points in the curves that describe these processes 
(e.g. inhibition of currents by glutamate and the peak current, 
time course of entry into desensitization, time course of 
current in response to 5mM glutamate and recovery from 
desensitization under different concentrations of glutamate).  
Each of these errors is summed together to get the “fitness 
score” for each chromosome and each error can be run in 
parallel.  Our coarse-grained parallelism at the chromosome 
level runs each of the simulations sequentially.   

The workload can be distributed differently for more 
efficient use of the idle cores that impact the speedup at 
different combinations of the number of execution cores and 
number of chromosomes under smaller workloads as seen in 
Fig. 7 (speedup was also evaluated for 100 chromosomes 
with similar results, not shown) by evaluating each error 
simultaneously. Of course, you have to be careful of the 
relationship between the number and size of messages and 
communication overhead in MPI that is known to impact 
performance.  We are evaluating different approaches to 
determine the effects they have on efficient mappings to 
multicore and manycore architectures.  

The simulation loop computes 4th order Runge-Kutta 
formulas to numerically integrate differential equations that 
describe our kinetic scheme.  ODE solvers are inherently 
serial since they time-step the solution over an interval and 
each time step is dependent on the calculations from the 
previous time step.  This is true in our simulation loop.  
However, any gain made here will have a large impact on 

overall performance since this is where Kingen spends the 
vast majority of runtime.   

The simulation loop performs many complex calculations 
for each state in the kinetic model.  Fig. 5 graphs this 
complexity by measuring the dependence height, number of 
operations, and number of memory operations involved in 
each state computation.  Fig. 6 shows the dependence graphs 
for each state using several as examples. These two figures 
demonstrate there are parallel opportunities within the 
sequential constraints of the simulation loop.  The 
differential equation for each state represents 22-way 
parallelism, but they are hard to exploit.    

 

Figure 5.   Calculation complexity for the differential equations describing 
each state in the kinetic model over dependence height, number of 

operations, and number of memory operations.  The x-axis represents the 
ODE for each state in the kinetic model.  The y-axis is the state calculation 

complexity. 

 

Figure 6.   Dependence graphs per state.  Each are independent and point 
to further optimizations opportunities in code.   
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V. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Simulation and Experimental Set-up 
Fig. 7 shows speedups we have obtained as a result of 

our step-by-step process and coarse-grained parallelism.  
Note that Fig. 7 is based on 50 chromosomes per generation.  
This means that 51 cores is the most we can efficiently use 
with this workload under this implementation (one core for 
the master and one core to evaluate each chromosome) 
which explains the leveling off in Fig. 7b between 60 and 70 
cores (see speedup until 51 cores but didn’t measure until 60 
cores; flat-line between 60 and 70 is because we are not 
using the additional cores for this workload).  As the number 
of chromosomes per generation increases, the performance 
improvement is magnified as shown in Fig. 8. 

 

 

Figure 7.  Speedup on several architectures with a baseline of 50 
chromosomes. Timings were averaged over 10 executions:  (a)  Quad core 
and 8 core windows and linux multicore architectures.  We set the baseline 
to our current model in serial before redundancies in the hotspot region or 

other optimization opportunities were addressed.  You see ~2 speedup even 

sequentially (1 core) because the sequential baseline is post compiler 
upgrade and pre-manual code optimizations;  (b)  204 core linux based 

cluster with MPI.  This baseline includes all code optimizations. 

 Figure 7b shows a flattening out of the linear speed-
up we were achieving between 30 and 50 cores.  This is 
explained when you look at how the chromosomes 
(individuals in the genetic algorithm) are sent to each core 
using MPI messaging and the master-slave algorithm (see 
table I).  The workload modeled in Fig. 7 has 50 
chromosomes to process.  At first all available compute cores 
receive one chromosome to process.  The only exception is if 
there are less chromosomes than available cores in which 
case most receive 1 (depending on the number of 
chromosomes) and the rest are idle; this happens with this 
workload when the number of cores is 52 or greater.  With 
51 execution cores, there is one master and 50 compute 
cores, one for each of the 50 chromosomes, and execution is 
bound by the time it takes to evaluate one chromosome per 
generation on average.   

    After the first distribution of work, some compute 
nodes receive more chromosomes to process.  For example, 
the first row of table I is read as: with 10 execution cores, 1 
is master and 9 are compute cores; 9 compute cores process 
5 chromosomes each on average (9*5 = 45 chromosomes 
accounted for), and ultimately 5 of those 9 must compute an 
additional chromsome or 6 total (for a total of 50 
chromosomes among all cores).    It doesn’t matter if all 9 
cores compute 6 chromosomes or if just 1 core computes 6 
chromosomes; the runtime is bound by the core(s) with the 
most work to do.  

TABLE I.  CHROMOSOME DISTRIBUTION 

Number  
Execution 

Cores 

Available 
Compute  

Cores 

Number 
chromosomes 
processed by 
each compute 

core on 
average 

Number 
chromosomes 
processed by 
most tasked 

compute 
core(s)  

10 9 5 6 
20 19 2 3 
30 29 1 2 
40 39 1 2 
50 49 1 2 
60 59 1 1 

 
   Between 30 and 50 cores, where the speedup levels off, 

you can see from table I that the number of chromosomes 
processed by the most tasked core(s) is the same, two.  This 
is why there is no speedup in this range.  You see linear 
speedup between 10 and 20 cores and between 20 and 30 
cores because the cores with the most work went from 6 
chromosomes to 3 chromosomes and 3 chromosomes to 2 
chromosomes, respectively.  The execution is bound by the 
number of chromosomes processed by the heaviest tasked 
core (s) through the distribution of work.  We don’t see the 
speedup affected on the quad core and 8 core multicore 
systems because with any reasonable workload (50 is about 
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the fewest chromosomes we can consider) we don’t have 
enough cores to see this effect. 

       Figure 8 demonstrates that speedup with a more 
substantial workload doesn’t have the same dependence on 
the combination of the number of cores and the number of 
chromosomes as the application does with smaller 
populations.  We tested 1,000, 3,000 (shown in Fig. 8) and 
5,000 chromosomes and they all had similar speedup lines 
on the cluster.  We believe there is a tipping point between 
100 and 600 chromosomes where the effect seen in Fig 7b is 
active and it makes sense to devote more effort to keeping 
idle cores busy. This point is likely related to where the 
execution size starts to grow exponentially (see Fig. 4) and 
we are currently quantifying it more precisely.  There is a 
compelling need to improve performance with smaller 
workloads on moderately parallel systems for more simple 
models, test, and proof of concepts common within these 
ranges. ggg

 
Figure 8.  Speedup using many more chromosomes on the 204-core linux 
cluster.  We had to experimentally derive the baseline sequential runtime 
(3000 chromosomes takes prohibitively long). We measured the average 

execution of 1 chromosome (over 20 examples) and found little variation in 
the mean.  We multiplied this average by 3000 for the baseline sequential 
value in the graph.  We compared this approach with smaller populations 
(10, 20 and 50 chromosomes) over multiple generations and found this 

approach yields accurate results. 

VI. CONCLUSIONS 
Impressive performance gains for Kingen were achieved 

with a process that systematically proceeds through different 
levels of analysis.  Improving the sequential version is 
important as those gains were magnified in parallel.  On a 
multicore architecture, the TBB implementation achieves a 
~15x reduction in run time (2-4 days with more demanding 
workloads as compared with >30 days sequentially with a 
simpler model). Our analysis presented here suggests there is 
even more parallelism to exploit.  The most efficient map 
depends on the architecture and is probably significantly 
different for multicore architectures and manycore 
architectures.  In addition, this application may be ideally 
suited for GPU acceleration.  

Scientific applications need to be thoroughly profiled and 
typical workloads characterized to reach performance goals 
and to map to new architectures.  Overall, the improvement 

of the time-intensive optimization of kinetic models will 
accelerate discovery in neuroscience. Furthermore, the 
methodology to do so will be applicable to a broad range of 
scientific applications accelerating discovery in computer 
science. Researchers in HPC need reliable tools to facilitate 
porting to emerging systems that reduce errors and increase 
throughput. 
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