
Modeling Ion Channel Kinetics with HPC
*Allison Gehrke, #Katherine Rennie, +Timothy Benke, ++Daniel A. Connors, and *Ilkyeun Ra

*Dept. of Computer Science and Engineering, #Otolaryngology, +Pharmacology, +Pediatrics, +Neurology, and ++Electrical
Engineering

University of Colorado, Denver
Denver, USA

{Allison.gehrke, Katie.rennie, Tim.benke, dan.connors, Ilkyeun.ra}@ucdenver.edu

Abstract— Performance improvements for computational
sciences such as biology, physics, and chemistry are critically
dependent on advances in multicore and manycore hardware.
However, these emerging systems require substantial
investment in software development time to migrate, optimize,
and validate existing science models. The focus of our study is
to examine the step--by-step process of adapting new and
existing computational biology models to multicore and
distributed memory architectures. We analyze different
strategies that may be more efficient in multicore vs. manycore
environments. Our target application, Kingen, was developed
to simulate AMPAR ion channel activity and to optimize
kinetic model rate constants to biological data. Kingen uses a
genetic algorithm to stochastically search parameter space to
find global optima. As each individual in the population
describes a rate constant parameter set in the kinetic model
and the model is evaluated for each individual, there is
significant computational complexity and parallelism in even a
simple model run.

Keywords- multicore; cluster; workload characterization;
application profiling; kinetic modeling; scientific application;
high performance computation; ion channel kinetics

I. INTRODUCTION
Ion channels are trans-membrane proteins that open and

close to regulate the flow of ions (currents) across
membranes in all cells. These ionic currents are critical to
intra- and inter-cellular signaling. Ion channels are especially
suitable biological entities for computational studies through
kinetic modeling. These kinetic features critically influence
the temporal coding of cell-signaling information. AMPA
receptors (AMPARs), ligand-gated ion channels activated by
the timed release of the neurotransmitter glutamate, are
responsible for nearly all fast excitatory neuronal signaling in
the central nervous system. Understanding the detailed
kinetic properties of these receptors underlies our
understanding of neurodevelopment, sensory processing,
learning/memory and pathological states such as epilepsy
and intellectual disability.

Simulations of ion channel kinetics allow the
investigation of how different inputs (e.g. for AMPARs, the
alteration of the relative amount and temporal characteristics
of glutamate stimulation) influence reaction rates and
transition states of the kinetic scheme. A kinetic scheme
(model) describes states, or conformations of the protein
(open, closed, or desensitized), and the transition rates

between them (timing of the switching from one state to
another). Our goal is to rapidly optimize (fit) rate constants
of the receptors to experimental kinetic data. Numerous
studies have demonstrated that these receptors activate,
deactivate and desensitize in a complex fashion. Previously
published kinetic schemes are unable to simultaneously
describe all key biological characteristics of AMPAR that
underlie complex neuronal signaling.

Implementation and optimization of kinetic schemes
were initially coded sequentially and were found to be
prohibitively time consuming (> 30 days). The execution
time was so prohibitive to prevent its usefulness to explore
the implications and validate existing and alternative models,
to test a broader range of parameter sets and to conduct
sensitivity analyses. An efficient method for modeling and
simulation is a tremendous advantage to researchers.

We developed a process to adapt scientific applications
to parallel architectures. We integrated a strategy
recommended by Intel engineers and conducted our analysis
level-by-level starting with system level analysis and drilling
down to progressively finer levels of analysis (Fig. 1). There
is, of course, some interplay and overlap between the levels
but the approach defines a meaningful framework within our
overall process.

Figure 1. Model illustrating the process we followed to characterize,

profile, optimize, and port our application to parallel architectures.

Case studies continue to play an important role in
addressing programming challenges in HPC and in maturing
computational science [1]. We re-iterate the importance of

Parallel Architectures

System-Level

Application-Level

Optimization-Level

Intel Vtune

Intel PIN

Profiling

CPU

Intel and
SSE2

Multicore

Intel
TBB

Cluster

Linux
MPI

GPU

Nvidia
CUDA

2010 12th IEEE International Conference on High Performance Computing and Communications

978-0-7695-4214-0/10 $26.00 © 2010 IEEE

DOI 10.1109/HPCC.2010.46

480

2010 12th IEEE International Conference on High Performance Computing and Communications

978-0-7695-4214-0/10 $26.00 © 2010 IEEE

DOI 10.1109/HPCC.2010.46

562

integrating analysis and performance optimization in
transition plans to parallel architectures which are too often
ignored or under-prioritized in practice. We achieved
important gains by following the left-hand side of Fig. 1
from system-level to optimization-level analysis through
sequential execution on CPU that was magnified in parallel.
Careful analysis identified where the application spends
more than 95% of its time (after optimization) which is never
obvious through manual source code inspection alone for
anything beyond a simple example. (It is easy for developers
to think they fully understand their application’s behavior but
they are usually wrong and best practices dictate getting the
data [2].)

We are researching how to leverage more advanced and
difficult to exploit parallelism in our hotspot region which
guarantees high returns on our efforts. We are examining our
straight-forward implementation of a self-scheduling
algorithm (or master-slave algorithm) using MPI since we
discovered limitations with some workloads under genetic
algorithm optimization that need to be explored further and
we are porting the application to GPU.

This paper is organized as follows. Section 2 includes
background and a brief discussion of related work. Section 3
demonstrates characteristics of Kingen through workload
characterization and the methodology we used for
application profiling. Section 4 describes our computing
framework for kinetic simulations on multicore and cluster
architectures including a coarse-grained parallel
implementation of the model, developed using Intel’s
Threaded Building Blocks (TBB) on multicore systems and
MPI on a 204-core cluster. In section 5 we explore our
ability to efficiently port applications that scale with
massively parallel architectures.

II. BACKGROUND AND RELATED WORK
In this section we briefly summarize research efforts

related to high performance kinetic modeling and application
profiling and workload characterization.

A. High Performance Ion Channel Kinetic Modeling
Researchers in [3] developed software called kinetic

preprocessor (KPP) that was designed as a general analysis
tool to aid simulation of chemical kinetic systems. They
maintain computational efficiency in generated code but
don’t explicitly support emerging architectures. However,
[4] extended KPP to generate optimized code for multicore
platforms and compared their implementation for the
Weather Research and Forecast with Chemistry model on
three multicore platforms: GPUs, Cell Broadband Engine,
and quad-core CPUs.

 Neural simulations that exploit multicore architectures
are explored in-depth in [5]. They focus on solving linear
systems of equations in parallel and automatic load-
balancing. Ion channel modeling is one component in
systems modeling of many types (the neural cell as a system,
a network of cells involved in the same function as a system,
etc.) and progress made at this level facilitates modeling at
other levels.

B. Application Profiling and Workload Characterization
Analyzing program behavior is critically important to

optimization goals and in guiding porting efforts to parallel
architectures. Research in parallel debugging, performance
prediction, auto-tuning, scheduling, as well as practical
application in administration of HPC installations
(supercomputing centers), all rely on application profiling
and workload characterization. In general, the complexities
of emerging systems are under intense scrutiny to address
that errors are so easy to make, yet so difficult to understand
and isolate.

C. Analysis Tools
There are many different analysis tools available that

vary by compatibility, type of information, level of detail,
runtime impact on code, scalability, and ease of use [6]. Yet,
few agree that the tools they use in HPC satisfy all their
needs. There is a strong need for tools that are non-intrusive,
easy to use, and correct.

For this analysis we used Pin [7]. PIN is a JIT-based
instrumentation engine that supports binary introspection on
the IA32, EM64T, IPF and XScale platforms via the use
of Pin Tools that export a rich user interface. Without
applying instrumentation, the system can be viewed as a
native-to-native binary translator. Pin performs various
optimizations such as code caching, trace linking, inlining,
register allocation and liveness analysis on the generated
code to minimize the overhead incurred at run-time.

III. APPLICATION CHARACTERIZATION AND PROFILE
Successful porting of scientific applications to multicore

and manycore architectures heavily depends on primary
characteristics of the application. We profiled Kingen and
characterized our typical workload to optimize the
application for performance and to identify how best to map
it to parallel architectures.

A. System Level Analysis
Performance increase is the driving factor for

parallelizing an application, so a first check when porting a
program to parallel architectures should be on thread
utilization. Kingen’s thread profile (across all cores, the
threads are fully utilized 93% of the time, underutilized
4.8%, and serial 1.65%) demonstrates that all available cores
are kept busy most of the time indicating that Kingen is
processor-bound. Stalls due to memory or disk requests
can’t be happening very often and the way to increase
performance for this application is through more cores.

B. Application Level Analysis
There are no system level concerns, so we continue with

application level analysis. To port our application, it was
important to understand where it spends most of its time
during execution to focus on those regions of code that are
actually impacting performance.

Our runtime is dominated by the simulation loop where
each chromosome is evaluated. We removed code
redundancies in this loop and the overhead inherent in
function calls. These manual optimizations had a significant

481563

impact on performance as shown in Fig. 2. We are currently
evaluating parallel options to address the bottleneck in the
simulation loop.

During analysis of the runtime hotspots, we also looked
at cycles per instruction retired (CPI) and at floating point
(FP) related metrics since it is clear Kingen is very compute-
intensive due to its dependence on FP operations. Through
experimentation on how to reduce the CPI and FP
performance impacting issues it became clear we needed to
upgrade our compiler and establish a new baseline. The
upgrade changed, among other things, the instruction set
default to require Intel SSE2 instead of X87 instructions.
Significant FP operations affecting performance were
addressed by upgrading an optimizing compiler.

Figure 2. Speed-ups achieved by upgrading the compiler and through

manual tuning.

IV. COMPUTING FRAMEWORK
 We implemented Kingen on several different multicore

architectures: four cores on 32-bit windows and 64-bit linux
(Intel Quad Q6600), eight cores on 32-bit windows (Intel
X5355) and a 204-core linux based cluster. We evaluate our
parallel implementation, speedup, and computational
complexity in the following subsections.

A. Kingen Description
Kingen simulates AMPAR ion channel activity and

optimizes kinetic model rate constants to biological data.
Kingen uses a genetic algorithm to optimize (fit) the rate
constants of AMPA receptors. GAs are based on Darwinian
evolution and are increasingly used to solve hard problems
of practical interest in diverse fields [8]. GAs are known for
their ability to find optimal solutions within a defined
parameter space from initial random populations [9].
Kingen approximates the solution of a system of linear
differential equations that kinetically describe AMPAR-
mediated ionic currents using the Runge-Kutta 4th order
method.

Kingen was carefully restructured to be a highly
parallelized program (shown in Fig. 3). This program is
designed to study AMPARs but the approach is also
applicable to other types of ion channels [10, 11].

Figure 3. Pseudo-code of coarse-grained multicore TBB parallelism.

Each chromosome in the population describes a rate constant parameter set
in the kinetic model and the program evaluates each individual in parallel.

B. Coarse-grained Multicore TBB Implementation
TBB is developed by Intel as a template library that

extends C++ [12]. TBB abstracts CPU resources and allows
parallelism to be expressed with constructs that were
designed to be familiar to C++ developers.

We implemented coarse-grained parallelism with
parallel_for, a TBB template function that parallelizes loops
that have independent iterations. We parallelized the loop
that iterates over each chromosome to evaluate each
chromosome’s “fitness”. The iteration space is broken up
into chunks of work and TBB runs each chunk on a separate
thread.

Kingen’s coarse-grained parallelism encloses a great deal
of computation complexity. Fig. 4 is a graph of time as a
function of the number of chromosomes being evaluated in
each generation. The computation complexity between
generations under several computing frameworks is apparent
as the problem size starts to grow exponentially quickly.

Figure 4. Computational complexity. Genetic algorithms rely on genetic

diversity to improve convergence. As you increase the number of
individuals per generation the problem starts to grow exponentially.

C. 204-Core Cluster with MPI Implementation
We also ported Kingen to a Linux-based computing

cluster that has 17-nodes (1 master, 16 compute nodes) with
2 x 2.2 GHz AMD Opteron six core processors per node.

initialize chromosomes, model parameters, and random numbers
for (int i = 0; i < number of generations; i++){
 // PARALLEL EXECUTION

For (int a = 0; a < number of chromos; a++) {
 ic50 error

ec50 for peak error
ec50 for steady error

 entry to desensitization error
tau error
 recovery from desensitization error

}
// Genetic algorithm runs sequentially
genetic algorithm
 pick N random chromosomes and select best among them
 apply mutation operator

 apply crossover operator

482564

The cluster computing power includes 204 cores (12 core
on master node and 192 cores on compute nodes). The
cluster enables us to examine much larger populations in the
genetic algorithm. This is quantified in Fig. 4 where you can
see how many individuals we can use in each generation on
the cluster before our execution time grows exponentially
(~600).

We parallelized the application at the same coarse-
grained level as we did on the multicore architectures using
MPI and a master-slave algorithm to automatically handle
load distribution to the available cores. As soon as a given
compute core is done processing one chromosome it sends
its results back to the master, and the master, knowing which
core just became available for more work, sends that core
another chromosome to be processed. This algorithm is
elegant in that no one compute node is ever held up waiting
for some other process to finish. Each compute core gets
more work assigned as soon as it has completed its task for
as long as there are more chromosomes to process.

D. Fine-grained Parallel Opportunities?
Speedup analysis on the cluster indicates that our coarse-

grained parallelism can be too coarse when working on
multicore and smaller scaled systems. On more moderately
parallel systems (as opposed to massively parallel systems)
common in many research departments and test frameworks
it makes sense to explore dynamic scheduling algorithms
and/or finer-grained parallel approaches within the
application. For example, we calculate the error for a given
rate constant (chromosome) many times under different
conditions for many different kinetic processes and at
different points in the curves that describe these processes
(e.g. inhibition of currents by glutamate and the peak current,
time course of entry into desensitization, time course of
current in response to 5mM glutamate and recovery from
desensitization under different concentrations of glutamate).
Each of these errors is summed together to get the “fitness
score” for each chromosome and each error can be run in
parallel. Our coarse-grained parallelism at the chromosome
level runs each of the simulations sequentially.

The workload can be distributed differently for more
efficient use of the idle cores that impact the speedup at
different combinations of the number of execution cores and
number of chromosomes under smaller workloads as seen in
Fig. 7 (speedup was also evaluated for 100 chromosomes
with similar results, not shown) by evaluating each error
simultaneously. Of course, you have to be careful of the
relationship between the number and size of messages and
communication overhead in MPI that is known to impact
performance. We are evaluating different approaches to
determine the effects they have on efficient mappings to
multicore and manycore architectures.

The simulation loop computes 4th order Runge-Kutta
formulas to numerically integrate differential equations that
describe our kinetic scheme. ODE solvers are inherently
serial since they time-step the solution over an interval and
each time step is dependent on the calculations from the
previous time step. This is true in our simulation loop.
However, any gain made here will have a large impact on

overall performance since this is where Kingen spends the
vast majority of runtime.

The simulation loop performs many complex calculations
for each state in the kinetic model. Fig. 5 graphs this
complexity by measuring the dependence height, number of
operations, and number of memory operations involved in
each state computation. Fig. 6 shows the dependence graphs
for each state using several as examples. These two figures
demonstrate there are parallel opportunities within the
sequential constraints of the simulation loop. The
differential equation for each state represents 22-way
parallelism, but they are hard to exploit.

Figure 5. Calculation complexity for the differential equations describing
each state in the kinetic model over dependence height, number of

operations, and number of memory operations. The x-axis represents the
ODE for each state in the kinetic model. The y-axis is the state calculation

complexity.

Figure 6. Dependence graphs per state. Each are independent and point
to further optimizations opportunities in code.

483565

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Simulation and Experimental Set-up
Fig. 7 shows speedups we have obtained as a result of

our step-by-step process and coarse-grained parallelism.
Note that Fig. 7 is based on 50 chromosomes per generation.
This means that 51 cores is the most we can efficiently use
with this workload under this implementation (one core for
the master and one core to evaluate each chromosome)
which explains the leveling off in Fig. 7b between 60 and 70
cores (see speedup until 51 cores but didn’t measure until 60
cores; flat-line between 60 and 70 is because we are not
using the additional cores for this workload). As the number
of chromosomes per generation increases, the performance
improvement is magnified as shown in Fig. 8.

Figure 7. Speedup on several architectures with a baseline of 50
chromosomes. Timings were averaged over 10 executions: (a) Quad core
and 8 core windows and linux multicore architectures. We set the baseline
to our current model in serial before redundancies in the hotspot region or

other optimization opportunities were addressed. You see ~2 speedup even

sequentially (1 core) because the sequential baseline is post compiler
upgrade and pre-manual code optimizations; (b) 204 core linux based

cluster with MPI. This baseline includes all code optimizations.

 Figure 7b shows a flattening out of the linear speed-
up we were achieving between 30 and 50 cores. This is
explained when you look at how the chromosomes
(individuals in the genetic algorithm) are sent to each core
using MPI messaging and the master-slave algorithm (see
table I). The workload modeled in Fig. 7 has 50
chromosomes to process. At first all available compute cores
receive one chromosome to process. The only exception is if
there are less chromosomes than available cores in which
case most receive 1 (depending on the number of
chromosomes) and the rest are idle; this happens with this
workload when the number of cores is 52 or greater. With
51 execution cores, there is one master and 50 compute
cores, one for each of the 50 chromosomes, and execution is
bound by the time it takes to evaluate one chromosome per
generation on average.

 After the first distribution of work, some compute
nodes receive more chromosomes to process. For example,
the first row of table I is read as: with 10 execution cores, 1
is master and 9 are compute cores; 9 compute cores process
5 chromosomes each on average (9*5 = 45 chromosomes
accounted for), and ultimately 5 of those 9 must compute an
additional chromsome or 6 total (for a total of 50
chromosomes among all cores). It doesn’t matter if all 9
cores compute 6 chromosomes or if just 1 core computes 6
chromosomes; the runtime is bound by the core(s) with the
most work to do.

TABLE I. CHROMOSOME DISTRIBUTION

Number
Execution

Cores

Available
Compute

Cores

Number
chromosomes
processed by
each compute

core on
average

Number
chromosomes
processed by
most tasked

compute
core(s)

10 9 5 6
20 19 2 3
30 29 1 2
40 39 1 2
50 49 1 2
60 59 1 1

 Between 30 and 50 cores, where the speedup levels off,

you can see from table I that the number of chromosomes
processed by the most tasked core(s) is the same, two. This
is why there is no speedup in this range. You see linear
speedup between 10 and 20 cores and between 20 and 30
cores because the cores with the most work went from 6
chromosomes to 3 chromosomes and 3 chromosomes to 2
chromosomes, respectively. The execution is bound by the
number of chromosomes processed by the heaviest tasked
core (s) through the distribution of work. We don’t see the
speedup affected on the quad core and 8 core multicore
systems because with any reasonable workload (50 is about

484566

the fewest chromosomes we can consider) we don’t have
enough cores to see this effect.

 Figure 8 demonstrates that speedup with a more
substantial workload doesn’t have the same dependence on
the combination of the number of cores and the number of
chromosomes as the application does with smaller
populations. We tested 1,000, 3,000 (shown in Fig. 8) and
5,000 chromosomes and they all had similar speedup lines
on the cluster. We believe there is a tipping point between
100 and 600 chromosomes where the effect seen in Fig 7b is
active and it makes sense to devote more effort to keeping
idle cores busy. This point is likely related to where the
execution size starts to grow exponentially (see Fig. 4) and
we are currently quantifying it more precisely. There is a
compelling need to improve performance with smaller
workloads on moderately parallel systems for more simple
models, test, and proof of concepts common within these
ranges. ggg

Figure 8. Speedup using many more chromosomes on the 204-core linux
cluster. We had to experimentally derive the baseline sequential runtime
(3000 chromosomes takes prohibitively long). We measured the average

execution of 1 chromosome (over 20 examples) and found little variation in
the mean. We multiplied this average by 3000 for the baseline sequential
value in the graph. We compared this approach with smaller populations
(10, 20 and 50 chromosomes) over multiple generations and found this

approach yields accurate results.

VI. CONCLUSIONS
Impressive performance gains for Kingen were achieved

with a process that systematically proceeds through different
levels of analysis. Improving the sequential version is
important as those gains were magnified in parallel. On a
multicore architecture, the TBB implementation achieves a
~15x reduction in run time (2-4 days with more demanding
workloads as compared with >30 days sequentially with a
simpler model). Our analysis presented here suggests there is
even more parallelism to exploit. The most efficient map
depends on the architecture and is probably significantly
different for multicore architectures and manycore
architectures. In addition, this application may be ideally
suited for GPU acceleration.

Scientific applications need to be thoroughly profiled and
typical workloads characterized to reach performance goals
and to map to new architectures. Overall, the improvement

of the time-intensive optimization of kinetic models will
accelerate discovery in neuroscience. Furthermore, the
methodology to do so will be applicable to a broad range of
scientific applications accelerating discovery in computer
science. Researchers in HPC need reliable tools to facilitate
porting to emerging systems that reduce errors and increase
throughput.

ACKNOWLEDGMENT
The authors gratefully acknowledge the following

support: NIDCD DC008297 (KJR and AG), NINDS
NS056090 (TAB), Achievement Rewards for College
Scientists (AG), and institutional support from the
Department of Pediatrics and The Children's Hospital
Research Institute (TAB and AG).

REFERENCES

[1] D. E. Post, R.P. Kendall, and R. F. Lucas, “The Opportunities,
Challenges, and Risks of High Performance Computing in
Computational Science and Engineering,” in Advances in Computers,
vol. 66, M. V. Zelkowitz Ed. New York: Academic Press, 2006, pp.
239–301.

[2] R. Sites, “What your mother never taught you about multicore
programming”. Presentation at Front Range Architecture Compilers
Tools and Languages Workshop, Fall 2009.

[3] V. Damian, A. Sandu, M. Damian, F. Potra, and G.R. Carmichael.
“The kinetic preprocessor KPP – a software environment for solving
chemical kinetics”. Computers and Chemical Engineering, 26, 1567-
1579, 2002.

[4] J. C. Linford, J. Michalakes, M. Vachharajani, and A. Sandu. “Multi-
core acceleration of chemical kinetics for simulation and prediction”.
Proceedings of the International Conference on High Performance
Computing, Networking, Storage, and Analysis (SC). November
2009.

[5] H. Eichner, T. Klug, and A. Borst. “Neural simulations on multi-core
architectures”. Frontiers in Neuroinformatics 3 (21), 1-15. 2009.

[6] D. Skinner, “Integrated performance monitoring: understanding
applications and workloads”. Presentation at Center for Scalable
Appication Development Software Summer Workshop, 2008.

[7] C-K. Luk and et al., "Pin: building customized program analysis tools
with dynamic instrumentation", Proc. of the ACM SIGPLAN 2005
Conference on Programming Language Design and Implementation,
June 2005.

[8] D. Goldberg. The Design of Innovation: Lessons from and for
Competent Genetic Algorithms. Boston, MA: Kluwer Academic
Publishers, 2002.

[9] D. Goldberg. Genetic Algorithms in Search, Optimization, and
Machine Learning. Boston, MA: Addison-Wesley Professional, 1989.

[10] I.J. Youngs, “Exploring the universal nature of electrical percolation
exponents by genetic algorithm fitting with general effective medium
theory,” J.Phys. D: Appl. Phys. 35, pp. 3127-3137. 2002.

[11] M. Gurkiewicz, A. Korngreen, “A numerical approach to ion channel
modelling using whole-cell voltage-clamp recordings and a genetic
algorithm,” PLoS Comput Bio, 3(8), pp. 1633-1647. 2007.

[12] J. Reinders, Intel Threading Building Blocks: Outfitting C++ for
Multi-Core Processor Parallelism. Sebastopol, CA: O’Reilly Media,
2007.

485567

