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ABSTRACT 

Mesh free methods are used in wide range of engineering problems such as astrophysics, continuum solid, fluid 
mechanics and heat transfer. Mesh free particles based methods are suitable to simulate flows with large deformations 
and fragmentations due to using discrete particles. Despite of capabilities of these methods, they are rarely used for 
modeling of open channel flows, specially in the case of ogee spillways. Usually based mesh methods such as finite 
volume, finite element or finite difference are used to simulate open channel problems which have provided satisfactory 
results, however their success rely on good meshes. In the Eulerian methods, numerical diffusion due to advection terms 
may be severe which is eliminated in Lagarangian methods due to the existence of advection terms in the Navier-stokes 
equations. Furthermore, detecting of the free surface is a complicated procedure in the Eulerian methods which is simply 
identified in Lagrangian methods using a simple criterion. In this paper, flow over an ogee spillway is modeled using an 
incompressible Moving Particle Semi-implicit (MPS) method which is a fully Lagrangain meshless method. The governing 
equations are mass and momentum conservation that are solved in Lagrangian form using a two-step fractional method. 
In the first step momentum equation is solved without considering the pressure term. In this step velocity field and the 
position of particles are computed but incompressibility is neglected. In the second step, to satisfy the incompressibility 
condition, the continuity constraint is considered and the Poisson equation is solved to compute the pressure values of 
fluid and wall particles. Then the velocity field and positions of particles are corrected. The MPS results are compared with 
those of experimental ones in free surface comparison. Moreover, velocity and pressure fields are depicted in different 
times and compared with those of obtained using Flow-3D simulation. The results show the capabilities of used method in 
open channel flow simulations. 
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1. INTRODUCTION 

Historically, physical models have been constructed in hydraulic laboratories to study of flow behaviors and measuring of 
forces on hydraulic structures. But constructing and utilizing of physical models are expensive and time-consuming. 
Moreover, there are many difficulties associated with scaling effects in physical hydraulic models (Ho et al., 2003). In 
recent years, due to advances in computer technology and numerical methods, computational fluid dynamics (CFD) have 
been developed rapidly. The CFD models are more flexible with significant advantages such as need to require less time, 
expense, and efforts than physical hydraulic models. Therefore, they have been used extensively by engineers to model 
and to analyse complex issues about design of hydraulic structures and their maintenance, plan studies for future stations 
and dam safety. Aydin and Ozturk (2009) modeled spillway aerators using FLUENT software in order to study of 
introduced air to flow and evaluating of aerators performance. Johnson and Savage (2006) modeled ogee-crested 
spillways using FLOW-3D software and compared the gained numerical results with their physical measurements. The 
above mentioned studies and many other studies such as Bombardelli et al. (2010) have been done using different CFD 
softwares which are based on Eulerian mesh dependent method. These methods have provided many useful and 
satisfactory results. However their success largely rely on good quality meshes. Moreover the connectivity between nodes 
and elements must be carefully and accurately found and recorded (Ma, 2005). Owning to mesh adaptability and 
connectivity problems, mesh based methods have difficulties in modeling complicated phenomena with large deformation 
of boundaries and interfaces (Shakibaeinia and Jin, 2010). Using Lagerangian methods, problem of mesh adaptability and 
connectivity eliminated because the state of a system is represented by a set of discrete particles, without a fixed 
connectivity; hence, such methods are inherently well suited for the analysis of large deformations and fragmentations 
(Asai et al., 2012). Mesh free methods are used in wide range of engineering problems such as astrophysics (Gingold and 
Monaghan, 1977), continuum solid (Hieber and Koumoutsakos, 2008), fluid mechanics (Koshizuka and Oka, 1996) and 
heat transfer (Clearly, 1993). Despite of capabilities of these methods, they are rarely used for modeling of open channel 
flows, specially in the case of ogee spillways. Shakibaeinia and Jin (2009) modeled flow over an ogee spillway using 
Weakly Compressible MPS (WC-MPS) and compared the obtained free surface results and experimental ones. However 
their model overestimates the free surface profile over the straight portion of the spillway. They concluded that this 
discrepancy can be result of some unphysical pressure fluctuation accompanied by the MPS method or it can be due to 
some error in prescription of the solid boundary condition in the straight part of the spillway in their model. In this paper, 
proposed method by Memarzadeh and Hejazi (2012) for SPH simulations is modified to MPS method and is used to 
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simulate the flow over an ogee spillway which consist of several curved lines on its boundary. Validity of the modified MPS 
method has been shown previously in the case of Scott-Russell wave generator simulation (Arami, 2014). In this study 
numerical free surface results are in good agreement with physical ones. Moreover, the obtained pressure fields are 
smooth using the proposed method and are close to FLOW-3D results.  

2. Numerical method 

The governing equations of the incompressible flow are given as: 
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Equation (1) is the continuity and equation (2) is the momentum conservation equation. In the above equations   is the 
density, u  is the velocity vector, t  is the time, P is the pressure,   is the dynamic viscosity and g  is the gravitational 
acceleration. Left side of the Navier-Stokes equation (Eq. 2) denotes the Lagerangian differentiation including convection 
terms. This is directly calculated by tracing particle motion. Therefore, the problem of numerical diffusion due to the 
existence of advection terms in the Navier-Stokes equations is completely eliminated. The right side terms expressed by 
differential operators should be replaced by particle interactions. 
MPS interaction model is built on a set of disordered points in a continuum without a grid or mesh. A particle ( )i  interacts 
with others ( )j  in its vicinity covered with kernel function ( , )ij ew r r , where ijr  is the distance between particles i  and j , 

and er  is the cutoff radius of the interaction area. The kernel function is considered as a smoothing function of physical 
quantities around each particle. In this study modified Wendland 2D kernel function is employed: 
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It is possible to apply another kernel function which is often used in literatures such as B-Spline or MPS standard kernel 
function. A dimensionless parameter that is called particle number density, represents the density of particles and denotes 
by n . 
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In this equation, the contribution from particle i  itself is not considered. Fluid density is proportional to the particle number 
density and defined as following equation: 
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m  is the mass of each particles and assumed to be the same for all particles of specified fluid. Thus, the continuity 
equation is satisfied if the particle number density is constant. This constant value is denoted by 0n . The differential 
operators of gradient, Laplacian and divergence are formulated as: 
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where d  is the number of spatial dimensions,   is an arbitrary scalar and   is an arbitrary vector. Any constant value is 
allowed to i  (Koshizuka and Oka, 1996). In this paper i  is calculated from following equation: 

min( ) { | (| |) 0}    i j j ifor j w r r  [9] 
This means that the minimum value is selected among the neighboring particles in the support domain. Using Equation 
(9), forces between particles are always repulsive (Koshizuka et al., 1998). It is possible to use the following equation 
instead of Eq. 6 that is suggested by Toyoda et al. (2005) in order to reduce the pressure fluctuations (Lee et al., 2011).  
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The Laplacian model parameter   is introduced to keep the same variance increase as that of analytical solution and is 
defined as: 

2( ) ( )   v v
w r r dv w r dv  [11] 

The current model of Laplacian is conservative since the quantity lost by particle i  is just obtained by particles j  
(Koshizuka and Oka, 1996). Using the Laplacian model in Poisson equation of pressure, simultaneous equations 
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expressed by a linear symmetric matrix are solved to obtain the particles pressure. To reach this matrix, following 
procedure explained by Koshizuka and Oka (1996) must be done. 
The continuity equation requires that the fluid density should be constant. This is equivalent to the particle number density 
being constant, 0n . When the fictitious particle number density *n  is not 0n , it is implicitly corrected to 0n  by: 

0*  n n n  [12] 
Where n  is the correction value. This is related to the velocity correction value u  through the mass conservation 
equation: 
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The velocity correction value is derived from the implicit pressure gradient term as: 
1
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By combining Eqs. (14) and (1), a Poisson equation of pressure is obtained: 
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Once the pressure of each particle is obtained by solving the above equation, the gradient model (Eq. 6) is used to find 
pressure gradient and finally using the following equations, velocity and position of fluid particles can be computed. 

1 *  u u un  [16] 

1 1   r r un n n t  [17] 

Where 1, r rn n particle positions at time 1n  and n . 

3. Boundary condition 

3.1 Free surface particles 

Known pressure boundary conditions are prescribed to the surface particles. Since, no fluid particle exists in the outer 
region of a free surface, the density of particles decreases by approaching the free surface. A particle which satisfies the 
following equation is considered as a free surface particle: 

0* in n  [18] 

Where   is the free surface parameter. This parameter is not effective to the calculation results if the calculation 
proceeds stably (Koshizuka and Oka, 1996). Usually this parameter is chosen from 0.8 to 0.99. 

3.2 Wall particles 

In the meshfree methods, walls are represented by particles. The Poisson equation of pressure is solved for these 
particles. This balances the pressure of inner fluid particles and prevents them from accumulating in the vicinity of solid 
boundaries.  

3.3 Inflow boundary 

Some layers of particles with prescribed velocity equal to inlet velocity are defined at the inflow boundary to compensate 
for density deficiency. The particles on the inner first line of these particles are involved in the pressure calculation. Inlet 
particles are added to the distance between these layers and the fluid particles. For inlet particles, velocity in the flow 
direction is set to known velocity inflow until these particles move far from inlet position at least equal to a determined 
distance such as 0l . 0l  is the initial distance between neighboring particles in the initial configuration. Inflow particles are 
added to inflow boundary each K time step, related to inflow velocity, time step size and distance of particles. 

3.4 Outflow 

 Each particle leaves the computational domain, eliminated from the computations. 

4. Simulating of the problem 

The experimental condition and measurements performed by Chatila and Tabbara (2004) were used to simulate the flow 
over an ogee spillway. The geometry of the spillway crest is based on the hydraulic design charts of USACE-WES profiles. 
The upstream face of the spillway is vertical and the radius of the upstream curved surface defined by d0.2H  and d0.5H . 

The downstream profile of the crest centerline is defined by 1.85 0.85
dx 2H y  and dH 0.0508  cm. The slope of the straight 

portion of the spillway face is 60  (or a slope 1.73 :1 ).  
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Figure 1. Initial Particle Position 

5. Numerical results 

Fig. 2 shows the time history of particles position together with velocity fields downstream of the spillway crest at t 0.1 s  
and t 0.3 s  resulted from the modified MPS simulation and FLOW-3D software. The flow over spillway has a discharge of 

30.0467 (m / s) . The MPS numerical flow over the current spillway has good agreement with those of FLOW-3D ones. This 
figure shows the ability of the presented incompressible MPS method for simulation of flow over spillways as an open 
channel problem. Same spillway and flow condition is used to simulate the flow over ogee spillway by Shakibaeinia and 
Jin (2009) utilizing weakly compressible MPS method. Their model overestimates the surface elevation and they conclude 
that this discrepancy can be result of some unphysical pressure fluctuation accompanied by the MPS method or it can be 
due to some error in prescription of the solid boundary condition in the model at spillway portion. In Fig. 2, there is no 
separation between flow and spillway bottom, which shows the true prescription of solid boundary condition of current 
problem. 
 

      

      
Figure 2. Comparison of velocity Field between MPS (left side) and FLOW-3D (right side) results 

Fig. 3 illustrates the computational flow pressure fields at t 0.05 s  and t 0.25 s . Using the proposed MPS method 
(Arami, 2014), smooth pressure fields are obtained.  
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Figure 3. Computational pressure fields, MPS (left side) and FLOW-3D (right side) 

Velocity vectors gained by MPS method are shown in Fig.4 at t 0.35 s. 
 

 

Figure 4. Velocity vectors of flow close to spillway crest 

As Fig. 4 shows, flow modeled by MPS method close to spillway crest is smooth. This proves that the configuration of 
solid particles is true and the interaction between these particles and flow particles are done correctly. Fig. 5 depicts 
comparison of experimental and the MPS free surface together with velocity field at t 0.6  s. As it shows there is good 
agreement between the numerical results and experimental measurements.  
 

 

Figure 5. Comparison of experimental and the MPS free surface 
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6. CONCLUSIONS 

Flow over an ogee spillway is modeled using an incompressible Moving Particle Semi-implicit (MPS) method which is a 
fully Lagrangain meshless method. In this paper, although the reservoir of dam is modeled smaller than experiment in 
order to reduce the CPU time, but the MPS results are in good agreement with those of experimental ones in free surface 
comparison. Moreover, velocity and pressure fields are depicted in different times and compared with those of obtained 
using Flow-3D simulation. The results show the capabilities of used method in open channel flow simulations. 
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