MODELING OF INTEGRATED PLASMA PROCESSING: PLASMA PHYSICS, PLASMA CHEMISTRY AND SURFACE KINETICS

Mark J. Kushner University of Illinois Department of Electrical and Computer Engineering Urbana, IL 61801 mjk@uiuc.edu http://uigelz.ece.uiuc.edu

May 2003

AGENDA

- Integration in Plasma Processing
- Modeling Requirements:
 - Plasma Physics
 - Plasma Chemistry
 - Surface Kinetics
- Integrated process modeling of etching and cleaning of porous silica; and metal deposition for interconnect wiring.
- Concluding Remarks

University of Illinois Optical and Discharge Physics

COLLISIONAL LOW TEMPERATURE PLASMAS

 Partially ionized plasmas are gases containing neutral atoms and molecules, electrons, positive ions and negative ions. These systems are the plasmas of every day technology.

- Electrons transfer power from the "wall plug" to internal modes of atoms / molecules to "make a product", very much like combustion.
- The electrons are "hot" (several eV or 10-30,000 K) while the gas and ions are cool, creating "non-equilibrium" plasmas.

COLLISIONAL LOW TEMPERATURE PLASMAS

• Lighting

• Spray Coatings

• Materials Processing

PLASMAS IN MICROELECTRONICS FABRICATION

• The striking improvement in the functionality of microelectronics devices results from shrinking of individual components and increasing complexity of the circuitry

Ref: IBM Microelectronics

Plasmas are absolutely essential to the fabrication of microelectronics.

PLASMAS IN MICROELECTRONICS FABRICATION

- Plasmas play a dual role in microelectronics fabrication.
- First, electron impact on otherwise unreactive gases produces neutral radicals and ions.

• These species then drift or diffuse to surfaces where they add, remove or modify materials.

PLASMAS IN MICROELECTRONICS FABRICATION

• Second, ions deliver directed activation energy to surfaces fabricating fine having extreme and reproducable tolerances.

University of Illinois **Optical and Discharge Physics**

(C. Cui, AMAT)

APPLIED MATERIALS DECOUPLED PLASMA SOURCES (DPS)

rf BIASED INDUCTIVELY COUPLED PLASMAS

- Inductively Coupled Plasmas (ICPs) with rf biasing are used here.
- < 10s mTorr, 10s MHz, 100s W kW, electron densities of 10¹¹-10¹² cm⁻³.

PHYSICAL PROCESSES IN REACTOR

GOAL FOR PROCESS MODELING: INTEGRATION

• Plasma processing involves an integrated sequence of steps, each of which depends on the quality of the previous steps.

GOAL FOR PROCESS MODELING: INTEGRATION

- To address these complexities, modeling platforms must integrate:
 - Plasma Physics
 - Plasma Chemistry
 - Surface Kinetics

HYBRID PLASMA EQUIPMENT MODEL

• The wave equation is solved in the frequency domain using sparse matrix techniques (2D,3D):

$$-\nabla \left(\frac{1}{\mu} \nabla \cdot \overline{E}\right) + \nabla \cdot \left(\frac{1}{\mu} \nabla \overline{E}\right) = \frac{\partial^2 \left(\varepsilon \overline{E}\right)}{\partial t^2} + \frac{\partial \left(\overline{\overline{\sigma}} \cdot \overline{E} + \overline{J}\right)}{\partial t}$$
$$\vec{E}(\vec{r},t) = \vec{E}'(\vec{r}) \exp(-i(\omega t + \varphi(\vec{r})))$$

• Conductivities are tensor quantities (2D,3D):

$$\overline{\overline{\sigma}} = \sigma_o \frac{mv_m}{q\alpha} \frac{1}{\left(\alpha^2 + \left|\vec{B}\right|^2\right)} \begin{pmatrix} \alpha^2 + B_r^2 & \alpha B_z + B_r B_\theta & -\alpha B_\theta + B_r B_z \\ -\alpha B_z + B_r B_\theta & \alpha^2 + B_\theta^2 & \alpha B_r + B_\theta B_z \\ -\alpha B_\theta + B_r B_z & -\alpha B_r + B_\theta B_z & \alpha^2 + B_z^2 \end{pmatrix}$$
$$\overline{j} = \overline{\overline{\sigma}} \cdot \vec{E} \qquad \qquad \alpha = \frac{\left(i\omega + v_m\right)}{q/m}, \quad \sigma_o = \frac{q^2 n_e}{mv_m}$$

University of Illinois Optical and Discharge Physics

EIND_0502_10

• The electrostatic term in the wave equation is addressed using a perturbation to the electron density (2D).

$$\nabla \cdot \overline{E} = \frac{\rho}{\varepsilon} = \frac{q \Delta n_e}{\varepsilon}, \quad \Delta n_e = -\nabla \cdot \left(\frac{\overline{\overline{\sigma}} \cdot \overline{E}}{q}\right) / \left(\frac{1}{\tau} + i\omega\right)$$

• Conduction currents can be kinetically derived from the Electron Monte Carlo Simulation to account for non-collisional effects (2D).

$$\mathbf{J}_{e}(\vec{r},t) = J_{o}(\vec{r})\exp(i(\omega t + \phi_{v}(\vec{r}))) = -qn_{e}(\vec{r})\vec{v}_{e}(\vec{r})\exp(i(\omega t + \phi_{v}(\vec{r})))$$

• Continuum (2D,3D):

$$\partial \left(\frac{3}{2}n_e kT_e\right) / \partial t = S(T_e) - L(T_e) - \nabla \cdot \left(\frac{5}{2}\Phi kT_e - \overline{\overline{\kappa}}(T_e) \cdot \nabla T_e\right) + S_{EB}$$

where	S(T _e)	=	Power deposition from electric fields
	L(T _e)	=	Electron power loss due to collisions
	Φ	=	Electron flux
	к (Т _)	=	Electron thermal conductivity tensor
	S _{EB}	=	Power source source from beam electrons
	₩EB	—	

- Power deposition has contributions from wave and electrostatic heating.
- <u>Kinetic (2D,3D)</u>: A Monte Carlo Simulation is used to derive $f(\varepsilon, \vec{r}, t)$ including electron-electron collisions using electromagnetic fields from the EMM and electrostatic fields from the FKM.

University of Illinois Optical and Discharge Physics

PLASMA CHEMISTRY, TRANSPORT AND ELECTROSTATICS

• Continuity, momentum and energy equations are solved for each species (with jump conditions at boundaries) (2D,3D).

$$\begin{aligned} \frac{\partial N_i}{\partial t} &= -\nabla \cdot (N_i \vec{v}_i) + S_i \\ \frac{\partial (N_i \vec{v}_i)}{\partial t} &= \frac{1}{m_i} \nabla (k N_i T_i) - \nabla \cdot (N_i \vec{v}_i \vec{v}_i) + \frac{q_i N_i}{m_i} (\vec{E} + \vec{v}_i \times \vec{B}) - \nabla \cdot \overline{\mu}_i \\ &- \sum_j \frac{m_j}{m_i + m_j} N_i N_j (\vec{v}_i - \vec{v}_j) v_{ij} \\ \frac{\partial (N_i \varepsilon_i)}{\partial t} + \nabla \cdot Q_i + P_i \nabla \cdot U_i + \nabla \cdot (N_i U_i \varepsilon_i) = \frac{N_i q_i^2 v_i}{m_i (v_i^2 + \omega^2)} E^2 \\ &+ \frac{N_i q_i^2}{m_i v_i} E_s^2 + \sum_j 3 \frac{m_{ij}}{m_i + m_j} N_i N_j R_{ij} k_B (T_j - T_i) \pm \sum_j 3 N_i N_j R_{ij} k_B T_j \end{aligned}$$

• Implicit solution of Poisson's equation (2D,3D):

$$\nabla \cdot \varepsilon \nabla \Phi (t + \Delta t) = - \left(\rho_s + \sum_i q_i N_i - \Delta t \cdot \sum_i \left(q_i \nabla \cdot \vec{\phi}_i \right) \right)$$

University of Illinois Optical and Discharge Physics

AVS01_05

WALK THROUGH: Ar/Cl₂ PLASMA FOR p-Si ETCHING

- The inductively coupled electromagnetic fields have a skin depth of 3-4 cm.
- Absorption of the fields produces power deposition in the plasma.
- Electric Field (max = 6.3 V/cm)
 - Ar/Cl₂ = 80/20
 - 20 mTorr
 - 1000 W ICP 2 MHz
 - 250 V bias, 2 MHz (260 W)

Ar/Cl₂ ICP: POWER AND ELECTRON TEMPERATURE

• ICP Power heats electrons, capacitively coupled power dominantly accelerates ions.

 Ar/Cl₂ = 80/20, 20 mTorr, 1000 W ICP 2 MHz, 250 V bias, 2 MHz (260 W)

Ar/Cl₂ ICP: IONIZATION

• Ionization is produced by bulk electrons and sheath accelerated secondary electrons.

 Ar/Cl₂ = 80/20, 20 mTorr, 1000 W ICP 2 MHz, 250 V bias, 2 MHz (260 W)

Ar/Cl₂ ICP: POSITIVE ION DENSITY

• Diffusion from the remote plasma source produces uniform ion densities at the substrate.

•PLASMA PHYSICS (Are we getting it right?)

University of Illinois Optical and Discharge Physics

CFDRC_0503_07

FORCES ON ELECTRONS IN ICPs

- Inductive electric field provides azimuthal acceleration; penetrates $\delta = (m_e / (e^2 \mu_o n_e))^{\frac{1}{2}}$ (1-3 cm)
- Electrostatic (capacitive); penetrates $\lambda_s \approx 10 \lambda_D$, $\lambda_D = \left(kT_e / \left(8\pi n_e e^2 \right) \right)^{\frac{1}{2}}$ (100s µm to mm)
- Non-linear Lorentz Force $\vec{F} = v_{\theta} \times \vec{B}_{rf}$

• Ref: V. Godyak, "Electron Kinetics of Glow Discharges"

• Collisional heating:

$$\lambda_{mfp} < \delta_{skin}, \quad \vec{J}_{e}(\vec{r},t) = \sigma(\vec{r},t)\vec{E}(\vec{r},t)$$

• Anomalous skin effect:

$$\begin{aligned} \lambda_{mfp} &> \delta_{skin} \\ \vec{J}_{e}(\vec{r},t) = \iint \sigma(\vec{r},\vec{r}',t,t') \vec{E}(\vec{r}',t') d\vec{r}' dt' \\ \vec{F} &= \vec{v} \times \vec{B} \end{aligned}$$

- Electrons receive (positive) and deliver (negative) power from/to the E-field.
- E-field is non-monotonic.

ICP CELL FOR VALIDATION

- Experiments by Godyak et al are used for validation.
- The experimental cell is an ICP reactor with a Faraday shield to minimize capacitive coupling.
 - V. Godyak et al, J. Appl. Phys. 85, 703 (1999)

ELECTRON DENSITY: Ar, 10 mTorr, 200 W, 7 MHz

- On axis peak in [e] occurs inspite of off-axis power deposition.
- Model is about 30% below experiments. This likely has to do with details of the sheath model.

ELECTRON TEMPERATURE: Ar, 10 mTorr, 200 W, 7 MHz

- The high thermal conductivity and redistribution of energy by e-e collisions produces nearly uniform temperatures.
- T_e peaks under the coils where power deposition is largest.

EEDs ALONG THE CENTERLINE OF THE REACTOR

 The electron energy distributions show a bi-Maxwellian form, which is typical for low-pressure inductively coupled plasmas.

• Ar, 10 mTorr, 6.78 MHz, 200 W

COLLISIONLESS TRANSPORT ELECTRIC FIELDS

• We couple electron transport to Maxwell's equations by kinetically deriving electron current.

$$\oint \vec{j}(\vec{r}) \exp(i\omega(t-t_o)) \cdot dA = \sum_k q_k \vec{v}_k(\vec{r}) \exp(i\omega(t_k-t_o))$$

- E_{θ} during the rf cycle exhibits extrema and nodes resulting from this non-collisional transport.
- "Sheets" of electrons provide current sources interfering or reinforcing E_{θ} for the next sheet.
- Axial transport results from $\vec{v} \times \vec{B}_{rf}$ forces.

• Ar, 10 mTorr, 7 MHz, 100 W

POWER DEPOSITION: POSITIVE AND NEGATIVE

• The end result is regions of positive and negative power deposition.

SNLA_0102_19

POWER DEPOSITION vs FREQUENCY

• The shorter skin depth at high frequency produces more layers of negative power deposition of larger magnitude.

SNLA_0102_32

TIME DEPENDENCE OF THE EED

- Time variation of the EED is mostly at higher energies where electrons are more collisional.
- Dynamics are dominantly in the electromagnetic skin depth where both collisional and non-linear Lorentz Forces) peak.
- The second harmonic dominates these dynamics.

• Ar, 10 mTorr, 100 W, 7 MHz, r = 4 cm

ANIMATION SLIDE

TIME DEPENDENCE OF THE EED: 2nd HARMONIC

- Electrons in skin depth quickly increase in energy and are "launched" into the bulk plasma.
- Undergoing collisions while traversing the reactor, they degrade in energy.
- Those surviving "climb" the opposite sheath, exchanging kinetic for potential energy.
- Several "pulses" are in transit simultaneously.

• Amplitude of 2nd Harmonic

• Ar, 10 mTorr, 100 W, 7 MHz, r = 4 cm

University of Illinois Optical and Discharge Physics

ANIMATION SLIDE

CONSEQUENCES OF ELECTRON DYNAMICS IN ICPs

- The consequences of electron dynamics were investigated for Ar/N₂ gas mixtures.
- e⁻ + Ar → Ar⁺ + e⁻ + e⁻, Δε = 16 eV
 High threshold reactions capture modulation in the tail of the EED.
- $e^- + N_2 \rightarrow N_2$ (vib) + e^- , $\Delta \epsilon = 0.29 \text{ eV}$

Low threshold reactions capture modulation of the bulk of the EED.

- Base case conditions:
 - Pressure: 5 mTorr
 - Frequency: 13.56 MHz
 - Ar / N₂: 90 / 10
 - Power : 650 W

SOURCES FUNCTION vs TIME: THRESHOLD

 Ionization of Ar has more modulation than vibrational excitation of N₂ due to modulation of the tail of the EED.

HARMONICS OF Ar IONIZATION: FREQUENCY

0.5

- At large ω, non-linear Lorentz forces are small, and so harmonic content is also small.
- At small ω, both non-linear Lorentz forces and harmonic excitation by the electric field are large.
- 0.4 S_2 0.3 S_n / S₀ 0.2 S4 0.1 S₁, S₃ 0.0 30 20 40 10 50 0 Frequency (MHz)
 - Harmonic Amplitude/Time Average

University of Illinois Optical and Discharge Physics

• Ar/N₂=90/10, 5 mTorr
• PLASMA CHEMISTRY (Are we getting this right?)

REACTION MECHANISMS FOR PLASMA ETCHING

 Recipes for plasma etching of dielectric materials (e.g., SiO₂, Si₃N₄) often contain mixtures of many gases such as:

Ar , C_4F_8 , O_2 , N_2 , CO

- The fluorocarbon donors are often highly dissociated, thereby requiring databases for both feedstocks and their fragments.
- For predictive modeling, reaction mechanisms must be developed for arbitrary mixtures and wide ranges of pressures.

C₄F₈, C₂F₄ CROSS SECTION SETS

• The first step in developing a reaction mechanism is compilation of electron impact cross section sets.

• Ref: V. McKoy and W. L. Morgan

ICP CELL AND [CF₂⁺] FOR C₄F₈, 10 mTorr

• C₄F₈, 10 mTorr, 1.4 kW, 13.56 MHz SRC_2003_AVV_2

- An ICP reactor patterned after Oeherlein, et al. was used for validation.
- Reactor has a metal ring with magnets to confine plasma.
- CF₂⁺ is one of the dominant ions in C₄F₈ plasmas due to large dissociation.
- The major path for the CF₂⁺ is:
- $C_4F_8 + e \rightarrow C_2F_4 + C_2F_4 + e$
- $C_2F_4 + e \rightarrow CF_2 + CF_2 + e$
- $CF_2 + e \rightarrow CF_2^+ + e + e$

$[n_e]$ and T_e FOR C_4F_8 , 10 mTorr

- Electron density peaks at ≈10¹² cm⁻³.
- The peak in T_e occurs in the skin layer due to collisionless electron heating by the large electric field.
- T_e is rather uniform in the bulk plasma where electrons thermalize through e-e collisions.

SRC_2003_AVV_3

 I_{P} (PROBE CURRENT) IN ICPs SUSTAINED IN Ar, O₂

• O₂, 10 mTorr

 Magnetic confinement is generally more effective in electronegative plasmas with a larger variety of ions.

University of Illinois Optical and Discharge Physics

I_P VERSUS POWER FOR ICPs IN C₄F₈, Ar/C₄F₈, O₂/C₄F₈

- The differences in I_P with and without magnets increases with power due to increased non-linear Lorentz force.
- I_P increases with Ar addition in Ar/C₄F₈ compared to Ar/O₂ due to higher dissociation of C₄F₈ and lower electronegativity.
 - 13.56 MHz, -100 V probe bias.

ION COMPOSITION IN C₄F₈, Ar/C₄F₈

 Optimization of processing conditions on, for example, power critically depends on the composition of the radical and ion fluxes.

• 10 mTorr, 13.56 MHz

EFFECT OF MAGNETS ON [CF+]

- Without magnets [CF+] has a maximum at the edge of the classical skin depth where the electron impact ionization is the largest.
- The static magnetic fields broaden the production of [CF⁺] in the radial direction.

• Ar/C₄F₈=20/80, 3 mTorr, 13.56 MHz, 400 W.

MERIE REACTOR

• The model reactor is based on a TEL Design having a transverse magnetic field.

• K. Kubota et al, US Patent 6,190,495 (2001)

TEL-DRM: Ar / C_4F_8 / O_2

- With reaction mechanisms developed for Ar / C₄F₈ / O₂ and improved ability to model MERIE systems, parameterizations were performed for TEL-DRM like conditions.
- Ar / C_4F_8 / O_2 = 200/10/5 sccm, 40 mTorr, 1500 W.

TEL-DRM: Ar / C_4F_8 / O_2

- The large variety of ion masses produces vastly different IEADs.
- Ar / C_4F_8 / O_2 = 200/10/5 sccm, 40 mTorr, 1500 W.

• SURFACE CHEMISTRY (The most ill defined but perhaps most important step.)

SELECTIVITY IN MICROELECTRONICS FABRICATION: PLASMAS AND POLYMERS

- Fabricating complex microelectronic structures made of different materials requires extreme *selectivity* in, for example, etching Si with respect to SiO₂.
- Monolayer selectivity is required in advanced etching processes.
- These goals are met by the unique plasmapolymer interactions enabled in fluorocarbon chemistries.

FLUORCARBON PLASMA ETCHING: SELECTIVITY

- Selectivity in fluorocarbon etching relies on polymer deposition.
- Electron impact dissociation of feedstock fluorocarbons produce polymerizing radicals and ions, resulting in polymer deposition.

 $e + Ar/C_4F_8 \longrightarrow CF_n, M^+$

$$CF_n, M^+$$
 COF_n, SiF_n
 CF_x CF_x

- Compound dielectrics contain oxidants which consume the polymer, producing thinner polymer layers.
- Thicker polymer on non-dielectrics restrict delivery of ion energy (lower etching rates).

FLUORCARBON PLASMA ETCHING: SELECTIVITY

• G. Oerhlein, et al., JVSTA 17, 26 (1999)

University of Illinois Optical and Discharge Physics

ADVMET_1002_05

SURFACE KINETICS: FLUOROCARBON PLASMA ETCHING Si/SiO₂

- $C_x F_y$ passivation regulates delivery of precursors and activation energy.
- Chemisorption of CF_x produces a complex at the oxide-polymer interface.
- 2-step ion activated (through polymer layer) etching of the complex consumes the polymer. Activation scales inversely with polymer thickness.
- Etch precursors and products diffuse through the polymer layer.

MONTE CARLO FEATURE PROFILE MODEL (MCFPM)

University of Illinois Optical and Discharge Physics

SCAVS_1001_08

ETCH RATES AND POLYMER THICKNESS

- Etch rates for Si and SiO₂ increase with increasing bias due, in part, to a decrease in polymer thickness.
- The polymer is thinner with SiO₂ due to its consumption during etching, allowing for more efficient energy transfer through the layer and more rapid etching.

- C₂F₆, 6 mTorr, 1400 W ICP, 40 sccm
- Exp. Ref: T. Standaert, et al.
 J. Vac. Sci. Technol. A 16, 239 (1998).

POLYMERIZATION AIDS SELECTIVITY

• Less consumption of polymer on Si relative to SiO₂ slows and, in some cases, terminates etching, providing high selectivity.

TAPERED AND BOWED PROFILES

- In high aspect ratio (HAR) etching of SiO_2 the sidewall of trenches are passivated by neutrals (CF_x, x ≤ 2) due to the broad angular distributions of neutral fluxes.
- Either tapered or bowed profiles can result from a non-optimum combination of processing parameters including:
 - Degree of passivation
 - Ion energy distribution
 - Radical/ion flux composition.

PROFILE TOPOLOGY: NEUTRAL TO ION FLUX RATIO

- Profiles depend on ratio of polymer forming fluxes to energy activating fluxes. Small ratios produce bowing, large ratios tapering.
- Controlling this ratio through gas mixture (e.g., Ar/C₂F₆) enables specification of profile topology.

LOW-K DIELECTRICS

• As feature sizes decrease and device count increases, the diameter of interconnect wires shrinks and path length increases.

• L. Peters, Semi. Intl., 9/1/1998

- Large RC-delay limits processor performance.
- To reduce RC-delay, low dielectric constant (low-k) materials are being investigated.

POROUS SILICON DIOXIDE

- Porous SiO₂ (xerogels) have low-k properties due to their lower mass density resulting from (vacuum) pores.
 - Typical porosities: 30-70%
 - Typical pore sizes: 2-20 nm
- Porous SiO₂ (P-SiO₂) is, from a process development viewpoint, an ideal low-k dielectric.
 - Extensive knowledge base for fluorocarbon etching of conventional non-porous (NP-SiO₂).
 - No new materials (though most P-SiO₂ contains some residual organics)
 - Few new integration requirements

WHAT CHANGES WITH POROUS SiO₂?

- The "opening" of pores during etching of P-SiO₂ results in the filling of the voids with polymer, creating thicker layers.
- lons which would have otherwise hit at grazing or normal angle now intersect with more optimum angle.

- An important parameter is L/a (polymer thickness / pore radius).
 - Adapted: Standaert, JVSTA 18, 2742 (2000)

ETCH PROFILES IN SOLID AND POROUS SiO₂

- Porous SiO₂ is being investigated for lowpermittivity dielectrics for interconnect wiring.
- In polymerizing environments with heavy sidewall passivation, etch profiles differ little between solid and porous silica.
- The "open" sidewall pores quickly fill with polymer.

ANIMATION SLIDE

ETCHING OF POROUS SiO₂

- Etch rates of P-SiO₂ are generally higher than for non-porous (NP).
- Examples:
 - 2 nm pore, 30% porosity
 - 10 nm pore, 58% porosity
- Higher etch rates are attributed to lower mass density of P-SiO₂.
- CHF₃ 10 mTorr, 1400 W
- P Porous NP - Non porous E - Experimental M - Model

Exp: Oehrlein et al. Vac. Sci.Technol. A **18**, 2742 (2000) ADVMET_1002_23

PORE-DEPENDENT ETCHING

• To isolate the effect of pores on etch rate, corrected etch rate is defined as

Etch Rate (ER) $_{corrected} = ER _{regular} \times (1 - p),$

p = **porosity**

- If etching depended only on mass density, corrected etch rates would equal that of NP- SiO₂.
- 2 nm pores L/a ≥1 : C-ER > ER(SiO₂). Favorable yields due to non-normal incidence may increase rate.
- 10 nm pores L/a ≤ 1 : C-ER < ER(SiO₂). Filling of pores with polymer decrease rates.

EFFECT OF POROSITY ON BLANKET ETCH RATES

- 2 nm pores: Etch rate increases with porosity.
- 10 nm pores: Polymer filling of pores reduces etch rate at large porosities.

OXYGEN PLASMA CLEANING OF POLYMER

- After etching, the polymer must be removed from the feature.
- O₂ plasmas are typically used for polymer stripping, usually during photoresist mask removal.
- Unlike hydrocarbon polymers which spontaneously react with O, fluorocarbon polymers require ion activation for etching.
 - Polymer + Energetic Ion \rightarrow Activated Polymer Site (P*)
 - $P^* + O \rightarrow Volatile Products$
- Removal of polymer from porous materials is difficult due to shadowing of ion fluxes caused by the pore morphology.

University of Illinois Optical and Discharge Physics

EFFECT OF PORE RADIUS ON CLEANING

- Larger pores are more difficult to clean due small view angle of ion fluxes.
- Lower fluxes of less energetic ions reduce activation and lengthen cleaning time.

16 nm

4 nm

• TOWARDS INTEGRATED PROCESS MODELING (The last step...metal deposition.)

IONIZED METAL PHYSICAL VAPOR DEPOSITION (IMVPD)

- IMPVD is a technique to deposit seed layers and barrier coatings, and fill trenches.
- A flux of both neutral and metal atoms more uniformly produce depositions without formation of voids.

EFFECT OF PORE RADIUS ON Cu DEPOSITION

- Surrogate study for seed layer deposition and barrier coating.
- Voids are created at the pore surface or initiated due to the presence of pores.
- Presence of voids are pronounced for bigger pores.

MERIE: ION FLUXES AND ENERGIES

- Ar/O₂/ C₄F₈ = 200/5/10 sccm
- 2000 W
- 40 mTorr

 Due to high dilution and low fractional dissociation, dominant ions are Ar⁺, C₂F₄⁺

University of Illinois Optical and Discharge Physics

MERIE: POROUS SiO₂ ETCH

 More rapid etching with porous SiO₂ results in less mask erosion and better profile control, but more polymer filling of pores.

ICP: POROUS SiO₂ AND PHOTORESIST CLEAN

 Longer cleaning times are required with more porous materials to remove polymer which is shaded from ion flux.

University of Illinois Optical and Discharge Physics

IMPVD: Cu SEED LAYER DEPOSITION

• Thicker seed layers are required with large pores to cover over (or fill) gaps resulting from open structures.

CONCLUDING REMARKS

- Integrated plasma process modeling requires addressing a wide range of physical phenomena.
- The large variety of gas mixtures, reactor geometries, plasma sources and materials motivates development of generalized modeling platforms with few a priori assumptions.
- The fundamental modeling challenges are no different than in experimental integration:
 - If a single module (process) is validated (optimized) in isolation, will it still be valid (optimum) when integrated with other steps?

ACKNOWLEDGEMENTS

- Dr. Alex V. Vasenkov
- Dr. Gottlieb Oherlein
- Mr. Arvind Sankaran
- Mr. Pramod Subramonium
- Funding Agencies:
 - 3M Corporation
 - Semiconductor Research Corporation
 - National Science Foundation
 - SEMATECH
 - CFDRC Inc.