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AGENDA

Integration in Plasma Processing

Modeling Requirements:

e Plasma Physics
e Plasma Chemistry
e Surface Kinetics

Integrated process modeling of etching and cleaning of porous
silica; and metal deposition for interconnect wiring.

Concluding Remarks
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COLLISIONAL LOW TEMPERATURE PLASMAS

e Partially ionized plasmas are gases containing neutral atoms and
molecules, electrons, positive ions and negative ions. These
systems are the plasmas of every day technology.
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e Electrons transfer power from the "wall plug" to internal modes of
atoms / molecules to "make a product”, very much like combustion.

e The electrons are “hot” (several eV or 10-30,000 K) while the gas
and ions are cool, creating“non-equilibrium” plasmas.
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COLLISIONAL LOW
TEMPERATURE PLASMAS

e Materials
Processing
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PLASMAS IN MICROELECTRONICS FABRICATION

e The striking improvement in the functionality of
microelectronics devices results from shrinking of individual
components and increasing complexity of the cwcwtry
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e Plasmas are absolutely essential to the fabrication of
microelectronics.
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PLASMAS IN MICROELECTRONICS FABRICATION

e Plasmas play a dual role in microelectronics fabrication.

e First, electron impact on otherwise unreactive gases produces
neutral radicals and ions.
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e These species then drift or diffuse to surfaces where they add,
remove or modify materials.
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PLASMAS IN MICROELECTRONICS FABRICATION

e Second, ions deliver directed activation energy to surfaces
fabricatina fine havina extreme and reproducable tolerances.
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APPLIED MATERIALS DECOUPLED PLASMA SOURCES (DPS)
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rf BIASED INDUCTIVELY
COUPLED PLASMAS

e Inductively Coupled Plasmas (ICPs)
with rf biasing are used here.

e <10s mTorr, 10s MHz, 100s W — kW,
electron densities of 1011-1012 cm-s.
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PHYSICAL PROCESSES IN REACTOR
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GOAL FOR PROCESS MODELING: INTEGRATION

e Plasma processing involves an integrated sequence of steps,
each of which depends on the quality of the previous steps.
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GOAL FOR PROCESS MODELING: INTEGRATION

e To address these complexities, modeling platforms must
Integrate:

e Plasma Physics
e Plasma Chemistry
e Surface Kinetics

University of Illinois
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HYBRID PLASMA EQUIPMENT MODEL
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ELECTROMAGNETICS MODEL

e The wave equation is solved in the frequency domain using sparse
matrix techniques (2D,3D):
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ELECTROMAGNETICS MODEL (cont.)

e The electrostatic term in the wave equation is addressed using a
perturbation to the electron density (2D).

v.E=L - GAN, , An, :—V-[Ejl(lﬂa)j

g E q T

e Conduction currents can be kinetically derived from the Electron
Monte Carlo Simulation to account for non-collisional effects (2D).

3,(F,t)= 3, (F)exp(i(at + ¢, (7)) = —an, (T, (Fexplilet + 4,(7))
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ELECTRON ENERGY TRANSPORT

e Continuum (2D,3D):

a@ nekTejlat =S(T,)-L(T )—v-@ckae —?(Te)-VTej+ Seq

e

where S(T,) Power deposition from electric fields

L(T,) Electron power loss due to collisions

() = Electron flux

k(T,) = Electron thermal conductivity tensor

Sep = Power source source from beam electrons

e Power deposition has contributions from wave and electrostatic heating.

e Kinetic (2D,3D): A Monte Carlo Simulation is used to derive f(5’ F’t)
including electron-electron collisions using electromagnetic fields from
the EMM and electrostatic fields from the FKM.
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PLASMA CHEMISTRY, TRANSPORT AND ELECTROSTATICS

e Continuity, momentum and energy equations are solved for each species
(with jump conditions at boundaries) (2D,3D).
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e Implicit solution of Poisson’s equation (2D,3D):
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WALK THROUGH: Ar/Cl, PLASMA FOR p-Si ETCHING
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e The inductively coupled
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Ar/Cl, ICP: POWER AND ELECTRON TEMPERATURE

e ICP Power heats electrons, capacitively coupled power

dominantly accelerates ions.
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e Power Deposition (max = 0.9 W/cm3) e Electron Temperature (max =5 eV)

e Ar/Cl, =80/20, 20 mTorr, 1000 W ICP 2 MHz,
250 V bias, 2 MHz (260 W) University of lllinois
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Ar/Cl, ICP: IONIZATION

e lonization is produced by bulk electrons and sheath
accelerated secondary electrons.

25

20

E §15

T =

T S

2 210
5

0 10 20 00 10 20
RADIUS (cm) RADIUS (cm)
e Beam lonization e Bulk lonization
(max = 1.3 x 104 cm-3s1) (max = 5.4 x 101° cm-3s-1)

e Ar/Cl, =80/20, 20 mTorr, 1000 W ICP 2 MHz,

250 V bias, 2 MHz (260 W) | Universi.ty of lllinois |
EIND_0502_07 Optical and Discharge Physics



Ar/Cl, ICP: POSITIVE ION DENSITY

e Diffusion from the remote plasma source produces
uniform ion densities at the substrate.
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oPLASMA PHYSICS
(Are we getting It right?)
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FORCES ON ELECTRONS IN ICPs

Vo

Bre—

Vo X Br

*
A A4

Ta 444145

e Inductive electric field provides azimuthal acceleration; penetrates
2 2 (1-3cm
5=(m,/(e?u,n, )y (3 em)

e Electrostatic (capacitive); penetrates Ay =104, A, = (kTe/(Sﬂneez))%
(100s pm to mm)
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e Non-linear Lorentz Force F = V, X |§rf
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ANAMOLOUS SKIN EFFECT AND POWER DEPOSITION
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e Ref: V. Godyak, “Electron

Kinetics of Glow Discharges”
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e Collisional heating:

tE(rt)

Awto < Ogins Jo(F,1) = (F 1

e Anomalous skin effect:

Ao > Oin
J.(F.0) = [[o(F, 7.t t)E(F, t)didt
F=vxB

e Electrons receive (positive) and deliver
(negative) power from/to the E-field.

e E-field Is non-monotonic.
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ICP CELL FOR VALIDATION
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ELECTRON DENSITY: Ar, 10 mTorr, 200 W, 7 MHz
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e On axis peak in [e] occurs inspite of off-axis power deposition.

e Model is about 30% below experiments. This likely has to do with
details of the sheath model.
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ELECTRON TEMPERATURE: Ar, 10 mTorr, 200 W, 7 MHz
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e The high thermal conductivity and redistribution of energy by
e-e collisions produces nearly uniform temperatures.

e T, peaks under the coils where power deposition is largest.
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EEDs ALONG THE CENTERLINE OF THE REACTOR

* Godyak (1998), z=5.0 cm
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COLLISIONLESS TRANSPORT ELECTRIC FIELDS

e We couple electron transport to
Maxwell’s equations by kinetically
deriving electron current.

N(F)exp(ia)(t—t ))-dA =
quvk Jexp(io(t, —t,))

e E, durlng the rf cycle exhibits
extrema and nodes resulting from
this non-collisional transport.
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o Axial transport results from V x B,
forces.

ANIMATION SLIDE

University of Illinois
CFDRC_0503_09 e Ar, 10 mTorr, 7 MHz, 100 W Optical and Discharge Physics



POWER DEPOSITION:
POSITIVE AND NEGATIVE

e The end result is regions of positive and
negative power deposition.
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e The shorter skin depth at high frequency produces more layers of
negative power deposition of larger magnitude.
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TIME DEPENDENCE OF THE EED

10

e Time variation of the EED is
mostly at higher energies where 5
electrons are more collisional.

e Dynamics are dominantly in the [
electromagnetic skin depth =
where both collisional and non- & 4
linear Lorentz Forces) peak.

e The second harmonic 2

dominates these dynamics.
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e Ar, 10 mTorr, 100 W, 7 MHz,r =4 cm
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TIME DEPENDENCE OF THE EED: 2" HARMONIC

Electrons in skin depth quickly
increase in energy and are
“launched” into the bulk plasma.
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e Undergoing collisions while
traversing the reactor, they
degrade in energy.

HE IGHT [orm)

e Those surviving “climb” the
opposite sheath, exchanging
kinetic for potential energy.

e Several “pulses” are in transit
simultaneously. ENERGY [ov

e Amplitude of 2" Harmonic

ANIMATION SLIDE

® AI’, 10 mTOH', 100 W, 7 MHZ, r= 4 cm University Of ”linois
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CONSEQUENCES OF ELECTRON DYNAMICS IN ICPs

e The consequences of electron
dynamics were investigated for

Ar/N, gas mixtures. 12
e e+Ar>Arf+e +e, Ae=16eV 10
High threshold reactions capture E 8
modulation in the tail of the EED. £ 6
‘D
e e +N,—>N,(vib)+e, Ae=0.29eV 4
Low threshold reactions capture 2
modulation of the bulk of the EED.
0
. 0 5 10 15
e Base case conditions: Radius (cm)
e Pressure: SmTorr
e Ar/N,: 90/10 Electron density (1011 cm-3)
e Power: 650W
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SOURCES FUNCTION vs TIME: THRESHOLD

e lonization of Ar has more modulation than vibrational
excitation of N, due to modulation of the tail of the EED.

0 ° Radius (&) 1 0 ® Radius (&) 1
e lonization of Ar e Excitation of N,(v)
6 X 1014 _ 3 X 1016 Cm-SS-l 14 X 1014 — 8 X 1015 Cm_BS_l
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HARMONICS OF Ar IONIZATION: FREQUENCY

e Atlarge o, non-linear Lorentz
forces are small, and so
harmonic content is also
small.

e At small o, both non-linear
Lorentz forces and harmonic
excitation by the electric field
are large.

e Ar/N,=90/10, 5 mTorr
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oPLASMA CHEMISTRY
(Are we getting this right?)
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REACTION MECHANISMS FOR PLASMA ETCHING

e Recipes for plasma etching of . CF
dielectric materials (e.g., SiO,, CFs oF*
Si;N,) often contain mixtures of * \eTe/
many gases such as: C4Fs <—eC4F8—> C,Fy

B x\

C,F{ <———C/F, —— CoFs

Ar,C,F,,0,,N,, CO

e The fluorocarbon donors are e‘i
often highly dissociated, thereby ¢ cEt
requiring databases for both CF, 3 CF}
feedstocks and their fragments. /\

. : : C€=CF —=p» F _

e For predictive modeling, reaction / / \;

mechanisms must be developed CF* &

for arbitrary mixtures and wide
ranges of pressures.
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CFDRC_0503_11 Optical and Discharge Physics



C,F,, C,F, CROSS SECTION SETS

e The first step in developing a reaction mechanism is
compilation of electron impact cross section sets.

102 g
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e Ref: V. McKoy and W. L. Morgan
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ICP CELL AND [CF,*] FOR C,Fg, 10 mTorr

110
= I e An ICP reactor patterned after
342 Oeherlein, et al. was used for
E I validation.
% 7.2
:

e Reactor has a metal ring with

Probe 14 magnets to confine plasma.
) {‘; e CF," is one of the dominant
e lons in C,F, plasmas due to
is I large dissociation.
o 5e+10 e The major path for the CF,* is:
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In.] and T, FOR C,Fg, 10 mTorr

==
N

e Electron density peaks at =102
cm-3.

=

e The peak in T, occurs in the skin
layer due to collisionless
electron heating by the large

0 — electric field.
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I, (PROBE CURRENT) IN ICPs SUSTAINED IN Ar, O,

16 T T T ] 1 ]
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: " BExp. with magnets
- —Calc. .

400 600 800 1000 1200 1400
Power (W)

e O,, 10 mTorr

e Magnetic confinement is generally more effective in
electronegative plasmas with a larger variety of ions.
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l. VERSUS POWER FOR ICPs IN C,F,, Ar/C,F,, O,/C,F,
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~ with magnets

400 600 800 1000 1200 1400

Power (W)

20

10

| (MA)
o

% Ar addltlve

F —Calc.

t ——Calc. 2 8

1400 W 20 mTorr

a

* EXpA/CF .

" Exp. 0/CF

20 40 60 80
% O2 additive

100

e The differences in I, with and without magnets increases with
power due to increased non-linear Lorentz force.

e |, increases with Ar addition in Ar/C,Fgcompared to Ar/O, due to
higher dissociation of C,Fg and lower electronegativity.

e 13.56 MHz, -100 V probe bias.

CFDRC_0503_14
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ION COMPOSITION IN C,F,, Ar/C,F,

AreCats 4 10—,
——_Te /I . With magnets
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e Optimization of processing conditions on, for example, power
critically depends on the composition of the radical and ion
fluxes.

e 10 mTorr, 13.56 MHz University of Illinois
CFDRC_0503_22 Optical and Discharge Physics



EFFECT OF MAGNETS ON [CF]

15 Without magnets

e Without magnets [CF*] has a
maximum at the edge of the
classical skin depth where the
electron impact ionization is
the largest.

—h

Height {cm)

e The static magnetic fields
broaden the production of 15
[CF*] in the radial direction.

e

Height (cm)

Radius {cm)

e Ar/C,Fg=20/80, 3 mTorr, 13.56 MHz, 400 W. University of Illlinois
SRC_2003_AVV_9 Optical and Discharge Physics



MERIE REACTOR

e The model reactor is based on a TEL Design having a
transverse magnetic field.
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e K. Kubota et al, US Patent 6,190,495 (2001)
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TEL-DRM: Ar / C,F, /O,

ANIC,F,10,=200/10/5, 40 mTorr, 1500 W ANIC,F,10,=200/10/5, 40 mTorr, 1500 W
I I I I I | I I I I
-, — Cfy———
R Ar | )
o gL 4
: o - 5 .
"—.\IL{-J ] E N ——————h___;
= I CF, i
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e} C,F % o ]
S 10 s R - o T
N ;78 C——
L] - T 0'E F———
| 1__’__,_—’!—‘_‘-/%\: D: E’======"'""""""'==--====::::: C F - _-.--C F -]
5 CFt ] — —C.F ———2—3:%
r 2 q L 3 B CEFE
o' _l__——r———r_—__f__CFz | | | | | |
0 7 4 5] B 10 0 7 4 5] B 10
Radius (cm) Radius (cm)

o With reaction mechanisms developed for Ar/ C,F;/ O, and
Improved ability to model MERIE systems, parameterizations
were performed for TEL-DRM like conditions.

e Ar/C,Fg/ O, =200/10/5 sccm, 40 mTorr, 1500 W.

University of Illinois
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TEL-DRM: Ar / C,F, /O,

00 Energy (e Art - Energy {8%) CF; - Energy (%) C.F;
500 500
400 400
300 300
200 200
100 100
e R T A T
Angle {deg] Angle {deg] Angle {deg]

The large variety of ion masses produces vastly different
IEADS.

e Ar/C,Fg/ 0O, =200/10/5 sccm, 40 mTorr, 1500 W.

University of Illinois
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oSURFACE CHEMISTRY
(The most ill defined but
perhaps most important step.)

University of Illinois
CCCCC 050315 Optical and Discharge Physics



SELECTIVITY IN MICROELECTRONICS FABRICATION:
PLASMAS AND POLYMERS

e Fabricating complex microelectronic structures made of
different materials requires extreme selectivity in, for example,
etching Si with respect to SiO.,.

e Monolayer selectivity is
required in advanced

_ Tungsteni
etching processes. I Silicide §

81nm

e These goals are met by
the unique plasma-
polymer interactions
enabled in fluorocarbon
chemistries.

University of Illinois
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FLUORCARBON PLASMA ETCHING: SELECTIVITY

e Selectivity in fluorocarbon etching relies on polymer deposition.

e Electron impact dissociation of feedstock fluorocarbons produce
polymerizing radicals and ions, resulting in polymer deposition.

e + Ar/C4yFg —» CFp, M*

. CFn, M™  giF,
CFn. M™ cor,, siF,

Polymer
CFx Polymer y

SiO9 Si

e Compound dielectrics contain oxidants which consume the
polymer, producing thinner polymer layers.

e Thicker polymer on non-dielectrics restrict delivery of ion energy
(lower etching rates).

University of Illinois
ADVMET 1002 04 Optical and Discharge Physics
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FLUORCARBON PLASMA ETCHING: SELECTIVITY
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e High bias: etching

e G. Oerhlein, et al.,

ADVMET_1002_05

| CHF,
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e Etch Rate (SiO, > Si)

JVSTA 17, 26 (1999)
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SURFACE KINETICS: FLUOROCARBON PLASMA ETCHING Si/SiO,

e C,F, passivation regulates delivery of precursors and activation energy.
e Chemisorption of CF, produces a complex at the oxide-polymer interface.

e 2-step ion activated (through polymer layer) etching of the complex
consumes the polymer. Activation scales inversely with polymer thickness.

e Etch precursors and products diffuse through the polymer layer.
F

|+
CF
Plasma Cehy _ R E N
CF S F ’ I y F .
e X | co, Co "
2 . .
X y 4 ’ v ¢ e In Si etching, CF,
| .
cF Q? | | | is not consumed,
PX Y " CF, :I :I resulting in
assivation : . . thicker polymer
Layer v | | |
cF, v v ayers.
sio, Sio, SOy SiFCO,—»SiF

University of Illinois
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MONTE CARLO FEATURE PROFILE MODEL (MCFPM)

F, CFo, Art e The MCFPM predicts time and spatially dependent
profiles using energy and angularly resolved
neutral and ion fluxes obtained from equipment
scale models.

e Arbitrary chemical reaction mechanisms may be
implemented, including thermal and ion assisted,
sputtering, deposition and surface diffusion.

e Energy and angular dependent processes are
implemented using parametric forms.

e Mesh centered identify of materials
allows “burial”, overlayers and
transmission of energy through
materials.

Si

University of Illinois
SCAVS_1001_08 Optical and Discharge Physics



ETCH RATES AND POLYMER THICKNESS

e Etch rates for Si and SiO, increase with increasing bias due, in

part, to a decrease in polymer thickness.

e The polymer is thinner with SiO, due to its consumption during
etching, allowing for more efficient energy transfer through the

layer and more rapid etching.

700
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— Model

Experiment

o EXp
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80 100 120 140 160

Self-Bias Voltage (-V)
e C,F,, 6 mTorr, 1400 W ICP, 40 sccm

. Ref: T. Standaert, et al.
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J. Vac. Sci. Technol. A 16, 239 (1998).
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POLYMERIZATION AIDS SELECTIVITY

e Less consumption of polymer on Si relative to SiO, slows and,
In some cases, terminates etching, providing high selectivity.

Si
0.25 um
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TAPERED AND BOWED PROFILES

e In high aspect ratio (HAR) etching of Si0, |~ S PR
the sidewall of trenches are passivated by = SiO2
neutrals (CF,, x <2) due to the broad
angular distributions of neutral fluxes.

e Either tapered or bowed profiles can result
from a non-optimum combination of
processing parameters including:

e Degree of passivation
e lon energy distribution
e Radical/ion flux composition.

BOWED TAPERED

University of Illinois
Optical and Discharge Physics
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PROFILE TOPOLOGY: NEUTRAL TO ION FLUX RATIO

e Profiles depend on ratio of polymer forming fluxes to energy activating
fluxes. Small ratios produce bowing, large ratios tapering.

e Controlling this ratio through gas mixture (e.g., Ar/C,F,) enables
specification of profile topology.

Ar/CoFg = [
0/100

60/40

20/80 40/60
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LOW-K DIELECTRICS

e As feature sizes decrease and device count increases, the
diameter of interconnect wires shrinks and path length increases.

45
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30

= = (ate delay
= Sum of delays, Al and Si02
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n N
15 —\"‘*\
\ ~~~~~~~~~ I
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Gate "ﬁ.\ ""--..._
5 - 3-<
-__—-" e —
“ I'——I-l_E -ﬂ-—.l | | [
650 500 350 250 180 130 100
Generation (nm)
e L. Peters, Semi. Intl., 9/1/1998
UTA_1102_35

e Large RC-delay limits
processor performance.

e To reduce RC-delay, low
dielectric constant (low-k)
materials are being
Investigated.

University of Illinois
Optical and Discharge Physics



POROUS SILICON DIOXIDE

e Porous SiO, (xerogels) have low-k properties due to their lower
mass density resulting from (vacuum) pores.

e Typical porosities: 30-70%
e Typical pore sizes: 2-20 nm

e Porous SiO, (P-SIO,) is, from a process development viewpoint,
an ideal low-k dielectric.

e Extensive knowledge base for fluorocarbon etching of
conventional non-porous (NP-SiO,).

e No new materials (though most P-SiO, contains some
residual organics)

e Few new integration requirements

University of Illinois
ADVMET 1002 _07 Optical and Discharge Physics



WHAT CHANGES WITH POROUS SiO,?

e The “opening” of pores during etching of P-SiO, results in the
filling of the voids with polymer, creating thicker layers.

e lons which would have otherwise hit at grazing or normal angle
now intersect with more optimum angle.

e An important parameter is
L/a (polymer thickness / pore

owion fadius).

energy

e Adapted: Standaert, JVSTA 18, 2742 (2000)

high ion
energy

University of Illinois
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ETCH PROFILES IN SOLID AND POROUS SIO,

e Porous SiO, is being
Investigated for low-
permittivity dielectrics
for interconnect wiring.

e In polymerizing
environments with heavy
sidewall passivation,
etch profiles differ little
between solid and
porous silica.

e The “open” sidewall
pores quickly fill with
polymer.

0.1 0.2 0.3 0.1 0.2 0.3
e Position (um) e Position (um)

' = 0
¢ Solid e Porosity =45 % ANIMATION SLIDE

Pore radius = 10 nm

University of Illinois
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ETCHING OF POROUS SiO,

Etch rates of P-SiO, are generally

higher than for non-porous (NP).

e Examples:

e 2 Nnm pore, 30% porosity
e 10 nm pore, 58% porosity

Higher etch rates are attributed to

lower mass density of P-SiO.,,.

P - Porous
NP - Non porous

E - Experimental
M - Model

Exp: Oehrlein et al. Vac. Sci.Technol. A 18, 2742 (2000)
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CHF; 10 mTorr, 1400 W
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PORE-DEPENDENT ETCHING

e To isolate the effect of pores on etch
rate, corrected etch rate is defined as

400 T | T I

Etch Rate (ER) corrected =ER regular % (1-p), C_zlnm |
_ C - Corrected
p =porosity N
© 300} i
£ /

e If etching depended only on mass £ ~"Non porous
density, corrected etch rates would ¢ 200} -
equal that of NP- SiO.,. &

e
: ﬁ 100 | i
e 2nm pores L/a>1: C-ER > ER(SIO,).
Favorable yields due to non-normal
Incidence may increase rate. 0 S——
0 20 40 60 80 100 120 140
Self Bias (V)

e 10 nm pores L/a<1: C-ER < ER(SIO,).
Filling of pores with polymer decrease
rates.

University of Illinois
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EFFECT OF POROSITY ON BLANKET ETCH RATES
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e 2 Nm pores: Etch rate increases with porosity.

e 10 nm pores: Polymer filling of pores reduces etch rate at large

porosities.
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OXYGEN PLASMA CLEANING OF POLYMER

e After etching, the polymer must be removed from the feature.

e O, plasmas are typically used for polymer stripping, usually
during photoresist mask removal.

e Unlike hydrocarbon polymers which spontaneously react with O,
fluorocarbon polymers require ion activation for etching.

e Polymer + Energetic lon — Activated Polymer Site (P*)
e P*+ O — Volatile Products

e Removal of polymer from porous materials is difficult due to
shadowing of ion fluxes caused by the pore morphology.

University of Illinois
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EFFECT OF PORE RADIUS ON CLEANING

e Larger pores are more difficult to clean
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due small view angle of ion fluxes.

e Lower fluxes of less energetic ions

reduce activation and lengthen cleaning

time.
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e TOWARDS INTEGRATED
PROCESS MODELING
(The last step...metal

deposition.)

University of Illinois
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IONIZED METAL PHYSICAL VAPOR DEPOSITION (IMVPD)

e IMPVD is atechnique to deposit seed layers and barrier coatings,

and fill trenches.
e A flux of both neutral and metal atoms more uniformly produce

depositions without formation of voids.
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EFFECT OF PORE RADIUS ON Cu DEPOSITION

e Surrogate study
for seed layer
deposition and
barrier coating.

e Voids are created
at the pore
surface or

Initiated due to the
presence of

pores.

e Presence of voids
are pronounced

SRC03_AS_17

10 nm

for bigger pores.

ANIMATION SLIDE
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MERIE: ION FLUXES AND ENERGIES
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e Due to high dilution and low
fractional dissociation,
dominant ions are Ar*, C,F,*
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MERIE: POROUS SIO, ETCH

e More rapid etching with porous SiO, results in less
mask erosion and better profile control, but more
polymer filling of pores.

University of Illinois
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ICP: POROUS SiO, AND PHOTORESIST CLEAN

e Longer cleaning times are required with more porous
materials to remove polymer which is shaded from ion flux.

University of Illinois
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IMPVD: Cu SEED LAYER DEPOSITION

e Thicker seed layers are required with large pores to cover over
(or fill) gaps resulting from open structures.

University of Illinois
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CONCLUDING REMARKS

e Integrated plasma process modeling requires addressing a wide
range of physical phenomena.

e The large variety of gas mixtures, reactor geometries, plasma
sources and materials motivates development of generalized
modeling platforms with few a priori assumptions.

e The fundamental modeling challenges are no different than in
experimental integration:

e If a single module (process) is validated (optimized) in
Isolation, will it still be valid (optimum) when integrated with
other steps?

University of Illinois
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