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Chapter 1

Preface

This book is an introduction into modeling population dynamics in ecology. Because there are
several good textbooks on this subject, the book needs a novel “niche” to justify its existence.
Unique features of the book are: (1) an emphasis on “parameter free” phase plane analysis, (2)
the usage of the epidemiological concept of an R0 (or fitness) to simplify parameter conditions,
and (3) a strong emphasis on model development. The last point is the most important, and
makes this book somewhat anti-historical in places. Rather than just explaining the famous
classical models, we will first attempt to derive each model ourselves by translating biological
processes, like birth, death, and predation, into intuitive graphs. These graphs are subsequently
translated into simple mathematical functions. Collecting all functions in systems of differential
equations we obtain mathematical models that are typically similar, but often not identical, to
the classical models covered in other textbooks.

What is the reason for this rather laborious procedure for explaining models to students? I
think it is important that biologists can identify each term in a mathematical model with a
biological process for which they have some knowledge, or at least some intuition. For example,
one often needs biological insight to know how, or even whether, birth and death rates depend
on the population size. Since, the models we develop by our procedure ultimately resemble the
classical models in theoretical ecology, we do obtain a proper mechanistic understanding of the
classical model. Sometimes we end up with models with quite different properties, however.
These cases are even more important because we learn to be critical of mathematical models,
and definitely be critical of the conventional procedure of just employing a classical model for
any new ecological problem at hand.

The phrase “a graphical approach” in the title has two connotations. First, we will sketch
graphs for the effects of the population density on biological processes like the per capita birth
rate and the per capita death rate. Second, most models will be analyzed by sketching nullclines
in phase space. Both have the advantage that we can keep the mathematics that is required for
analyzing models at a level that should be understandable for motivated students in biology.
Most pictures in this book are made with GRIND, which is a computer program that is good
at drawing nullclines and phase space analysis. During the course you will work with a version
of GRIND in R (see Chapter 15).

Because the parameter values of biological models are typically not known, there is a strong
emphasis in this course on analyzing models with free parameters. This has the enormous
advantage that the results will be general, and that we do not run the risk of ignoring possibilities
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that may occur for different parameter settings. Most pictures in this book therefore have no
numbers along the axes (except for zero and one); rather they have parameter expressions for
most of the points of interest. Additionally, we will employ the epidemiological concept of an
R0, and the critical resource density R∗, to simplify several parameter conditions.

This course only covers simple caricature models that are designed to capture the essentials
of the biological problem at hand. Such simple models can be completely understood and
therefore give good insight and new ideas about the biological problem (May, 2004). Another
area of theoretical ecology is about large scale simulation models that are designed to summarize
the existing knowledge about a particular ecosystem, and to predict what could happen if the
circumstances change. Although such models are not covered in this book, the book should
nevertheless also be useful for students interested in developing large scale models. First, the
small components of large models should be developed by the same mechanistic process that
we here use for simple models. Second, it is a sobering lesson to let oneself be surprised by the
unexpected behavior of the simple models that are covered in this course, and such a lesson
seems essential for developing the required scientific scrutinizing attitude toward large scale
models.

The expected audience of this book is students of biology and ecology. Too many biologists
treat a mathematical model as a “black box” that is too difficult to understand. A main
objective of this course is to open the black box and show students in biology how to develop
simple mathematical models themselves. This allows for a much better understanding, and for
a healthy critical attitude toward the existing models in the field. Readers are expected to be
familiar with phase space analysis, i.e., should know how to sketch nullclines and derive a Jacobi
matrix. The first section of the Appendix provides a short summary on these prerequisites. A
complete tutorial on deriving Jacobi matrices is provided in accompanying ebook that can also
be downloaded from http://tbb.bio.uu.nl/rdb/books/.

Finally, this book originated from a theoretical ecology course given decades ago by Paulien
Hogeweg at Utrecht University to biology students. She taught me the strength of phase plane
analysis and simple caricature models. Some of the most interesting exercises in this book stem
from that course. After I started teaching this course its contents and presentation have evolved,
and have adapted to the behavior, the questions, and the comments from numerous students
having attended this course.



Chapter 2

Introduction

This course is an introduction into Theoretical Biology for biology students. We will teach
you how to read mathematical models, and how to analyze them, with the ultimate aim that
you can critically judge the assumptions and the contributions of such models whenever you
encounter them in your future biological research. Mathematical models are used in all areas of
biology. Most models in this course are formulated in ordinary differential equations (ODEs).
These will be analyzed by computing steady states, and by sketching nullclines. We will develop
the differential equations by ourselves following a simple graphical procedure, depicting each
biological process separately. Experience with an approach for writing models will help you to
evaluate models proposed by others.

This first chapter introduces some basic concepts underlying modeling with differential equa-
tions. To keep models general they typically have free parameters, i.e., parameters are letters
instead of numbers. You will become familiar with the notion of a “solution”, “steady state”,
“half life”, and the “expected life span”. Concepts like solution and steady state are important
because a differential equation describes the change of the population size, rather than its ac-
tual size. We will start with utterly simple models that are only convenient to introduce these
concepts. The later models in the course are more challenging and much more interesting.

2.1 The simplest possible model

A truly simple mathematical model is the following

dM

dt
= k , (2.1)

which says that the variable M increases at a rate k per time unit. For instance, this could
describe the amount of pesticide in your body when you eat the same amount of fruit sprayed
with pesticide every day. Another example is to say that M is the amount of money in your
bank account, and that k is the amount of Euros that are deposited in this account on a daily
basis. In the latter case the “dimension” of the parameter k is “Euros per day”. The ODE
formalism assumes that the changes in your bank account are continuous. Although this is
evidently wrong, because money is typically deposited on a monthly basis, this makes little
difference when one considers time scales longer than one month.
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This equation is so simple that one can derive its solution

M(t) = M(0) + kt , (2.2)

where M(0) is the initial value (e.g., the amount of money that was deposited when the account
was opened). Plotting M(t) in time therefore gives a straight line with slope k intersecting the
vertical axis at M(0). The slope of this line is k, which is the derivative defined by Eq. (2.1).
Thus, the differential equation Eq. (2.1) gives the “rate of change” and the solution of Eq. (2.2)
gives the “population size at time t”. Typically, differential equations are too complicated for
solving them explicitly, and their solutions are not available. In this course we will not consider
the integration methods required for obtaining those solutions. However, having a solution, one
can easily check it by taking the derivative with respect to time. For example, the derivative
of Eq. (2.2) with respect to time is ∂t[M(0) + kt] = k, which is indeed the right hand side of
Eq. (2.1). Summarizing, the solution in Eq. (2.2) gives the amount of money at time t, and Eq.
(2.1) gives the daily rate of change.

As yet, the model assumes that you spend no money from the account. Suppose now that you
on average spend s Euros per day. The model then becomes dM/dt = k − s Euros per day.
Mathematically this remains the same as Eq. (2.1), and one obtains exactly the same results
as above by just replacing k with k − s. If k < s, i.e., if you spend more than you receive, the
bank account will decrease and ultimately become negative. The time to bankruptcy can be
solved from the solution of Eq. (2.2): from 0 = M(0) + (k− s)t one obtains t = −M(0)/(k− s).
Although our model has free parameters, i.e., although we do not know the value of k or s, it is
perfectly possible to do these calculations.

This all becomes a little less trivial when one makes the more realistic assumption that your
spending is proportional to the amount of money you have. Suppose that you spend a fixed
fraction, d, of your money per day. The model now becomes

dM

dt
= k − dM , (2.3)

where the parameter d is a “rate” and here has the dimension “per day”. This can be checked
from the whole term dM , which should have the same dimension as k, i.e., “Euros per day”.
Biological examples of Eq. (2.3) are red blood cells produced by bone marrow, shrimps being
washed onto a beach, daily intake of vitamins, and so on. The k parameter then defines the
inflow, or production, and the d parameter is a death rate. Although this seems a very simple
extension of Eq. (2.1), it is much more difficult to obtain the solution

M(t) =
k

d

(
1− e−dt

)
+M(0)e−dt , (2.4)

which is depicted in Fig. 2.1a. The term on the right gives the exponential loss of the initial
value of the bank account. The term on the left is more complicated, but when evaluated at
long time scales, e.g., for t → ∞, the term (1 − e−dt) will approach one, and one obtains the
“steady state” M̄ = k/d. We conclude that the solution of Eq. (2.4) ultimately approaches the
steady state M = k/d, which is the ratio of your daily income and daily spending. Note that
this is true for any value of the initial condition M(0).

Fortunately, we do not always need a solution to understand the behavior of a model. The same
steady state can also directly be obtained from the differential equation. Since a steady state
means that the rate of change of the population is zero we set

dM

dt
= k − dM = 0 to obtain M̄ =

k

d
, (2.5)
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which is the same value as obtained above from the solution for t → ∞. Note that a steady
state also gives the population size. This steady state provides some insight in the behavior
of the model, and therefore in the way people spend their money. Suppose that rich people
spend the same fraction of their money as poor people do, and that rich people just have a
higher daily income k. This means that both rich and poor people approach a steady state
where their spending balances their income. Basically, this model says that people with a 2-fold
higher income spend 2-fold more money, and have 2-fold more money in the bank. This is not
completely trivial: if you were asked what would happen with your bank account if both your
income and spending increases n-fold you might have given a different answer.

2.2 Exponential growth and decay

Consider the unfortunate case that your daily income dries up, i.e., having a certain amount of
money M(0) at time zero, one sets k = 0 and is left with dM/dt = −dM . This is the famous
equation for exponential decay of radioactive particles, with the almost equally famous solution
M(t) = M(0)e−dt. Ultimately, i.e., for t→∞, the population size will approach zero. Plotting
the natural logarithm of M(t) as a function of time would give a straight line with slope −d per
day. This equation allows us to introduce two important concepts: the half life and the expected
life span. The half life is defined as the time it takes to lose half of the population size, and is
found from the solution of the ODE. From

M(0)

2
= M(0)e−dt one obtains ln

1

2
= −dt or t =

ln 2

d
. (2.6)

Since ln 2 ' 0.69 the half life is approximately 0.69/d days. Note that the dimension is correct: a
half life indeed has dimension time because we have argued above that d is a rate with dimension
day−1. The other concept is expected life span: if radioactive particles or biological individuals
have a probability d to die per unit of time, their expected life span is 1/d time units. This is
like throwing a die. If the probability to throw a four is 1/6, the expected waiting time to get a
four is six trials. Finally, note that this model has only one steady state, M̄ = 0, and that this
state is stable because it is approached at infinite time. A steady state with a population size
of zero is often called a “trivial” steady state.

The opposite of exponential decay is exponential growth

dN

dt
= rN with the solution N(t) = N(0)ert , (2.7)

where the parameter r is known as the “natural rate of increase”. The solution can easily be
checked: the derivative of N(0)ert with respect to t is rN(0)ert = rN(t). Biological examples of
this equation are the growth of mankind, the exponential growth of a pathogen in a host, the
growth of a tumor, and so on. Similar to the half life defined above, one can define a doubling
time for populations that are growing exponentially:

2N(0) = N(0)ert gives ln 2 = rt or t = ln[2]/r . (2.8)

This model also has only one steady state, N̄ = 0, which is unstable because any small pertur-
bation above N = 0 will initiate unlimited growth of the population. To obtain a non-trivial (or
non-zero) steady state population size in populations maintaining themselves by reproduction
one needs density dependent birth or death rates. This is the subject of the next chapter.
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In biological populations, this natural rate of increase of dN/dt = rN should obviously be a
composite of birth and death rates. A more natural model for a biological population that grows
exponentially therefore is

dN

dt
= (b− d)N with solution N(t) = N(0)e(b−d)t , (2.9)

where b is a birth rate with dimension t−1, and d is the death rate with the same dimension.
Writing the model with explicit birth and death rates has the advantage that the parameters of
the model are strictly positive (which will be true for all parameters in this course). Moreover,
one now knows that the “generation time” or “expected life span” is 1/d time units. Since
every individual has a birth rate of b new individuals per unit of time, and has an expected
life span of 1/d time units, the expected number of offspring of an individual over its entire
life-span is R0 = b/d (see Chapter 16). We will use this R0 as the maximum “fitness” of an
individual, i.e., the life-time number of offspring expected under the best possible circumstances.
In epidemiology theR0 is used for predicting the spread of an infectious disease: wheneverR0 < 1
a disease will not be able to spread in a population because a single infected host is expected to
be replaced by less than one newly infected host (Anderson & May, 1991); see Chapter 16.

Biological examples of Eq. (2.9) are mankind, the exponential growth of algae in a lake, and
so on. Similarly, the natural rate of increase r = b − d yields a “doubling time” solved from
2N(0) = N(0)ert giving t = ln[2]/r time units. A famous example of the latter is the data from
Malthus (1798) who investigated the birth records of a parish in the United Kingdom and found
that the local population had a doubling time of 30 years. Solving the natural rate of increase r
per year from 30 = ln[2]/r yields r = ln[2]/30 = 0.0231 per year, which is sometimes expressed
as a growth rate of 2.31% per year. More than 200 years later the global human growth rate
is still approximately 2% per year. Simple exponential growth therefore seems a fairly realistic
model to describe the growth of the quite complicated human population over a period of several
centuries.

In this book we will give solutions of differential equations whenever they are known, but for
most interesting models the solution is not known. We will not explain how these solutions
are obtained. The textbook by Adler (1997) gives an overview of methods of integration. You
can also use software like Mathematica to find the explicit solution of some of the differential
equations used here. Solutions are typically difficult to obtain, but much more easy to check.
For instance the solution N(t) = N(0)e(b−d)t of dN/dt = (b − d)N , can easily be checked: by
the chain rule the derivative of N(0)e(b−d)t with respect to t is N(0)(b− d)e(b−d)t = (b− d)N(t).

2.3 Summary

An ordinary differential equation (ODE) describes the rate of change of a population. The
actual population size is given by the solution of the ODE, which is generally not available. To
find the population size one can compute the steady state(s) of the model (the ODE), and/or
solve the ODEs numerically on a computer, which gives the model behavior. Steady states
are derived by setting the rate of change to zero, and solving for the actual population size.
Doubling times and half-lives are solved from the solution of the exponential growth (or decay)
equation N(t) = N(0)ert. The fitness, R0, of a population is the expected number of offspring
of one individual over one generation, under the best possible circumstances.
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Figure 2.1: Population growth. Panel (a) depicts the solution of Eq. (2.4). Panels (b) and (c) depict
exponential growth on a linear and a logarithmic vertical axis, respectively. A differential equation
describes the slope of the solution for each value of the variable(s): dN/dt is the slope of the N(t) =
N(0)ert curve for each value of N(t).

2.4 Exercises

Question 2.0. Read the chapter
a. What is the difference between a parameter and a variable?
b. What is the difference between the solution of an ODE and its steady state?
c. Why is the ODE dx/dt not telling you how much x there is at time t?
d. What is the dimension of d in dx/dt = −dx?
e. What is a half-life and a doubling time?
f. What is the difference between a half-life and an expected life span?
g. What is a steady state? When is a steady state called ‘trivial’?

Question 2.1. Red blood cells
Red blood cells are produced in the bone marrow at a rate of m cells per day. They have a
density independent death rate of d per day.
a. Which differential equation from this chapter would be a correct model for the population

dynamics of red blood cells?
b. Suppose you donate blood. Sketch your red blood cell count predicted by this model in a

time plot.
c. Suppose a sportsman increases his red blood cell count by receiving blood. Sketch a time

plot of his red blood cell count.

Question 2.2. Pesticide on apples
During their growth season apples are frequently sprayed with pesticide to prevent damage by
insects. By eating apples you accumulate this pesticide in your body. An important factor
determining the concentration of pesticide is their half life in the human body. An appropriate
mathematical model is

dP

dt
= σ − δP ,

where σ is the daily intake of pesticide, i.e., σ = αA where A is the number of apples that you
eat per day and α is the amount of pesticide per apple, and δ is the daily rate at which the
pesticide decays in human tissues.
a. Sketch the amount of pesticide in your body, P (t), as a function of your age, assuming you
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eat the same number of apples throughout your life.
b. How much pesticide do you ultimately accumulate after eating apples for decades?
c. Suppose you have been eating apples for decades and stop because you are concerned about

the unhealthy effects of the pesticide. How long does it take to reduce your pesticide level by
50%?

d. Suppose you start eating two apples per day instead of just one. How will that change the
model, and what is the new steady state? How long will it now take to reduce pesticide levels
by 50% if you stop eating apples?

e. What is the decay rate if the half-life is 50 days?

Question 2.3. Bacterial growth
Every time you brush your teeth, bacteria enter your blood circulation. Since this a nutritious
environment for them they immediately start to grow exponentially. Fortunately, we have
neutrophils in our blood that readily kill bacteria upon encountering them. A simple model
would be:

dB

dt
= rB − kNB ,

where B and N are the number of bacteria and neutrophils per ml of blood, r is the growth
rate of the bacteria (per hour), and k is the rate at which bacteria are killed by neutrophils.
a. What is the doubling time of the bacteria in the absence of neutrophils?
b. Neutrophils are short-lived cells produced in the bone marrow, and chemotherapy can

markedly reduce the neutrophil counts in the peripheral blood. What is the critical number
of neutrophils that is required to prevent rampant bacterial infections after chemotherapy?

c. What is the dimension of the parameters r and k?
d. The kBN term is called a mass-action term because it is proportional to both the bacterial

and the neutrophil densities. A disadvantage of such a term is that each neutrophil is assumed
to kill an infinite number of bacteria per hour if the bacterial density B → ∞ (please check
this). Later in the course we will use saturation functions to allow for maximum killing rates
per killer cell. An example of such a model would be dB/dt = rB− kNB/(h+B) where the
total number of bacteria killed per hour approaches kN when B → ∞ (please check this).
What is now the dimension of k?

e. What is now the critical number of neutrophils that is required to prevent bacterial infections
after chemotherapy? Can you sketch this?

f. What is the dimension of h, and how would you interpret that parameter?

Question 2.4. Injecting anesthesia
Before you undergo a minor operation a certain amount of anesthesia is injected in the muscle
of your upper arm. From there it slowly flows into the blood where it exerts its sedating effect.
From the blood it is picked up by the liver, where it is ultimately degraded. We write the
following model for the amount of anesthesia in the muscle M , blood B and liver L:

dM

dt
= −eM ,

dB

dt
= eM − cB and

dL

dt
= cB − δL ,

where the parameter e is the efflux from the muscle, c is the clearance from the blood, and δ is
the degradation in the liver. All parameters are rates per hour. We assume that the degradation
in the muscle and blood is negligible. The initial amount of anesthesia injected is M(0): the
amount in the muscle at time zero.
a. Sketch the amounts of anesthesia in the muscle, M(t), in the blood, B(t), and in the liver,
L(t), as a function of time.

b. How long does it take before half of the injected amount has flown from the muscle to the
blood?

c. Is this the right time to do the operation?
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d. Suppose the degradation rate is slow, i.e., let δ → 0, how much anesthesia will ultimately
end up in the liver?

Question 2.5. SARS
Consider a deadly infectious disease, e.g., SARS, and write the following model for the spread
of the disease:

dI

dt
= βI − δI ,

where I is the number of human individuals infected with SARS, β is the number of new cases
each infected individual causes per day, and 1/δ is the number of days an infected individual
survives before he/she dies of SARS. Epidemiologists define the R0 of a disease as the maximum
number of new cases expected per infected individual. Since an infected individual here is
expected to live for 1/δ days, and is expected to cause β new cases per day, the R0 of this
disease is β/δ.
a. It has been estimated that on average a SARS patient causes R0 = 3 new cases, during a

typical disease period of two weeks (Lipsitch et al., 2003). Most patients die at the end of
these two weeks. How long does it take with these parameters to reach the point where 3×109

individuals (i.e., half of the world population) are infected? Note that at this time point the
healthy uninfected pool is less than half of the world population because many people will
have died (i.e., your simple estimate is a worst case estimate).

b. Do you think this is a realistic estimate? How would you extend the model to make it more
realistic?

Question 2.6. Physics (Extra exercise for cool students)

The linear ODEs used in this chapter should be familiar to those of you who studied the famous
equations for velocity and acceleration. One typically writes:

dx

dt
= v and

dv

dt
= a ,

where x is the total distance covered, v is the velocity, and a is the time derivative of the
velocity, which is defined as the “acceleration”. Integrating dv/dt gives v(t) = at+ v(0), where
the integration constant v(0) is the velocity at time zero, and integrating dx/dt = at+v(0) gives
x(t) = 1

2at
2 + v(0)t.

a. Check the dimensions of v and a.
b. Check these solutions.
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Chapter 3

Population growth: replication

Populations change by migration, birth and death processes. In Chapter 2 we saw that one can
write simple differential equations for populations that maintain themselves by immigration,
and by replication (i.e., birth). We will here study similar models with explicit birth and
death processes, and will add functions to describe how these processes may depend on the
population size. There are always many different models for each particular situation, and
rather than taking well-known equations for granted, we will introduce an approach for “how
to develop a mathematical model”. Models will be analyzed by computing steady states, and
by sketching nullclines. It is important to realize that all models introduced here require a
number of “unrealistic assumptions”: (1) all individuals are equal, (2) the population is well-
mixed, (3) the population size N is large, and (4) the parameters are constants. Nevertheless
such “unrealistic” models will help us to think clearly about the biology described by the model
(May, 2004).

We have seen in Chapter 2 that a non-replicating population which is maintained by an external
influx, and has a density independent death rate, e.g., Eq. (2.3), will ultimately approach a
steady state where the influx balances the death. This is not so for a model with density
independent per capita birth and death rates: the only equilibrium of Eq. (2.9) is N = 0. If
b > d, i.e., if the fitness R0 > 1, this equilibrium is unstable because introducing the smallest
number of individuals into the N = 0 state leads to exponential growth (see Chapter 16). If
R0 < 1 this equilibrium is stable because every population will ultimately go extinct (i.e., for
t→∞ the solution N(0)e(b−d)t → 0 when d > b). Note that one could argue that Eq. (2.9) also
has a steady state when b = d. However, this is a rare and strange condition because the birth
rate and the death rate would have to stay exactly the same over long time scales.

Birth and death rates are typically not fixed because the processes of birth and death can
depend on the population size. Due to competition at high population densities birth rates may
become lower and death rates higher when the population size increases (see Fig. 3.1). This
is called density dependence. We here wish to develop models that are realistic in the sense
that we understand which biological process is mechanistically responsible for the regulation of
the population size. A good procedure for developing such models is to determine beforehand
which process, i.e., birth or death, has the strongest density-dependent effect. The next step
is to sketch a natural functional relationship between the biological process and the population
density.
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Figure 3.1: Graphs of the per capita birth and death rates. Equilibrium points correspond to the
intersection points where the birth rate equals the death rate. From: Campbell & Reece (2008).

3.1 Density dependent death

If the death rate increases with the population size one could, for example, propose a simple
linear increase of the per capita death rate with the population size (see Fig. 3.1a). This linear
increase need not be realistic, but would certainly be a natural first extension of Eq. (2.9). Since
we already have a normal death rate d in Eq. (2.9), a simple mathematical function for the graph
in Fig. 3.1a is f(N) = d + cN , where d is the normal death rate that is approached when the
population size is small, and where c is the slope with which the death rate increases with N . To
incorporate the death rate of Fig. 3.1a into our model one can multiply the death rate parameter
d in the dN/dt = (b− d)N of Eq. (2.9) with a non-dimensional function like f(N) = (1 +N/k),
where the dimension of the parameter k is biomass, or individuals, and its exact interpretation
is that the death rate has doubled when N = k. Because f(N) = 1 when N → 0 the minimum
per capita death rate (or maximum generation time) remains exactly the same. The full model
becomes

dN

dt
= [b− d(1 +N/k)]N . (3.1)

At low population sizes the expected life span of the individuals remains 1/d time units, and
they always have a birth rate b per time unit. Since the R0 is a maximum fitness, it is computed
for an individual under optimal conditions, which here means N → 0. The fitness of individuals
obeying Eq. (3.1) therefore equals R0 = b/d.

To search for steady states of Eq. (3.1) one sets dN/dt = 0, cancels the trivial N = 0 solution,
and solves from the remainder

b− d = dN/k that N̄ = k
b− d
d

= k(R0 − 1) (3.2)

is the non-trivial steady state population size. In ecology such a steady state is called the
“carrying capacity”. A simple linear density dependent death rate is therefore sufficient to
deliver a carrying capacity. Here, the carrying capacity depends strongly on the fitness of the
population, i.e., doubling (R0 − 1) doubles the steady state population size.

To test whether these steady states are stable one could study the solution of Eq. (3.1) to see
what happens when t→∞. Although this solution is known (see below), we prefer to introduce
a graphical method for determining the stability of a steady state. Fig. 3.1a sketches the per
capita birth and death rates as a function of the population size in one graph. When these lines
intersect the birth and death rates are equal and the population is at steady state. To check the
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Figure 3.2: Panels (a) and (b) show for a plant species and a bird species that the per capita reproduction
rate depends on the population size. From: Campbell & Reece (2002).

stability of the non-trivial steady state, one can study what happens when the population size
is somewhat increased. Increasing N from the equilibrium density N̄ makes dN/dt < 0 because
the death rate exceeds the birth rate. This forces the population back to its steady state value.
Similarly, decreasing N makes dN/dt > 0 which pushes the population back to the steady state.
We conclude that the non-trivial steady state is stable. The instability of the trivial steady state
N = 0 can also be checked from Fig. 3.1a: increasing N from N̄ = 0 makes dN/dt > 0 whenever
b > d, i.e., whenever the fitness R0 > 1.

3.2 Density dependent birth

Alternatively, one may argue that the per capita birth rate b should decrease with the population
size. Experimental evidence supporting a decreasing birth rate in two natural populations is
shown in Fig. 3.2. The simplest functional relationship between the per capita birth rate and
the population size is again a linear one (see Fig. 3.1b), and a simple mathematical description
is f(N) = b− cN , where b is the birth rate at low population densities. Since we already have a
maximum birth rate in the dN/dt = (b−d)N of Eq. (2.9), we multiply the birth rate parameter,
b, by the linear non-dimensional function, f(N) = (1−N/k), such that the model becomes

dN

dt
= [b(1−N/k)− d]N . (3.3)

The dimension of the parameter k is again biomass, or individuals, and its exact interpretation
now is that the birth rate becomes zero when N = k. The advantage of using this non-
dimensional function, f(N) ≤ 1, that approaches one when N → 0, is that the interpretation
of the maximum birth rate remains the same. At low population sizes the fitness of individuals
obeying Eq. (3.3) therefore remains R0 = b/d, which is natural because at a sufficiently low
population size there should be no difference between the two models. The steady states now
are N = 0 and solving

b− d = b
N

k
yields N̄ = k(1− d/b) = k(1− 1/R0) . (3.4)
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A simple linear density dependent birth term therefore also allows for a carrying capacity. When
R0 � 1, this carrying capacity approaches the value of k, and becomes fairly independent of the
fitness. By the same procedure as illustrated above one can test graphically from Fig. 3.1b that
the carrying capacity is stable, and that N = 0 is unstable.

3.3 Logistic growth

Since the model with density dependent death and the one with density dependent birth are
both of the form dN/dt = αN − βN2, where α and β are arbitrary parameters, one can rewrite
both models into the classical “logistic equation”:

dN

dt
= rN(1−N/K) , with solution N(t) =

KN(0)

N(0) + e−rt(K −N(0))
, (3.5)

with a natural rate of increase of r = b − d, and where K is the carrying capacity of the
population. The behavior of the three models is therefore the same: starting from a small
initial population the growth is first exponential, and later approaches zero when the population
size approaches the carrying capacity (see Fig. 3.3). Starting from a large initial population,
i.e., from N(0) > K, the population size will decline until the carrying capacity is approached.
Because Eq. (3.5) has no explicit death rate, the R0 is not defined.

3.4 Non-replicating populations

In non-replicating populations one can also define density dependent production

dN

dt
= s[1−N/k]− dN (3.6)

where the rate of successful immigrations decreases with N . The steady state obtained from
solving dN/dt = 0 is N̄ = sk/(dk + s), which is a saturation function of the source s. Since
this model has no per capita growth rate, one has to determine the stability of the steady state
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by plotting the population growth and the population death rate in one graph (see Fig. 3.4a).
The steady state is stable because increasing N̄ results in a reduction of the population size,
i.e., dN/dt < 0, and decreasing N̄ results in population growth.

Similarly, one can allow for density dependent death, e.g.,

dN

dt
= s− dN [1 +N/k] , (3.7)

with steady states N =
−dk±

√
dk(dk+4s)

2d . Because the square root term is positive and larger
than dk, the positive root of this quadratic equation corresponds to a meaningful steady state,
and the negative root has to be ignored. Plotting the population growth, s, and the total death,
dN [1 +N/k] in one graph again reveals that this steady state is stable (see Fig. 3.4b).

3.5 Stability and return time

The steady state N = 0 in Fig. 3.1 is not stable because small perturbations increasing N makes
dN/dt > 0, which further increases N . The non-trivial steady states in Fig. 3.1 and Fig. 3.4 are
stable because increasing N makes dN/dt < 0. It appears that steady states are stable when
∂N [dN/dt] < 0, and unstable when this slope is positive (see Fig. 3.5). Note that ∂N means the
derivative with respect to N , i.e., ∂x x

2 = 2x and ∂tN = dN/dt (which is also written as N ′).

Mathematically one can linearize any continuous function f(x) around any particular value, e.g.,
x̄, by its local derivative ∂x f(x̄) in that point:

f(x) ' f(x̄) + ∂x f(x̄) (x− x̄) , (3.8)

where h = x− x̄ is a small distance in the x-direction, and f ′ = ∂x f(x̄) is the derivative of f(x)
with respect to x at the value x = x̄ (see Fig. 18.4 in the Appendix, and the accompanying Ebook
(Panfilov et al., 2016)). To apply this to our stability analysis one rewrites f(N) into f(N̄ + h)
where N̄ is the steady state population size and h is considered to be a small disturbance of
the population density from the steady state, i.e., h = N − N̄ . Following Eq. (3.8) one rewrites
dN/dt into

dN

dt
= f(N) ' f(N̄) + ∂Nf(N̄) (N − N̄) = 0 + λh , (3.9)
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because f(N̄) = 0, and where we have defined λ = ∂Nf(N̄) as the local derivative of f(N) at
N = N̄ , and h = N − N̄ as the distance to the steady state. Because the sum of two derivatives
is the derivative of the sum, and dN̄/dt = 0, we can apply the following trick

dN

dt
=

dN

dt
− dN̄

dt
=

d(N − N̄)

dt
=

dh

dt
, (3.10)

to obtain
dh

dt
= λh with solution h(t) = h(0)eλt , (3.11)

for the behavior of the distance, h, to the steady state. Thus, whenever the local tangent λ at
the equilibrium point is positive, small disturbances, h, grow. Whenever λ < 0 they decline,
and the equilibrium point is stable. For an arbitrary growth function this dependence on the
slope λ is illustrated in Fig. 3.5b. This figure shows that the unstable steady states, here saddle
points, separate the basins of attraction of the stable steady states.

For example, for the logistic equation, f(N) = rN(1−N/K), one obtains λ = r − 2rN/K. At
the carrying capacity of the logistic equation, i.e., at N = K, the local tangent is λ = −r, and
at N = 0 we obtain λ = r (see Fig. 3.5a), arguing that N = K is a stable steady state, and
N = 0 is an unstable steady state.

The stability of a steady state can be expressed as a “Return time”

TR = − 1

λ
, (3.12)

i.e., the more negative λ the faster perturbations die out. For example, consider the return
time of the logistic growth equation around its carrying capacity. Above we derived that at
N̄ = K the tangent λ = −r. This means that TR = 1/r, i.e., the larger r the shorter the return
time. Populations that grow fast are therefore more resistant to perturbations. The paradigm
of r-selected and K-selected species in ecology is built upon this theory. Finally, note that
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the dimensions are correct: because r is a rate with dimension “time−1”, TR indeed has the
dimension “time”.

3.6 Summary

A stable non-trivial population size is called a carrying capacity. Replicating populations will
only have a carrying capacity when the per capita birth and/or death rate depend on the
population density. For non-replicating populations this is not the case because they approach
a stable steady state without any population regulation (i.e., without density dependence [or
homeostasis]). A steady state is stable if the local derivative of the growth function is negative.
The steeper this derivative, the shorter the return time.

3.7 Exercises

Question 3.1. Seed bank
Write a simple population growth model for an annual vegetation growing from seeds that are
buried in the soil (i.e., a seed bank). Consider a large seed bank, and let the contribution of the
current vegetation to the seed bank be negligible, i.e., assume that the number of seeds remains
constant.

Question 3.2. Carrying capacity
What do you expect for the individual well-being in a population that is approaching its carrying
capacity:
a. Do you expect the individual birth rate to be small or large?
b. Do you expect the individual death rate to be small or large?
c. In which population would you prefer to live: a small expanding population, or in one that

is approaching carrying capacity?
d. Optimists like Julian Simon advise the American government by saying that “every human

being represents hands to work, and not just another mouth to feed” (Cohen, 1995). We
can investigate this proposal by arguing that the carrying capacity K in Eq. (3.5) increases
with the population size. Test a simple example, e.g., K = k

√
N , and see how this influences

the result. Do you still expect a carrying capacity where the individual well-being is at its
minimum?

Question 3.3. Assumptions
Differential equation models for population dynamics are based upon a number of rather unre-
alistic assumptions.
a. Give a number of these assumptions.
b. How can models still be reasonable and helpful in biological research?

Question 3.4. Fishing herring
Let us assume that the dynamics of the herring population in the North Sea is more or less
following the logistic growth, i.e., use Eq. (3.5).
a. Sketch the population growth dN/dt = f(N) as a function of the population size N .
b. What is the maximum of the function f(N)?
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c. What is the long-term optimal population size for the fisher men, and what would then be
the maximum harvest (i.e., the maximum number of fish captured per unit of time)?

d. Include this maximum harvest explicitly in the model.
e. Sketch the growth of the population as a function of its size for this new situation, and show

that this quota is too large.
f. What would be a more durable quota for fishing herring?

Question 3.5. Owls
There is an owl species that exclusively uses tree hollows for breeding. The growth of this owl
population is limited by the availability of breeding places. Assume that the owls can easily find
an unoccupied tree, and implement that very strictly into your model.
a. Draw a graph of the number of offspring per year as a function of the population size.
b. Make a model for the population size of the owls.
c. Draw a graph of the expected number of offspring per individual as a function of population

size. This graph should be in agreement with the previous one.
d. Assume there is no mortality, and sketch the population density as a function of time.
e. Now sketch the population density as a function of time, assuming density independent

mortality.

Question 3.6. Patches
Consider an environment with K patches. Each patch can be occupied by exactly one individual
of a species. For simplicity, assume a density independent mortality, and assume that the per
capita birth rate is limited by the availability of patches.
a. Define a model for population growth, assuming that the birth rate depends linearly on the

number of empty patches.
b. What is the fitness R0? Compute the steady states, and express these in terms of the fitness.
c. Is K the carrying capacity of the population?
d. Draw the curves for the per capita birth and death rates as a function of the population size.

Use these to determine the stability of steady states.
e. Now define a model for population growth, assuming that the relation between the per capita

birth and the number of empty patches is described by a saturation function (instead of a
linear function). Use a simple Hill function (see Page 139).

f. Draw the curve for the per capita birth rate and death rate as a function of the population
size.

g. Is K the carrying capacity of the population?

Question 3.7. Return time
Compute the return time of:
a. the non-trivial steady state of the density dependent death model dN/dt = bN−dN [1+N/k].
b. the steady state of the non-replicating population dN/dt = s− dN .

Question 3.8. Regulation of birth rates
An alternative for the logistic growth equation with a density dependent birth rate is the equation

dN

dt
=

bN

1 +N
− dN ,

with the parameters b for the maximum birth rate, and d for the mortality. The population is
normalized such that the growth is half maximal at N = 1. Because this model makes a clear
distinction between birth and mortality it seems preferable for biological reasons.
a. Check that b indeed is the maximum growth rate per individual.
b. What is the fitness, R0?
c. Compute the steady states and give their stability. Hint: Remember the quotient rule of
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differentiation given in Eq. (18.34).
d. What is the return time? Consider a population with a high fitness; what is the most

important factor defining the return time?
e. At what population density does the total population growth reach a maximum value?
f. How would you compute this maximum population growth rate?
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Chapter 4

Non-linear density dependence

From the previous chapter we have learned that a general procedure to develop a mathematical
model is to enumerate the various processes contributing to the change of the population size,
and to sketch how each of these processes should depend on the population size(s). Typically, it
was most convenient to describe a process in terms of the change “per individual”. For instance,
we sketched how the per capita birth and death rates depend on the population size. The simple
models developed in the previous chapter above assumed that the birth and/or death rates were
linear functions of the population density. This is obviously not generally the case. Intuitively,
one would expect that competition only kicks in at high population densities.

In the appendix we let you become familiar with a few families of convenient functions, e.g.,
Hill-functions and exponential functions

f(x) =
xn

hn + xn
and f(x) = 1− e− ln[2]x/h , (4.1)

respectively (see Page 139). Both can be used to formulate positive and negative effects of
populations onto each other. Hill-functions and exponential functions define two families of
functions f(x) that increase with x, that are zero when x = 0, are half-maximal when x = h,
and that approach a maximum f(x) = 1 when x→∞. Because these functions are dimensionless
and remain bounded between zero and one, i.e., 0 ≤ f(x) < 1, one can easily multiply any term
in a model (corresponding to some biological process) with such a function. The maximum
f(x) → 1 yields the maximum positive effect of the populations onto each other, and f(x) = 0
the minimum effect (whenever one would need a different maximum in the model, one simply
multiplies f(x) with a parameter). Having increasing functions 0 ≤ f(x) < 1, one can easily
define decreasing functions by taking g(x) = 1− f(x) (see Page 139).

4.1 Density dependent birth

For a replicating population with density dependent growth one would write

dN

dt
= (bf(N)− d)N , (4.2)

and one could use several candidates of the decreasing density dependent function f(N) like

f(N) = 1− N

2k
, f(N) =

1

1 +N/k
, f(N) =

1

1 + [N/k]2
and f(N) = e− ln[2]N/k , (4.3)
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Figure 4.1: Density dependent birth rates defined by Eq. (4.3). The declining curves in Panels (a)–(d)
correspond to per capita birth rate, bf(N), where the density dependence is defined by one of the four
functions in Eq. (4.3). The horizontal lines depict the density independent per capita death rate of Eq.
(4.2). The intersects therefore correspond to steady states.

Function f(0) f(k) f(∞) R0 Carrying capacity

f(N) = max(0, 1−N/[2k]) 1 0.5 0 b/d N̄ = 2k(1− 1/R0)
f(N) = 1/(1 +N/k) 1 0.5 0 b/d N̄ = k(R0 − 1)
f(N) = 1/(1 + [N/k]2) 1 0.5 0 b/d N̄ = k

√
R0 − 1

f(N) = e− ln[2]N/k 1 0.5 0 b/d N̄ = (k/ ln[2]) ln[R0]

Table 4.1: Different properties of several functions for density dependent growth in dN/dt = (bf(N)−
d)N .

which are depicted in Fig. 4.1. Data supporting density dependent growth functions are depicted
in Fig. 3.2. Because the birth rate should probably remain close to maximal as long as the
population size is sufficiently small, and is only expected to decrease when competition kicks
in, the sigmoid function of Eq. (4.3)c seems most realistic. Note that Campbell & Reece (2002,
2005) draw a straight line through the Song sparrow data depicted in Fig. 3.2b, i.e., they
suggest the linear function of Eq. (4.3)a, but one could also argue that the clutch size remains
approximately 3.5 per female until the density exceeds 50 females, and then drops steeply. The
Plantain (Plantago) data in Fig. 3.2a basically argue that the number of seeds per plant, y,
obeys y ' 104/x (check the values at x = 1, 10 and 100). This is similar to a “birth” rate
b/(1 + N). Each of the four models has a single non-trivial steady state (see Table 4.1) and
this steady state is always stable (see Fig. 4.1). At the steady state dN/dt = 0, and increasing
the population size to a value slightly above its steady state value brings the model in a region
where dN/dt < 0 (as indicated by the − signs in Fig. 4.1), whereas decreasing the population
to a value slightly below the steady state value increases dN/dt (see the + signs).

Since all these functions are bounded between zero and one, i.e., 0 ≤ f(N) < 1, the fitness in
these models is always R0 = b/d. Although the different functions may reflect quite a different
biology, the models that result from incorporating them have a very similar behavior. For
instance, starting with a small population the population size plotted in time will always look
like a sigmoid function. In other words, finding a population with a sigmoid population growth
tells us very little about its underlying density dependent regulation. Table 4.1 shows the models
differ in how the carrying capacity depends on the fitness R0. In the exercises you will study
the differences in the dynamics of these models using grind.R.
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t = 200 t = 400 t = 800

Figure 4.2: Lichens growing as an expanding disk. The three panels on the right show three snapshots of
a computer simulation, with time proceeding from left to right. In this Cellular Automaton fresh empty
pixels that are surrounded neighboring live pixels can become alive, dead pixels remain dead (exhausted)
forever, and all live pixels die with some probability.

4.2 Density dependent death

A general model for density dependent death rates would be

dN

dt
= (b− d[1 + (N/k)m])N (4.4)

which has a linear increase in the death rate when m = 1, and a faster than linear increase when
m > 1. The interpretation of k remains the same, i.e., when N = k the death rate has doubled.
Having a fitness R0 = b/d the steady state is N̄ = k m

√
R0 − 1. For m = 1 Fig. 3.1a shows that

this steady state is stable. Confirm for yourself that this is true for all values of m by sketching
the same picture for m = 1/2 and m = 2.

4.3 Summary

Density dependent processes are probably not linear, and are typically expected to become
significant only at a large population size. Hill functions and/or exponential functions are
convenient for defining any preferred dependence on the population size. How the carrying
capacity depends on the R0 depends strongly on the choice of the function used for defining the
density dependence. A sigmoid density dependence seems most realistic, but is also the most
cumbersome function to handle algebraically.

4.4 Exercises

Question 4.1. Lichens
Lichens grow in a thin crust. Assume the shape of the crust to be a perfect circle. Further,
assume that reproduction can only take place at the edge of this circular crust, whereas the
mortality is uniform. A first approximation would be that the total biomass is proportional to
the area of this circle, i.e., A = cπr2, where r is its radius and c is a constant scaling from area
to biomass. Since reproduction takes place at the border, realize that the circumference of the
circle is given by 2πr.
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a. Solve the radius from the biomass expression and make an ODE for the biomass of such a
lichen.

b. What is the steady state of the total biomass?
c. Draw the curve for the growth per unit of biomass as a function of the total biomass.
d. How will the biomass change over time (sketch the curve)?
e. A problem of this model is the infinite per capita growth at small densities. How would you

repair that?
f. Another problem is that after some time a growing lichen will be thin in the middle and

ticker at the edge, because the area in the middle is older and has had more time to die. To
study this one would need to make a spatial model (see Fig. 4.2). Cool students could try to
see what happens if the lichen grows as a ring with a certain width, while reproduction still
occurs at the border.

Question 4.2. Life stages
Consider an insect population consisting of larvae (L) and adults (A). Assume that adults
give birth to larvae (asexual), and that these larvae become adults. Adults have a density
independent mortality. Larvae compete with adults and have a mortality that is dependent on
the density of adults (and use a simple term for this).
a. Make a model for the growth of such a population, using two ODEs.
b. Draw nullclines and determine the stability of all steady states.
c. Assume that the dynamics of the larvae is much faster than that of adults, i.e. make a “quasi

steady state” assumption for the larvae.
d. Give the new adult equation. Does this equation look familiar to you?
e. What model would you get if one makes the quasi steady state assumption for the adults,

rather than the larvae?
f. Which of the two assumptions do you think is most realistic?

Question 4.3. Allee effect
The Allee effect is famous for modeling populations of whales. It has been argued that at low
population densities the whales have difficulties finding mates. Develop a model for the females
in a whale population, incorporating an Allee effect by assuming that at low (female) population
densities the birth rate decreases due to limited availability of males. To have a carrying capacity
you will also have to allow for density dependent birth or death.

Question 4.4. Nullcline
Sketch the nullcline of

dR

dt
=

bR

1 +R/h
− dR− cRN

in a phase space of N versus R.



Chapter 5

Consumption

Having developed a number of models for population growth with density dependent growth
and/or death terms, the time seems ripe to develop models for a consumer feeding on some kind
of resource. Examples are herbivores grazing on a vegetation, raptors foraging for rodents, and
bacteria consuming macromolecules. Because the amount of resource diminishes by consump-
tion, one should automatically have competition between the consumers, which delivers density
dependent effects that will ultimately limit the total population size. In the previous chapter
we developed a strategy to sketch a simple graph for each biological process at hand, and then
translate such a graph into a mathematical function for the model. Like we did above, we will
again think in terms of individuals, and sketch their per capita birth rates and death rates, to
develop a resource consumer, or predator prey, model.

First consider the resource. This could be a replicating population maintained by birth and
death processes, or a population with a source and a death term. An example of the latter
would be shrimps that are washed onto a beach from the sea, forming a resource on which
seagulls are feeding. An example of the former is a population of green algae that form the
resource of zooplankton (e.g., Daphnia). Starting with a replicating population we consider a
population with a density dependent birth rate, and a density independent death rate (see Fig.
5.1a & b). In the previous chapter we have modeled such a population with

dR

dt
=

[
b

1 + (R/k)2
− d
]
R , (5.1)

which has an R0 = b/d and a carrying capacity R̄ = K = k
√
R0 − 1.

Suppose that one has measured the feeding rate of zooplankton as a function of the density
of the algae, and that for a realistic range of algal densities one has found the simple linear
relationship depicted in Fig. 5.1c for the per capita zooplankton feeding efficiency. (It could well
be that at densities, R, much higher than the carrying capacity, K, the per capita consumption
rate increases slower than linear, but that this would not be of interest because one never
expects the algae density to exceed its carrying capacity). The simple linear relationship in Fig.
5.1c obviously translates into the function f = cR where f is the number of prey caught per
predator per unit of time. To know the total impact of predation on the prey population one
simply multiplies f with the actual number of predators, and arrives at cRN for the predation
term. Adding this to Eq. (5.1) yields

dR

dt
=

[
b

1 + (R/k)2
− d− cN

]
R . (5.2)
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The nullcline of this equation can be sketched in a 2-dimensional phase space of predators and
prey. First, one cancels the R = 0 solution from dR/dt = 0 (which is a nullcline corresponding
to the predator axis). Next, the simplest approach is to write N as function of R, i.e.,

N =
b/c

1 + (R/k)2
− d/c , (5.3)

which is the sigmoid declining Hill function depicted in Fig. 5.2. We know that R = k
√
R0 − 1

when N = 0, and one can see that N = (b− d)/c when R = 0, and that N → −d/c for R→∞.
The area below the R-nullcline is the area where dR/dt > 0. Above the nullcline dR/dt < 0,
because the predator density and/or the prey density is too high. Note that the shape of the
prey nullcline reflects the per capita growth rate of the prey. This is a natural result because
the nullcline equation is of the form cN = [dR/dt]/R (see below).

The next mission is to add the predator equation. One needs to know how the per capita
predator birth rate depends on their consumption of resource (i.e., f = cR). The birth rate
should increase with this per capita consumption, but one expects that at a certain level of
consumption the birth rate slows down due to “diminishing returns”. Such a relationship, e.g.,
a per capita birth rate of

g(f) = β
cR

H + cR
= β

R

h+R
, (5.4)

where β is the maximum birth rate and h = H/c, is depicted in Fig. 5.1d. Assuming that the
predators have a simple density independent death (see Fig. 5.1e) one obtains

dN

dt
=

[
βR

h+R
− δ
]
N , (5.5)

with R′0 = β/δ.

The nullcline of the predators is much more simple. Canceling N = 0 from dN/dt = 0 delivers
the prey axis as one part of the nullcline and solving

βR

h+R
− δ = 0 yields R =

h

R′0 − 1
, (5.6)

where R′0 = β/δ. This corresponds to a vertical line in the predator prey phase space (see Fig.
5.2a). On the left of this nullcline, i.e., when R < h/(R′0 − 1), the predator population declines
because there is not enough food, on the right one finds that dN/dt > 0. The critical prey
density R∗ = h/(R′0 − 1) therefore corresponds to the food density that the predator requires
for maintaining itself (Tilman, 1980, 1982).

The two nullclines will intersect whenever R∗ < K (see Fig. 5.2a). When the nullclines intersect
the model has three steady states. The first, (R̄, N̄) = (0, 0), is unstable because the local vector
field has the unstable direction dR/dt > 0. The second, (R̄, N̄) = (K, 0) is also unstable because
the local vector field has the unstable direction dN/dt > 0. Both are saddle points. The third,
non-trivial (i.e., non-zero), steady state is located at (R̄, N̄) = (R∗, N̄). Thus, the larger the
fitness, R′0, of the predator the stronger the depletion of the prey. To determine the stability of
the non-trivial steady state one has to resort to linearization and compute the Jacobian of the
equilibrium point. Chapter 18 explains how to derive a “graphical Jacobian” from the phase
space. For the trace of the matrix we check the effect of the population on itself. For the
off-diagonal elements we take the effect of the variables on each other:

J =

(
−α −β
γ 0

)
which implies that tr = −α < 0 and det = βγ > 0 . (5.7)
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Figure 5.1: Population dynamical characteristics of a population of algae, R, and a population
of Daphnia, N . The p.c. in the figure means per capita.
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Figure 5.2: The nullclines of the predator prey model defined by Eqs. (5.2) & (5.5). The intersect of the
sigmoid nullcline with the horizontal axis defines the carrying capacity of the prey, which is defined in
the text as K = k

√
R0 − 1. The predator nullcline is located at the critical prey density R∗ = h

R′
0−1

.

The steady state is therefore always stable. If it is located near the carrying capacity, i.e., if
R∗ ' K, the steady state is a stable node. Otherwise it is a stable spiral point, and the behavior
of the model is a dampened oscillation.

The case where the nullclines fail to intersect has the biological interpretation that the critical
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food density required by the predator is larger than the carrying capacity of the prey (see Fig.
5.2b). In that case one can see from the local vector field that the steady state (R̄, N̄) = (K, 0)
is a stable node. In terms of algae and zooplankton this would correspond to a lake that has so
few nutrients that the maximum algae density of the lake is too small to maintain a zooplankton
population.

Finally, for the situation of a non-replicating resource, e.g., shrimps being washed onto a beach,
one would rewrite Eq. (5.2) into the simple

dR

dt
= s− dR− cRN , (5.8)

where d is the rate at which shrimps die or are washed back into the sea. It is a good exercise
to sketch the nullclines of this model with Eq. (5.5) for the predator population.

5.1 Lotka Volterra model

The oldest and most famous predator prey model is the Lotka Volterra model proposed inde-
pendently by Lotka (1913) and Volterra (1926). The model is much simpler than the model
developed above because (a) it lumps prey birth and death rates into one logistic growth term,
and (b) it assumes that the predator birth rate remains a linear function of their per capita
consumption. Thus, the equations are

dR

dt
= rR(1−R/K)− aRN ,

dN

dt
= caRN − dN . (5.9)

The dN/dt = 0 isocline is given by N = 0 and R = d/(ca), and the dR/dt = 0 isocline is
R = 0 and N = (r/a)(1 − R/K), which again reflects the shape of the per capita growth
function. Depicted in a phase space with N on the vertical axis and R on the horizontal
axis, the predator nullcline is a vertical line at the critical resource density R∗ = d/(ca). The
prey nullcine is a declining straight line, intersecting the vertical axis at N = r/a and the
horizontal axis at R = K (see Fig. 5.3a). The model has three steady states: (0, 0), (K, 0) and
(d/(ca), (r/a)[1− d/(caK)]). The latter non-trivial equilibrium will only exist if d/(ca) < K; if
it exists the two (trivial) equilibria on the axes are saddle points.
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The R0 of the prey is not defined because the logistic growth term collapses birth and death
into a net growth term. Since dN/dt has separate birth and death terms, one can calculate
an R0 for the predator. Since the per capita predator birth rate, caR, depends on the prey
density, we substitute the maximum prey density R = K in the birth rate, caR, because the
R0 is calculated for the best possible circumstances (see Chapter 16). Doing so one arrives at
R0 = caK/d. R0 = 1 can indeed be used as an invasion criterion: the predator can only grow
when caK > d. Expressed in terms of the R0, the predator nullcline is located at R = K/R0,
which says that the degree by which a predator depletes its prey population is completely
determined by its R0. A predator with an R0 = 10 decreases the equilibrium prey density to
10% of its carrying capacity. Note that this is only true when the predator birth rate increases
linearly with the prey density: above we found that the depletion of the prey was determined
by the ratio of the saturation constant, h, and the R0.

The location of the predator nullcline again has the interpretation of the minimum prey density
the predator requires for its maintenance: whenever R < K/R0 one can see from the phase
space in Fig. 5.3, and from Eq. (5.9), that dN/dt < 0. The non-trivial steady state is located
at (R̄, N̄) = (K/R0, r/a[1− 1/R0]). For predators with a high fitness, i.e., predators having an
R0 � 1, the steady state is located approximately at (R̄, N̄) = (K/R0, r/a).

The Jacobian of the non-trivial steady state can be calculated explicitly (see Chapter 18). From
the phase space in Fig. 5.3 one can also read the graphical Jacobian

J =

(
−α −β
γ 0

)
with tr = −α < 0 and det = βγ > 0 . (5.10)

Thus, the non-trivial steady state is always stable. If it is located close to the carrying capacity
it is a stable node. Otherwise, i.e., if R0 � 1, it is a stable spiral point.

The Lotka Volterra model is sometimes written in a structurally unstable form with K → ∞,
i.e., without a carrying capacity of the prey:

dR

dt
= rR− aRN ,

dN

dt
= caRN − dN . (5.11)

This model is mathematically elegant but has limited biological relevance. The reason is that
any small change of the model will lead to a qualitatively different type of behavior. The model
is said to be “structurally unstable”. Therefore one should not use it in biological research;
mathematicians use the model in teaching examples because the model is so elegantly simple.
The non-trivial dR/dt = 0 isocline isN = r/a and the non-zero dN/dt = 0 isocline isR = d/(ca).
These nullclines immediately yield the non-trivial steady state at (R̄, N̄) = (d/(ca), r/a). The
Jacobian of this steady state is

J =

(
r − aN̄ −aR̄
caN̄ caR̄− d

)
=

(
0 −d/c
cr 0

)
. (5.12)

Because tr(J) = 0 the steady state has a “neutral” stability. The eigenvalues of this matrix are

λ± = ±
√
−dr = ± i

√
dr ; (5.13)

see Page 144. Because the eigenvalues have no real part the system is not structurally stable:
any small change of the system will either make the equilibrium stable or unstable. The behavior
of the model are cycles of neutral stability: any perturbation of the predator or prey densities
leads to a new cycle.
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5.2 Generalization

Qualitatively the model of Equations (5.2 & 5.5) is very similar to the standard Lotka Volterra
model. The prey nullcline is a monotonically decreasing line, the predator nullcline is a vertical
line, and the non-trivial steady state is always stable. For which class of models should one
expect this “Lotka Volterra” like phase space?

A vertical predator nullcline is obtained whenever one can cancel the predator from the predator
equation. Rewriting Eq. (5.5) in a more general form like

dN

dt
= [βf(R)− δ]N , (5.14)

one indeed obtains a vertical predator nullcline for any function f(R). The nullcline will no longer
be vertical whenever the predator N is present in the term between the square brackets. This
will be the case when the functional response is predator dependent, i.e., when one replaces f(R)
by f(R,N), or when the death rate is density dependent, e.g., when δ is replaced by δ(1+εNm).
In both cases the predator nullcline will typically be slanted to the right, which changes the
effect of the predator on itself from zero to negative. The Jacobian then becomes

J =

(
−p −q
r −s

)
with tr = −p− s < 0 and det = ps+ qr > 0 . (5.15)

The steady state therefore remains stable, and most of the conclusions drawn in this chapter
seem robust to allowing for direct competition among the predators.

Above we have already seen that the prey nullcline has the shape of the per capita prey growth.
Even for the more general form of Eq. (5.2)

dR

dt
= [g(R)− cN ]R , (5.16)

where g(R) is an arbitrary function defining the per capita growth of R, one obtains that the
shape of the prey nullcline reflects the shape of the per capita growth function g(R), because
the nullcline can be written as N = g(R)/c. Thus, whatever the per capita growth of the prey,
the nullcline will be the same monotonically decreasing function delivering a “Lotka Volterra
like” phase space, whenever one can cancel the prey from the consumption term, here cNR.
Otherwise the nullcline expression is more complicated. Summarizing, a “Lotka Volterra like”
phase space requires a “mass action” type consumption term (mass action means the product
of the concentrations, here the product of the population sizes).

5.3 Summary

Lotka Volterra type nullclines are obtained when the prey variable can be canceled from the
predation term in the prey equation. In such models the shape of the prey nullcline reflects the
per capita growth of the prey. Because the predator nullcline is typically vertical, the non-trivial
steady state prey density is completely determined by the parameters of the predator.

5.4 Exercises
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Question 5.1. Desert
Consider the following model for a vegetation V in a desert. The growth of the vegetation is
limited in the amount of water W in the soil:

dW

dt
= a− bWV − cW and

dV

dt
= dWV − eV ,

where a is the rainfall dependent water uptake in the soil,
b is the extra water uptake and evaporation by the vegetation,
c is the normal evaporation,
d is the water dependent growth of the vegetation,
and e is the death rate of the vegetation.
For this exercise consider steady state situations.
a. How much water does the soil contain if there is no vegetation?
b. Suppose the rainfall increases two-fold because of a change in climate. How much water

would the soil contain if there is still no vegetation?
c. How much water would the soil contain if there is a vegetation?
d. How much water would the soil contain if the rainfall increases two-fold in the presence of a

vegetation?
e. Draw the nullclines, and determine the stability of the steady states.
f. How would the increased rainfall change these nullclines?

Question 5.2. Monkeys
Consider a certain area within a tropical rain forest, and ignore all seasonality. Two monkey
species in this area eat the fruits from a particular fig species. One of the monkey species eats
the fruits when they are unripe, and the other prefers these fruits when they are ripe. Study this
system over a relatively short time period, during which the number of fig trees remains constant.
Additionally, the two monkey populations are changing by immigration and emigration only, and
not through birth and death. Assume that the emigration rate depends on the availability of
fruit.
a. Devise a simple model in terms of differential equations for the two monkey populations and

for the ripe and unripe fruits (i.e., write four ODEs).
b. What extra assumptions were required for your model?
c. Draw the nullclines of the unripe and ripe fruits in absence of the two monkey populations.
d. Since migration of monkeys is a much faster process than the ripening of the fruits (i.e., a

time scale of days versus weeks), we can make a quasi steady state assumption (QSS) for the
two monkey populations. Write the QSS equations, and combine parameter combinations
into new parameters if this simplifies the new ODEs.

e. Draw the nullclines of the unripe and ripe fruit in the quasi steady state model, and analyze
the steady states.

f. How can one derive the densities of the monkeys from this phase portrait?
g. Draw in a single figure the fruit nullclines for the model without monkeys and for the QSS

model.

Question 5.3. Return time (Extra exercise for cool students)

Compute the return time of the non-trivial steady state of the Lotka Volterra model and study
how this depends on the mechanism of the density dependence of the prey. For reasons of
simplicity it is convenient to assume the typical case where the non-trivial steady state is a
stable spiral point (and not a stable node), and to first compute the return time of a general
form of the Lotka Volterra model, e.g.,

dR

dt
= rR− γR2 − aRN and

dN

dt
= caRN − δN .

a. Compute the return time of this general form.
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b. What is the return time when we explicitly make the birth rate density dependent (e.g.,
replace rR − γR2 with bR[1 − R/k] − dR)? Is the birth or the death rate determining the
return time?

c. Address the same questions for a Lotka Volterra model with a density dependent death rate
of the prey.

d. Interpret your results.



Chapter 6

Functional response

The previous chapter suggested that one may obtain a qualitatively new phase space, and
therefore possibly new behavior, when the prey cannot be canceled from the consumption term
in the prey equation. When the consumption of a single predator does not linearly depend on
the prey density, like it did in the f(R) = cR in Fig. 5.1c, the prey nullcline is no longer expected
to reflect the monotonically declining per capita growth of the prey.

The function describing how the total consumption of an individual predator depends on the
prey density is called the “functional response”. Above we have used the so-called “linear”
functional response. Holling (1959) defined three non-linear responses

f(R) = amin(1,
R

2h
) , f(R) = a

R

h+R
and f(R) = a

R2

h2 +R2
, (6.1)

which are called the type I, II, and III, respectively (see Fig. 6.1). All three functions approach a
maximum corresponding to the maximum number of prey a predator can catch within a certain
time unit. Holling’s motivation for this maximum was the “handling time”: even at an infinite
prey density the predator cannot consume the prey infinitely fast because of the time required
to handle, eat, and digest the prey. The Holling type II and type III responses are conventional
Hill functions. Thus, we know that a is the maximum consumption rate, and that h is the prey
density at which the per capita consumption is half maximal. Synonyms of the type II and III
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Figure 6.1: The Holling type I functional response (a), the Monod (Holling type II) functional response
(b), and the sigmoid (Holling type III) functional response (c).
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responses are the “Monod saturation” and the “sigmoid” functional response, respectively. Both
will be discussed at length in this chapter. The type I response is linear until the per capita
consumption rate equals the maximum of a prey per time unit, and will be discussed in Section
6.3.

6.1 Monod functional response

The previous chapter showed that one obtains qualitatively similar nullclines for the prey for
any per capita growth function that monotonically declines with the prey density. To simplify
the algebra we therefore replace the more complicated growth term with explicit birth and death
rates in Eq. (5.1) with a simple logistic growth term. The price that we pay is that the R0 of
the prey is no longer defined. Considering the Monod saturated per capita consumption of the
predator of Eq. (6.1)b, one immediately arrives at

dR

dt
= rR(1−R/K)− aRN

h+R
, (6.2)

where the new parameter a is the maximum number of prey a single predator can catch per
time unit, and the parameter h is the prey density at which the predator catch rate is a/2 prey
per unit of time. The dR/dt = 0 isocline can be found by setting Eq. (6.2) to zero and solving

R = 0 and N = (r/a)(1−R/K)(h+R) , (6.3)

where the latter is a parabola crossing N = 0 at R = K and R = −h, and having its maximum
value at R = (K − h)/2. In Fig. 6.2 this parabola is depicted for positive population densities.
Note that we have indeed lost the general property of the previous models that the prey nullcline
is a monotonically declining function of the prey density R.

For the predator it is typically assumed that the per capita birth rate is proportional to the per
capita consumption, but we will here do the more general case of Fig. 5.1d where the predator
birth rate, β, is a conventional saturation function of its consumption. Since the per capita
consumption equals aR/(h+R), one obtains for the per capita birth rate of a predator

g(R) =
c aR
h+R

H + aR
h+R

=
caR

H(h+R) + aR
=

βR

h′ +R
(6.4)

where β = ca/(H+a) and h′ = hH/(H+a) < h. Assuming a simple density independent death
rate for the predator one obtains

dN

dt
=

βRN

h′ +R
− dN , (6.5)

where h′ is the prey density where the predator birth rate is half maximal, i.e., β/2. Note
that h′ < h, i.e., that the predator birth rate saturates at lower prey densities than the predator
consumption rate (which actually confirms the unconventional choice made in Eq. (5.5) of having
no saturation in the consumption term, while allowing for saturation in the birth rate of the
predator). Since most authors typically assume that the predator’s birth rate is proportional to
its consumption, they typically set h′ = h. The maximum fitness of the predator is R0 = c/d,
and the dN/dt = 0 isocline is located at R∗ = dh′/(c−d) = h′/(R0−1), and therefore remains a
vertical line. This nullcline again corresponds to the minimal prey density the predator requires
for its maintenance. Since most authors typically assume that the predator’s birth rate is
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Figure 6.2: The three qualitatively different phase spaces of the Monod model. The parabola is the
prey nullcline intersecting the horizontal axis at R = K and the vertical axis at N = rh/a. The vertical
predator nullcline is located at R∗ = h′/(R0 − 1).

proportional to its consumption, they typically set h′ = h. Check for yourself how the nullclines
change when the birth rate, β = caR/(h+R), and h′ = h.

The model has maximally three steady states: two trivial states (R̄, N̄) = (0, 0), (K, 0), and
the non-trivial co-existence state when R∗ < K, i.e., when the minimal prey density required
for predator growth is smaller than the carrying capacity of the prey. Fig. 6.2 depicts the
three qualitatively different phase spaces of the Monod model. In Fig. 6.2a the predator cannot
maintain itself because R0−1 < h′/K, i.e., even the maximum prey density K is insufficient for
predator growth. As a consequence (R̄, N̄) = (K, 0) is a stable steady state (see the vector field
in Fig. 6.2a). One interpretation is a situation with a poor availability of nutrients such that
the resource R has a low carrying capacity. The maximum prey density is too low for another
trophic layer in the food chain.

Fig. 6.2b depicts the situation where the predator nullcline is located at the right side of the top
of the parabolic prey nullcline, i.e., where (K − h)/2 < R∗. The local vector field is identical to
that of the Lotka Volterra model (or that in Fig. 5.2a):

J =

(
−α −β
γ 0

)
with tr = −α < 0 and det = βγ > 0 . (6.6)

Thus, the non-trivial steady state will be stable whenever the predator nullcline intersects the
prey nullcline at the right hand side of the maximum of the parabola. In Fig. 6.2c the nullclines
intersect at the left hand side of the maximum of the parabola because (K − h)/2 > R∗. From
the local vector field one now reads that the graphical Jacobian

J =

(
α −β
γ 0

)
with tr = α > 0 . (6.7)

The steady state is unstable because the local feedback of the prey on itself is positive: increasing
the number of prey increases the growth of the prey. The reason for this positive feedback is the
saturated functional response. Increasing the prey density will decrease the per capita killing
rate of the prey. The behavior of the model in this situation is a stable limit cycle (see Fig. 6.3).
One can indeed check that none of the trivial steady states, i.e., (R̄, N̄) = (0, 0) or (K, 0), is an
attractor of the system. The predator therefore cannot go extinct, and the stable limit cycle has
to be the global attractor of the system.
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Figure 6.3: Limit cycle behavior in the Monod model. Panel (a) displays a trajectory approaching
a stable limit cycle in phase space, and Panel (b) shows the same trajectory in time. The population
varying with the largest amplitude is the prey.

Predator prey models with the “humped” prey nullcline of Fig. 6.2 have been used for the famous
Paradox of Enrichment (Rosenzweig, 1971). Rosenzweig studied euthrophication (enrichment)
of lakes with algae and zooplankton, and showed that increasing the carrying capacity of the
algae failed to increase the density of the algae. The enrichment with nutrients for the algae
rather increased the zooplankton density, and could lead to a destabilization of the steady state
(Rosenzweig, 1971). From Fig. 6.2 one can indeed see that increasing the carrying capacity K:
1. increases the density of the algae in Panel (a) where there is no zooplankton
2. leaves the density of the algae at R∗ = h′/(R0 − 1) and increases the zooplankton density in

Panel (b)
3. destabilizes the system by a Hopf-bifurcation (see Chapter 14), leading to oscillations around

an average density of the algae of R∗ = h′/(R0 − 1) in Panel (c).
4. could even drive the zooplankton to extinction if at high values of K the limit cycles have

such a large amplitude that they approach the N = 0 axis (Rosenzweig, 1971).
Note that enrichment of an oligotrophic system first increases the diversity of the system when
the predator starts to maintain itself, but that ultimately it would decrease the diversity, and
leads to a green lake with a large density of algae. These predictions have been confirmed in
bacterial food chains by Kaunzinger & Morin (1998); see Chapter 8.

Limit cycle behavior

When the non-trivial steady state is unstable the model displays oscillatory behavior and ap-
proaches a stable limit cycle (Fig. 6.3). On the limit cycle the predator and prey densities
oscillate out of phase because predator densities increase only after the prey has increased (see
Fig. 6.3b). Oscillatory behavior is frequently observed in ecological populations. The most
famous example is the oscillatory behavior of lynx and hare populations in Canada, that were
discovered in the records of the furs brought in by hunters in the last century. Surprisingly, the
hare and lynx cycles are not always out of phase, and ecologists are performing experiments
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to understand the precise mechanism underlying this famous oscillation (Stenseth et al., 1999).
Another famous example of predator prey oscillations are the cycles of algae and zooplankton in
the spring (McCauley et al., 1999; Fussmann et al., 2000; Murdoch et al., 2002; Yoshida et al.,
2003). Periodic behavior is easily obtained in mathematical models and is frequently observed
in nature. Note that these oscillations are autonomous: there is no periodic forcing from outside
driving this. The periodic behavior arose by the destabilization of the non-trivial steady state,
i.e., at a Hopf bifurcation (see Chapter 14).

6.2 Sigmoid functional response

For large herbivores one often uses a sigmoid functional response because these animals hardly
graze if the vegetation is too poor. Alternatively, one can use a sigmoid functional response for
prey species that can hide efficiently in “refugia”. At low prey densities most prey individuals
will be hard to find for the predator because they are all hidden in these refugia. When at
higher prey densities all refugia are filled the per capita consumption by the predator will
increase rapidly. Although one could write a “shifted” Monod saturated functional response,
i.e., f(R) = (R−k)/(h+R−k), where k is the number of refugia, one typically writes a sigmoid
functional response for prey with refugia.

Adopting simple logistic growth for the prey the ODE, for the prey becomes

dR

dt
= rR(1−R/K)− aR2N

h2 +R2
, (6.8)

and if the predator birth rate is the same saturation function of its consumption as we used in
Eq. (6.4) one obtains

dN

dt
=

cR2N

h′2 +R2
− dN , (6.9)

where c = aα/(H + α) and h′ = h
√
H/(H + a) < h. If the predator birth rate can be assumed

to be proportional to its consumption one can easily check that h′ = h. The R0 of this predator
remains R0 = c/d and the dN/dt = 0 nullcline is located at R∗ = h′/

√
R0 − 1, which remains a

vertical line in Fig. 6.5. Thus, very little has changed for the predator nullcline. Its intersection
with the horizontal prey axis remains to have the interpretation of the minimum prey density
required for predator growth.

In order to find the prey nullcline, one sets Eq. (6.8) to zero and cancels the R = 0 solution, to
obtain

N =
r(h2 +R2)

aR

(
1− R

K

)
, (6.10)

which has a vertical asymptote at R = 0 and is zero when R = K. One can take the derivative
of this function to find its minima and maxima (see Section 18.6 in the appendix), but because
this all becomes rather complicated, one typically constructs the nullcline graphically (Noy-
Meir, 1975). The procedure is to separate Eq. (6.8) into its positive logistic growth term, and
its negative sigmoid predation term. Both one can sketch as a function of the prey density R
(see Fig. 6.4a). The positive term is a parabola intersecting the horizontal axis at R = 0 and
R = K. The predation term is a sigmoid function with a maximum depending on the predator
N . Thus, one has to sketch a family of functions for various values of N (see Fig. 6.4a).

To know when and where in Fig. 6.4a the curves intersect it is crucial to know their slopes
around the origin, and the maximum values they can obtain. For the slope at the origin one
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Figure 6.4: The prey nullcline of Eq. (6.8) is constructed by sketching its positive and negative part in
one diagram (a) for various values of N . The intersects in (a) deliver the dR/dt = 0 nullcline in (b).

takes the derivative with respect to the horizontal variable, which here is the prey R. For the
logistic growth part in Eq. (6.8),

∂R rR(1−R/K) = r − 2rR/K which for R = 0 equals r , (6.11)

showing that the local slope of the parabola in the origin is r. For the grazing terms in Eq.
(6.8),

∂R
aR2N

h2 +R2
=

2aRN

h2 +R2
− 2aR3N

(h2 +R2)2
which for R = 0 yields 0 , (6.12)

implying that the grazing curves leave the origin with slope zero. The sigmoid curves therefore
always start below the parabola, whatever the predator density N . At infinite prey density the
maximum of the predation term is aN , which for sufficiently large predator densities will always
exceed the maximum of the parabola rK/4 (see Fig. 6.4a). Whenever the positive growth term
and the negative predation term intersect, they cancel each other and dR/dt = 0. For various
values of the predator density N one finds the intersects and plots these into the phase space of
N versus R (see Fig. 6.4b). When h is sufficiently small this leads to a dR/dt = 0 nullcline with
a minimum and a maximum, when h is too large the nullcline declines monotonically. In Section
18.6 in the appendix we derive that the nullcline is non-monotonic when h < K/(3

√
3) ' K/5.

Whatever the precise situation the model has maximally three steady states: (0, 0), (K, 0), and a
non-trivial equilibrium when R∗ < K, i.e., when the minimal prey density required for predator
growth is smaller than the carrying capacity of the prey.

Because the predator nullcline can be located anywhere on the horizontal prey axis, there are
maximally four qualitatively different phase spaces (see Fig. 6.5). Basically, this extends the
three possibilities of the Monod saturated model with the stable case of Fig. 6.5d, where the
intersect with the vertical predator nullcline falls left of the minimum of the prey nullcline. The
graphical Jabobian of this new steady state is

J =

(
−α −β
γ 0

)
with trJ < 0 and detJ > 0 , (6.13)

which therefore is a stable point. The three other cases are similar to those of the Monod
saturated model.

By enrichment, i.e., by increasing K, one will proceed through the same situations as one does in
the Monod saturated model, i.e., from a prey population increasing with the carrying capacity
in Fig. 6.5(a), to a stable co-existence in (b), to stable limit cycles in (c). One main difference
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Figure 6.5: The four qualitatively different phase spaces of the sigmoid (Holling type III) predator prey

model. The vertical line is the predator nullcline located at R∗ = h′
√
R0−1

. Section 18.6 in the appendix

shows that the prey nullcline will only have this non-monotonic shape when the h parameter is small
compared to the carrying capacity K. If h > K/3

√
3 the prey nullcline declines monotonically, and the

phase spaces will resemble those of the Lotka Volterra like models discussed in Chapter 5.

is that the amplitude of the limit cycles remains smaller because they shrink in amplitude when
the stable situation of panel (d) is approached. The other main difference is that the oscillatory
behavior dies at high values of the carrying capacity. For the algae-zooplankton systems the
effect of the functional response on the amplitude of the limit cycles is quite important because
the oscillations that are observed in nature are much milder than those of the Monod saturated
model for realistic parameter values (McCauley et al., 1999; Murdoch et al., 2002; Scheffer
& De Boer, 1995). Measurements of the functional response of zooplankton grazing on algae
strongly support a Holling type II response, however.

6.3 A Holling type I/II functional response

It is widely recognized that the complicated prey nullcline of Fig. 6.5 requires a shifted or a
sigmoid functional response. This is not generally true, however. There are functional responses
that look very similar to the Monod saturated function, and nevertheless deliver a prey nullcline
with a minimum and a maximum. These response functions can be constructed from the general
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Figure 6.6: The hyperbolic function of Eq. (6.14). Panel (a) depicts f(R) defined by Eq. (6.14) for a
curvature parameter, γ = 0 (curved line), and for γ = 1 (discontinuous line). The former is equal to
the Monod function f(R) = R/(H + R), with f(R) = 1

2 at R = H, and the latter is equal to the type
I functional response f(R) = min(1, R/H), which becomes horizontal at R = H. Panel (b) depicts the
same function for γ = 0, 0.5, 0.9, 0.99 and γ = 1, where we have defined H = h/(1 − γ/2) to give the
functions an “equivalent” half-maximal value, f(R) = 1

2 when R = h. Panel (c) depicts the prey nullcline
of Eq. (6.15) for this functional response, and for the same five values of γ. The parabola depicts the
Holling type II response (γ = 0), the discontinuous line the Holling type I functional response (γ = 1);
the nullclines in between are novel.

definition of hyperbolic functions and can be written as

f(R) =
2R

H +R+
√

(H +R)2 − 4γHR
. (6.14)

When one sets the “curvature parameter” γ = 0, this becomes equal to the Holling type II
function, f(R) = R/(H +R), Setting the curvature to γ = 1 delivers the discontinuous Holling
type I function, f(R) = min(1, R/H), depicted in Fig. 6.6a; which is not so easy to check
analytically. Both functions have the same slope, ∂Rf = 1/H at R = 0, but at R = H the
function f(R) = 1/2 for γ = 0, and it is at its maximum f(R) = 1 for γ = 1 (see Fig. 6.6a). To
make the functions equivalent at their half-maximal values, one solves R from f(R) = 1/2 in
Eq. (6.14) to find that the half maximal values occur at R = H(1−γ/2). Thus, defining h as the
prey density where f(R) is half maximal, i.e., h = H(1− γ/2), one can define H = h/(1− γ/2)
to obtain a function that is half-maximal at R = h for any value of γ (see Fig. 6.6b).

For γ > 0 this new functional response is not as rounded as the Monod response, and this
delivers qualitatively different nullclines (Fig. 6.6c). Consider the conventional predator prey
model

dR

dt
= rR(1−R/K)− aNf(R) and

dN

dt
= caNf(R)− dN , (6.15)

with R0 = ca/d, and a functional response defined by Eq. (6.14) with H = h/(1 − γ/2), with
the convenient property that f(R) = 1/2 when R = h. The fact that the prey nullcline of
the Monod saturated model with γ = 0 can differ so much from a relatively similar functional
responses obtained with γ > 0, is disturbing because we prefer results that are more generic,
and do not depend crucially on the curvature of the saturation function chosen to describe the
functional response.

The predator nullcline also deserves some attention. At prey densities much higher than the
saturation constant, h, the functional response function, f(R), equals one for the type I response
(γ = 1), and f(R) ' 1 for the response functions with γ → 1. Whenever this is the case the
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Figure 6.7: The nullclines of the Holling type I/II functional response for the curvature parameter γ = 0
[and h = H] (a), γ = 0.5 (b), γ = 0.9 (c), and γ = 1 [and H = 2h] (d). The predator nullcline is always
located at f(R) = d/(ca) (see Eq. (6.15)). Solid squares mark stable steady states, open squares unstable
points. Parameter values (r = K = 1, a = 0.5, d = 0.42, c = 1 and h = 0.1).

predator ODE approaches
dN

dt
' [ca− d]N , (6.16)

which is only zero for the particular parameter condition ca = d (i.e., R0 = 1). This means that
the predator nullcline in the Holling type I model can only be located at a sufficiently low prey
density, i.e., in the region where R < 2h, where the nullcline approaches the “Lotka Volterra” like
straight line. The non-trivial steady state of a model with a Holling type I functional response
can therefore only be stable (see Fig. 6.7d).

Similar restrictions apply when γ → 1. The prey nullcline only has its non-monotonic shape
when h � K; otherwise it is monotonically declining (which is also true for a model based
upon a sigmoid functional response; see Section 18.6 in the appendix). Because f(R) ' 1 when
R� h, the predator nullcline can only be located in regions where R < 2h (see Eq. (6.16)). For
large values of the curvature, it is therefore difficult to have a predator-prey model that has a
stable steady state located at the right side of the top of the prey nullcline in Fig. 6.7c. This
means that for large γ the model either has a stable steady state in the declining part of the
prey nullcline (Fig. 6.7d), or an unstable equilibrium point located in the rising part of the prey
nullcline, which is surrounded by a stable limit cycle (Fig. 6.7c). Interestingly, for large γ the
stable steady state can co-exist with a similar stable limit cycle (see Fig. 6.7d). The seperatrix
between these two attractors is formed by an invisible unstable limit cycle (see Chapter 14) that
is also surrounding the steady state.

6.4 Formal derivation of a functional response

The Monod functional response can be derived in the same way as the conventional Michaelis-
Menten enzyme expression is derived. To this end one splits the predators, N , into a subpopu-
lation C that is actually handling the prey, and a free subpopulation, F , that is trying to catch
the prey R. By conservation one knows that N = F + C. To describe the predators catching
and handling prey one could write

dC

dt
= kRF − hC or

dC

dt
= kR(N − C)− hC , (6.17)

where k is a rate at which the free predators catch prey, and 1/h is the time they require to
handle the prey. Since the time scale of handling prey is much more rapid than the time scale
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at which the prey and predators reproduce, one can make a quasi steady state assumption for
the complex, dC/dt = 0, and obtain that

C =
kNR

h+ kR
=

NR

h′ +R
, (6.18)

where h′ = h/k is the prey density at which half of the predators are expected to be handling
prey.

To see how this ends up in the prey population one could add dC/dt = kRF − hC = 0 to the
ODE for the prey, i.e., dR/dt = rR(1−R/K)− kRF , giving

dR

dt
= rR(1−R/K)− hC = rR(1−R/K)− hNR

h′ +R
, (6.19)

which is a normal Holling type II functional response. For the predators one could argue that the
birth rate should be proportional to the number of predators that are handling and consuming
prey, and write that

dN

dt
= cC − dN =

cNR

h′ +R
− dN , (6.20)

which again delivers the Monod saturated predator prey model.

One can also use this analysis for writing the ODEs for a predator consuming several species
of prey. Let ki be the catch rate for species Ri and assume for simplicity that all prey species
require the same handling time. By the ki parameter, the predator can have different preferences
for the different prey species. The conservation equation now becomes N = F +

∑
iCi and for

each complex one writes dCi/dt = kiRiF − hCi = 0. Summing all dCi/dt equations yields

∑
i

dCi
dt

=
∑
i

kiRiF − h
∑
i

Ci =
∑
i

kiRi

(
N −

∑
j

Cj

)
− h

∑
i

Ci = 0 , (6.21)

which can be rewritten into

∑
i

Ci =
N
∑

i kiRi
h+

∑
j kjRj

and, hence, Ci =
NkiRi

h+
∑

j kjRj
. (6.22)

For each prey species i one can again add dCi/dt = kiRiF − hCi = 0 to

dRi
dt

= rRi(1−Ri/Ki)− kiRiF giving
dRi
dt

= rRi(1−Ri/Ki)−
hkiRiN

h+
∑

j kjRj
. (6.23)

For the predators one would argue that their reproduction is proportional to all predators in
complex with prey, and write that

dN

dt
= c

∑
i

Ci − dN =
cN
∑

i kiRi
h+

∑
j kjRj

− dN . (6.24)

Although this all works out quite nicely, this does not imply that saturated functional responses
are actually due to the handling time derived here. One could also argue that the saturation is
simply due to satiation of the predators at high prey densities.
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6.5 Summary

The Holling type II and III functional responses explain periodic behavior in predator prey
models. Enrichment of a predator prey system by increasing the carrying capacity of the prey
can easily lead to destabilization (by a Hopf bifurcation) and oscillatory behavior. Unfortunately,
the nullclines depend rather critically on the precise form of the functions used for the functional
response.

6.6 Exercises

Question 6.1. Parameters
A simple resource consumer model based on a saturated functional response is:

dR

dt
= a1R(1−R/K)− b1N

R

c1 +R

dN

dt
= −a2N + b2N

R

c2 +R

a. Give a biological interpretation and the dimension of all parameters.
b. Is it biologically reasonable to choose b1 = b2?
c. Give an interpretation for the following parameter choices c1 = c2, c1 > c2 and c1 < c2.

Question 6.2. Eutrophication: 2D
Consider an algae zooplankton system based upon a sigmoid functional response, and assume
direct competition between zooplankton at high densities. Study the effect of eutrophication.
a. Make a model of the system described above, and sketch the nullclines.
b. What parameter varies with the nutrient concentration?
c. What are the possible effects of eutrophication, given either a strong or a weak intraspecific

competition in the zooplankton? Draw the qualitatively different nullcline situations.
d. What do you learn from this about the usage of models to predict environmental effects?

Question 6.3. Luckinbill
Fig. 6.8 depicts the data of Luckinbill (1973). The horizontal axis gives the time in either hours
(Panel A) or days (Panels B & C). The vertical axis is population density in numbers per ml.
The solid line depicts the prey Paramecium and the dotted line the predator Didinium. Panel A:
Paramecium and Didinium in normal medium. Panel B: Paramecium and Didinium in a medium
with methyl-cellulose, which increases the viscosity of the medium. At day 17 Didinium dies
out. Panel C: as Panel B after halving the concentration of food for the prey Paramecium. In
Panels B and C the fat line at the top gives the density of Paramecium in the same medium in
the absence of the predator.
a. Write a simple consumer resource model to explain these data.
b. Identify the differences between the experiments with differences in parameter values of the

model.
c. Draw for each of the three situations the nullclines of the model, and a trajectory correspond-

ing to the data.
d. Does your model provide a good interpretation of the data?
e. What are the most important differences between the model and the data?
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Figure 6.8: The data from Luckinbill (1973). The horizontal axis gives the time in either hours or days,
and the vertical axis the population density in numbers per ml. The solid line is the prey Paramecium
and the dotted line the predator Didinium. Panel A: Paramecium and Didinium in normal medium.
Panel B: Paramecium and Didinium in a medium with methyl-cellulose, which increases the viscosity of
the medium, which decreases the food intake of Didinium. Panel C: as Panel B but with half the amount
of food for Paramecium. In Panels B and C the fat line at the top represents the population density of
Paramecium in the absence of the predator.

Question 6.4. Filter feeders
Copepods are filter feeders. The organ they use for filtering is also used for respiration, and
filtering is continued even in the presence of large amounts of food. Excess food is killed and
excreted. The phytoplankton on its own grows exponentially until it approaches its carrying
capacity. Assume a mass action predation term.
a. Make a model describing the interaction between copepods and phytoplankton.
b. Analyze the model using nullclines.
c. How does the return time of this model differ from the return time of a standard model

without saturation of the predator consumption?
d. How does the behavior of this model differ from the model without saturation of the predator

consumption?
e. Mussels are filter feeders that can separate respiration and food uptake. In the presence of

large amounts of food, respiration continues whereas food uptake saturates. Analyse this new
system using nullclines and draw a trajectory in phase space.
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Question 6.5. Exponential function response
Predator prey models with a saturated functional response are not always written with a Hill
function. An equally simple saturation function is the exponential function:

dR

dt
= rR(1−R/K)− aN(1− e− ln[2]R/h) with

dN

dt
= caN(1− e− ln[2]R/h)− dN .

Solving 1/2 = e− ln[2]x/h delivers x = h, which means that the functional response remains half
maximal at R = h.
a. What is the meaning of the parameter a?
b. We have seen that replacing the simple Monod function with the hyperbolic function of Eq.

(6.14) had a large impact on the phase space of this model. Check with grind.R whether the
same is true for the exponential functional response (see the file exp.R).
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Chapter 7

Predator-dependent functional
responses

All functional responses considered hitherto depend on the prey density only, and can hence be
written as functions f(R). If there is direct competition between predators for catching prey one
would have a situation where the per capita consumption efficiency declines with the predator
density, i.e., a functional response f(R,N) for which ∂N f() < 0. Predators that increase their
feeding efficiency by hunting in groups also require a “predator-dependent functional response”
but with the property that ∂N f() > 0.

7.1 Ratio-dependent predation

Arditi & Ginzburg (1989) and Ginzburg & Akçakaya (1992) criticized the predator prey models
discussed above because these models “predict” that feeding the prey fails to increase the prey
density at steady state (see also their book (Arditi & Ginzburg, 2012)). Indeed we have seen that
all enrichment ends up in the predator density. Moreover, when the reasonable Holling type II
functional response with reasonable parameters is used for modeling algae-zooplankton systems,
euthrophication typically leads to oscillatory behavior with an amplitude that is typically not
observed in nature (Arditi & Ginzburg, 1989; Ginzburg & Akçakaya, 1992; McCauley et al.,
1999; Murdoch et al., 2002; Scheffer & De Boer, 1995). Although a simple density dependent
death term of the zooplankton already helps to solve these problems, this remains an active area
of research.

Arditi & Ginzburg (1989) and Ginzburg & Akçakaya (1992) argued that one can improve preda-
tor prey models by making the predation dependent of the number of prey per predator, i.e., by
using “ratio-dependent predation”. They argued that a predator will never interact with all of
the individuals of the whole prey population, but only with the prey in its own neighborhood
(or territory). For territorial predators it is obvious that the predator can only catch those prey
individuals that are located in the territory, and, if the prey are uniformly distributed over the
territories, one can use the number of prey per predator, i.e., the ratio R/N , for the number of
prey available for each predator.

Arditi & Ginzberg assumed that a predator can only see R̂ = R/N prey, and that the feeding



48 Predator-dependent functional responses

efficiency on this subpopulation of the prey obeys a Holling type II functional response, i.e.,

f(R̂,N) =
aR̂

h+ R̂
or f(R,N) =

aR/N

h+R/N
=

aR

hN +R
, (7.1)

which defines the ratio-dependent predator prey model

dR

dt
= rR(1−R/K)− aRN

hN +R
dN

dt
=

caRN

hN +R
− dN , (7.2)

when one assumes that the predator birth rate is proportional to its consumption. To study the
dimensions of the parameters we test the functional response for a large prey population:

lim
R→∞

aR

hN +R
= lim

R→∞

a

hN/R+ 1
= a , (7.3)

which demonstrates that the parameter a has the simple interpretation of the maximum number
of prey consumed per predator. One can therefore define the fitness as R0 = ca/d.

The predator nullcline is computed by setting dN/dt = 0

N = 0 or N =
ca− d
dh

R =
R0 − 1

h
R , (7.4)

which shows that the predator nullcline is a diagonal line through the origin with slope (R0−1)/h.
Note that it is strange because small predator populations start to grow at infinitely small prey
densities (i.e., R∗ = 0). For the prey nullcline one can employ the graphical construction method,
by sketching the growth and predation terms as a function of the prey density R (see Fig. 7.1).
The logistic growth term delivers the same parabola as before (with derivative r in the origin).
The predation term is a family of functions, aRN/(hN +R), depending on both N and R. For
the slope around R = 0 one computes

∂R
aRN

hN +R
=

aN

hN +R
− aRN

(hN +R)2
which for R = 0 yields ∂R =

a

h
. (7.5)

To compute the maximum of the predation terms one takes

lim
N→∞

aNR

hN +R
=

a

h
R , (7.6)

and observes that for large numbers of predators the predation terms approach a diagonal line
through the origin, that has the same slope as the predation terms with lower numbers of
predators have in the origin. Because the predator terms have a maximum slope a/h there are
two possibilities:
1. a/h < r for which the predation curves start below the parabolic growth curve, and therefore

can intersect only once (see Fig. 7.1a), and
2. a/h > r which means that the predation terms start above the parabola, and thanks to their

saturated form, can intersect twice (see Fig. 7.1b).
Since the total consumption increases with a/h, the first case is called the “limited predation”
case. For large predator densities in the limited predation situation, the predation curves inter-
sect the parabola at approximately the same prey density. This prey density therefore defines
a vertical asymptote in the nullcline of the prey (see Fig. 7.2a). Note that the position of the
asymptote can easily be computed from (a/h)R = rR(1 − R/K). By constructing the graphi-
cal Jacobian from the local vector field one can see that the non-trivial steady state is always
stable:

J =

(
−α −β
γ −δ

)
with trJ = −α− δ < 0 and detJ = αδ + βγ > 0 . (7.7)
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Figure 7.1: The nullcline construction for the ratio dependent model of Eq. (7.2).
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Figure 7.2: The three qualitatively different phase spaces of the ratio-dependent predator prey model.

In the second case a parabolic shape emerges when the prey nullcline is constructed (see Fig.
7.2b & c). The diagonal predator nullcline can intersect on the left or on the right of the top.
When the intersection is on the right side of the top the graphical Jacobian is the same as above
for the limited predation case:

J =

(
−α −β
γ −δ

)
with tr(J) = −α− δ < 0 and det(J) = αδ + βγ > 0 . (7.8)

which implies that the steady state is stable. Left of the top the graphical Jacobian is

J =

(
α −β
γ −δ

)
with trJ = α− δ . (7.9)

The sign of the trace remains unestablished, and one cannot tell if the state is stable. Numerical
analysis has shown that the steady state can be unstable, and, if so, that the behavior is a stable
limit cycle.

A feature of the ratio-dependent model is that the steady state densities of both the prey and
the predator increase with enrichment (i.e., when K is increased). This is a simple consequence
of the diagonal prey nullcline. Additionally, enrichment does not lead to oscillations because in
the limited predation case, the steady state is always stable, whatever the value of K. Indeed,
one cannot leave the limited predation case by just increasing K (i.e., K is not part of the
a/h < r condition). For the other case, where oscillations are theoretically possible (Fig. 7.2c),
it has been shown that one also cannot destabilize the stable steady state in Fig. 7.2c by merely
increasing the carrying capacity (Huisman & De Boer, 1997).
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Although the model seems elegantly simple it has its problems. This was already indicated by
the predator nullcline that runs through the origin: the model has no minimum prey density
required for predator growth. The reason is that at low predator densities the ratio R/N will
become infinite, which indeed allows small predator populations to grow on very small prey
populations. This is not only biologically unreasonable, but can also lead to very strange limit
cycle behavior (Abrams, 1994).

7.2 Developing a better model

To learn what went wrong with the ratio-dependent model we will start all over again and
derive a model ourselves for the situation where the prey population is distributed uniformly
over the territories of the predators. Visualize a large habitat that by far exceeds the maximum
territory size of a single predator. Let the total prey and predator population sizes in this
habitat be defined by R and N , respectively. When the predator density is high, the total
area is equally divided into relatively small territories, leading to the ratio-dependent model
where the number of available prey per predator is R̂ = R/N . When the predator density
is low, each predator occupies a preferred territory of some maximum size. Letting this size
be the fraction α of the total area, each predator is expected to have R̂ = αR prey in its
territory. Combining the two, the actual number of available prey per predator can be written
as R̂ = min(αR,R/N) = Rmin(α, 1/N) which has a discontinuity at N = 1/α where the
preferred territory size equals the size obtained by a fair sharing of the total area.

Knowing the number of prey that each predator can feed upon, one can rewrite the normal
Monod saturated predator prey model as

dR

dt
= rR(1−R/K)− aR̂N

h+ R̂

dN

dt
=

caR̂N

h+ R̂
− dN , (7.10)

where R̂ = R min(α, 1/N). Because the model is discontinuous when N = 1/α, one studies
the model separately for the two cases. For low numbers of predators, i.e., when N ≤ 1/α, the
territory size is at its maximum, and the number of prey per territory is R̂ = αR. Since this
remains proportional to the global prey density, R, and one obtains the normal Holling type II
model:

dR

dt
= rR(1−R/K)− aRN

h′ +R
dN

dt
=

caRN

h′ +R
− dN , (7.11)

where h′ = h/α. This implies that one expects the normal nullclines of Fig. 6.2 whenever
N ≤ 1/α. For high predator densities, each predator is expected to have R̂ = R/N prey in
its territory. This corresponds to the ratio-dependent model, and one obtains Eq. (7.2), which
means that for N > 1/α one also expects the nullclines of Fig. 7.2.

At the line N = 1/α in the phase space the models have to be identical. On this line the
nullclines have to merge, and they switch from one case into the other (see Fig. 7.3). The main
difference between our own model and the ratio-dependent model is that the predator nullcline
now defines a “minimum prey density” that a predator requires for survival. Our own model
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Figure 7.3: The two different phase spaces of a territorial predator prey model. Panel (a) reflects a limited

predation situation and Panel (b) the case with more intense predation. In both Panels R∗ = h′

R0−1 .

therefore no longer suffers from the artificial properties of the ratio-dependent model (Abrams,
1994), and we have learned that these problems were all due to the simplifying assumption that
all prey are shared equally by the predators even if there are only very few predators.

7.3 Beddington functional response

The ratio-dependent functional response is just one example of the more general predator de-
pendent functional responses (Abrams, 1994). For cases where predators compete directly for
catching prey one can phenomenologically extend a saturated functional response with a term
by which the predators increase the saturation constant, e.g.,

f(R,N) =
aR

h+ eN +R
, (7.12)

which is known as the Beddington (1975) functional response, and which for e = 0 is identical to
the Monod saturated functional response. The parameter e defines the strength of the competi-
tion between the predators (note that setting e < 0 would deliver a function where predators help
each other in catching prey). For a large prey population the Beddington function approaches

lim
R→∞

aR

h+ eN +R
= a , (7.13)

which shows that the interpretation of a remains the maximum number of prey a predator can
eat per unit of time. The corresponding Beddington model is written as

dR

dt
= rR(1−R/K)− aRN

h+ eN +R
dN

dt
=

caRN

h+ eN +R
− dN . (7.14)

The predator nullcline is obtained by setting dN/dt = 0 and finding the solutions

N = 0 and N =
ca− d
de

R− h

e
=
R0 − 1

e
R− h

e
. (7.15)
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Figure 7.4: The two qualitatively different nullcline constructions of the Beddington predator prey
model. In Panel (a) we have set a/e < r and in (b) we consider r < a/c
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Figure 7.5: The five qualitatively different phase spaces of the Beddington predator prey model, where
the critical prey density for net predator growth, R∗ = h

R0−1 .

The last expression defines a line with slope (R0 − 1)/e that intersects the horizontal axis at
R = h/(R0 − 1). The predator nullcline is therefore a slanted line with the same minimal prey
density R∗ = h/(R0 − 1) as the Monod saturated model.

The prey nullcline can again be found by graphical construction. Plotting the predation term
aRN/(h + eN + R) as a function of R defines a family of curves depending on the predator
density N . The slope of these functions in the origin is found from the derivative with respect



7.4 Summary 53

to R:

∂R
aRN

h+ eN +R
=

aN

h+ eN +R
− aRN

(h+ eN +R)2
which for R = 0 yields

aN

h+ eN
. (7.16)

The slope in the origin therefore increases with the predator density. For large numbers of
predators the predation term approaches

lim
N→∞

aRN

h+ eN +R
=

a

e
R . (7.17)

Because the predation functions approach the slanted asymptote with slope a/e, one again has
to consider two cases. If a/e < r the predation functions will intersect the logistic parabola only
once. One therefore obtains a prey nullcline with a vertical asymptote (see Fig. 7.4 and Fig. 7.5),
which is the limited predation situation. When a/e ' r, this vertical asymptote can disappear
allowing the prey nullcline to intersect the vertical axis (not shown). If a/e > r there will be
one intersection point at low predator densities, two intersections at intermediate numbers, and
no intersection points at high predator numbers. This yields a truncated “parabola” similar to
that of the Monod saturated model. Because the predator nullcline can intersect either on the
left of the maximum, or on the right side, one obtains two qualitatively different phases spaces
(see Fig. 7.5d & e).

The Beddington model therefore has the two limited predation situations depicted in the top
row of Fig. 7.5. The stability of the steady states is similar to those of the ratio dependent
model, i.e., the steady state is always stable in Fig. 7.5b. The bottom row of the figure depicts
the three a/e > r situations. When the predator nullcline intersects at the right side of the
maximum of the prey nullcline the equilibrium is stable. The sign of the trace in Fig. 7.5e
cannot be determined from the vector field, but the nullclines do intersect unstable section of
the prey nullcline. Numerical analysis confirms that the steady state can be unstable, and that
the model behavior approaches a stable limit cycle in this situation. Increasing the carrying
capacity to study enrichment, one can destabilize the system by moving from a phase depicted
in panel (d) to the one depicted in (e). This was not possible in the ratio dependent model
(Huisman & De Boer, 1997). Because the Beddington model has a minimum prey density of
R∗ = h/(R0 − 1), one also has the two “poor” situations of Panels (a) and (c), where the
predator cannot be maintained (because K < R∗). These were also absent from the ratio
dependent model.

7.4 Summary

Predator dependent functional responses forces one to also consider limited predation phase
spaces with a steady state that is necessarily stable. Oscillations and a Paradox of Enrichment
are easily recovered in the non-limited predation situations. The ratio dependent model is just
one, somewhat unfortunate, example of a predator dependent response (Abrams, 1994).

7.5 Exercises

Question 7.1. Wolves
Wolves hunt in packs and help each other catch prey (this is also true for several other predator
species, e.g., spoonbills).
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a. Write a model for this situation using a functional response with ∂N f(R,N) > 0.
b. Study the model by phase plane analysis. (You will probably require grind.R).

Question 7.2. Saturation in predators
Sometimes there is a maximum rate at which prey can be killed by the predators. An example
is susceptible hosts that are infected by infected individuals. One would then write something
like

dR

dt
= rR(1−R/K)− aRf(N) where f(N) =

N

h+N
, (7.18)

and where a is the maximum death rate of the prey R when there is an infinite predator
population.
a. Sketch the nullclines of this model.
b. Verify these with grind.R.



Chapter 8

Food chain models

Ecological food webs typically contain several layers where the consumers eating from the bottom
resource layer are the prey of another predator. The predator prey models discussed above can
easily be extended with a “top predator” that lives off the predator population N . Doing so one
obtains a food chain model of three species. Strangely, the steady states of such a food chain
depend strongly on its length. The steady state properties of food chains with an even length
are very different from those with an odd length (Arditi & Ginzburg, 1989; Abrams, 1994).
Although this seems strange, there are experimental data from bacterial food chains confirming
these predictions from the models (Kaunzinger & Morin, 1998).

8.1 A 3-dimensional food chain

Extending the Lotka Volterra predator prey model with a top-predator T is straightforward,
e.g.,

dR

dt
= [r(1−R/K)− bN ]R ,

dN

dt
= [bR− d− cT ]N and

dT

dt
= [cN − e]T . (8.1a,b,c)

This simple model has several steady states, and we will study what happens when the carrying
capacity, K, of the resource is increased. When the prey is alone, i.e., when N = T = 0,
one obtains R̄ = K from Eq. (8.1)a. This carrying capacity is a measure of the total amount
of nutrients available in the ecosystem. At low values of the carrying capacity, there are not
enough nutrients to maintain the predator (i.e., R∗ = d/b > K), and the predator can only exist
if its R0 > 1, which means that bK/d > 1. If, after increasing K, the predator has successfully
invaded, the new steady state (with still T = 0) is

R̄ =
d

b
and N̄ =

r

b

(
1− d

bK

)
=
r

b

(
1− 1

R0

)
. (8.2)

Note that the previous state (R̄, N̄ , T̄ ) = (K, 0, 0) still exists, but has become unstable because
dN/dt > 0 in the neighborhood of that state.

Similarly, the top-predator can only invade when R′0 = cN̄/e > 1. Because N̄ increases as
a function of K, and approaches a maximum N̄ = r/b, the fitness of the top-predator can
be defined as R′0 = cr

be . The top-predator can only invade when the carrying capacity K is
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sufficiently large, and R′0 > 1. When T > 0 the steady state of the prey and predator is

N̄ =
e

c
and R̄ = K

(
1− be

rc

)
, (8.3)

where we re-observe the parameter condition R′0 = cr
be > 1.

Summarizing, we observe that when the carrying capacity is increased the resource is first
proportional to K, it is independent of K when the food chain has an even length, and becomes
proportional to K again when the food chain has an odd length of three species.

8.2 Summary

Whether the resource density increases with its carrying capacity depends on the length of the
food chain. This is because the whole food chain determines from which equation one solves the
steady state densities.

8.3 Exercises

Question 8.1. Nullclines
Sketch the 3-dimensional nullclines of Eq. (8.1) for the three situations considered above.

Question 8.2. Kaunzinger
Read the paper by Kaunzinger & Morin (1998).
a. Compute the steady state of the top-predator of Eq. (8.1) to study whether it depends on

the carrying capacity.
b. Sketch how in the Lotka Volterra model of this chapter the prey and the two predators

increase with the carrying capacity of the prey (i.e., their productivity).
c. Compare that to their Fig. 1: are the figures exactly the same? How important are these

differences?
d. The authors claim that the prey increases somewhat with the productivity in the 2-

dimensional food chain. How would you change the model to account for that result?

Question 8.3. Chaos
A simple system of a prey species R eaten by a predator N , eaten by a top-predator T can have
a chaotic attractor (Hogeweg & Hesper, 1978; Hastings & Powell, 1991). Consider the following
system with two Holling type II functional response functions

dR

dt
= R(1−R)− c1Nf(R) ,

dN

dt
= −aNN + c1Nf(R)− c2Tg(N) ,

dT

dt
= −aTT + c2Tg(N) ,

where

f(R) =
R

1 + b1R
and g(N) =

N

1 + b2N
.
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Hastings & Powell (1991) studied this system for the parameters 2 ≤ b1 ≤ 6.2, c1 = 5, c2 = 0.1,
b2 = 2, aN = 0.4, en aT = 0.01. For biological reasons the time scale of the interaction between
N and T was made slower than that between R and N , i.e., aN � aT . This model is available
as the file chaos.R.
a. Sketch with pencil and paper the phase space of R and N . Do you expect oscillations for

their parameters in the absence of the top-predator T?
b. Compute the expression of the dT/dt = 0 nullcline, and sketch that line in the phase space

of a. Do you expect T to invade?
c. Sketch the nullclines with grind.R and see how they match those sketched with pencil and

paper.
d. Vary the parameter b1 to observe how the model behavior changes (see the file chaos.R).
e. Do this with and without noise on one of the parameters.

Question 8.4. Detritus
In a closed ecosystem nutrients should cycle through a food chain and become available again
when prey, predators, and top-predators die and decompose. One could write that the total
amount of “free” nutrients is given by F = K − R − N − T , where K is the total amount of
nutrients in the system. Study how in this system with recycling nutrients the nullclines, and
the behavior of the system, change when the amount of nutrients, K, is increased.
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Chapter 9

Resource competition

Competition for resources like nutrients, food, light, and/or space is the most obvious form
of competition in ecosystems. In this chapter we derive resource competition models from
the predator prey models developed in the previous chapters. We have already seen that the
population size of predators feeding on some resource is naturally limited by the depletion of
the prey population. The consumption of the resource therefore delivers an indirect form of
specific competition between the predators. When studying two populations that are feeding on
a resource that is not taken into account, one is bound to find interspecific competition between
the consumer populations.

Following the basic theme of this book we will develop models for resource competition ourselves
from the predator prey models that we have learned to understand in previous chapters. In most
cases we will not end up with the “classical” Lotka Volterra competition equations, that are based
upon simple mass action interaction terms between the competitors. We will derive that two
species using the same resource cannot coexist, and derive conditions determining which species
will outcompete the other (and learn that this need not be the species with the largest carrying
capacity). This illustrates the importance of deriving models, rather than copying them from
the textbooks.

First, consider the following model for two consumers N1 and N2 of a resource R

dR

dt
= s− dR− c1RN1 − c2RN2 , (9.1)

dN1

dt
=

( β1c1R

h1 + c1R
− δ1

)
N1 =

( β1R

H1 +R
− δ1

)
N1 , (9.2)

dN2

dt
=

( β2c2R

h2 + c2R
− δ2

)
N2 =

( β2R

H2 +R
− δ2

)
N2 , (9.3)

where Hi = hi/ci, and the ciR terms reflect the amount of resource eaten per consumer per
unit of time (say per day), and where this consumption translates into a consumer birth rate by
a saturation function (βi is the maximum birth rate, and the birth rate is half maximal when
ciR = hi).

The carrying capacity of the resource is found by setting N1 = N2 = 0 and solving dR/dt = 0
to obtain that R̄ = s/d. Since the birth rates are saturation functions of the consumption rate
we can define the fitness of both consumers as R0i = βi/δi, and we can define R∗i as the minimal
resource density required required for growth of the consumers (Tilman, 1980, 1982), by solving
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dNi/dt = 0 for R, i.e.,

R∗i =
hi

ci(R0i − 1)
=

Hi

R0i − 1
. (9.4)

The consumer requiring the lowest resource density, R∗i , is expected to win the competition
because the other consumer can not maintain itself at this density (Tilman, 1980, 1982). Impor-
tantly, this simple criterion for competitive exclusion is independent of the form of the resource
equation. From the R∗i expression in Eq. (9.4) we read that species with the highest R0i , and
the lowest ratio, Hi, of resource requirements over consumption, is expected to exclude the other
species.

To study how resource competition shapes the interaction between the two competitors, one can
make a quasi steady state (QSS) assumption for the resource, i.e.,

dR

dt
= 0 giving R̂ =

s

d+ c1N1 + c2N2
. (9.5)

Substitution of R̂ into the consumer equations gives

dNi

dt
= Ni

( βis

s+Hi(d+ ciNi + cjNj)
− δi

)
= Ni

( bi
1 +Ni/ki +Nj/kj

− δi
)
, (9.6)

where Hi = hi/ci, i, j ∈ {1, 2}, and bi, ki, and kj are complicated combinations of many
parameters (i.e., bi = βicis/(cis + hid) and ki = cihi/(cis + hid)). The latter simplified form
in Eq. (9.6) reveals that this is an extension of one of the density dependent birth models
in Chapter 4, with an inverse Hill function f(N) = 1/(1 + N/k) describing the effect of the
population density on the per capita birth rate. The “carrying capacity”, Ki, of each consumer
can be found by setting Nj = 0 and solving dNi/dt = 0 from Eq. (9.6)

Ki =
s

hi

(
R0i − 1

)
− d

ci
=

s

ciR∗i
− d

ci
, (9.7)

i.e., the best competitor with the lowest R∗i tends to have the highest carrying capacity.

To sketch the dN1/dt = 0 nullcline one solves N2 from dN1/dt = 0 in Eq. (9.6), to obtain that
N1 = 0 and

N2 =
s

h1

c1

c2
(R01 − 1)− d

c2
− c1

c2
N1 =

s

c2R∗1
− d

c2
− c1

c2
N1 , (9.8)

which is a diagonal line with slope −c1/c2 intersecting the vertical axis at N2 = s
c2R∗1

− d
c2

; see

Fig. 9.1a. Similarly, for the dN2/dt = 0 nullcline one solves N2 from dN2/dt = 0 in Eq. (9.6),
and will obtain that N2 = 0 and

N2 =
s

h2
(R02 − 1)− d

c2
− c1

c2
N1 =

s

c2R∗2
− d

c2
− c1

c2
N1 , (9.9)

which intersects the vertical axis at the carrying capacity of N2, and the horizontal axis at
N1 = s

c1R∗2
− d

c1
; see Fig. 9.1a.

Thus, the nullclines are two parallel lines differing in the consumption, ci, requirement, hi,
and R0 parameters. From intersections with the axes in Fig. 9.1a one can see that the heavy
dN1/dt = 0 nullcline is located at the top just because R∗1 < R∗2, which indeed was the criterion
for N1 being the best competitor. Although by Eq. (9.7) the carrying capacity decreases with
R∗i , the best competitor need not be the species with the largest carrying capacity because
the carrying capacity is also inversely related to the consumption rate, ci (see the exercises).
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Figure 9.1: The 2-dimensional QSS nullclines of Eqs. (9.1) to (9.3) (a), and those of Eq. (9.10) with
Eqs. (9.2) and (9.3) (b). In both Panels the heavy line is the dN1/dt = 0 nullcline, because we chose
R∗1 < R∗2.
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Figure 9.2: The 3-dimensional nullclines for two consumers on a non-replicating resource (a) and on a
replicating resource (b).

We conclude that there cannot be an equilibrium in which the two species co-exist. This is
the principle of “competitive exclusion”: two consumers using the same resource exclude each
other. This also defines the concept on an “ecological niche”: species can only co-exist when
they occupy different niches. Although the nullclines resemble the straight lines of a Lotka-
Volterra competition model (see below), the underlying model that we have derived differs from
the classical Lotka-Volterra competition model because the interaction terms are based upon
declining Hill functions, rather than on mass action terms.

One can also consider the full 3-dimensional model by sketching its 3-dimensional nullclines
(see Fig. 9.2a). The two nullclines of the consumers are easy to sketch because we have already
computed that they are located at the critical resource densities R∗i ; see Fig. 9.2a. The consumer
planes therefore again run parallel to each other, and cannot intersect in an equilibrium where
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dN1/dt = dN2/dt = 0. This reconfirms the competitive exclusion result. The 3-dimensional
nullcline of the resource can be drawn by separately considering the R versus N1 plane for
N2 = 0, and the R versus N2 plane for N1 = 0 (see Fig. 9.2a). When both N1 and N2 are
zero the resource population has the carrying capacity R̄ = s/d, which is the intersection point
on the R-axis. When N2 = 0 one obtains from Eq. (9.1) that N1 = s/(c1R) − d/c1. This has
a vertical asymptote R = 0, and a horizontal asymptote N1 = −d/c1 which is approached for
R→∞. The dR/dt = 0 nullcline for N2 = 0 therefore has the hyperbolic shape depicted in Fig.
9.2a. Since the same arguments apply for the plane where N1 = 0, one finds a similar hyperbolic
nullcline in the bottom plane of the phase space in Fig. 9.2a.

To test the stability of the steady states of a 3-dimensional phase space one has to resort to an
invasion criterion. First consider the vector fields: dR/dt > 0 below its carrying capacity, and
hence below the hyperbolic dR/dt = 0 nullcline. The vertical consumer nullclines correspond
to the minimum resource density for predator growth. At the right side of the N1-nullcline
dN1/dt > 0, and at the right side of the N2-nullcline dN2/dt > 0. The carrying capacity point
of the resource is unstable in Fig. 9.2a because it is located above the consumer planes, i.e., both
dN1/dt > 0 and dN2/dt > 0 when R = s/d. The intersection point of the N2 and the R-nullcline
is unstable because it is located on the right side of the N1-nullcline, i.e., if N1 were introduced
in this 2-dimensional steady state it would grow and invade. Conversely, N2 cannot invade in
the R with N1 equilibrium because locally dN2/dt < 0. Since the 2-dimensional equilibrium of
R with N1 is stable, we conclude that N1 excludes N2 because its nullcline is located at a lower
prey density. Because the resource is depleted to this minimal density this is sometimes called
the pessimization principle (Mylius & Diekmann, 1995).

Finally, remain aware that this remains an equilibrium result. We have only shown that the two
consumers cannot coexist in an equilibrium. Non-equilibrium co-existence is possible, and in
one of the exercises you will study two consumers on one resource that co-exist thanks to their
periodic or chaotic behavior (see Fig. 11.2).

9.1 Two consumers on a replicating resource

The previous section demonstrated that two consumers on a non-replicating resource are not
expected to co-exist. Now consider the same two consumers on a resource replicating by logistic
growth,

dR

dt
= rR(1−R/K)− c1RN1 − c2RN2 , (9.10)

and use the same equations for the consumers (Eqs. 9.2 and 9.3). As we have not changed the
consumer equations we know that the definitions of the critical resource density, R∗i , and the
fitness, R0i , remain the same, and that the species with the lowest resource requirement should
be the winner. Because the two dNi/dt equations have remained the same as those in the first
model (see Eqs. 9.2 & 9.3), the predator nullclines in the 3-dimensional phase space remain the
same two parallel planes (see Fig. 9.2b). This immediately reconfirms the competitive exclusion.
To sketch the 3-dimensional nullcline of the resource, one derives that for N2 = 0 the nullcline of
the resource is a simple straight line, N1 = (r/c1)[1−R], that we know from the Lotka Volterra
model. Similarly, for N1 = 0 one obtains a straight line from N2 = r/c2 when R = 0 to R = 1
when N2 = 0. The invasion criterion can be used in exactly the same way as in Fig. 9.2a to
show that the species with the lowest resource requirement, R∗i , wins.

To compare this model with the classical Lotka-Volterra competition model, we again make a
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quasi steady state assumption for the resource, i.e.,

R̂ = 0 and R̂ = K − c1K

r
N1 −

c2K

r
N2 , (9.11)

and substituting the latter into Eqs. (9.2) and (9.3) yields

dNi

dt
= Ni

( βi(r − ciNi − cjNj)

r + rHi/K − ciNi − ciNj
− δi

)
, (9.12)

where Hi = hi/ci and i, j ∈ {1, 2}. This is again not based upon the simple mass action
interaction terms of classical Lotka-Volterra competition model (see Section 9.2). One may
recognize the mass action terms of the Lotka-Volterra in the numerator, implying that this will
resemble the Lotka-Volterra competition model when r + rHi/K � ciNi + ciNj . The carrying
capacity of the consumers is found by setting Nj = 0 and solving Ni from dNi/dt = 0 in Eq.
(9.12), i.e.,

N̄i =
r

ci

(
1− R∗i

K

)
and the dN1/dt = 0 nullcline is obtained by solving N2 from Eq. (9.12)

N2 =
r

c2

(
1− R∗1

K

)
− c1

c2
N1 ,

which is again a straight line with slope −c1/c2. Since the dN2/dt = 0 nullcline has the same
slope (not shown) we again find the (expected) parallel consumer nullclines of two consumers
using the same resource (see Fig. 9.1b). Summarizing, we again find competition equations
with interaction terms that are more complicated than mass action terms, but having linear
nullclines resembling those of the Lotka-Volterra competition model. Note that we could have
used a non-linear functional response for the consumption of resource in both models, and that
this would have complicated the algebra, but that this would not have altered the conclusions on
competitive exclusion as the R∗ criterion is based upon the consumer equations only. A saturated
function response can give rise to oscillations, however, and these may allow for non-equilibrium
co-existence (see Chapter 11).

9.2 The Lotka-Volterra competiton model

The Lotka-Volterra competiton model is typically written as

dN1

dt
= r1N1

(
1− N1

K1
− N2

C1

)
and

dN2

dt
= r2N2

(
1− N1

C2
− N2

K2

)
, (9.13)

which basically extends the logistic growth model with a mass action competition term. To
sketch the nullclines one solves N2 from dNi/dt = 0 in Eq. (9.13), i.e.,

N2 = C1

(
1− N1

K1

)
and N2 = K2

(
1− N1

C2

)
, (9.14)

forming the classical straight nullclines running from N2 = C1 on the vertical axis to N1 = K1

on the horizontal axis for dN1/dt = 0, and for dN2/dt = 0 from N2 = K2 to N1 = C2. Since
during resource competition the niche overlap with members of another species should be lower
than that with conspecifics, two consumers on a single resource should require that C1 > K1

and C2 > K2. After scaling the carrying capacities to K1 = K2 = 1 one can see this means that
the nullclines should not intersect (see below).
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Note that we would obtained the mass action terms of the Lotka-Volterra model if we had
written the consumer model of Eq. (9.2) and Eq. (9.3) as

dN1

dt
=
( c1

h1
R− δ1

)
N1 and

dN2

dt
=
( c2

h2
R− δ2

)
N2 , (9.15)

where the hi constants define conversion rates, and had substituted the QSS of the replicating
resource (Eq. (9.11)). In this simplified model the fitness is defined as R0i = c1K

h1δ1
, and the

critical resource density is defined as R∗i = h1δ1
c1

, which is K/R0i (see Chapter 5). Hence we
would have found that the winner with the lowest resource requirements necessarily has the
largest fitness. However, since this simplified model is not easily extendable into competition
for several resources, as one would obtain several independent “birth rates” in Eq. (9.15), e.g.,

dN1

dt
=
( c11

h11
R1 +

c12

h12
R2 − δ1

)
N1 .

We therefore return to the saturated birth rates of Eq. (9.2) and Eq. (9.3) in the next section.

9.3 Two consumers on two resources

The previous two sections demonstrated that two consumers on one resource are expected to
have a phase space with two parallel nullclines. However, in a phase space of two consumers
on two resources, it should be possible to have intersecting nullclines. For instance, when each
consumer specializes on one resource, there is no competition between the consumers, and the
nullclines should be independent of each other, intersecting orthogonally in a stable co-existence
point. Here we will again derive competition models from a consumer resource models to study
under which conditions this steady state is expected to be stable.

Studying consumers using several resources one has to decide whether or not these resources
are “essential”, meaning that they cannot replace each other, or “substitutable”, meaning that
they can be added up into a total intake (Tilman, 1980, 1982). Let us first extend the model of
Eq. (9.1) to Eq. (9.3) into a situation of two consumers sharing two substitutable resources, by
defining birth rates depending on the summed resource intake,

dR1

dt
= s1 − d1R1 − c11N1R1 − c21N2R1 , (9.16)

dR2

dt
= s2 − d2R2 − c12N1R2 − c22N2R2 , (9.17)

dN1

dt
=

(
β1

c11R1 + c12R2

h1 + c11R1 + c12R2
− δ1

)
N1 , (9.18)

dN2

dt
=

(
β2

c21R1 + c22R2

h2 + c21R1 + c22R2
− δ2

)
N2 , (9.19)

where the cijRj terms are the per capita consumption rates, and the consumed resources con-
tribute equally to the birth rate of each consumer. The saturation constants, hi, define the
density of consumed resources at which the birth rate is half-maximal. Since at low consump-
tion rates the saturation functions approach (c11R1 + c12R2)/h1 and (c21R1 + c22R2)/h2, the
saturation constants, h1 and h2, also play the role of a conversion factor from the resource to
the consumer level.

Since the per capita birth and death rates of the consumers in Eqs. (9.18) and (9.19) only depend
on the resource densities one can draw the dN1/dt = 0 and the dN2/dt = 0 nullclines in a phase



9.4 Two Essential Resources 65

space defined by the two resources (see Fig. 9.3a). Such a picture is called a Tilman diagram
(Tilman, 1980, 1982). These nullclines define the minimum amount of resources, (R∗1, R

∗
2), the

consumers need to grow, and in Fig. 9.3(a) and (b), dN1/dt > 0 or dN2/dt > 0 above their
nullclines. If, and only if, these nullclines intersect, there is a steady state resource density,
(R1, R2), at which dN1/dt = dN2/dt = 0. To sketch the nullclines in the Tilman diagram we
solve dN1/dt = 0 and dN2/dt = 0 for R2, which gives the following expressions for the two
consumer nullclines

R2 =
h1

c12(R01 − 1)
− c11

c12
R1 and R2 =

h2

c22(R02 − 1)
− c21

c22
R1 , (9.20)

where R0i = βi/δi. Using the definition of the critical resource density, R∗ij = hi
cij(R0i

−1) , we can

simplify these consumer nullclines into R2 = R∗12− c11
c12

R1 and R2 = R∗22− c21
c22

R1, which defines
two straight lines that may intersect when their slopes are unequal, i.e., when c11

c12
6= c21

c22
, and

when their four intersects with the axes, i.e., R2 = R∗12, R1 = R∗11, R2 = R∗22, and R1 = R∗21,
respectively, also allow the nullclines to cross (see Fig. 9.3b).

When the species have the same diet, c11 = c21 and c12 = c22, the slopes of the nullclines will be
two parallel lines, and the species will exclude each other. The species with the lowest resource
requirements, R∗ij , will have the lowest nullcline, and be the best competitor. Requiring low
amounts of consumed resources, i.e., having a low hi parameter, consuming a lot, i.e., having
high cij parameters, and having a high R0, all contribute to have low R∗ijs and becoming the best
competitor. Finally, when the species perfectly specialize on one resource, i.e., c21 = c12 = 0,
the Tilman diagram will simplify to two perpendicular lines located at R1 = R∗11 and R2 = R∗22.

Finding an intersection between the consumer nullclines in a Tilman diagram does not guarantee
that the consumers can co-exist because this is not necessarily a 4-dimensional steady state (as
we have not required dR1/dt = dR2/dt = 0), and even if the intersection point corresponds to
a steady state, the equilibrium could be unstable. To study the existence of the steady state
we can again make a quasi steady state assumption for the resources and (numerically) plot
the consumer nullclines in a conventional phase space defined by the consumer densities (see
Fig. 9.3c and d). The QSSA consumer nullclines are complicated expressions that intersect the
horizontal and vertical axis in the carrying capacities. For the stability analysis we formally have
to consider the 4-dimensional Jacobian of the model (see below), but if the QSSA is realistic we
can use the vector field in Fig. 9.3d to see that the steady state is expected to be stable.

For two consumers on two substitutable resources one can show by an intuitive argument that
this state, if it exists, is indeed expected to be stable. Consider Fig. 9.3c where the nullclines
fail to intersect and diminish the niche overlap by decreasing c12 and c21. This will turn the
upper dN1/dt = 0 nullcline more vertical, and the lower dN2/dt = 0 isocline more horizontal,
as we know that when c12 = c21 = 0, they are perfectly vertical and horizontal lines at N1 = K1

and N2 = K2. At some value of the decreasing consumption rates the nullclines will intersect in
the carrying capacity, K1, of the winning species. This is a bifurcation point because for even
lower values of c12 and c21 the nullclines intersect in a non-trivial steady state (see Fig. 9.3d),
which is a stable node. Thus, two consumers on two substitutable resources can always coexist
if their niche overlap is sufficiently small, as their non-trivial steady state is always expected to
be stable. This will change when we consider essential resources, however.
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Figure 9.3: Consumer nullclines for a situation with two substitutable resources that are main-
tained by a source. Panels (a) and (b) at the top depict the nullclines of Eqs. (9.18) and (9.19)
as function of the resource densities (these are Tilman diagrams), and Panels (c) and (d) at the
bottom depict the consumer nullclines after making a QSSA, dR1/dt = dR2/dt = 0, for the
resources. When the consumers have the same diet (Panels (a) and (c)) the nullclines fail to
intersect, and giving N1 an advantage by setting h1 < h2 (or, alternatively, R01 > R02), the
dN1/dt = 0 nullcline is located at lower resource densities in Panel (a) and at higher consumer
densities in Panel (c). When the consumers have a different diet (Panels (b) and (d), where
c12 < c11, c21 < c22 and h1 = h2), the nullclines may intersect. The (curved) QSSA nullclines
in Panel (d) suggest that this intersection point corresponds to a stable steady state (see the
vector field). This figure was made with the model additiveS.R

9.4 Two Essential Resources

For “essential” resources that cannot be substituted for one another, one would write a model
like

dN1

dt
=

(
β1

c11R1

h11 + c11R1

c12R2

h12 + c12R2
− δ1

)
N1 , (9.21)

dN2

dt
=

(
β2

c21R1

h21 + c21R1

c22R2

h22 + c22R2
− δ2

)
N2 , (9.22)

where by the multiplication of two saturation functions we require that both resources should
be consumed in sufficient amounts. Fig. 9.4(a) and (b) depicts Tilman diagrams for this model.
Note that we could again define ratios, Hij = hij/cij , to illustrate that the consumer equations
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Figure 9.4: Consumer nullclines for a situation with two essential resources (that are maintained
by a source) for a stable steady state (Panels (a) and (c)) and for an unstable steady state (Panels
(b) and (d)). The panels at the top depict the nullclines of Eqs. (9.21) and (9.22) as function
of the resource densities (these are Tilman diagrams). The dashed lines are asymptotes. The
circle in the upper corners depicts the (unstable) steady state of the resources in the absence of
consumers. The other bullets and circles reflects a stability of steady state with consumers. The
panels at the bottom provide the nullclines of Eqs. (9.21) and (9.22) after making a QSSA for
the resources (i.e., Eqs. (9.16) and (9.17)). This figure was made with the model essentialS.R.

only depend on the ratio of the requirement over the consumption, i.e.,

dN1

dt
=
(
β1

R1

H11 +R1

R2

H12 +R2
− δ1

)
N1 and

dN2

dt
=
(
β2

R1

H21 +R1

R2

H22 +R2
− δ2

)
N2 .

The consumer nullclines in a phase spanned up by the two resources are hyperbolic functions with
asymptotes defining the minimal resource densities these consumers require. These asymptotes
can be found by setting dNi/dt = 0 for R1 →∞ or R2 →∞, i.e., R1 = R∗11, R2 = R∗12, R1 = R∗21,
and R2 = R∗22, respectively (see Fig. 9.4a and b). Whether or not the nullclines will intersect
therefore depends on the R∗s, and the species with the lowest requirements, hij , the highest
consumption rates, cij , and highest R0 will have the lowest nullcline, and be the winner whenever
the nullclines fail to intersect.

In all panels of Fig. 9.4 we have set c11 > c12 and c22 > c21, i.e., consumer one specializes
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on resource one, and consumer two on resource two, and in Fig. 9.4(c) and (d) we have used
resources that are maintained by a source (i.e., Eqs. (9.16) and (9.17)). In the stable situation
of Fig. 9.4a and c we accordingly set h11 > h12 and h22 > h21, to let each species eat most of the
resource it requires most (which would be “optimal” in an evolutionary sense (see the chapter
by Tilman in (McLean & May, 2007))). We have made the unstable situation of Fig. 9.4(b)
and (d) by setting h11 = h12 = h21 = h22, which means that the first consumer competes more
strongly with the second consumer that with itself because the second consumer eats more of
resource two than consumer one. Apparently, the latter leads to an unstable steady state, and
a situation where only one of the consumers survives. The initial condition will determine who
persists, and hence this is called a “founder controlled” situation. Since the Tilman diagrams in
Fig. 9.4(a) and (b) are much simpler than the QSSA nullclines in Panels (c) and (d), it would
be much more efficient if one can read the stability of the steady state from the relative location
of the consumer nullclines in the Tilman diagram. The next section will show how that can be
done.

9.5 4-dimensional Jacobian

To formally study the stability of the steady state of these models one should study the Jacobian
of the 4-dimensional system. Fortunately, this is feasible because this Jacobi matrix contains
many zero elements. For instance, the Jacobian of the model with substitutable resource, i.e.,
Eqs. (9.16) to (9.19), can be written as

J =

∂R1R
′
1 . . . ∂N2R

′
1

...
. . .

∂R1N
′
2 . . . ∂N2N

′
2

=


−d1−c11N̄1−c21N̄2 0 −c11R̄1 −c21R̄1

0 −d2−c12N̄1−c22N̄2 −c12R̄2 −c22R̄2

Φ1c11 Φ1c12 0 0

Φ2c21 Φ2c22 0 0

 (9.23)

where

Φ1 =
β1h1N̄1

(h1 + c11R̄1 + c12R̄2)2
and Φ2 =

β2h2N̄2

(h2 + c21R̄1 + c22R̄2)2

Note that the two ∂NiN
′
i elements are zero because ∂NiN

′
i is the per capita growth rate, which is

zero at steady state. The two ∂NjN
′
i elements are zero because the consumer equations do not

contain the other consumer, and the two ∂RjR
′
i elements are zero because the resource equations

do not contain the other resource. This Jacobian can be simplified into a matrix with the same
structure of signs and zeros,

J =


−ρ1 0 −γ11 −γ21

0 −ρ2 −γ12 −γ22

φ11 φ12 0 0
φ21 φ22 0 0

 , (9.24)

where ρi elements define the feedback of the resources onto themselves, the γij elements define the
per capita amounts of resources consumed, and the φij terms define the contribution of resources
to the growth of the consumer populations at steady state (Tilman, 1980). The characteristic
equation of this Jacobi matrix can be obtained with Mathematica, and is defined as

λ4 + a3λ
3 + a2λ

2 + a1λ+ a0 = 0 , (9.25)

where

a3 = ρ1 + ρ2 , a2 = φ11γ11 + φ21γ12 + φ12γ21 + φ22γ22 + ρ1ρ2 ,
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a1 = φ12ρ1γ21 +φ22ρ1γ22 +φ11γ11ρ2 +φ21γ12ρ2 and a0 = (γ11γ22−γ12γ21)(φ11φ22−φ12φ21) .

The steady state will be stable when all four solutions of the eigenvalues in Eq. (9.25) are
negative. Fortunately, there is a general method to test this without having to solve this fourth-
order polynomial. This is so-called Routh-Horwitz stability criterion on the n coefficients, ai,
of an nth order polynomial (May, 1974; Tilman, 1980). One of the Routh-Horwitz criteria is
that all parameters, ai, in Eq. (9.25) should be positive (or all negative as one can multiply
the equation with −1). Thanks to the many zeros in the Jacobi matrix we here have a simple
situation where a3 > 0, a2 > 0, a1 > 0, and only a0 can be negative. Hence testing a0 > 0 may
reveal a biological insight into the criteria for co-existence of two consumers of two resources.

For substitutable resources, we know that the steady state can only exist if the two consumers
have a different diet (see Fig. 9.3a). Therefore consider a case where consumer one specializes
on resource one, and consumer two on resource two, i.e., c11 > c12 and c22 > c21 (see Fig. 9.3b).
Spelling out the first term of the a0 equation, we see that in this case

(γ11γ22 − γ12γ21) = (c11R̄1c22R̄2 − c12R̄2c21R̄1) > 0 ,

because c11c22 > c12c21. For the second term of the a0 equation we observe in Eq. (9.23) that
φ11 > φ12 when c11 > c12 and that φ22 > φ21 when c22 > c21. As a consequence

φ11φ22 − φ12φ21 > 0 and, hence a0 > 0 ,

which fulfills this Routh-Horwitz criterion, allowing the steady state to be stable. We conclude
that two consumers using two substitutable resources can co-exist, i.e., when their quasi steady
state nullclines intersect, this steady state is expected to be stable (see Fig. 9.3c).

Although we here considered the case where the resources are maintained by a source, little
changes when we write

dR1

dt
= r1R1(1−R1/K1)− c11N1R1 − c21N2R1 , (9.26)

dR2

dt
= r2R2(1−R2/K2)− c12N1R2 − c22N2R2 , (9.27)

and Eqs. (9.18) and (9.19) for the consumers. The Tilman diagram remains the same because
the ODEs for the consumer did not change. In the Jacobian of Eq. (9.23) only the upper two
diagonal elements change into

ρ1 = r1 −
2r1

K1
R̄1 − c11N̄1 − c21N̄2 and ρ2 = r2 −

2r2

K2
R̄2 − c11N̄1 − c21N̄2 ,

both of which should remain negative. Hence, the Routh-Horwitz criteria remain the same and
we again find that the steady state should be stable.

Essential resources

.

Can the Routh-Horwitz criteria also tell the difference between the stable and unstable situation
in Fig. 9.4? Using Eqs. (9.16) and (9.17) for resources maintained by a source (or Eqs. (9.26) and
(9.27) for self-renewing resources), and Eqs. (9.21) and (9.22) for the two consumers using two
“essential” resources that cannot be substituted for one another, we obtain an Jacobian that
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is quite similar to that of models with substitutable resources, as only the four ∂RN
′ elements

change:

(
∂R1N

′
1 ∂R2N

′
1

∂R1N
′
2 ∂R2N

′
2

)
=

(
Φ1

R̄2

1+R̄1/H11
Φ1

R̄1

1+R̄2/H12

Φ2
R̄2

1+R̄1/H21
Φ2

R̄1

1+R̄2/H22

)
=

(
φ11 φ12

φ21 φ22

)
(9.28)

where Hij = hij/cij and

Φ1 =
β1N̄1

(H11 + R̄1)(H12 + R̄2)
and Φ2 =

β2N̄2

(H21 + R̄1)(H22 + R̄2)
.

The full Jacobian therefore has the same signs and zeros as the matrix in Eq. (9.23), which
means that the same a0 > 0 criterion remains a condition for stability.

Again consider a case where consumer one specializes on resource one, and consumer two on
resource two, i.e., c11 > c12 and c22 > c21. Like above the first term of the a0 > 0 criterion,
γ11γ22 > γ12γ21, remains satisfied. However, the second term, φ11φ22 > φ12φ21, need not be
satisfied because the relative values of φij elements are no longer determined by the corresponding
consumption rates, cij . For instance, if species one, which consumes most of resource one, would
require more of resource two, i.e., if h11 < h12 (see Fig. 9.4b), the positive contribution of the
first resource may become smaller than that of the second, and one can obtain that φ11 < φ12.
Setting the same “non-optimal” requirements for the second consumer one would also obtain
that φ22 < φ21 (see Fig. 9.4b). Whenever (φ11φ22 − φ12φ21) < 0 and (γ11γ22 − γ12γ21) > 0, the
Routh-Horwitz criterion a0 > 0 fails, and the steady state is expected to be unstable (see Fig.
9.4d).

Interestingly, we see that both consumers need to be restricted most by the resource they eat
most, and that the condition a0 > 0 has the biological interpretation that the species can co-
exist when they evolve consumption rates reflecting their resource requirements, i.e., when the
φij terms concur with the γij terms (Tilman, 1980; McLean & May, 2007). Intuitively, one can
understand that it is destabilizing when a consumer hardly consumes the resource it is mostly
limited by (as an increase in the resource density would hardly increase is birth rate).

Finally, similar to deriving a graphical Jacobian from a local vector field, one can also estimate
the relative sizes of the φij terms from a Tilman diagram. In Fig. 9.4a we can see that ∂R1N

′
1 =

φ11 > ∂R2N
′
1 = φ12 because a small step to the right lands at a larger distance from the dN1/dt =

0 nullcline that a small step to the top. Similarly, one can see that ∂R1N2 = φ21 < ∂R2N
′
2 = φ22,

which tells us the Routh-Horwitz criterion, and the steady state should be stable (see Panel
(c)). In Panel (b) the nullclines are reversed and these partial derivatives are just the other
way around, which makes this un unstable steady state (see Panel (d)). This will become more
clear in the exercises, where we simplify this model using a minimum function (Tilman, 1980,
1982). If we were to study this model with self-renewing resources, we would again obtain a
very similar Jacobian and similar results (not shown).

Summarizing when consumers strongly require a resource that is more strongly depleted by an-
other consumer than by themselves, they suffer more competition from the other consumer than
from themselves. This destabilizes the steady state and leads to the “founder controlled” phase
space of Fig. 9.4(d), where the initial condition determines which of the consumers survives.
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Figure 9.5: The four qualitatively different nullcline configurations of the scaled Lotka Volterra compe-
tition model given in Eq. (9.29). The heavy line is the dn2/dt = 0 nullcline.

9.6 Scaled Lotka-Volterra competition model

In the model with two consumers using two essential resources we have seen that the QSSA null-
clines can fail to intersect, or intersect in a stable or unstable steady state. This is summarized
in most textbooks by the four phase space shown in Fig. 9.5, that one typically draws from a
scaled version of the Lotka Volterra competition model,

dn1

dt
= r1n1[1− n1 − γ1n2] and

dn2

dt
= r2n2[1− n2 − γ2n1] . (9.29)

When both γi parameters are larger than one, the interspecific competition exceeds the in-
traspecific competition for both species (see Fig. 9.4b and d for a mechanistic example), and
the nullclines intersect in an unstable equilibrium (Fig. 9.5c). This is called the “founder con-
trolled” situation because the species that initially has the highest abundance has the highest
chance to win (i.e., approach carrying capacity). When both γi parameters are smaller than
one the steady state is stable; see Fig. 9.5d. Otherwise the nullclines fail to intersect (see Fig.
9.5a and b). Several textbooks start with an equation like Eq. (9.29) to discuss the possible
outcomes of competition. Note how confusing this can be: it seems that the maximum rates
of increase r1 and r2 have nothing to do with the competitive strength of a population because
both parameters cancel from the nullcline equations, dn1/dt = dn2/dt = 0. Instead, we have
seen above that all terms of this model, including the scaled carrying capacities, depend on the
underlying parameters of the resource(s), the consumption rates, the resource requirements of
the consumers, and their fitnesses.
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9.7 Summary

The classical Lotka Volterra competition equations turn out to be bold simplifications of the
equations that one obtains by QSS assumptions in a consumer-resource model, but part from
the non-linearity of the nullclines, we do recover the same qualitatively phase diagrams with a
stable or unstable steady state and non-intersecting nullclines. Replicating and non-replicating
resources yield similar results for the outcome of the competition. Species will only co-exist if
their niches are sufficiently different.

9.8 Exercises

Question 9.1. Migration
Extend the scaled Lotka Volterra competition model of Eq. (9.29) with a small constant immi-
gration of individuals.
a. Write the new differential equations.
b. Analyse the model using nullclines: first sketch the phase space without this migration term,

and reason how the nullclines change if you add a small immigration parameter.
c. What are the steady states and what is their stability?
d. Discuss competitive exclusion in this model.

Question 9.2. Nullclines
A series of experiments suggested that the nullclines of two populations are:

x

y

.P

where the solid lines represent dx/dt = 0 and the dashed lines represent dy/dt = 0. Note that
the vertical axis is part of the dx/dt = 0 nullcline.
a. Make a model matching these nullclines.
b. What type of ecological interaction could this be? Why is this not a model for obligate

symbionts?
c. Give a correct definition of the “phase space” concept.
d. What is the state of point P in the figure?
e. Give a correct definition of a “nullcline” in a phase space.
f. Give a correct definition of a “nullcline” in a Tilman diagram.
g. Give a correct definition of a “trajectory”.
h. Is it possible for trajectories to intersect?
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Gradient 1 Gradient 2

Sample Species A Species B Species C Species D

1 80 0 80 0
2 75 0 90 10
3 80 0 70 20
4 85 0 50 40
5 70 0 40 55
6 80 0 30 60
7 10 80 20 70
8 0 80 10 90
9 0 70 0 70

Table 9.1: The data for the Gradients question.

Question 9.3. r/K selected
In this chapter we derived that two competitors that are using the same resource have to exclude
each other, and that the species requiring the lowest level of resources, R∗, is expected to win.
Traditionally, one distinguishes r-selected species that grow fast from K-selected species that are
more competitive and have a higher carrying capacity. We have seen in Eq. (9.7) that the species
requiring the lowest level of resources tends to have the highest carrying capacity, which would
fit the r- and K-selected paradigm, but according to the same equations this need not always
be true. Let us investigate this by considering the case where N1 is a typical r-selected species,
with fast birth and death rates, and a slower N2 species is the winning K-selected species, and
require that the carrying capacity of N1 is lower than that of N2.
a. Sketch the corresponding non-intersecting nullclines, with a trajectory starting close to the

origin.
b. Why is the slowest species N2 nevertheless the winner?
c. Given the presence of a long-lived K-selected species in some environment, would you expect

that r-selected species can maintain themselves there?
d. Search for parameter values (or conditions) for which the species with the smallest carrying

capacity wins, and sketch an example of a phase space corresponding to this situation (you
may need grind.R).

Question 9.4. Patches
Two plant species compete for a certain type of patch. A single patch can only contain a single
plant. The species have different generation times, i.e., the rate at which patches become empty
is dependent on the plant species occupying the patch. In a temperate forest seeds of both
plant species are abundant, making the contribution of seeds produced by the current plant
populations negligible.
a. Make a differential equation model describing the population dynamics of these two plant

species.
b. Analyse the model using nullclines.
c. What are the steady states and what is their stability?
d. Will all patches be occupied? What is the carrying capacity of the two species?
e. These two species are competing for the same resource: why is there no competitive exclusion?

Question 9.5. Gradients
Consider two vegetations in an environmental gradient. In the first gradient only one of the two
dominant plant species (A or B) is present in each sample, whereas in the second gradient a
gradual change in the abundance of the two species (C and D) is observed. A series of 9 samples



74 Resource competition

taken from one end of the gradient to the other end was recorded as in Table 9.1. Assume that
these samples reflect equilibrium situations.
a. Provide an intuitive explanation for the above data.
b. Interpret these data in terms of nullclines of the Lotka-Volterra competition model.
c. What do you think of your intuitive explanation now?
d. What variation in the data is not reflected in the models?

Question 9.6. Density dependent birth rate
In this Chapter we used mass-action consumption terms, but made the birth rate of the consumer
a saturation function of the amount of resources consumed. Since this seems realistic we will
investigate what kind of density dependence this delivers for the consumers. To keep things
simple start with a scaled resource equation for a replicating resource,

dR

dt
= R(1−R)− aRN and

dN

dt
=

[
b

aR

h+ aR
− d
]
N ,

where N is the consumer with a maximum birth rate b. We proceed as normal: make a QSS
assumption for the resource and substitute this into the consumer equations.
a. What is the R0 of the consumer?
b. Write the complete ODE for a single consumer and combine parameters to have it in its

simplest form.
c. What is now the R0 of the consumer?
d. Sketch the per capita birth rate of the consumer as a function of the consumer density.
e. Which of the growth models of Chapter 4 describes this best?
f. We considered a replicating resource in this question. If you have time you can also sketch the

per capita birth rate of the consumer for a non-replicating resource, e.g., dR/dt = 1−R−aRN ,
where source and death have been scaled.

Question 9.7. Tilman’s competition model
To simplify the model for two consumers using two essential resources Tilman (Tilman, 1980,
1982; McLean & May, 2007) used minimum functions rather than saturation functions, by as-
suming that for any combination of resource densities, there should be a single limiting resource,
e.g.,

dN1

dt
=
[
b1 min

(c11R1

h11
,
c12R2

h12

)
−d1

]
N1 and

dN2

dt
=
[
b2 min

(c21R1

h21
,
c22R2

h22

)
−d2

]
N2 , (9.30)

where cij is the consumption rate of consumer i on resource j, and hij determines how much
the consumer needs to eat from each resource. The minimum function makes the resources both
“essential”, i.e., both have to be consumed in sufficient amount, and the birth rate is limited by
the resource that is most needed (i.e., high hij) and/or consumed less (i.e., low cijRj).
a. Sketch Tilman diagrams of this model. Explain that this indeed corresponds to two essential

resources.
b. One can simplify the model with two non-replicating resources by scaling the resource den-

sities and time by setting s = d = 1, and write the quasi steady state resource densities
as

R1 =
1

1 + c11N1 + c21N2
and R2 =

1

1 + c12N1 + c22N2
.

Use the model tilman.R to study the phase space of the two consumers. It is helpful to first
consider two consumer with very different diets, i.e., give each species a unique preference in
cij and hij , and see if you can get co-existence.

c. Change parameters to obtain both a stable and an unstable equilibrium in this model. Can
you use the Routh-Horwitz criterion to read the stability directly from the Tilman diagram?
Note, you can also use the newton() function in grind.R to check the Jacobian.
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Question 9.8. Fitness (Extra exercise for cool students)

In this chapter we have used the fitness R0 = β/δ to clean up the equations, and we have
seen that the critical resource requirement, R∗i = hi/[ci(R0i − 1)] defines which species is the
best competitor. In the model of Eqs. (9.1) to (9.3) one can also define a more complicated
expression for the fitness as

R̂0i =
βi
δi

ciR̄

hi + ciR̄
,

where R̄ = s/d is the “carrying capacity” of the resource (see Chapter 16). Since this contains
all parameters defining R∗i , and one could think that the species having the highest fitness, R̂0i ,
should be the best competitor, i.e., have the lowest R∗i . Due to the fact that the birth rates are
saturation functions of the amount of resources consumed, one can already see that this need
not always be true, as a consumer that is best at high resource densities, need not be the best
one at low resource densities, i.e., around R∗. Can you think of a parameter setting where the
species with the lowest fitness, R̂0i , is the best competitor?
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Chapter 10

Competition in large communities

The scaled Lotka Volterra competition model of Eq. (9.29) has been used in many different
theoretical studies of competition in ecosystems. Thanks to its simplicity it has few parameters,
and this has allowed theoretical ecologists to define “understandable” models composed of many
competing species. We here discuss two examples. The first considers competition along a
resource axis, and has the restriction discussed in Chapter 9 that all γij parameters are smaller
than one. In the second example the author did allow for the “founder controlled” situations
shown in Fig. 9.4d and Fig. 9.5c.

→← d ← →d

← σ | | | σ →

xi−1 xi xi+1

α α
α4

large seeds→← small seeds

Figure 10.1: Resource usage of three “finch species” consuming seeds of different sizes. The distance
between the preferred seed size of neighboring species is d, and σ is the standard deviation of the Gaussian
seed size preferences. The niche overlap between neighboring species at distance d is α, and hence the
overlap between species at distance 2d is α4 (see Eq. (10.1)).
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10.1 Niche space models

There is an interesting modeling formalism for resource competition that is based on a resource
axis along which species are distributed (see Fig. 10.1) (MacArthur, 1972; May, 1974). Think
of several species of Darwin finches that each have a preferred seed size because they evolved
different beak sizes. The preference of each species can be modeled with a simple Gaussian
function of the seed size x, i.e., fi(x) = exp[−(x − xi)

2/(2σ2)] that is centered around the
preferred seed size xi of species i (see Fig. 10.1). One can interpret this function as the probability
of using a seed of size x, i.e., seeds of the preferred size are consumed with probability one. For
simplicity one assumes that the species are evenly distributed over the niche space. This boils
the whole problem of niche overlap down to two parameters, i.e., σ for the standard deviation of
the Gaussian functions, and d for the difference between the preferred seed sizes of neighboring
species. The niche overlap between species is completely determined by the region where their
respective Gaussian functions overlap. One can define the niche overlap as the probability
of both species eating seeds of the same size, i.e., as the product of the Gaussian preference
functions, which implies that the niche overlap is highest at the point where two neighboring
species both use a resource most. To properly scale this one can normalize with the overlap that
a species has with itself:

α =

∫∞
−∞ e−

x2

2σ2 × e−
[x−d]2

2σ2 dx∫∞
−∞ e−

x2

2σ2 × e−
x2

2σ2 dx
= e−( d

2σ )
2

, (10.1)

see Yodzis (1989) page 123. This confirms that the niche overlap α only depends on the distance

d weighted by the standard deviation σ. With α = e−( d
2σ )

2

, the overlap of a species with itself
is indeed defined by a distance d = 0 because α = e0 = 1. The overlap between the first and
the last species in Fig. 10.1 is determined substituting by their distance 2d into Eq. (10.1), i.e.,

e−( 2d
2σ )

2

= e−4( d
2σ )

2

= α4 . (10.2)

Likewise, one can see that the niche overlap between species at distance 3d will be α9.

An ecosystem of n competing species that are equally distributed at distances d on a resource
axis can therefore be described with the system of ODEs

dNi

dt
= rNi

1−
n∑
j=1

AijNj

 , (10.3)

with the “interaction matrix”

A =


1 α α4 α9 α16 . . .
α 1 α α4 α9 . . .
α4 α 1 α α4 . . .
α9 α4 α 1 α α4 . . .
. . .

 (10.4)

where it is assumed that all species have the same natural rate of increase r.

One can analyse this model by increasing its diversity n one by one. A system of two species
obeys

dN1

dt
= rN1(1−N1 − αN2) and

dN2

dt
= rN2(1−N2 − αN1) . (10.5)
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We have learned in Section 9.3 that this 2-dimensional ecosystem will have a stable non-trivial
steady state whenever α < 1. By our definition of the maximal niche overlap of α = 1 one
concludes that two species can be located infinitely close on the resource axis and co-exist, i.e.,
we obtain for the critical niche overlap of a 2-dimensional system that α = 1 and d/σ → 0. Note
that this is an “artifact” of using the scaled version of the competition model. If two species
have different birth rates, death rates, and hence carrying capacities, they will not co-exist if
they are located infinitely close on the resource axis (see Eq. (11.3)).

Next consider three species. What would be the maximal niche overlap, or the minimal distance
d, required for co-existence of all three species? This can be analyzed by considering Fig. 10.1
and numbering the species from left to right as N1, N2, and N3. This is a symmetric system, i.e.,
the ODEs of N1 and N3 should have the same structure, and dN2/dt should have the strongest
competition because it has two direct neighbors, i.e.,

dN1

dt
= rN1(1−N1 − αN2 − α4N3) ,

dN2

dt
= rN2(1−N2 − α[N1 +N3]) ,

dN3

dt
= rN3(1−N3 − αN2 − α4N1) . (10.6)

The existence and stability of the 3-dimensional steady state can be investigated by testing the
invasion of the species in the middle, N2, in the steady state of those at the ends. For this
invasion criterion one first sets N2 = 0 to compute the steady state of the 2-dimensional system.
Employing the symmetry of the system one sets N1 = N3, and obtains their steady state by
solving N̄ = 1/(1 + α4) from 1−N − α4N = 0. When N2 → 0 the invasion of N2 is described
by dN2/dt ' rN2(1− α2N̄). This means that co-existence is guaranteed whenever

1− 2α

1 + α4
> 0 or 1 + α4 − 2α > 0 . (10.7)

This fourth order equation can be solved numerically as α < 0.54 (or d/σ > 1.54), which means
that the maximal niche overlap of a 3-dimensional system is α ' 0.54.

For four species one can test when one of the two species in the middle can invade in an
(asymmetric) system of three species, and for five species one can again test the middle species
in a steady state of four established species, and so on. The results of such a sequence are
summarized in Fig. 10.2a which depicts the maximal niche overlap as a function of the diversity
n of the ecosystem. The figure reveals a fast convergence to α ' 0.63 (or d/σ ' 1.3). This
convergence is due to the fact that the impact of the species at the very ends of the resource axis
decreases when the diversity increases. The limit that is ultimately approached, i.e., d/σ ' 1.3, is
called the “limiting similarity”. This simply means that species cannot be too similar; otherwise
they exclude each other. Because the maximum niche overlap converges to α ' 0.63 when the
diversity increases, one speaks of “diffuse competition”: several species together determine the
intensity of the competition on each species.

Infinite resource axis

The original analysis of this model by May (1974) addressed the relationship between the niche
overlap and the diversity of the system by considering an infinite resource axis along which
infinitely many species were distributed at distance d. An infinite system has the mathematical
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Figure 10.2: The limiting overlap computed numerically for the model of Eq. (10.3) (a), and the results
of Pianka (1974) (b).

advantage that the effects of the edges disappear, which means that all equations become iden-
tical. Thanks to this simplification May (1974) was able to compute the Jacobian of the infinite
system, and could compute the dominant eigenvalue of the Jacobian as a function of the niche
overlap α. Because all equations were identical by the assumption of an infinite system, no single
species could ever go extinct, and the dominant eigenvalues were simply approaching zero when
the niche overlap α was approaching our limiting similarity of α ' 0.63. In our analysis we were
breaking the symmetry of the system by distinguishing the species in the middle from those
at the borders, and were obtaining (transcritical) bifurcation points by increasing α, where the
species in the middle disappeared. Because the symmetry could not break in the original infinite
system, and the eigenvalues were approaching zero when the niche overlap was increased, May
(1974) had to define variation in the abiotic circumstances that required the value of the dom-
inant eigenvalue to remain below some critical negative level. Doing so he obtained a limiting
similarity that is very similar to the one derived numerically in Fig. 10.2. The mathematical
analysis of May (1974) is addressed further in the last (challenging) exercise.

Lizard man

Pianka (1974) measured the niche overlaps between several species of lizards in various desert
habitats from all over the world. He distinguished three niche dimensions: (1) food, as deter-
mined from the contents of their stomachs, (2) habitat, and (3) the time of the day at which
they were active. These observations were translated into a single measure of the niche overlap
considering both additive and multiplicative measures for defining the total niche overlap. Pi-
anka observed that the niche overlap decreased when the diversity of the ecosystem increased
(see Fig. 10.2b). Thus, at low species numbers there was no evidence for a limiting niche overlap
in the data (compare Fig. 10.2a with b). Because the diversity ranged from four to forty species,
and the theoretical niche overlap of Fig. 10.2a converged already to 0.63 before a diversity of
ten species, Pianka (1974) concluded that the data contradicted the theory.

A simple solution for this contradiction was proposed by Rappoldt & Hogeweg (1980) who
argued that the niche space considered by Pianka (1974) was in fact not 1-dimensional. In a
2-dimensional niche space the Gaussian curves become circular and can be tiled in a hexagonal



10.2 Monopolization 81

lattice. In such a 2-dimensional lattice there are many more species at the borders of the niche
space, and it takes a much higher diversity for the effects of the borders to peter out. The lizard
data of Fig. 10.2b therefore confirm the theory, rather than contradict it, because Pianka indeed
had more than one niche dimension in his data (Rappoldt & Hogeweg, 1980). Finally, Pianka
(1974) observed that deserts with the highest amount of rain per year had the highest diversity,
which is not suprising because the total production (and hence the length of the resource axis)
is probably limited by the precipitation in deserts. Because the niche overlap decreased when
the diversity increased (Fig. 10.2b), we can understand from this model that the amount of
precipitation was correlated negatively with the average niche overlap (see Pianka (1974)).

10.2 Monopolization

For our second example we turn to Yodzis (1978) who was interested in the relation between
the diversity of a community and the strength of its competitive interactions. It is indeed quite
difficult to have a good intuition about this relation. One could argue that if there is more
competition that there will be more competitive exclusion, and hence less diversity. Studies by
Gardner & Ashby (1970) and May (1972) have also suggested that the more interactions there
are in ecosystems, and the stronger the interaction strengths, the lower the probability that a
diverse ecosystem will be stable (see Chapter 11).

Yodzis (1978) created diverse in silico ecosystems in computer simulations changing the intensity
of the competitive interactions and the initial diversity of the simulation. Running the model on a
computer, several of the species in the initial pool went extinct until the simulation approached
a diversity that remained at a reasonably stable level over long periods of time. The model
ecosystem had a large number of habitats in which all species could be present, and there
was a diffusive flux of individuals from habitat to habitat. The abiotic circumstances were
considered to be identical in each of the habitats, i.e., the same competition coefficients were
used everywhere.

Yodzis (1978) considered an initial pool of n different species that were randomly distributed
over m habitats, and defined Nai as the population size of species i in habitat a. The flux
of individuals of species i between habitats a and b was described by a symmetric “dispersal”
matrix D, where Dab depends inversely on the distance from habitat a to b, and defines the rate
at which individuals move from a to b. Since Dab is a per capita flux, the total flux of individuals
from species i at habitat a to b has to be multiplied with the local population density Nai . The
net flux of individuals between two habitats is then given by

dNai

dt
= DabNbi −DbaNai = Dab(Nbi −Nai) , (10.8)

given that Dab = Dba because the distance from a to b is the same as that from b to a. Like
in a diffusion equation, we observe that the net flux is proportional to the difference in the
concentrations, i.e., the difference between population sizes in the two habitats.

Combining an n-dimensional form of Eq. (9.29) with Eq. (10.8) one ends up with a model
ecosystem of n×m ODEs

dNai

dt
= Nai

(
1−

n∑
j=1

AijNaj

)
+

m∑
b=1

Dab(Nbi −Nai) , (10.9)
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Figure 10.3: Figure 5.5 in Yodzis (1989) page 144: the steady state diversity as a function of the initial
number of species, for various intensities of the competition C.

for a = 1, . . . ,m and i = 1, . . . , n. Here Aij is the interaction matrix containing all competi-
tion coefficients. The growth rates were removed mathematically by giving all species the same
growth rate, and scaling time by this fixed growth rate. All species were given the same intraspe-
cific competition by setting Aii = 1,∀i. The other competition coefficients and the dispersal
rates were drawn randomly.

From Eq. (9.29) and Fig. 9.5 we have learned that the outcome of competition between any
two species depends crucially on the ratio of the interspecific competition parameters γ and the
intraspecific competition strength (that was scaled to one). If both γ-s happen to be smaller
than one, the nullclines intersect in a stable steady state, and if both are larger than one the
non-trivial steady state is a saddle point leading to founder controlled competition (see Fig.
9.5). Yodzis (1978) varied the randomly chosen interaction strengths and defined a “global”
competition strength parameter, C, for the probability that a randomly chosen matrix element
was larger than one, i.e., C = P (Aij > 1). The values of the interaction matrix, Aij , were drawn
from a normal (or uniform) distribution. Knowing C, stable coexistence between any pair of
species is expected with probability (1 − C)2, and the unstable founder controlled phase space
is expected with probability C2. Competitive exclusion is expected when Aij < 1 and Aji > 1,
or Aij > 1 and Aji < 1, which will occur with probability 2C(1−C). We can do a sanity check
and see that the sum (1−C)2 +C2 +2C(1−C) = 1. Yodzis (1978) considered systems in which
stable coexistence should be rare, i.e., he was working with distributions yielding high values of
C. Choosing C ≥ 0.9 the probability of any species pair having a stable coexistence was small,
i.e., maximally (1 − C)2 ≤ 0.01. The probability of finding the founder controlled situation is
much higher, i.e., C2 ≥ 0.81. Having set all parameters, i.e., all matrix elements, the species
were distributed randomly but scarcely over the patches, i.e., initially most species were only
present in a few patches, and would only then start to disperse to all other patches.

Running the simulations until a steady state was approached, a fraction of the species in the
initial species pool would typically go extinct, and the ecosystem approached the diversity
depicted in Fig. 10.3. The figure shows that increasing the diversity of the initial species pool,
and/or increasing the competition strengths, increased the final diversity of the ecosystem. This
suggests that the more complex the ecosystem the higher its diversity, which is a controversial
result (Gardner & Ashby, 1970; May, 1972, 1974; Grime, 1997; Hanksi, 1997; McCann et al.,
1998). The reason why the diversity increases with competition strength in these simulations
is its spatial embedding, i.e., in each habitat one initially finds only a small selection of the
species. Having many founder controlled situations the species that settle initially in a habitat
can approach their carrying capacity before other species invade and approach sufficiently large
numbers to have a chance to win the competition. Basically the model is a “resident always
wins” system, and the final diversity is largely determined by the number of species that are
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distributed initially over the habitats. Diversity does not come about by stable coexistence
but by the spatial distribution of the species over the habitats. This is a fine example of the
unexpected effects that spatial models may have over the well mixed ODE models.

10.3 Summary

The simplicity of the scaled Lotka-Volterra competition model has allowed us to formulate
interesting and understandable models for large communities. When a sufficient number of
species is packed along a (long) resource axis their degree of competition approaches a fixed
niche overlap called “diffuse competition”. The species diversity at which this happens depends
on the number of resource axes taken into consideration. Ecosystem diversity may also come
about by a spatial distribution of species that is largely determined historically by the initial
seeding of the system.

Read the Scheffer & Van Nes (2006) paper to see a niche-space model where species co-exist by
being similar.

10.4 Exercises

Question 10.1. Invasion criterion
Consider a species immigrating into an area in which two other species are present that do not
compete with each other. Each of these two species therefore has a density equal to the carrying
capacity, and let the new species compete equally with the other two species. Assume that the
carrying capacities are the same for all three species.
a. Assume that competition takes place in a one dimensional resource space like the one depicted

in Fig. 10.1. Redraw the figure for this system where the established species do not compete,
and where the new species competes with both.

b. Make an ODE model of three equations.
c. Determine the parameter conditions for succesful invasion of the third species in the steady

state of the other two.
d. Give a biological interpretation in terms of competition strengths.
e. Sketch the 3-dimensional phase space of this system for the invasion criterion. What do you

expect to happen if the new species invades successfully?

Question 10.2. Symbiosis
This book has a strong emphasis on the resource competition between species that comes about
whenever they are feeding on shared resources, and on direct interference competition. This
seems a rather negative view on ecology because many species are also involved in symbiotic
interactions. These come in two basic forms: obligatory symbionts cannot grow in the absence
of each other, and facultative symbionts help each other but do not strictly require each other.
a. Write a model for two symbionts that strictly require each other, and study your model by

phase plane analysis.
b. Change the previous model in an asymmetric symbiotic interaction. Let the first species be

dependent on the second, and let the second be ignorant of the first. An example would be
saprophytes.

c. Write a model for a facultative symbiosis.
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d. Can you change the latter model into a model of obligatory symbionts by just changing the
parameters?

Question 10.3. Larvae and adults
a. Write a simple model for an insect population with an early larval stage, and a late adult

stage. Assume that larvae only compete among themselves, and make sure that the insect
population as a whole has a carrying capacity.

b. Let there be two predators, one feeds on the larvae and the other on the adults. Since these
predators are foraging on the same species they seem to occupy the same niche. Can these
two predators co-exist?

Question 10.4. Control by parasites
Consider a population of songbirds with a birth rate that declines linearly with the population
size, and have a death rate that is independent of the population density. Let the individuals be
susceptible to an infection with a parasite that increases the death rate somewhat, but hardly
affects the birth rate. Assume that transmission of parasites occurs upon contacts between
infected and susceptible individuals, and obeys mass action kinetics. Let there be no vertical
transmission, i.e., the parasite is not transmitted to eggs.
a. Write a natural model.
b. What is the R0 and the carrying capacity of the population in the absence of the parasite?
c. What is the R0 of the infection?
d. What is the population density of the susceptibles when the parasite is endemic?
e. Suppose this songbird competes with related bird species that occupies the same niche, but

has a somewhat shorter life span, and is not susceptible to the parasite. Write a natural
model for the 3-dimensional system.

f. Do you expect the resistant bird species to be present?
g. What would you expect for a large community of bird species, all sharing the same resource,

but each being susceptible to a host specific parasite species?

Question 10.5. Monopolization
In the scaled Lotka Volterra model of Eq. (9.29) we have seen that the natural rate of increase of
a species, ri, has no effect on the competitive ability of a species. We know this is a consequence
of the scaling because we also know that it is the species with the lowest resource requirements,
R∗i , that is the best competitor, and that R∗i depends on several parameters, including the birth
and death rates, and hence the natural rate of increase ri = bi − di. In the model of Yodzis
(1989) the natural rates of increase were also removed, see Eq. (10.9).
a. Do you expect that if species were to have different growth rates, that those with fast growth

rates would be expected to survive better in the simulations?
b. Would this make a difference for the general conclusion that the diversity increases with the

intensity of the competition?

Question 10.6. Sex
All population models considered thus far fail to distinguish between the two sexes. Basically
these models only consider the females in a population, and ignore the males. Extend the
Lotka Volterra competition model with sexual reproduction, using a simple Hill function for the
probability that a female finds a male, and see how this effects its possible phase spaces, and
their biological interpretation. You will probably require a computer to draw these nullclines.

Question 10.7. Infinite niche space (Extra exercise for cool students)
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In an infinite implementation of Eq. (10.3) all species obey the same ODE

dNi

dt
= Ni(1−

∑
j

AijNj) ,

which implies that they all have the same steady state

N̄ = 1/
∑

Aij = 1/(1 + 2α+ 2α4 + 2α9 + . . . ) ' 1/(1 + 2α) .

a. What is the Jacobian of this steady state? Hint: do not substitute the expression for the
equilibrium density, but write N̄ , and observe that the elements on the diagonal can be
written as 1− N̄ −∑AijN̄ .

b. Can one obtain the stability of the system directly from the interaction matrix A, or should
one first compute the Jacobian?
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Chapter 11

Stability and Persistence

The relationship between the complexity of an ecosystem and its stability has been debated over
decades. Based on fairly romantic considerations ecologists have liked to think that the more
diverse and complex an ecosystem, the higher its degree of stability. However, one could also
turn this around by argueing that stable ecosystems have had more time to become diverse.
Importantly, it remains unclear what one means with the stability of an ecosystem. This could
vary from the local neighborhood stability that we have considered in this course, i.e., robustness
against perturbations of the population sizes around the steady state (which was measured by
the return time), to a mere persistence over time. It is rather obvious that most ecosystems are
not persisting in stable steady states, because they are all driven by seasonal fluctuations and
other disturbances. Robustness to invasion by new species can also be considered to be a form of
stability. Unfortunately, we have no obvious modeling approach to study what properties of an
ecosystem would make it resilient to disturbances like the removal or introduction of a species.

11.1 Stability

Classical studies of the properties of random Jacobian matrices representing the local neigh-
borhood stability of steady states of complex systems have changed the thinking about the
relationship between stability and complexity (Gardner & Ashby, 1970; May, 1972, 1974). Con-
sider an arbitrary steady state of an arbitrary (eco)system, and address the question whether
this steady state is expected to be stable. To do so, one can write a random Jacobian J , of a
system with n species. To keep the analysis manageable one poses the following requirements:
1. Let every population have a carrying capacity and the same return time to this carrying

capacity. For the Jacobian matrix this means that all elements on its diagonal have the value
−1 (i.e., ∀Jii = −1).

2. The off-diagonal elements of the matrix are set with a probability P . Thus, P determines
the likelihood that two species are involved in an interaction. P determines the connectivity
of the system, i.e., each species is expected to have P (n− 1) interactions with other species.

3. The interaction elements that are set are drawn from a normal distribution with mean µ = 0
and standard deviation σ.
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Summarizing, one draws a random matrix with dimension n× n of the following form

J =


−1 0 0 a 0 0 −b 0 . . .
0 −1 0 0 0 c . . .
0 0 −1 0 . . .
−d . . . −1 . . .

 , (11.1)

and this matrix is interpreted as the Jacobian of a steady state of an (eco)system, where a, b, . . . , d
are randomly chosen values from a standard normal distribution.

Having drawn such a random Jacobian matrix, the question is how its stability depends on the
parameters n, P , and σ. One can use the theory on the dominant eigenvalue of large random
matrices to prove that the probability that the largest eigenvalue is negative, i.e., λmax < 0,
strongly depends on the condition

σ
√
nP < 1 . (11.2)

The biological interpretation of this rather abstract analysis is that increasing the number of
interactions per species, nP , and/or increasing the absolute interactions strengths, σ, decreases
the chance that the steady state is stable. This suggests that complex systems cannot a priori
expected to be stable (Gardner & Ashby, 1970; May, 1972, 1974).

This result seemingly contradicts the co-existence of many species in the niche space model of
Chapter 9. However, in the niche space model the average interaction strength decreases when
the diversity increases (see Eq. (10.4)). Increasing the diversity n therefore implicitly decreases
the interaction strength σ. This may also be true for natural ecosystems: when the number
of species n increases, the number of connections per species, nP , need not increase, and their
average connection strength, σ, may decrease.

A simple criticism on the analysis is that it only considers one steady state of the system, and
that complex systems could have very many steady states, of which only one a few need to be
stable to guarantee its persistence as a high-dimensional system. Thus, the ecosystem could be
stable and still complex, after a few of its species have gone extinct. Despite these easy criticisms
this work has changed the consensus view of “diversity entails stability” into the question “how
come that complex systems persist over long periods of time?”.

11.2 Permanence and persistence

Ecosystems are probably not persisting as steady states, and can also persist as stable attractors
like stable limit cycles, chaotic attractors, or long transients. The persistence of ecosystems on
attractors other than steady states can be studied with the invasion criterion that we also used in
the niche space models of Chapter 9, and to determine stability of steady states in 3-dimensional
phases spaces. A simple example is to ask the question when a new species can invade in an
established ecosystem. For the 2-dimensional case one could define K as the average density of
the established species and write

dN

dt
= N [b(1− εN − cK)− d] or

dN

dt
= N [b− d(1 + εN + cK)] , (11.3)

for the invading species, with a linear density dependent birth or death term, respectively. The
average density K of the established species could either be an equilibrium density, e.g., its
carrying capacity, or an average density on some other attractor. The parameter c is the degree
of competition that the invading species suffers from the established species.
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Figure 11.1: The invasion criterion of Eq. (11.4). The straight line corresponds to the species with
density dependent death. The curved line is from the species with a density dependent birth rate. K is
the average density of the established species.
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Figure 11.2: Panel (a) the functional response of Eq. (11.5). Panel (b) the 3-dimensional nullclines of
Eq. (11.5) for a clever choice of the parameters allowing the two competing predators to co-exist on a
stable limit cycle. The elipsoid curve in Panel (b) is a trajectory.

The fitness is in both models obviously defined as R0 = b/d, and to test for invasion one asks
whether dN/dt > 0 when N → 0. The latter means that one can let ε → 0 in Eq. (11.3) and
obtain from the condition dN/dt > 0 that

R0 >
1

1− cK and R0 > 1 + cK , (11.4)

respectively. To be able to invade the fitness of a species not only has to be larger than one, but
it has to exceed a value determined by the average population size and the competitive strength
of the established species. The condition of Eq. (11.4) is depicted in Fig. 11.1.
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A fine example of non-equilibrium co-existence of two predators on one prey was presented by
Yodzis (1989). By making a smart choice of the functional response functions, one can make a
system where one predator consumes faster at low prey densities, whilst another does better at
high prey densities (see Fig. 11.2a). If the prey population oscillates between densities where
the two predators differ in who performs best, the predators need not exclude each other (see
Fig. 11.2b). Note that the two predator planes do run parallel in the phase space, i.e., there
is no 3-dimensional steady state, which remains in agreement with the equilibrium analysis in
Chapter 9. To find parameters corresponding to this behavior one should design an oscillatory
predator prey system like we did in Chapter 6, and use invasion criteria allowing each of the
predators to invade at the average prey density in the attractor set by the other predators (see
the Exercises).

The relationship between ecosystem complexity and diversity has also been studied in non-
equilibrium conditions (Law & Blackford, 1992; Yodzis, 1989; Pimm, 1980; Post & Pimm, 1983).
The basic approach is to make ecosystems with a predefined food chain structure and create
many species by giving them randomly selected parameter values. An example of such a study
has been described in Chapter 10. Sometimes one finds that such randomly created ecosystems
remain diverse in the absence of a stable steady state, i.e., they persist on a periodic or chaotic
attractor (Law & Blackford, 1992). In other studies only a fraction of the randomly created
ecosystems persists with all species present in an n-dimensional steady state (Roberts, 1974),
and one could argue that these correspond to the type of systems one finds in nature. The last
analysis confirms the classical random Jacobian analysis because the fraction of systems with
an n-dimensional steady state decreases when the complexity increases (Roberts, 1974; Tilman
et al., 1997).

11.3 Summary

The relationship between the diversity or complexity of an ecosystem and its degree of stability
is not well established. Most ecosystems are not persisting in the neighborhood of stable steady
states anyway. Non-equilibrium persistence, and robustness to invasion by novel species, are
better measures of the long-term stability of ecosystems.

11.4 Exercises

Question 11.1. Non-equilibrium co-existence
We have seen in Chapter 9 that two species competing for the same resource cannot co-exist in
a steady state. In the absence of such a steady state, species might still be able to co-exist on
a non-equilibrium attractor such as a stable limit cycle or a chaotic attractor. An example of a
model allowing for the non-equilibrium co-existence depicted in Fig. 11.2b is

dR

dt
= rR(1−R/K)− a1RN1 −

a2RN2

h+R
,

dN1

dt
= a1RN1 − d1N1 ,

dN2

dt
=

a2RN2

h+R
− d2N2 , (11.5)
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where one predator has a linear functional response and the other a saturated Holling type II
response.
a. Find parameter values for which the predators co-exist. Use pencil and paper to find param-

eters delivering functional responses that agree with Fig. 11.2a, and to check the invasion of
each of the predators in the attractor of the other.

b. Can one obtain the same result when both predators have a saturated functional response?
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Chapter 12

Metapopulations

Metapopulation models describe the distribution of a population over a large number of differ-
ent habitats or patches. With metapopulation models one is interested in how the migration
and extinction rates of a species determine the fraction of suitable habitats that is actually
occupied by the species. Because rich ecosystem habitats become more and more fragmented
by our destruction of nature, metapopulation models have become very popular among nature
conservation biologists (Hanksi, 1998; Hanski & Gaggiotti, 2004). Typically, in metapopulation
models one only considers the presence or absence of a species in a habitat, and is no longer
interested in the population size, or the birth and death rates.

12.1 The Levins model

The basic metapopulation model was proposed by Levins (1969) and Levins & Culver (1971),
and has the utterly simple form of the logistic growth model considered in Chapter 3. Instead
of modeling the population size, one now describes the fraction, 0 ≤ p ≤ 1, of patches occupied
by a species. There is a fixed probability, or rate, that an occupied patch looses the species
of interest, which is described by a extinction parameter m (for mortality). One assumes that
individuals emigrate from occupied patches and have a certain probability to settle in another
patch. The number of migrants that are traveling between the patches was therefore assumed
to be proportional to the number of occupied patches, p. Only if the migrants colonize an
empty patch, which occurs with probability (1 − p), the migration event should be counted as
an increase in the fraction of occupied patches, i.e.,

dp

dt
= cp(1− p)−mp , (12.1)

where the colonization parameter c collects the number of migrants leaving an occupied patch
and the rate at which they land in another patch. Solving dp/dt = 0 gives the non-trivial
steady state p̄ = 1 − m/c, which simply says that the degree at which patches are occupied
depends on the ratio of the extinction and colonization parameters. The fraction of empty
patches at steady state, i.e., m/c, reflects the ratio of the extinction and the colonization rate.
The colonization parameter will be large if the habitats are located close to each other, and
the extinction parameter will be small when the habitats are large. This equation therefore
formalizes the “Single Large Or Several Small” (SLOSS) discussion on the optimal design of
fragmented ecosystems.
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The metapopulation model and its application to the SLOSS discussion resembles the famous
island theory of MacArthur & Wilson (1967). Island theory describes the number of species in
appropriate habitats, i.e., islands, rather than the distribution of a single species. In the classical
island theory one ignores the migration between the islands, and considers the migration of
species from a large “continent” (or ecosystem) to several small islands located in an area of
unsuitable habitat. Considering a continent with N different species one describes the number
of species n on an island with

dn

dt
= i(N − n)− dn , (12.2)

where i is the rate at which each species settles on the island, and where d is the rate at which
a species goes extinct from the island. The term (N − n) resembles the (1 − p) term of the
metapopulation model, and counts only those species that are not present on the island as novel
immigrations. The steady state is n̄ = iN/(i + d) < N , which is a saturation function of the
immigration rate i, approaching the maximum number of species n̄→ N when i→∞ or d→ 0.
Like in the metapopulation model, the ultimate number of species on the island depends on the
ratio of the rates of immigration and extinction. The former will be large if the island is located
close to the continent, and the latter will be large when the island is small. Again one can see
the application of this model to the SLOSS discussion. Finally, note that the metapopulation
model can easily be rewritten for the situations where many small suitable habitats are invaded
from a much larger area as

dp

dt
= C(1− p)−mp , (12.3)

where C reflects the number of migrants invading from the continent, and where all migration
between the island has been ignored.

Hanksi (1998) estimated colonization and extinction probabilities for a large population of but-
terflies in Finland. The colonization rate was estimated from the average distance between
suitable habitats, and was written as c = c0e−aD, where D is the average distance between
the habitats. The extinction rate was estimated from the average size of the habitat, and was
written as m = m0e−bA where A is the average area of the preferred habitats. The parameters
a and b describe how strongly colonization and extinction depend on the distance and the area
size. Substitution of the new functions c and m into Eq. (12.1) delivers that the fraction of
habitats occupied by the butterfly approaches p̄ = 1 − (m0/c0)eaD−bA, which decreases with
the distance and increases with the area size. Habitat destruction by removing suitable patches,
which increases the average distance D, or by decreasing the size of the habitats, A, are therefore
expected to have a similar detrimental effect on the distribution of the butterfly over Finland.

Destruction of suitable habitats

To study the effect of removing a fraction of the suitable habitats on a metapopulation, Nee &
May (1992) have generalized Eq. (12.1) into

dp

dt
= cp(P − p)−mp , (12.4)

where P = 1 − D is the fraction of undamaged habitats, and D is the fraction of destructed
habitats. The steady steady of this model is p̄ = P − m/c. The fraction of empty patches,
m/c, therefore remains the same as in the original Levins model, and is independent of P or D.
One can now study at what fraction D of habitat destruction the metapopulation is driven to
extinction. Mathematically this boils down to solving

p̄ = 0 = 1−D − m

c
yielding D = 1− m

c
, (12.5)
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Figure 12.1: The nullclines (a) and the steady states (b) of the two superior species of the Tilman et al.
(1994) model.

where the critical damage D = 1−m/c is the same as the fraction of habitats occupied by this
species in an undisturbed situation (where P = 1). To prevent the extinction of a “rare” species
occupying a small fraction α = 1 −m/c of the suitable habitats, one should keep the level of
habitat destruction below the same D = α (Nee & May, 1992; Tilman et al., 1994). This seems
a strange and unexpected result, but in retrospect one can see that this comes about by the
condition that rare species are poor colonizers, and therefore need many patches to survive.

12.2 The Tilman model

Nee & May (1992) and Tilman et al. (1994) extended the metapopulation model of Levins
(1969) with competition. Tilman et al. (1994) considered a large number of species competing
with each other in a particular kind of habitat, and recorded the presence or absence of each
species over a large number of habitats (or patches). The competition between the species was
incorporated in the model by ordering the species by their competitive ability. This is a clever
trick that keeps the model simple, and delivers surprising results when one studies the effects of
habitat destruction in the model.

Eq. (12.1) was simply extended by writing that pi is the fraction of patches occupied by species
i, and because species are ordered by competitive ability one obtains

dpi
dt

= cipi

(
P −

i∑
j=1

pj

)
−mipi −

i−1∑
j=1

cjpipj , (12.6)

where the differences with the original model are (1) the term between the brackets, which is the
“perceived” fraction of empty patches, and (2) the final colonization term, which is the chance
that a patch occupied by species i is colonized by species j. The sum terms in this model run
from j = 1 to j = i (and to i − 1 in the second term) because of the ordering by competitive
ability. For instance, the strongest competitor (for which i = 1), will perceive patches occupied
by other species as “empty”, and will itself never be colonized by other species. Hence, the sum
term between the brackets only contains the first species, and the colonization term at the end
is ignored. The second species, with i = 2, sums the first two between the brackets, and can be
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taken over by the first one, and so on. The parameter P in this model is one when there is no
habitat destruction, and one can again substitute P = 1−D to study the effect of destructing
a fraction D of the habitats.

Tilman et al. (1994) derive the steady state of model by canceling the pi = 0 solution and
rewriting the first sum term,

0 = ci

(
P − pi −

i−1∑
j=1

pj

)
−mi −

i−1∑
j=1

cjpj ,

p̄i = P − mi

ci
−

i−1∑
j

pj

(
1 +

cj
ci

)
, (12.7)

which for i = 1 is indeed identical to the steady state of the Levins (1969) model. The density of
the other species is lower than that predicted by the Levins model, because one has to subtract
the ratio of the colonization rates times the density of all species that are superior competitors.

To learn about the co-existence of several metapopulation on a shared set of habitats it is
instructive to study the first two equations of this model, i.e.,

dp1

dt
= c1p1(P − p1)−m1p1 and

dp2

dt
= c2p2(P − p1 − p2)−m2p2 − c1p1p2 . (12.8)

The nullclines of the model are simple straight lines. Solving dp1/dt = 0 gives p1 = P −m1/c1,
and the p2 nullcline is given by p2 = P −m2/c2 − p1(1 + c1/c2); see also Eq. (12.7). In a phase
space with p1 on the horizontal, and p2 on the vertical axis, the former is a vertical line, and the
latter is a straight line from p2 = P −m2/c2 on the vertical axis to p1 = (c2P −m2)/(c2 + c1) on
the horizontal axis (see Fig. 12.1a). This phase plane analysis shows that the two species will
co-exist whenever

c2P −m2

c1 + c2
> P − m1

c1
. (12.9)

One can directly solve P from this condition, or follow Nee & May (1992) who proposed a
convenient analysis by plotting the steady states as a function of the number of patches P . For
the first species this is p̄1 = P −m1/c1, which is a line with slope one, intersecting the horizontal
axis at P = m1/c1 (see Fig. 12.1b). This repeats the result derived above: the first species is
driven to extinction when the total patch density P drops below the steady state number of
empty patches m1/c1.

In the absence of the first species, the second species has the same steady state expression
p̄2 = P −m2/c2. Thus, whenever m2

c2
< m1

c1
the second species will be present at low values of P

where the first species cannot be maintained yet. In the presence of the first species, i.e., when
P > m1/c1, Eq. (12.7) gives the steady state of the second species as

p̄2 = P − m2

c2
− p̄1

(
1 +

c1

c2

)
=
m1

c1

(
1 +

c1

c2

)
− m2

c2
− c1

c2
P , (12.10)

which is a straight line with a negative slope −c1/c2; see Fig. 12.1b. Since the steady state of
the inferior species declines with increasing P when the superior species is present, the inferior
species can only coexist when its steady state was positive in the absence of the first species.
Thus, the second species can therefore only persist in this system if it has better migration
parameters, i.e., if c2/m2 > c1/m1. Fig. 12.1b shows that increasing the number of patches P
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ultimately drives the second species to extinction. This critical value can be obtained by solving
p̄2 = 0. Co-existence is therefore only possible when

m2

c2
<
m1

c1
and

m1

c1
< P <

m1(c1 + c2)−m2

c1
. (12.11)

Above we have already seen that one will drive the superior species to extinction when its pristine
steady state density 1−m1/c1 of the suitable habitats is destructed. Suppose now that the two
species are co-existing in a pristine environment: what would happen with the second species
when a fraction of the habitats were destructed (Nee & May, 1992; Tilman et al., 1994)? One
can see from Fig. 12.1b that in the co-existence region p̄2 would increase when P is decreased.
At the critical amount of habitat destruction where the first species is driven to extinction, the
second species will not go extinct. This requires more damage, i.e., requires that the patch
availability is decreased to P = m2/c2. Although this seems strange, it is a natural result
because co-existence required that the second species had better superior migration parameters,
which implies that it can better handle the decreased habitat availability.

12.3 Summary

Metapopulation models are used for describing the fraction of habitats occupied by a species,
and resemble the classical Island Theory model. Both have been applied in conservation biology.
One should be careful with habitat destruction because removing a small fraction of the habitats
may drive rare species to extinction.

12.4 Exercises

Question 12.1. Islands in a lake
Consider the metapopulation of shrews living in Finland (Hanksi, 1991). The mice live on many
islands in a lake, and migrate between them. Additionally, mice from the large population on
the “continent” swim from the borders of the lake to the islands.
a. Combine Eq. (12.1) with Eq. (12.3) into a simple model for the metapopulation of shrews on

the islands.
b. Compute the steady state.
c. Will this steady state be stable?

Question 12.2. Population size
Hanksi (1991) extended the metapopulation model of Eq. (12.1) with a population size per patch.
His model is difficult and not completely correct because the model was written in terms of the
average size of a subpopulation per patch. In this exercise you will stay closer to the original
concept of describing the total metapopulation, and will derive a much simpler model. Assuming
that all patches have approximately the same size (or writing a “mean field model”), one would
have to argue that the carrying capacity of the total population, N , should be proportional to
the total number of patched occupied, i.e.,

dN

dt
= rN(1− N

kp
)− dN .
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a. Rewrite the ODE for the patches, i.e., Eq. (12.1), to connect it with the total population size
N .

b. Sketch the nullclines in a 2-dimensional phase space.
c. Determine the stability of the steady state(s).
d. If you have not already done so, extend your model for the situation where the extinction

rate decreases with the average population size in a patch.
e. Will such a density dependent extinction have a strong impact on the phase space?
f. What do you learn from this?

Question 12.3. Tilman
Consider the first two species of the Tilman et al. (1994) model under habitat destruction.
a. Can the second species invade at the critical destruction level D = 1−m1/c1?
b. Can one increase the diversity of an ecosystem by habitat destruction?
c. How does the total fraction of occupied patches depend on the habitat destruction?



Chapter 13

Maps

All models considered hitherto have neglected seasonal variation and have all been formulated in
differential equations. One area of ecological modeling implements seasonal variation by means of
a periodic function, i.e., typically a sine or cosine function, influencing some of the parameters of
the model. These periodically forced models will not be covered in this book, but such systems
are capable of rich and complicated behavior (Scheffer et al., 1997). Insect populations are
strongly influenced by the season, and many of the insect species in the temperate climate zones
have a relatively short season in which they are active, and a long period around winter during
which they survive as larvae. Because the growth season is short, insect populations are often
modeled with maps, or difference equations, that describe the population size in the next year
as a function of the population size in the current year. Since the behavioral properties of maps
differ significantly from those of ODEs we will first do some theory on maps, and then derive
the Beverton-Holt model ourselves from a seasonally reproducing insect population.

13.1 Stability

We will first consider one-dimensional maps for the growth of a single population, i.e.,

Nt+1 = f(Nt) , (13.1)

where f() is an arbitrary function mapping the population size at time t to a new population size
at time t+ 1. Between times t and t+ 1 the population size is undefined, and can be interpreted
as the hibernation stage during a winter season. Typical examples of maps used in ecology are

f(N) = rN(1−N/k) and f(N) =
rN

1 +N/k
, (13.2)

which are called the “logistic map” and the “Beverton-Holt” model, respectively. Because we
have used similar functions to describe the birth rate in ODEs, we are already familiar with the
shape of these two functions. The logistic map is a parabola, which by being non-monotonic
assumes that the maximum population size in the next year is attained from an intermediate
population size in the current year. Importantly, by intraspecific competition, large populations
tend to be mapped into small populations in the next year. The second model is a monotonically
increasing Hill function assuming the population size in the next year is a saturation function of
the population size in the current year. Below we will derive the Beverton & Holt (1957) model
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Figure 13.1: Stability of maps. Panel (a) depicts the logistic map, which is a parabola, and Panel (b)
shows the saturation function underlying the map of Eq. (13.2)b. The diagonal line is the line at which
Nt+1 = Nt. Steady states therefore correspond to the intersections of the map with the diagonal line.

ourselves. The same equation has also been proposed by Maynard Smith & Slatkin (1973) and
later by Hassell (1975).

The steady states and the stability properties of maps differ from those of ODEs. To compute
the steady state of a map one should not set f(N) to zero, but compute the population size,
N̄ , for which Nt+1 = Nt. To see how one computes the stability of a steady state of a map, one
should redo the linearization, i.e.,

Nt+1 = f(Nt) ' f(N̄) + ∂Nf(N̄) (Nt − N̄) = N̄ + λht , (13.3)

where we have defined λ = ∂Nf(N̄) and ht = Nt − N̄ . Subtracting N̄ from the left hand side
and the right hand side one obtains

ht+1 ' λht , (13.4)

because ht+1 = Nt+1− N̄ . Thus, like in ODEs, λ remains to be the derivative of the population
growth function at the steady state value, N̄ . The difference with ODEs is that the steady state
is not stable when λ < 0, but when the next size of the perturbance, ht+1, is smaller than the
current, ht. In maps this is the case when −1 < λ < 1, where for −1 < λ < 0 the sign of ht is
alternating in time, which corresponds to a dampened oscillation approaching ht = 0. Since λ is
the slope of the map at the steady state, one immediately sees an important difference between
the two maps in Eq. (13.2). Since the function of Eq. (13.2)b is monotonically increasing, λ is
always larger than zero, and the behavior of the map will never be oscillatory. Conversely, the
logistic map has a positive slope when N < k/2, and a negative slope when N > k/2, and should
therefore be capable of oscillatory behavior when the steady state is located above N > k/2.

A graphic method for finding steady states of maps is to sketch the map, and the diagonal
Nt+1 = Nt in one graph (see Fig. 13.1). The points at which the two lines intersect are steady
states. We have learned above that the slope of the map at these intersection points determines
the stability of the steady state. For illustration let us determine the stability of the steady
state of the logistic map. One solves the steady state from

N = rN(1−N/k) or N̄ =
r − 1

r
k . (13.5)

Because ∂Nf(N) = r−2rN/k one obtains by substitution of the steady state value that λ = 2−r.
Since the steady state is stable when −1 < λ < 1, i.e., when −1 < 2− r < 1, the condition for
stability is that 2 − r < 1 and −1 < 2 − r, i.e., that 1 < r < 3. The requirement that r > 1
is trivial because the population cannot maintain itself when the next population size is always
smaller than the current one. The instability at r = 3 leads to oscillatory behavior: when r → 3



13.1 Stability 101

r

N
t

1 4

Figure 13.2: The behavior of the logistic map as a function of its natural rate of increase r. For each
value of r the map is run for a long time until the attractor is approached. Subsequently the map is run
for twenty time steps, and each value of Nt is depicted as a point. For r < 3 all points collaps onto the
steady state value N̄ = k(r− 1)/r, for 3 < r < 3.45 Nt oscillates between two values, for 3.45 < r < 3.55
Nt oscillates between four values, and so on. Note the window of r values where the logistic map has a
three point cycle. This led to the famous paper by Li & Yorke (1975) with the title “Period three implies
chaos”.

the slope λ = 2 − r → −1, and the steady state is approached by a dampened oscillation. For
r > 3 the oscillation is no longer dampened but a stable limit cycle. For 3 < r < 4 this limit
cycle undergoes period doubling giving rise to the famous chaotic behavior of the logistic map
(see Fig. 13.2).

The stability of the steady state of the second example in Eq. (13.2) is computed similarly. The
steady state is derived from

N̄ =
rN

1 +N/k
, i.e., N̄ = k(r − 1) , (13.6)

and because

∂Nf =
r

1 +N/k
− rN/k

(1 +N/k)2
, (13.7)

one obtains for the slope at the steady state N̄ that

λ =
r

r
− r(r − 1)

r2
=
r − (r − 1)

r
=

1

r
. (13.8)

Whenever the population can maintain itself, i.e., whenever r > 1, the steady state will always
be stable.

Oscillatory behavior is therefore not necessarily expected for populations described by maps.
This is important because the insect populations that one typically models with maps often
have a very large natural rate of increase r, i.e., an insect can lay thousands of eggs. The
logistic map has r = 4 as the maximum rate of increase; for larger r the population size becomes
negative. Finally, note that the second example in Eq. (13.2) generalizes to the Maynard Smith
& Slatkin (1973) model

Nt+1 =
rN

1 + (N/k)n
, (13.9)
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where the density dependence is a simple inverse Hill function. For n = 1 this delivers the
Beverton-Holt model considered above. Whenever the exponent, n, of the Hill function becomes
larger than one, the function will no longer be monotonic (see Chapter 4), and chaos and
oscillations will be possible (Hassell et al., 1976).

13.2 Deriving a map mechanistically

The two examples of maps of Eq. (13.2) have frequently been used for describing seasonal
population growth. The logistic map is typically used for convenience, however, and not because
one really has data supporting the so crucial humped shape of the map. The chaotic behavior
that theoretical ecologists generally attribute to seasonally growing populations could therefore
well be an artifact of too easily adopting humped or logistic equations. To develop an opinion of
what type of maps would be appropriate we develop the model ourselves (by essentially following
the derivation proposed by Beverton & Holt (1957)).

The biology that is typically neglected when populations are described with maps is that seasonal
populations do have a season in which they are active, and which could be modeled with a
conventional ODE. Think of insects that lay their eggs at the end of the season shortly before
they die, and where the new generation hatches from the eggs at the start of the next season.
During the season the insects do not reproduce, as all growth is determined by the number of
eggs deposited at the end of the season. Density dependent regulation of the population most
likely takes place during the season, as the eggs probably have a density independent chance to
survive the winter season. It could therefore be that most of the population regulation takes
place during a normal continuous part of the year. What we will do next is to derive a map for
the seasonal insect population sketched in this paragraph.

Let the population size during the season be described by n(t), where t is the time (e.g., in
days) since the start of the season. Let Nj be the population size at the end of the season,
where j measures times in years, i.e., j = 0, 1, 2, . . . . For a season length of τ days, one should
have in year j that Nj = n(τ). Assuming that at the end of the season each individual lays g
eggs that are expected to survive the winter season, one obtains that at the start of the season
n(0) = gNj−1 (see Fig. 13.3a).

The main challenge is to write a natural model for the population during the active season. Since
there is no reproduction one could assume a straightforward density dependent death model like

dn

dt
= −dn(1 + n/k) with the solution n(t) =

kn(0)

kedt + n(0)[edt − 1]
, (13.10)

where d is a normal density independent death rate, e.g., due to predation by birds, and the
parameter k determines the density dependent death rate (i.e., at n(t) = k the death rate has
doubled). For a season of a fixed length of τ days, and a starting number of n(0) = gNj−1 the
solution becomes

Nj = n(τ) =
kgNj−1

kedτ + gNj−1[edτ − 1]
, (13.11)

and because edτ is just a certain value (for which we happen to known that edτ − 1 > 0), this
can be rewritten into

Nj+1 =
rNj

1 +Nj/c
where r = ge−dτ and c =

k

g(1− e−dτ )
. (13.12)
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Figure 13.3: Discrete and continuous seasons in an population of insects (a). To obtain a humped
relationship between the initial and the final population size trajectories have to cross (b).

This has the form of the Beverton-Holt model that we have studied above, which implies that
we expect our seasonal insect population to approach a stable state value over the years, and
never be oscillatory or chaotic (see Eq. (13.8)). This does not mean that we predict that insect
populations should typically approach a steady state, but demonstrates that we need not expect
that seasonal populations readily become chaotic.

An even simpler alternative of Eq. (13.10) is to ignore the density independent death and write

dn

dt
= −dn2 with the solution n(t) =

n(0)

1 + dtn(0)
, (13.13)

which for a fixed length of the season also assumes the form of the Beverton-Holt model.

The fact that we fail to obtain periodic behavior with a single ODE describing density dependent
death during the season seems quite general. We learned that oscillatory behavior can be
obtained only when the map has a maximum, and hence has a region where its slope λ < 0.
This can only come about when there is a range of large n(0) values for which the number
of individuals, n(τ), at the end of the season is smaller than what would have survived at
intermediate n(0) values. This cannot happen in the one-dimensional phase space of any ODE,
because at some point in time the trajectory with a large starting number should cross the one
with an intermediate starting number. At this point in time the two trajectories should obey
the same derivative, and cannot end differently (see Fig. 13.3b).
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Figure 13.4: The solution of Eq. (13.15) (a) and various simulations of the model of Eq. (13.14) for one
season of τ = 10 days, and c = d = 0.1 per day, starting at a scaled food density of r(0) = 1.

How to obtain oscillations?

As simple one-dimensional death models fail to do the job, we apparently have to do some work
to allow for oscillations in biologically realistic maps. One could argue that if a large initial
population depletes most of the available food during the early days of the season, that many
will die by starvation during the later half of the season. Intuitively, it seems that too large
populations could be at a disadvantage, and end up with less survivors than populations of an
intermediate size. Since we know this requires a 2-dimensional model one could propose

dr

dt
= −crn and

dn

dt
= −dn/r , (13.14)

where r is the amount of resource, c is the feeding rate of the insects on the resource, and d/r
is the per capita death rate of the insects. It is somewhat disturbing to divide by the resource
density r in dn/dt, but because r will always remain larger than zero, and because we need a
model that can be solved analytically, this seems allowable here. One can scale the initial food
availability to r(0) = 1, such that d is a normal per capita death rate when food is abundant,
which increases rapidly when the amount of food declines. Because we have deliberately kept
the model simple one can still obtain the solution

n(t) = f [n(0)] =
cn(0) + d

c+ det[cn(0)+d]/n(0)
. (13.15)

Plotting the population size at the end of the season, i.e., n(τ), as a function of the initial
population size, n(0), one obtains a humped shape for f [n(0)] because Eq. (13.15) is an increasing
function when n(0) is small, while it approaches zero when n(0) is large, i.e.,

lim
n(0)→0

f [n(0)] = e−dτn(0) and lim
n(0)→∞

f [n(0)] = 0 . (13.16)

Substituting parameter values indeed reveals a humped relationship (see Fig. 13.4a), and simu-
lations of the 2-dimensional model confirm that large population have fewer survivors because
they deplete the resource faster (see Fig. 13.4b).



13.3 Eggs produced during the season 105

13.3 Eggs produced during the season

Geritz & Kisdi (2004) also derived maps from populations competing within a continuous season.
Working with models where eggs are produced during the season there were able to provide a
mechanistic underpinning of various different maps, such as the logistic map, the Beverton-Holt
model, and the Ricker model. Their basic model was a single ODE for the number of eggs
produced over the season. The number of eggs at the end of the season depended on the total
number of adults and the availability of resource during the season, and they easily obtain a non-
monotonic relation between the initial number of adults and the final number of eggs. Starting
with few adults few eggs are produced. Starting with too many adults the resource availability
is low, and again few eggs are produced. The maximum number of eggs is produced when the
season starts with an intermediate number of adults. Eggs also “die” during the season.

One example of their models has a a resource growing logistically:

dR

dt
= rR(1−R)− bRA and

dE

dt
= cbRA− dE , (13.17)

where R is the resource, E is the egg density, and A is the fixed number of adults the season
starts with, e.g., for a season of length τ one would write Aj = αE(τ)j−1. Assuming that the
dynamics of the resource is fast compared to that of the eggs, Geritz & Kisdi (2004) simplified
by writing the quasi state state of the resource, R = 1− bA/r, obtaining for the eggs

dE

dt
= cb(1− bA/r)A− dE . (13.18)

Since cb(1 − bA/r)A does not depend on time, t, this is a source/death model similar to those
solved in Chapter 2, i.e.,

E(t) =
cb(1− bA/r)A

d

(
1− e−dt

)
. (13.19)

For a fixed length of the season of τ days E(τ) is therefore completely defined by the parameters
and the number of adults A. Defining a map for the number of adults Aj+1 in year j + 1 as a
function of those in year j, one obtains

Aj+1 = αE(τ)j = ρAj [1−Aj/K] , (13.20)

where ρ = αcb[1 − e−dτ ]/d and K = r/b, which is the conventional logistic map. Taking non-
logistic growth functions of the resource other maps were obtained (Geritz & Kisdi, 2004); see
the exercises.

The within season models studied by Geritz & Kisdi (2004) provide a non-monotonic map with
just one ODE, whereas we needed at least two ODEs to obtain this with the density dependent
death model of Eq. (13.10). How can this be? The simple reason is that in the model of Eq.
(13.10) the information transferred between the years is an initial condition, i.e., n(0) is the
number of adults hatching from the eggs produced the year before. In the models of Geritz &
Kisdi (2004) the number of adults in the current year is a parameter set by the within season
dynamics of the previous year. The problem that trajectories cannot cross if just the initial
condition is different (see Fig. 13.3) therefore never arises: if the continuous dynamics in a
season are parameterized by the previous year it is perfectly possible to have a humped relation
between the initial population size and the final population size. An interesting question now
is if we can identify populations where the information transfer between the years goes via an
initial condition (e.g., the number of eggs) or via a parameter (e.g., a fixed number of adults).
It is again somewhat disturbing that such a technical difference seems so important for the
expected behavior of the population.
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13.4 Summary

Oscillations and chaos are by no means the expected behavior of seasonally reproducing popula-
tions. Periodic behavior or chaos is not difficult to obtain, but we had to do work to obtain this
when the information transfer between the years was just an initial condition. Finding chaos
or oscillations by modeling populations with an arbitrary humped map could well be artificial,
and one basically needs evidence, or a good argument, to use a humped survival function.

13.5 Exercises

Question 13.1. Geritz & Kisdi (2004)
Follow the procedure of Geritz & Kisdi (2004) explained in this Chapter to show that the
Gomperz equation for population growth, i.e., dR/dt = rR(1− ln[R])−bRA, delivers the Ricker
map, Nt+1 = aNte

−bNt .

Question 13.2. Insect population
In the model of Eq. (13.14) the death rate of the insects will go the infinity when the amount
of resource approaches zero. This was done to keep the model simple, such that it remained
feasible to obtain a solution.
a. Write a more realistic version of Eq. (13.14).
b. Study the model numerically to see if the humped relationship between n(τ) at the end of

the season and n(0) at the start of the season remains a possibility. Begin with studying one
season with various initial values of n(0) (and keep r(0) = 1).

c. On the website you will find a file discreteSeason.R as an example of the seasonal population
of Eq. (13.14). Try to obtain oscillations and/or chaos in your extension of this model.

Question 13.3. Periodic forcing
Instead of writing maps for seasonal populations, one can also change parameter values with
a periodic function to represent seasonality. Extend the Monod saturated algae zooplankton
model of Chapter 6 with a seasonal variation of the birth rates to model the bloom of algae in
the spring (Scheffer et al., 1997). In grind.R one would write something like:

b <- b0 + e*(sin(2*3.1416*(t-Delta)/365))

dA <- b*A*(1-A/k) - d*A ....

where the paramater Delta can be used to shift the peak of the seasonal variation to the
appropriate time of the year, and the parameter e defines the amplitude of the variation around
the average value b0 (see the file season.R).



Chapter 14

Bifurcation analysis

In several chapters of this course we have encountered examples where the properties of a
steady state changes at some critical parameter value. A good example is the steady state of
the Monod saturated predator prey model which changes stability precisely when the vertical
predator nullcline intersects the top of the parabolic prey nullcline. We have seen that at this
“Hopf bifurcation point” the stability of the steady state is carried over to a stable limit cycle.
In the same model there was another bifurcation point when the predator nullcline crosses the
carrying capacity of the prey. This is a so-called “transcritical bifurcation” at which the presence
of the predator is determined. In ODE models there are only four different types of bifurcations
that can happen if one changes a single parameter. This chapter will illustrate all four of them
and explain each of them in simple phase plane pictures.

Bifurcation diagrams depict what occurs when one changes a parameter, and therefore provide
a powerful graphical representation of the different behaviors a model may exhibit for different
values of its parameters. Bifurcation diagrams are typically made with special purpose software
tools (like MatCont or XPPAUT); Grind.R has a fairly primitive algorithm for continuing steady
states. In the exercises you will be challenged to sketch a few bifurcation diagrams with pencil
and paper.

Several other bifurcations may occur if one changes two parameters at the same time. These
can be summarized in 2-dimensional bifurcation diagrams, which can provide an even better
overview of the possible behaviors of a model. Such 2-dimensional bifurcations will not be
discussed here, and we refer you to books or courses on bifurcation analysis.

14.1 Hopf bifurcation

At a Hopf bifurcation a limit cycle is born from a spiral point switching stability. This was
already discussed at length in Chapter 6 for models with a saturated functional response. Fig.
14.1 depicts the nullclines of a predator prey model with a sigmoid functional response for several
different values of the death rate, d, of the predator N . In Chapter 6 we already calculated for
the model

dR

dt
= rR(1−R/K)− bR2N

h2 +R2
and

dN

dt
=

cbNR2

h2 +R2
− dN , (14.1)
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Figure 14.1: Two Hopf bifurcations in the sigmoid predator prey model. The vertical lines depict the
dN/dt = 0 nullcline for various values of R∗ = h√

R0−1
. The “Argand diagrams” depict the eigenvalues by

plotting the real part on the horizontal, and the imaginary part on the vertical axis (see also Fig. 18.8).
Hopf bifurcations corresponds to a complex pair moving through the imaginary axis.

that the non-trivial predator nullcline is a vertical line located at the prey densityR =
√

h2

cb/d−1 =

h/
√
R0 − 1. Thus by changing the predator death rate d one moves the predator nullcline, and

because the predator death rate is not part of the ODE of the prey, the prey nullcline remains
identical.

First consider values of the death rate d in Fig. 14.1 for which the predator nullcline is located
at the right side of the top of the humped prey nullcline. The graphical Jacobian is

A =

(
−a −b
c 0

)
such that tr = −a < 0 and det = bc > 0 . (14.2)

Close to the top of the prey nullcline the discriminant of this matrix, D = a2− 4bc, will become
negative, and the steady state is a stable spiral point with eigenvalues λ± = −a ± ib. (Below
we will see that the same steady state will be a stable node when the nullcline intersects in the
neighborhood of the carrying capacity.) Decreasing the parameter d the predator nullcline is
shifted to the left, and will cross through the top of the prey nullcline. When located left of this
top the graphical Jacobian is

A =

(
a −b
c 0

)
such that tr = a > 0 and det = bc > 0 . (14.3)
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Figure 14.2: A bifurcation diagram with the two Hopf bifurcations of Fig. 14.1. The circles in panel (b)
depict the stable limit cycle that exist between the two Hopf bifurcations for many different values of the
parameter d.

Close to the top the discriminant, D = a2 − 4bc = tr2 − 4 det, will remain to be negative, and
the steady state is an unstable spiral point.

For the critical value of d where the nullcline is located at the top, i.e., at (K−h)/2 (see Chapter
6) the graphical Jacobian is

A =

(
0 −b
c 0

)
such that tr = 0 and det = bc > 0 . (14.4)

The imaginary eigenvalues λ± = ±i
√
bc have no real part and correspond to the structurally

unstable equilibrium point of the Lotka Volterra model lacking a carrying capacity of the prey
(see Eq. (5.11)). Summarizing, at a Hopf bifurcation a complex pair of eigenvalues moves
through the imaginary axis. At the bifurcation point the steady state has a neutral stability,
and a limit cycle is born.

Fig. 14.1 has little diagrams displaying the nature of the eigenvalues in so-called “Argand di-
agrams”. These diagrams simply depict the real part of an eigenvalue on the horizontal axis,
and the imaginary part on the vertical axis (see Fig. 18.8). In these diagrams a complex pair
of eigenvalues is located at one specific x-value with two opposite imaginary parts, and a real
eigenvalue will be a point on the horizontal axis. The Hopf bifurcation can neatly be summarized
as a complex pair moving horizontally through the vertical imaginary axis (see Fig. 14.1).

This is summarized in the bifurcation diagram of Fig. 14.2 which depicts the steady state value
of the predator as a function of its death rate d. Stable steady states are drawn as heavy lines,
and unstable steady states as light lines. We have chosen to have the predator on the vertical
axis to facilitate the comparison with the phase portrait of Fig. 14.1, which also has the predator
on the vertical axis (note that if we had chosen the prey on the vertical axis the steady state
would be a line at R̄ = h/

√
R0 − 1). Sometimes one depicts the “norm”, i.e., N2 + R2, on

the vertical axis, but this all remains rather arbitrary because it is not so important what is
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Figure 14.3: The phase space for three values of d around a transcritical bifurcation (a), and the
bifurcation diagram (b) of a transcritical bifurcation with d as the bifurcation parameter on the horizontal
axis.

exactly plotted on the vertical axis as long as it provides a measure of the location of the steady
state. The bifurcation diagram displays another Hopf bifurcation that occurs when the predator
nullcline goes through the minimum of the prey nullcline. Between these critical values of d
there exits a stable limit cycle, of which we depict the amplitude by the bullets in Fig. 14.2b.
Decreasing d the limit cycle is born at the top and dies at the bottom of the prey nullcline,
increasing d this would just be the other way around. Fig. 14.2 does provide a good summary
of the behavior of the model as a function of the death rate d.

In Fig. 14.2b the amplitude of limit cycle is depicted by the bullets reflecting predator densities
at some predefined prey density. Conventionally closed circles are used to depict stable limit
cycles, and open circles are used for unstable limit cycles (that we have not discussed explicitly
in this book; but there is one in Fig. 6.7d). To depict and study limit cycles one typically plots
the predator value when the limit cycles crosses through a particular prey value. Such a prey
value is called a Poincaré section, and on this Poincaré plane one can define the limit cycle as a
map, mapping one point on the section to the next crossing by the limit cycle. The stability of
the limit cycle is then determined from the “Floquet multipliers” of this map. This will not be
explained any further in this book.

14.2 Transcritical bifurcation

If one increases the death rate d in the same model, the predator nullcline moves to the right.
As long as this nullcline remains left of the carrying capacity the non-trivial steady state will
remain stable. However, at one specific value of d it will change from a stable spiral into a stable
node. In the Argand diagram this means that the complex pair collapses into a single point on
the horizontal axis, after which the eigenvalues drift apart on the horizontal (real) axis (see Fig.
14.3). When the predator nullcline is about to hit the carrying capacity, one can be sure the
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Figure 14.4: The bifurcation diagram of the saddle node bifurcations in Eq. (14.1)a with a fixed number
of predators N as a bifurcation parameter, and the phase space (b) and bifurcation diagram (c) of the
full model of Eq. (14.5) with the density dependent death rate e as a bifurcation parameter. The phase
space in (b) is drawn for several values of e, and the arrows denote the two saddle-node bifurcations.

steady state has become a stable node, i.e., it will have two real eigenvalues smaller than zero.

Increasing d further leads to a transcritical bifurcation at K = h/
√
R0 − 1. Here the stable

node collapses with the saddle point (N̄ , R̄) = (K, 0). After increasing d further the saddle
point becomes a stable node, and the non-trivial steady state becomes a saddle point located
at a negative predator density. At the bifurcation point one of the eigenvalues goes through
zero (see Fig. 14.3b), which again corresponds to the structurally unstable neutral stability.
Transcritical bifurcations typically take place in a situation where the steady state value of one
of the variables becomes zero, i.e., correspond to situations where one of the trivial steady states
changes stability. Because in biological models a population size of zero often corresponds to an
equilibrium, transcritical bifurcations are very common in biological models.

14.3 Saddle node bifurcation

The saddle-node bifurcations that occur in the sigmoid predator prey model of Eq. (14.1) are
famous because of their interpretation of catastrophic switches between rich and poor steady
states that may occur in arid habitats like the Sahel zone (Noy-Meir, 1975; May, 1977; Rietkerk &
Van de Koppel, 1997; Scheffer et al., 2001; Scheffer, 2009; Hirota et al., 2011; Veraart et al., 2012).
To illustrate this bifurcation one can treat the predator density as a parameter, representing
the number of cattle (herbivores) that people let graze in a certain habitat. This reduces the
model of Eq. (14.1) to the dR/dt equation. The steady states of this 1-dimensional model are
depicted in Fig. 14.4a with the number of herbivores, N , as a bifurcation parameter plotted
on the horizontal axis. Because this parameter is identical to the predator variable plotted on
the vertical axis of the phase spaces considered before, these steady states simply correspond
to the dR/dt = 0 nullcline. The bifurcation diagram shows two saddle-node bifurcations (see
Fig. 14.4a). At some critical value of the herbivore density on the upper branch, corresponding
to a rich vegetation, disappears. At intermediate herbivore densities the vegetation can be in
one of two alternative steady states, that are separated by an unstable branch (see Fig. 14.4a).
This bifurcation diagram has the famous hysteresis where, after a catastrophic collapse of the
vegetation, one has to sell a lot of cattle before the vegetation recovers (Noy-Meir, 1975; May,
1977; Rietkerk & Van de Koppel, 1997; Scheffer et al., 2001; Scheffer, 2009).
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Figure 14.5: The Pitchfork bifurcation of the Lotka Volterra competition model. Panel (a) and (b) show
the phase spaces for c < 1 and c > 1, and Panel (c) shows the bifurcation diagram.

To show a more complicated bifurcation diagram with a Hopf bifurcation, and two different
saddle-node bifurcations in the same predator prey model, we extend Eq. (14.1) with direct
interference competition between the predators, i.e.,

dN

dt
=

cbNR2

h2 +R2
− dN − eN2 . (14.5)

To illustrate the saddle node bifurcations we will study the model as a function of the competition
parameter e, and will sketch a bifurcation diagram with e on the horizontal axis (see Fig. 14.4).

First, choose a value of the death rate, d, such that the predator nullcline intersects at the left
of the valley in the prey nullcline (see Fig. 14.4a). For e = 0 there is a single stable steady state.
Increasing e the predator nullcline will bend because the predator nullcline can be written as
the sigmoid function

N =
(cb/e)R2

h2 +R2
− d/e , (14.6)

intersecting the horizontal axis at the now familiar R∗ = h/
√
R0 − 1. The prey nullcline remains

the same because it does not depend on the e parameter. By increasing the curvature with e,
this low steady state first undergoes a Hopf bifurcation in the valley of the prey nullcline (see Fig.
14.4b & c). Then the predator nullcline will hit the prey nullcline close its top (see the arrow),
which creates two new steady states at a completely different location in phase space. Increasing
e a little further leads to the formation of two steady states around this first intersection point
(see the other arrow). One is a saddle point and the other a unstable node (see Fig. 14.4c).
A “saddle node” bifurcation is a catastrophic bifurcation because it creates (or annihilates) a
completely new configuration of steady states located just somewhere in phase space.

14.4 Pitchfork bifurcation

Thus far we have discussed three bifurcations, i.e., the Hopf, transcritical, and saddle node
bifurcation, and we could all let them occur in a conventional predator prey model. The fourth,
and final, bifurcation is called the pitchfork bifurcation, and can be demonstrated from the
scaled competition model of Eq. (9.29) extended with a small immigration term:

dN1

dt
= i+ rN1(1−N1 − cN2) and

dN2

dt
= i+ rN2(1−N2 − cN1) . (14.7)
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Figure 14.6: The nullclines of the two prey species of Eq. (14.8) in the absence of the predator. The
curved line is a trajectory.

Whenever the competition parameter c is smaller than one, the species are hampered more by
intraspecific competition than by interspecific competition, and they will co-exist in a stable node
(see Fig. 14.5a), and there will be one stable steady state. Increasing c above one will change
this node into the saddle point corresponding to the unstable founder controlled competition
(see Fig. 14.5b). In between these two cases there is a bifurcation point of c, where one real
eigenvalue goes through zero (see Fig. 14.5c). Because of the hyperbolic nature of the nullclines,
one can see that when the non-trivial steady state becomes a saddle, the nullclines form new
steady states around the two carrying capacities. These new states are stable nodes (see Fig.
14.5b & c). In the bifurcation diagram this is depicted as two branches, one for the stable node
becoming a saddle point, and one for the stable nodes born at the bifurcation point. Because
of the shape of the solutions in this bifurcation diagram this is called a pitchfork bifurcation.

Both the pitch fork bifurcation and the Hopf bifurcation have mirror images. At a so-called
subcritical Hopf bifurcation point an unstable limit cycle is born from an unstable spiral point
becoming stable. In a subcritical pitchfork bifurcation, an unstable branch of two outward
steady states encloses a stable branch in the middle. Both will not further be discussed here.

14.5 Period doubling cascade leading to chaos

Having covered all possible bifurcations of steady states in ODE models we will illustrate one bi-
furcation that limit cycles may undergo when one parameter is changed, i.e., the period doubling
bifurcation. This bifurcation will again be explained by means of a simple example, because it
occurs in a large variety of models (including maps, see Fig. 13.2). The bifurcation is interesting
because a cascade of period doubling bifurcations is a route to chaotic behavior. In ODE models
we have discussed two types of attractors: stable steady states and stable limit cycles. A chaotic
attractor, or strange attractor, is a third type of attractor that frequently occurs in ODE models
(with at least three variables).

The example is taken from Yodzis (1989) and is a model with two prey species that are eaten
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Figure 14.7: Period doubling cascade of the limit cycle of Eq. (14.8). In Panel (a) the model behavior
is a simple limit cycle, in Panel (b) the limit cycle makes two loops before returning to the same point,
in Panel (c) we see a chaotic attractor. This Figure was made with the file rrn.R.

by a single predator

dR1

dt
= R1(1−R1 − α12R2)− a1R1N ,

dR2

dt
= R2(1−R2 − α21R1)− a2R2N ,

dN

dt
= N(ca1R1 + ca2R2 − 1) , (14.8)
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Figure 14.8: Period doubling cascade of the limit cycle of Eq. (14.8) illustrated by plotting 200 values
of R1 obtained for many different values of a1. The values of R1 are recorded when the trajectory crosses
a Poincaré plane located around R2 = 0.8. Note how similar this is to the bifurcation diagram of the
Logistic map (Fig. 13.2).

with simple mass-action predation terms. Time is scaled with respect to the death rate of the
predator, and both carrying capacities have been scaled to one. Setting the parameters α12 = 1
and α21 = 1.5 the prey species exclude each other in the absence of the predator (see Fig. 14.6).
The behavior of the model is studied by varying the predation pressure, a1, on the winning
species. By setting a2 = 1 and c = 0.5, i.e., ca2 = 0.5, the model is designed such that the
predator cannot survive on R2 alone. For 3.4 ≤ a1 ≤ 5.5 one obtains a stable steady state where
all three species co-exist. Around a1 = 5.5 this steady state undergoes a Hopf bifurcation, and
a stable limit cycle is born. (Note that at a1 = 3.4 a transcritical bifurcation allows the second
prey to invade (because the first one suffers sufficiently from the predation), and that at a1 = 2
a second transcritical bifurcation occurs when the predator can invade.)

Fig. 14.7 shows what happens if a1 is increased further. For a1 = 6 there is a simple stable limit
cycle that was born at the Hopf bifurcation (see Fig. 14.7a). At a1 = 8 this limit cycle makes
two rounds before returning to its starting point: the period has approximately doubled at a
period doubling bifurcation somewhere between 6 < a1 < 8. This repeats itself several times,
and at a1 = 10 the system is already chaotic (see Fig. 14.8).

Chaotic behavior is defined by two important properties:
1. An extreme sensitivity for the initial conditions. An arbitrary small deviation from a chaotic

trajectory will after sufficient time expand into a macroscopic distance. This is the famous
“butterfly” effect where the disturbance in the air flow caused by a butterfly in Africa flying
to the next flower causes a rainstorm in Europe after a week.

2. A fractal structure: a strange attractor has a layered structure that will appear layered again
when one zooms in (e.g., see Fig. 13.2 and Fig. 14.8).

The first property is obviously important for the predictability of ecological models. It could very
well be that one will never be able to predict the precise future behavior of several ecosystems
(like we will never be able to predict the weather on June 17 in the next year). This sensitivity
comes about from the “folding” and “stretching” regions in strange attractors where many
trajectories collapse and are torn apart again.
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14.6 Summary

Varying a single parameter of an ODE model its steady states may undergo four different bifur-
cations. Some are catastrophic because they involve a large jump in phase space. Bifurcation
diagrams provide an excellent summary of the possible behaviors of a model. We have discussed
chaotic behavior to demonstrate that it is one of the common and expected behaviors of simple
ecological models. Despite being strange it is a normal behavior.

14.7 Exercises

Question 14.1. Biomanipulation
In Chapter 15 you studied a model with zooplankton, algae, and a fixed population of fish.
Sketch the bifurcation diagram of the model with the carrying capacity K on the horizontal
axis.



Chapter 15

Numerical phase plane analysis

Most phase portraits in this book were made with a computer program called GRIND, for GReat
INtegrator Differential equations. In this course you will work with an R-script called grind.R

that is somewhat easier to use, and can perform very similar phase plane analysis. Thanks to
the R-packages deSolve and rootSolve developed by Karline Soetaert and colleagues (Soetaert
& Herman, 2009; Soetaert et al., 2010; Soetaert, 2009), it was relatively easy to copy most of
GRIND’s capabilities into R. People liking R may also like this simple interface to phase plane
analysis. Thanks to their FME package (Soetaert & Petzoldt, 2010), it was also feasible to extend
GRIND with non-linear parameter estimation. This resulted in an R-script grind.R defining
five easy-to-use functions:
• run() integrates a model numerically and provides a time plot or a trajectory in the phase

plane,
• plane() draws nullclines and can provide a vector field or phase portrait,
• newton() finds steady states (using the Newton-Raphson method) and can provide the Ja-

cobian with its eigenvalues and eigenvectors.
• continue() performs parameter continuation of a steady state, providing a bifurcation dia-

gram,
• fit() fits a model to data by estimating its parameters, and depicts the result in a timeplot.
The run() function calls ode() from the deSolve library, the fit() function calls modFit from
the FME library, and newton() and continue() call steady() from the rootSolve library. One
can get help on the grind.R functions by typing args(run), etcetera. For the library functions
one can get more help by typing ?ode, etcetera. The following sections are tutorials illustrating
the usage of the grind.R functions.

The best way to get started is to download our example analyzing the Lotka Volterra model.
We will work in the RStudio environment, which has a window for the code, a console window,
a window defining the environment, and a help or graphics window. Download the grind.R and
the lotka.R files from the http://tbb.bio.uu.nl/rdb/te/models/ webpage, store them in a
local directory, and open both of them via the File menu. Both will be tabs in the code window.
It may anyway be useful to set the working directory to the folder where your R-codes are stored
(Set working directory in the Session menu of RStudio). Files with then be opened and
saved in that directory.

First “source” the grind.R file (button in right hand top corner) to define the five functions.
(In case you get an error message like “Error in library(deSolve): there is no package called
deSolve”, the Soetaert libraries have to be installed by using Install Packages in the Tools
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Figure 15.1: Numerical integration, phase plane analysis, and a bifurcation diagram of the Lotka
Volterra model. The six panels collect the graphical output of the example session listed above.

menu of RStudio). When grind.R is successfully “sourced”, it is time to “run” the model with
its parameter and state definitions from the lotka.R script. In the R-console below the lotka.R
panel, one can then type the function calls given in the example session below. Once you have
a picture that you like, you may copy the lines creating that figure into the lotka.R window for
later usage. (Use “Run” or “Control Enter” to execute lines from the lotka.R panel into the
console).

15.1 Tutorial 1: Lotka Volterra model

The ODEs of the model are defined in the simple notation defined for the deSolve package.
The following is an example of the Lotka Volterra model, here defined by the function model():

model <- function(t, state, parms) {

with(as.list(c(state,parms)), {

dR <- r*R*(1 - R/K) - a*R*N

dN <- c*a*R*N - delta*N

return(list(c(dR, dN)))

})

}

p <- c(r=1,K=1,a=1,c=1,delta=0.5) # p is a named vector of parameters

s <- c(R=1,N=0.01) # s is the state

where the two lines below the function define the parameter values in the vector p, and the
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initial state of the variables in the vector s. Note that the function returns a list of derivatives
(dR,dN). The names model, s, and p are the default designations for the model, state, and
parameter values in all grind.R functions. This example should be self explanatory as it just
defines the Lotka Volterra model dR/dt = rR(1−R/K)−aRN , and dN/dt = caRN−δN , with
its parameter values and initial state as R-vectors, p <- c(r=1,K=1,a=1,c=1,d=1,delta=0.5),
and s <- c(R=1,N=0.01), respectively. Note that the order of the variables in the state vector
should be the same as the order of their ODEs in the model. The following tutorial is an example
session illustrating the usage of the four grind.R functions analyzing this Lotka Volterra model
(see Fig. 15.1 for its graphical output):

run() # run the model and make a timeplot (Fig 15.1a)

plane() # make a phase plane with nullclines

plane(xmin=-0.001,ymin=-0.001) # include the full axis in the phase plane (Fig 15.1b)

plane(tstep=0.5,portrait=T) # make a phase portrait (Fig 15.1c)

plane() # make a clean phase plain again (Fig 15.1d)

p["K"] <- 0.75 # change the parameter K from 1 to 0.75

plane(add=T) # add the new nullclines

s["R"] <- 0.1 # change the initial state to (R=0.1,N=0.01)

run(traject=T) # run the model and plot a trajecory

newton(c(R=0.5,N=0.5),plot=T) # find a steady state around (R=0.5,N=0.5)a (Fig 15.1d)

f <- newton(c(R=0.5,N=0.5)) # store this steady state in f

continue(f,x="K",xmax=2,y="N") # continue this steady state while varying K (Fig 15.1e)

continue(f,x="K",xmax=2,y="N",step=0.001) # get a better value with a smaller step size

p["K"] <- 0.5 # set K to the value at which N goes extinct

plane(vector=T) # make a phase plane for this value of K (Fig 15.1f)

15.2 Tutorial 2: Combining numerical integration with events

The deSolve package allows one to execute discrete events while integrating the model numeri-
cally by using the events argument (see the ode() manual). This remains possible in grind.R

because run() passes additional options to ode() via the ellipsis (...) argument in R. We have
added a somewhat simpler option (after) to handle events that are executed after each time
step within run(). For instance run(after="state<-ifelse(state<1e-9,0,state)") will set
small variables to zero after each time step. This new option is illustrated by the following three
examples each providing an R-command as a text, after="text" in a call of run() of the Lotka
Volterra model introduced above.

For example, after="parms[\"r\"]<-rnorm(1,1,0.1)" sets the parameter r to a random
value, drawn from a normal distribution with a mean of one and a standard deviation of 0.1 (see
the result in Fig. 15.2a). Note that p is called parms within run() (see the Manual), and the
backslashes in \"r\" before the quotes around the parameter name, because these quotes would
otherwise mark the beginning or ending of a text. (Since r is the first parameter, one can also
just write "parms[1]<-rnorm(1,1,0.1)" to achieve the same effect). This random resetting of
r is done every timestep (as defined by the parameter tstep=1 in run()).

The second example, run(after="if(t==20)state[\"N\"]<-0"), sets the predators N = 0
when time t = 20 (see Fig. 15.2b). Note again that s is called state in run() (see the Man-
ual), and the backslashes in \"N\". Again, the more simple state[2]<-0 would achieve the
same effect, because N is the second variable. Finally, the third example adds Gaussian noise
to both variables, e.g., after="state<-state+rnorm(2,0,0.01)" (see Fig. 15.2c). Note that
rnorm(2,0,0.01) provides two random values, that are added to the two variables, respectively.
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Figure 15.2: The three runs with after="text" executed after every timestep

The integration starts close to the steady state to prevent problems arising from random values
setting a population to a negative value. These three examples are combined in the R-script
events.R:

model <- function(t, state, parms) {

with(as.list(c(state,parms)), {

dR <- r*R*(1 - R/K) - a*R*N

dN <- c*a*R*N - delta*N

return(list(c(dR, dN)))

})

}

p <- c(r=1,K=1,a=1,c=1,delta=0.5)

s <- c(R=1,N=0.01)

run(after="parms[\"r\"]<-rnorm(1,mean=1,sd=0.1)")

run(after="if(t==20)state[\"N\"]<-0")

# Use arrest to handle events at time points within time steps:

run(50,arrest=33.14,after="if(t==33.14)state[\"N\"]<-0",table=T)

f <- newton(c(R=0.5,N=0.5))

run(state=f,after="state<-state+rnorm(2,mean=0,sd=0.01)",ymax=1)

Most models that you will need for this course are provided on the course webpage
tbb.bio.uu.nl/rdb/te/models/. The sections above are more or less copy pasted from the
grind.R tutorial, which has additional sections on vectors of equations and parameter fitting.
The official webpage for grind.R is tbb.bio.uu.nl/rdb/practicals/grindR, where you can
find the complete tutorial and several more examples. The remainder is a reference manual
explaining all options of the five functions. Consult this when needed.

15.3 Manual

A model can be solved numerically from the initial state by calling run(), and the output
will be a timeplot, trajectory or table. Next to the graphics output, run() returns the final
state attained by the simulation (or all data when table=TRUE). The former can be helpful if
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one wants to continue from the previous state (e.g., f<-run(); f<-run(state=f)). The full
definition of run() is:
run <- function(tmax=100, tstep=1, state=s, parms=p, odes=model, ymin=0,

ymax=NULL, log="", x=1, y=2, xlab="Time", ylab="Density", tmin=0, draw=lines,

times=NULL, show=NULL, arrest=NULL, after=NULL, tweak=NULL, timeplot=TRUE,

traject=FALSE, table=FALSE, add=FALSE, legend=TRUE, solution=FALSE, lwd=2,

...)

run() calls the ode() function from the deSolve package. Additional arguments (...) are
passed on to ode() and plot().

The phase plane function plane() sets up a space with the first variable on the horizontal axis,
and the second on the vertical axis. The full definition of plane() is:

plane <- function(xmin=0, xmax=1.1, ymin=0, ymax=1.1, log="", npixels=500,

state=s, parms=p, odes=model, x=1, y=2, time=0, grid=5, eps=0, show=NULL,

portrait=FALSE, vector=FALSE, add=FALSE, legend=TRUE, zero=TRUE, lwd=2, ...)

Additional arguments (...) are passed on to run() (for the phase portrait) and to plot().
Note that plane() calls the “vectorized” R-function outer(), which implies that if one calls
functions in the ODEs they should also be vectorized, e.g., one should use pmax() instead of
max().

The function newton() finds a steady state from a nearby initial state, and can report the
Jacobi matrix with its eigenvalues and eigenvectors. The full definition of newton() is:

newton <- function(state=s, parms=p, odes=model, time=0, x=1, y=2,

positive=FALSE, jacobian=FALSE, vector=FALSE, plot=FALSE, ...)

newton() calls the function steady() from the rootSolve package (which calls stode()).
Additional arguments (...) are passed on to both of them. newton() needs an initial state close
to an equilibrium point.

The function continue() continues a steady state by changing a “bifurcation” parameter
defined by the horizontal axis of the bifurcation diagram. The full definition of continue() is:

continue <- function(state=s, parms=p, odes=model, x=1, step=0.01, xmin=0,

xmax=1, y=2, ymin=0, ymax=1.1, log="", time=0, positive=FALSE, add=FALSE,

...)

continue() calls the function steady()from the rootSolve package (additional arguments
(...) are passed on), and needs an initial state close to an equilibrium point. Note that there is
much more proper software for bifurcation analysis like XPPAUT or MatCont, which reports
the type of bifurcations encountered, and automatically continues all branches of branch points.

The function fit() fits a model to data by non-linear parameter estimation. The output is an
object (class of modFit) containing the estimated parameters, the summed squared residuals,
confidence ranges, and correlations (see the modFit() manual). The data and the model
behavior for its best fit parameters are depicted in a timeplot. Its full definition is:

fit <- function(datas=data, state=s, parms=p, odes=model, free=NULL,

differ=NULL, fixed=NULL, tmin=0, tmax=NULL, ymin=0, ymax=NULL, log="",

xlab="Time", ylab="Density", bootstrap=0, show=NULL, fun=NULL, costfun=cost,

initial=FALSE, add=FALSE, timeplot=TRUE, legend=TRUE, main=NULL, sub=NULL,

pchMap=NULL, ...)

fit() calls the function modFit() from the FME package (which calls modCost()). Additional
arguments (...) are passed on to both of them, and to run() and ode().

Finally the internal function timePlot() can be used to plot data and is defined as:
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timePlot <- function(data, tmin=0, tmax=NULL, ymin=0, ymax=NULL, log="",

xlab="Time", ylab="Density", show=NULL, legend=TRUE, draw=lines, lwd=2,

add=FALSE, main=NULL, sub=NULL, colMap=NULL, pchMap=NULL, ...)

These functions have many arguments, and fortunately most of them have good default values,
and can hence typically be omitted. The arguments can be used to define various options and
adjustments:
• state=s, parms=p, odes=model define the names of the state vector, parameter vector, and

the model.
• tmax=100, tstep=1 set the integration time and the reporting interval. tmin allows one to

start a specific time point (which can be convenient when a run is continued). One can also
provide a vector of time points where the run() should provide output with the times option
(see the ode() manual).

• x=1, y=2 define the variables on the axes of phase planes and bifurcation diagrams. One can
also use the names of the variables to define the axes, e.g., x="R",y="N".

• xmin=0, xmax=1.1, ymin=0, ymax=1.1, log="" define the scaling of the horizontal and
vertical axes of phase planes and bifurcation diagrams (log="y" makes the vertical axis
logarithmic).

• step=0.01 defines the maximum change of the bifurcation parameter in a bifurcation dia-
gram. When the axis is linear the parameter is increased, or decreased, in steps not exceed-
ing step × xmax. When the axis is logarithmic the parameters is maximally multiplied by
1+step. continue() will decrease the step size to maximally step/100 when it looses the
steady state.

• xlab="Time", ylab="Density" allow one to redefine the labels of the axes of a time plot.
• show=NULL defines the variables appearing in a time plot, fit, or phase plane. By default all

are shown. By explicitly providing a list of variables, one can omit some of the variables.
show is typically a list of names (show=c("P","Q")).

• after=NULL defines a command to be executed after each time step, e.g., after="state <-

ifelse( state<1e-9, 0, state)" sets small variables to zero.
• arrest=NULL defines a vector of values, or parameter names, defining time points where the

integrator should stop, and report the current state (i.e., these time points are added to the
times vector of ode()). This can be helpful when fitting a piece-wise model for which the
discontinuous time points have to be estimated (e.g., arrest=c("T1","T2")).

• tweak=NULL allows one to modify the data delivered by run().
For instance one can add columns that can be fitted to data:
(tweak<-"nsol<-cbind(nsol,nsol[,2]+nsol[,3]);names(nsol)[4]<- \"T\""), or
transform the simulation data before they are fitted to data that is already transformed.

• timeplot=TRUE, traject=FALSE, table=FALSE determine the output of run() in the form
of a time plot (default), trajectory in a phase plane, and/or a table with all data.

• draw=lines draws the timeplot as continuous lines. The alternative is draw=points.
• lwd=2 sets the line width of the graphs, colMap=NULL and pchMap=NULL can be used to re-map

the colors or symbols, e.g., pchMap=c(3,2,1) reverts the order of the first three R-symbols
(see pch in points()). Note that grind.R defines its own color table (of dark colors that
print well). If you don’t like this, uncomment the second colors <- line in the grind.R

script.
• main=NULL, sub=NULL allow one to put a title at the top and/or a subtitle at the bottom of

the graph (these are passed on to the R-function plot()). Note that these titles are set in a
plain font (to set that back to bold face, change the two font lines in the grind.R file).

• add=FALSE, legend=TRUE define whether or not the new plot should be added to the current
one, and a legend should be placed.

• solution=FALSE tells grind.R whether or not the model provides time derivatives (default),
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or a full solution, This is particularly useful when fitting data to functions, and should
obviously not be used in combination with phase plane analysis, nor with searching steady
states (newton(), continue()). Models returning a solution obey the same format as the
ODE models required by deSolve, except for the fact that they should return a value, or a
vector of values (and not a list).

• npixels=500 defines the resolution of the phase space in plane()

• time=0 defines the time point for which nullclines are computed and steady states are com-
puted (for non-autonomous ODEs).

• grid=5 defines the number of grid points for which the vector field or phase portrait is drawn.
• eps=0 is a shortcut in plane() to include or exclude the axis in the nullclines: eps is added

to both xmin and ymin.
• portrait=FALSE, vector=FALSE define whether or not plane() should include a phase por-

trait or vector field.
• zero=TRUE draws the phase plane for all variables other than x and y set to zero (also

important when drawing nullclines of variables not appearing on the axes).
• positive=FALSE, setting positive=TRUE will restricts the search of newton() and

continue() to positive steady states only.
• jacobian=FALSE,vectors=FALSE,plot=FALSE define whether or not newton() should print

the Jacobian and eigenvectors, and indicate the steady state by a symbol in the phase plane.
• datas=data in fit() defines the name of the data frame containing the data, or defines a

list of data frames.
• free=NULL defines the names of the parameters to be fitted. By default free equals

c(names(state), names(parms)).
• differ=NULL defines the names of the parameters that differ between the data sets and need

to be fitted separately. differ can also be a named list containing the individual guesses for
each data set. (One can use makelist(differ,state,parms,nsets) to set up such a list).

• fixed=NULL defines a named list of the parameters that differ between the data sets and have
known fixed values. (One can use makelist(fixed,state,parms,nsets) to set up such a
list).

• initial=FALSE allows one to read the initial condition from the data (and not estimate it).
• fun=NULL defines a function to transform the data and (numerical) solution before fitting.
• costfun=cost allows one to redefine the cost-function measuring the distance between the

model and the data. This can be useful when different data sets need different models. The
default cost-function loops over the various data sets, and calls run() for each of them. That
call can easily be adapted for each data set (the index of the loop is called iset).

• bootstrap=0 defines the number of samples to be taken randomly from the data (with re-
placement). This prints a summary and adds an element bootstrap to the modFit list,
containing a matrix with all parameter estimates. Use pairs(f$bootstrap) to see the cor-
relations between the estimates.

• ... can be used to define parameters that are passed on to other functions

15.4 Exercises

Question 15.1. Fishing herring
In Chapter 3 you made an exercise on fishing a population of herring. We had the following
model

dH

dt
= rH(1−H/k)−Q
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where Q is the quotum that was allowed to be caught per unit of time. Although the maximum
yield was rk/4 we showed that one cannot set the quotum to Q = rk/4.
a. Confirm your earlier analysis by setting Q = rk/4 and study a population of herring with a

carrying capacity that fluctuates somewhat due to weather conditions (you may use the file
herring.R for this).

b. Now replace the fixed quotum by a fraction f that one can maximally catch, i.e., study
dH/dt = rH(1−H/k)− fH, again allowing for a noisy carrying capacity.

c. What is economically speaking the optimal value of f? Hint: compute the steady state, H̄,
and the expected harvest, fH̄, and compute its maximum by taking the derivative ∂f .

d. Study the model for this optimal f for a noisy carrying capacity. What happens if you allow
for “human error”, i.e., if you allow for noise on f?

e. What is the expected harvest at this optimal f? Is that lower than Q = rk/4?

Question 15.2. Allee effect
We have seen in Chapter 5 that the prey nullcline reflects the per capita prey growth function
whenever there is a mass action predation term. Consider a prey species with an unusual growth
function, e.g., consider a prey with an Allee effect,

dR

dt
=

bR

1 +R/k

R

h+R
− d1R− eRN and

dN

dt
= ceRN − d2N ,

and study the phase space of this model (you may use the model allee.R for this).
a. Check with pencil and paper that the prey nullcline indeed reflects the per capita growth

function of the prey.
b. Draw the nullclines for all qualitatively different cases.
c. What is the model behavior in each case?
d. Remove the predators from the model and add a term representing the hunting of whales

by humans. Assuming a fixed quotum, Q, redo the “Herring question”, and study whether
or not the conditions for “saving the whales” are stronger than those for saving a herring
population without an Allee effect.

Question 15.3. Paradox of Enrichment
Repeat the Rosenzweig (1971) analysis with the Holling type II consumer resource model:

dR

dt
= bR(1−R/k)− d1R−

eNR

h+R
,

dN

dt
= −d2N +

ceNR

h+R
,

which is provided on the website as rosenzweig.R.
a. Think about simple and reasonable parameter values. Use pencil and paper during your

computer exercises: make sure that populations can grow, i.e., have an R0 > 1.
b. Draw nullclines, check the various possibilities, and run trajectories for each case.
c. Study the effect of eutrophication by increasing the carrying capacity.
d. Continue the non-trivial steady state as a function of k (with the continue() command).
e. Do the same for a model having a functional response with “predator interference”.
f. Replace the f = R/(h+ R) functional reponse by one with a refugium with a size of r prey

individuals, i.e., R̂ = max[0, R−r] and f = R̂/(h+R̂); see Page 37 and the R-file refugium.R
where the pmax() function is called.

g. Replace the functional response with the one defined by Eq. (6.14), with H = h/(1 − γ/2)
(see the hyper.R file).
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Question 15.4. Luckinbill
Study the analysis by Luckinbill (1973) with the same Holling type II consumer resource model.
You will need the examples on how to add events for drawing noise and setting small populations
to zero (see the luckinbill.R file on the website).
a. Use pencil and paper to find reasonable parameters that confirm with your earlier analysis

of this model in Chapter 6.
b. Repeat the Luckinbill experiments.
c. Try to repeat them with a linear functional response.

Question 15.5. Biomanipulation
Lakes often look green because of eutrophication. Such lakes have a high density of algae and
fish, and little zoo-plankton. Experiments show that catching sufficient fish can make the water
clear again. Scheffer (1991) proposed the following model:

dA

dt
= A(1−A/k)− pZ A

1 +A
,

dZ

dt
= −mZ + pZ

A

1 +A
− F Z2

h2 + Z2
,

where A represents algae and Z zoo-plankton. Basically, this is the same Holling type II model
as considered above, extended with predation with a fixed density of the fish, F . Study the
model for the parameters: h = 1,m = 0.4, p = 0.5, 5 ≤ k ≤ 15, and 0 ≤ F ≤ 1; see the model
fish.R.
a. Choose different values for the parameters indicated by the ranges, and draw nullclines.
b. Is it possible to have a permanent effect by temporarily (e.g., once) removing a large fraction

of the fish?
c. What steady states do you find when a system is enriched? Draw several phase spaces and

enumerate all steady states. Is that realistic? How would you change the model to repair
this if you find it unrealistic?

Question 15.6. Density dependent growth
In Eq. (4.2) we defined models with a density dependent birth rate, and in Fig. 4.1 these were
analyzed graphically by plotting the per capita growth and death rates. Substitute the various
forms for f(N) defined in Eq. (4.3) into this model and:
a. Rescale the models such that they have the same carrying capacity and the same natural

rate of increase.
b. Simulate the rescaled models on a computer to study the differences in behavior. Start far

below the carrying capacity to get a sigmoidal time plot (see the file density.R).

Question 15.7. Linear models
Study the linear system

dx

dt
= ax+ by and

dy

dt
= cx+ dy .

What is the steady state of this system? Derive the Jacobi matrix for this system and use your
knowledge of the eigenvalues of this matrix to choose values of a, b, c, and d such that you obtain
a stable node, a spiral, and a saddle point. The model is provided as the file linear.R.

Question 15.8. Noise and r and K-selected species
Study the logistically growing population

dN

dt
= rN(1−N/K) ,
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by adding noise to one of its parameters, and by adding noise to the population density (use
the file rknoise.R for this). Use the concept of r and K-selected species and study species with
different growth rates r (the population size can always be scaled to K = 1).



Chapter 16

The basic reproductive ratio R0

In this book we frequently use the fitness, R0, of a population to simplify steady state values,
and the expressions for nullclines, which has facilitated their biological interpretation. Analyzing
resource competition we have seen that the population with the largest R0, and not necessarily
the one with the largest carrying capacity, is expected to win the competitive exclusion. In
our predator prey models we observed that the depletion of prey species is (at least partly)
determined by the R0 of the predator. We have defined R0 as a fitness, namely as the maximum
number of offspring that is produced over the expected lifespan of an individual, in a situation
without competition or predation, i.e., as the mean lifetime reproductive success of a typical
individual (Heffernan et al., 2005). TheR0 plays a central role in epidemiology, where it is defined
as the expected number of individuals that is successfully infected by a single infected individual
during its entire infectious period, in a population that is entirely composed of susceptible
individuals (Anderson & May, 1991; Diekmann et al., 1990). Epidemics will grow whenever
R0 > 1. In order to provide a more general understanding of the basic reproductive ratio, R0,
this Chapter reviews some of the classical epidemiological approaches to define and calculate
R0.

16.1 The SIR model

The most classical model in epidemiology is the “SIR” model, for Susceptible, Infected, and
Recovered individuals, e.g.,

dS

dt
= s− dS − βSI , dI

dt
= βSI − (δ + r)I , and

dR

dt
= rI − dR , (16.1)

where s defines the source of susceptibles, d is their death rate, β is an infection rate, δ the death
rate of infected individuals (with δ ≥ d), r is a recovery rate, and where recovered individuals
have the same death rate as susceptibles. Let us consider a time scale of days, i.e., all death
rates are per day. Note that in this version of the SIR model the subpopulation of recovered
individuals does not feed back onto the dynamics of the other two subpopulations, which means
that they need not be considered when analyzing the establishment of an epidemic. Also note
that setting r = 0 defines the “SI” model of anndemic infection that no one recovers from.

The disease-free steady state is defined as S̄ = s/d and Ī = R̄ = 0, and the endemic equilibrium
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is defined as

S̄ =
δ + r

β
, Ī =

s

δ + r
− d

β
, and R̄ =

r

d
Ī =

rs

d(δ + r)
− r

β
, (16.2)

which can only be present when Ī > 0, i.e.,

s

δ + r
>
d

β
or

s

d

β

δ + r
> 1 . (16.3)

The R0 of this model is defined by the rate, βS, at which new cases are produced per infected
individual over its entire infectious period of 1/(δ + r) days, in a fully susceptible population
S̄ = s/d. R0 is therefore defined as

R0 = βS̄
1

δ + r
=
s

d

β

δ + r
. (16.4)

Since the epidemic will only spread if an infected individual is replaced by more than one
secondary case, we require R0 > 1, which indeed corresponds to the threshold derived in Eq.
(16.3). This also means that we could have derived the same condition from the Jacobian of the
disease-free steady state, i.e., for the 2-dimension “SI” model,

J =

(
−d −βS̄
0 βS̄ − δ − r

)
, (16.5)

with eigenvalues λ1 = βS̄ − δ − r and λ2 = −d. The parameter condition R0 > 1 indeed
corresponds to the transcritical bifurcation point, λ1 = 0, at which the endemic steady state
becomes positive.

Note that R0 is dimensionless, i.e., it is the expected number of secondary cases per infectious
period. Since R0 is not a rate, it cannot define how fast the epidemic is expanding. Indeed the
initial rate at which an epidemic is expected to grow is here defined by

dI

dt
= βS̄I − (δ + r)I =

(
βs

d
− δ − r

)
I = r0I , (16.6)

where the rate r0 is the initial per capita net growth rate of the infected individuals. Observe
that this growth rate, r0, corresponds to the dominant eigenvalue of the Jacobi matrix in Eq.
(16.5), and that applying the “invasion criterion” r0 > 0, i.e., βs

d > δ + r or s
d

β
δ+r > 1, is

again the same as requiring R0 > 1. The net growth rate, r0, over the entire infectious period,
L = 1/(δ + r), should obviously be related to the R0, i.e.,

R0 = 1 + r0L = 1 +
r0

δ + r
=
s

d

β

δ + r
(16.7)

where the 1 is required to compensate for the fact that R0 is defined by the new cases only,
whereas the rate r0 includes the death rate.

Finally, defining the disease free steady state as a carrying capacity, K = s/d, one can see
that the ultimate degree of depletion of the susceptibles is fully determined by the R0, i.e., in
Eq. (16.2) we see that S̄ = K/R0. Summarizing, R0 is a valuable and meaningful concept in
epidemiology, there are several methods to compute an R0, where the one that calculates the
number of secondary cases produced during the infectious period of an infected individual seems
the most intuitive.
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16.2 The SEIR model

The definition of the R0 becomes more complicated in systems where the infection involves
several stages. Adding a stage of exposed individuals, E, that are not yet infectious, one obtains
the SEIR model

dS

dt
= s− dS − βSI , dE

dt
= βSI − (γ + d)E ,

dI

dt
= γE − (δ + r)I ,

dR

dt
= rI − dR , (16.8)

where the exposed individuals become infectious at a rate γ (and have the same death rate as
the susceptibles). A general method for deriving the R0 for multi-stage models is the “next
generation method” devised by Diekmann et al.(Diekmann et al., 1990), and involves the def-
inition of a matrix collecting the rates at which new infections appear in each compartment,
and a matrix defining the loss and gains in each compartment. This method is general but its
explanation would be too involved for a short summary like this Chapter (if you are interested
read any of the following citations (Heffernan et al., 2005; Diekmann et al., 2012, 1990)). Eq.
(16.8) is simple enough to define the R0 by the more intuitive “survival” method. The initial
rate at which an infected individual produces novel infections remains βS̄, and this will occur
over an infectious period of 1/(δ + r) time steps, but since not all exposed individuals become
infectious (i.e., only a fraction γ/(γ + d) are expected to survive and become infectious), we
need to multiply with this fraction and obtain

R0 =
s

d

β

δ + r

γ

γ + d
. (16.9)

Solving Ē = δ+r
γ I from dE/dt = 0, and substituting that into dI/dt = 0 delivers S̄ = γ+d

γ
δ+r
β ,

which when substituted in dS/dt = 0 gives

Ī =
s

βS̄
− d

β
=

γ

γ + d

s

δ + r
− d

β
, (16.10)

which can only be positive when

γ

γ + d

s

δ + r
>
d

β
or

s

d

β

δ + r

γ

γ + d
> 1 or R0 > 1 , (16.11)

confirming that the R0 derived by the survival method again corresponds to the parameter
threshold at which the epidemic steady state becomes positive. The initial growth rate, r0, of
an epidemic in the SEIR model now depends on two ODEs, dE/dt and dI/dt, and can still be
computed because these ODEs are linear around the disease-free steady state S̄ = s/d. Solving
these ODEs and applying the invasion criterion dI/dt > 0, or deriving the dominant eigenvalue
of the Jacobian of the disease-free equilibrium, would therefore be alternative means to calculate
the R0 of this SEIR model. Summarizing, there are various ways to one can compute an R0 for
infections involving multiple stages, where the next generation method (Diekmann et al., 1990,
2012) is the most general (but is not explained here).

16.3 Fitnesses in predator prey models

In this book we have similarly defined the R0 of prey and predator populations to facilitate the
biological interpretations of otherwise more complicated expressions. For instance re-consider
the Lotka-Volterra model with explicit birth and death rates for the prey,

dR

dt
= bR(1−R/k)− dR− aRN and

dN

dt
= caRN − δN , (16.12)
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with a carrying capacity R̄ = K = k(1− d/b). Using the survival method, the R0 of the prey is
defined by the maximum number of offspring, b per day (note that the (1−R/k) term can only
decrease the birth rate), over its expected life span of 1/d days, i.e., R0R = b/d. One can also
easily see that the prey population can only invade when the maximum birth rate, b, exceeds
the death rate, d, i.e., when b/d > 1, and define the R0 this way (like above for the SIR model).
Given this R0 of the prey the carrying capacity can be written as K = k(1−1/R0R) (see Chapter
3).

Similarly, the R0 of the predator is its maximum birth rate, caR̄, times its expected life span,
1/δ, i.e., R0N = caK/δ. Likewise, see that the maximum predator birth rate, caK, should
exceed its death rate, δ, implying that R0N = caK/δ > 1. Hence, one can again derive the
R0 parameters of this model in several ways. The R0 of the predator can be used to simplify
the expression for the non-trivial steady state of the prey, which is solved from dN/dt = 0, i.e.,
R̄ = δ

ca , and can now be expressed as R̄ = K/R0N . This reveals the biological insight that
the depletion of the prey population is proportional to the R0 of the predator (like in the SIR
model), which even means that one can estimate the R0 from an observed level of depletion.

We have also considered models where the birth rate of the predator is a saturation function of
its consumption, e.g.,

dR

dt
= bR(1−R/k)− dR− aRN and

dN

dt
=
βRN

h+R
− δN , (16.13)

with the same equation, R0, and carrying capacity of the prey. Now the R0 of the predator
can either be defined as R0 = β/δ, because β is a maximum birth rate of the predator at
infinite prey densities, or —more classically— as R0 = βK

δ(h+K) , which uses the predator birth
rate at carrying capacity of the prey for the maximum predator birth rate. Since we aim
for simplifying mathematical expressions, the simpler R0 = β/δ is typically the most useful
definition. When h � K the two definitions of R0 approach one another. If not, an invasion
criterion would correspond to the more complicated R0, because predators can only invade into
a prey population at carrying capacity when βK

h+K > δ. The simpler form of the predator fitness,
R0 = β/δ, instead allows us to simplify the expression for the steady state of the prey, which
is again solved from dN/dt = 0, i.e., R̄ = δh

β−δ = h
R0−1 , revealing that the depletion of the prey

still increases with the R0 of the predator, but that this is no longer proportional the R0.



Chapter 17

Extra questions

17.1 Exercises

Question 17.1. Space
Consider two plant species that compete for space and have the same lifespan. One species is
twice as large as the other. Because of this, the birth rate of the large species is twice as slow
as that of the small species. Assume that the rate at which empty space is occupied depends
on the density of the two species. In addition assume that seeds are distributed homogeneously
in space.
a. Make a model of this system and analyse it using nullclines.
b. What are the steady states and what is their stability?
c. Will all patches always be occupied? What is the carrying capacity of the two species?
d. In case of competitive exclusion, which species will win and why?

Question 17.2. Nitrogen
Consider two algae species in a lake that are competing for nitrogen. The total amount of
nitrogen, T , is not changing over time. Nitrogen is either freely available (N) for algal growth,
or is taken up by the algae, A1 and A2. Thus we can write a conservation equation for the total
amount of nitrogen (i.e., T = N + A1 + A2). For the algae we write a standard birth death
model with a maximum birth rate bi:

dA1

dt
= A1

(
b1N

h1 +N
− d1

)
and

dA2

dt
= A2

(
b2N

h2 +N
− d2

)
,

where N = T −A1 −A2 is the amount of free nitrogen.
a. What is the R0 of the algae species?
b. What is the carrying capacity of each species?
c. Sketch the nullclines.
d. At high total nitrogen levels both algae become independent of the nitrogen concentration

because they both approach their maximum growth rate. Explain why the algae nevertheless
cannot co-exist.

e. Which species is expected to win the competition: the species with the lowest resource
requirement, N∗, or the one with the highest carrying capacity (or is that the same here)?

Question 17.3. Food chain
Consider the following food chain of a resource, R, a consumer, N , and a (top)predator, M .
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This is a non-replicating resource!

dR

dt
= s− dRR− aRN ,

dN

dt
= caRN − dNN − bNM and

dM

dt
= cbNM − dMM .

a. What is the steady state of the resource when there are no consumers?
b. What is the steady state of the resource when there are consumers, but no predators?
c. What is the steady state of the resource if all species are present?
d. What is the fitness, R0, of the consumers?
e. Sketch a bifurcation diagram plotting the steady state of the resource as a function of its

source, s, and name all bifurcations that occur.
f. Sketch for the same bifurcation analysis the steady state of the consumers.

Question 17.4. Write a natural model
Consider a lake that is visited by a large population of kingfishers (a colorful fish-eating bird
species). The kingsfishers have no suitable nesting places at this particular lake and fly in
depending on the amount of fish in the lake, and out after a little while. The fish in the lake
grow logistically and are eaten by kingsfishers. Write a natural model for the total fish density
and the density of kingsfishers present at this lake.



Chapter 18

Appendix: mathematical
prerequisites

18.1 Phase plane analysis

Most mathematical models in biology have non-linearities and can therefore not be solved explic-
itly. One can nevertheless obtain insight into the behavior of the model by numerical (computer)
analysis, and/or by sketching nullclines and solving for steady states. One determines the sta-
bility of the steady states from the vector field, and by linearization around the steady states.

The long-term behavior of a model typically approaches a stable steady state, a stable limit
cycle, or a chaotic attractor. Phase plane analysis is a graphical method to analyze a model to
investigate these behavioral properties of a model. Consider a model of two variables x and y,

dx

dt
= f(x, y) and

dy

dt
= g(x, y) . (18.1)

One can define a “phase space” with x on the horizontal axis and y on the vertical axis, where
each point in this space is one particular “state” of the model. To obtain further insight in the
model one sketches the “nullclines” f(x, y) = 0 and g(x, y) = 0. This is useful because at the
former nullcline dx/dt switches sign, and at the latter dy/dt switches sign. Two simple nullclines
therefore typically define regions with qualitatively different signs of the two differential equa-
tions. Nullclines enable one to localize all steady states of the model because these correspond
to the intersections of the nullclines (i.e., f(x, y) = g(x, y) = 0). This is very useful because
models may have multiple steady states.

For each steady state one has to determine whether it is an attractor, i.e., a stable steady state,
or a repellor, i.e., an unstable equilibrium. The local vector field around a steady state in a
phase space with nullclines often provides sufficient information to see whether the steady state
is stable or unstable. In 2-dimensional phase spaces there are three classes of steady states:
nodes, saddles, and spirals. Nodes and spirals are either stable or unstable, and a saddle point is
always unstable because it has a stable and an unstable direction. The two nullclines intersecting
at the equilibrium point define four local regions of phase space, each with its unique local vector
field. The four local vector fields define the nature of the steady state.

A simple example is a “stable node”, for which all four vector fields point towards the steady state
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(see Fig. 18.1a). A stable node is therefore approached by trajectories from all four directions
(Fig. 18.1b). When the vector fields point outward in all four regions the equilibrium is an
“unstable node” (Fig. 18.1c), and trajectories are repelled in all four directions (Fig. 18.1d).
The local vector fields in Fig. 18.1e define a “saddle point”, which has a stable and an unstable
direction (Fig. 18.1f). The stable direction of a saddle point defines a “separatrix” because all
trajectories starting at either side of this line end up in another attractor (i.e., a separatrix
defines different basins of attractions).

The local vector field can also suggest rotation (see Fig. 18.2). Rotating vector fields are typical
for spiral points. The local vector field fails to provide sufficient information to determine with
absolute certainty whether a spiral point is stable or unstable. However, one can get some good
suggestion for the stability from the vector field. In Fig. 18.2c, for instance, and one can see
that increasing y from its steady state value makes dy/dt > 0. Locally, there must be some
positive feedback allowing y to increase further when y increases. This is definitely destabilizing,
and the trajectory in Fig. 18.2d confirms that this is an “unstable spiral” point. Conversely,
the spiral point in Fig. 18.2a is stable, and locally has negative feedback for both x and y
(i.e., increasing x makes dx/dt < 0 and increasing y makes dy/dt < 0), which has a stabilizing
influence. Because the stability of spiral points also depends on the local difference in time scales
of the horizontal (x) and vertical (y) variables, the local vector field is not always sufficient to
determine the stability of the steady state. Even the suggestion of rotation in a local vector
field is not sufficient to determine with certainty that the steady state is a spiral. Fig. 18.2e &
f show that the same vector field defining a stable spiral point in Fig. 18.2a can actually also
correspond to a stable node.

Example: Lotka Volterra model

Using the famous Lotka Volterra model as an example we review a few methods for analyzing
systems of non-linear differential equations. The Lotka-Volterra predator prey model can be
written as:

dR

dt
= aR− bR2 − cRN dN

dt
= dRN − eN , (18.2)

where a, b, c, d, and e are positive constant parameters, and R and N are the prey and predator
densities. The derivatives dR/dt and dN/dt define the rate at which the prey and predator
densities change in time.

A first step is to sketch nullclines (0-isoclines) in phase space. A nullcline is the set of points
(R,N) for which the corresponding population remains constant. Thus, the R-nullcline is the
set of points at which dR/dt = 0. Setting dR/dt = 0 and dN/dt = 0 in Eq. (18.2) one finds

R = 0 , N =
a− bR
c

and N = 0 , R =
e

d
, (18.3)

for the prey nullclines and the predator nullclines, respectively. These four lines are depicted in
Fig. 18.3. For biological reasons we only consider the positive quadrant.

A second step is to determine the vector field. Not knowing the parameter values, one considers
extreme points in phase space. In the neighborhood of the point (R,N) = (0, 0), for example,
one can neglect the quadratic bR2, cRN , and dRN terms, such that

dR

dt
≈ aR ,

dN

dt
≈ −eN . (18.4)
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Figure 18.1: Qualitatively different steady states determined by the local vector field in the four
regions defined by the nullclines. Stable node (a,b): the vector field points inwards in all four
sections. Unstable node (c,d): the vector field points outwards in all four sections. Saddle point
(e,f): the vector field points inwards in two sections, and outwards in the other two regions. A
saddle point is an unstable steady state with a stable and an unstable direction.

Since the former is strictly positive, and the latter strictly negative, we assign (+−) to the local
direction of the vector field (see Fig. 18.3). This means that dR/dt > 0 below the R-nullcline,
i.e., we sketch arrows to the right, and that at the left hand side of the N -nullclines dN/dt < 0,
i.e., we sketch arrows pointing to the bottom. At the R and N -nullclines the arrows are vertical
and horizontal, respectively. The derivatives switch sign, and the arrows switch their direction,
when one passes a nullcline. Nullclines therefore separate the phase space into regions where
the derivatives have the same sign.

An important step is to determine the steady states of the system. A steady state, or equilibrium,
is defined as dR/dt = dN/dt = 0. Graphically steady states are the intersects of the nullclines.
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Figure 18.2: Qualitatively different steady states determined by the local vector field in the four
regions defined by the nullclines. Spiral points (a-d): the vector field suggests rotation. The
spiral point in (a,b) is stable, which can be guessed because increasing x at the steady states
makes dx/dt < 0, and increasing y at the steady states makes dy/dt < 0 (which is stabilizing).
The spiral in (c,d) is unstable, which can be guessed because increasing y at the steady states
makes dy/dt > 0 (which is destabilizing). Panels (e & f) illustrate that nodes can also have a
rotating vector field, i.e., that one cannot tell with certainty from the local field whether or not
a steady state is a spiral point.

Analytically, one finds

(R,N) = (0, 0) , (R,N) = (a/b, 0) and (R,N) =

(
e

d
,
da− eb
dc

)
(18.5)

as the three steady states of this system. Note that the non-trivial steady state only exists when
da−eb
dc > 0. We will further analyze the model for the parameter condition that all three steady

states exist, i.e., we consider da > eb.

Finally, one has to determine the nature of the steady states. For the steady states (0, 0) and
(a/b, 0) one can read from the vector field that they are saddle points. Around (a/b, 0) the
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Figure 18.3: The phase space of the Lotka Volterra model with the vector field indicated by the arrows.

vertical component is the unstable direction, and around (0, 0) the horizontal component is the
unstable direction. This is not so simple for the non-trivial point. Because there is no stable and
unstable direction in the vector field the non-trivial steady state cannot be a saddle point, and
it has to be a node or a spiral point. To determine its stability one can check for local feedback.
Increasing R in the steady state makes dR/dt < 0, and increasing N in the steady state keeps
dN/dt = 0 because one lands exactly on the dN/dt = 0 nullcline (see Fig. 18.3). Because locally
there is no positive feedback we suggest that the non-trivial steady state is stable. One can
derive the full Jacobian of this model and confirm that this non-trivial steady state is stable.

18.2 Graphical Jacobian

Very often it is sufficient to determine the signs of the Jacobi matrix from the local vector field
around the steady state (see the accompanying Ebook (Panfilov et al., 2016)). Consider the
vector field around the steady state of some system dx/dt = f(x, y) and dy/dt = g(x, y). Around
the steady state (x̄, ȳ) in the phase space (x, y) the sign of dx/dt is given by the horizontal arrows,
i.e., the horizontal component of the vector field. The sign of ∂x f can therefore be determined
by making a small step to the right, i.e., in the x direction, and reading the sign of dx/dt from
the vector field. Similarly, a small step upwards gives the effect of y on dx/dt, i.e., gives ∂y f ,
and the sign can be read from the vertical arrow of the vector field. Repeating this for ∂x g and
∂y g, while replacing x, y with R,N , one finds around the steady state (0, 0) in Fig. 18.3:

J =

(
∂x f ∂y f
∂x g ∂y g

)
=

(
α 0
0 −β

)
, (18.6)

where α and β are positive constants. Because det(J) = −αβ < 0 the steady state is a saddle
point (see Fig. 18.8). For the steady state without predators one finds

J =

(
−α −β
0 γ

)
, (18.7)

Because det(J) = −αγ < 0 the equilibrium is a saddle point. For the non-trivial steady state
one finds

J =

(
−α −β
γ 0

)
, (18.8)
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x̄ x
← h →

f(x̄)

f(x)
↙

f(x̄) + f ′h

f ′ = ∂x f(x̄)

Figure 18.4: Linearization of a non-linear function: f(x) ' f(x̄) + ∂x f(x̄) (x − x̄) = f(x̄) + f ′h. The
heavy line is the local tangent f ′ = ∂x f(x̄) at x = x̄.

and because tr(J) = −α < 0 and det(J) = βγ > 0 the equilibrium is stable. This method is
also explained in the book of Hastings (1997).

18.3 Linearization

Complicated non-linear functions, f(x), can be approximated by a local linearization around
any particular value of x (see the accompanying Ebook (Panfilov et al., 2016)). Fig. 18.4 shows
that the local tangent at some point linearizes the function so that nearby function values can
be estimated. This derivative can be used to approximate the curved f(x) around a particular
value x̄, and from Fig. 18.4 we can read that

f(x) ' f(x̄) + ∂x f(x̄) (x− x̄) ,

where h = x− x̄ is a small step in the x-direction that we multiply with the local slope, ∂xf(x̄),
to approximate the required change in the vertical direction. Basically, one estimates the vertical
displacement by multiplying the local slope with the horizontal displacement. A simple example
would be the function f(x) = 3

√
x (with derivative f ′ = 3/[2

√
x]). The true function values for

x = 4 and x = 5 are f(4) = 6 and f(5) = 6.71, respectively. We can approximate the latter by
writing

f(5) ' f(4) +
3

2
√

4
× 1 = 6 + 3/4 = 6.75 , (18.9)

which is indeed close to f(5) = 6.71. The same can be done for 2-dimensional functions, i.e.,

f(x, y) ' f(x̄, ȳ) + ∂xf(x̄, ȳ) (x− x̄) + ∂yf(x̄, ȳ) (y − ȳ) . (18.10)
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Figure 18.5: The increasing saturation functions defined by Eq. (18.11). The left panel depicts f(x) =
x/(h + x) and f(x) = 1 − e− ln[2]x/h which both have the convenient property that 0 ≤ f(x) < 1
and f(x) = 0.5 when x = h. In the panel on the right we draw their corresponding sigmoid variants

f(x) = x2/(h2 + x2) and f(x) = 1− e−ln[2](x/h)
2

.

18.4 Convenient functions

Once we have a sketch of how some process should depend on a variable of the model, we need
to translate this graph into a mathematical function. We here let you become familiar with a
few families of convenient functions, i.e., Hill-functions and exponential functions. These will be
used to formulate positive and negative effects of populations onto each other. Because these
functions are dimensionless and remain bounded between zero and one, i.e., 0 ≤ f(x) ≤ 1, one
can easily multiply any term in a model (corresponding to some biological process) with such
a function. We here define two families of functions f(x) that increase with x, are zero when
x = 0, and approach a maximum f(x) = 1 when x→∞. Whenever one would need a different
maximum in the model, one could simply multiply f(x) with some parameter. Having increasing
functions 0 ≤ f(x) ≤ 1, one can easily define decreasing functions by taking g(x) = 1− f(x).

Hill-functions are a very conventional and convenient family of saturation functions:

f(x) =
xn

hn + xn
and g(x) = 1− f(x) =

1

1 + (x/h)n
, (18.11)

in which you may recognize the classical Michaelis-Menten saturation function for n = 1 (see
Fig. 18.5a). The “saturation constant” h is the value of x where f(x) or g(x) attains half of its
maximal value. The exponent n determines the steepness of the function. Whenever n > 1 the
function is sigmoid (see Fig. 18.5b), and for n→∞ both f(x) and g(x) become step functions
switching between zero and one at x = h. The slope of f(x) in the origin is determined from its
derivative, which for n = 1 equals

∂xf(x) =
1

h+ x
− x

(h+ x)2
, (18.12)

which delivers a slope of 1/h for x = 0. For n > 1 the derivative is

∂xf(x) =
nxn−1

hn + xn
− nx2n−1

(hn + xn)2
, (18.13)

which means that for x = 0 the slope is zero. An advantage of using Hill functions in mathe-
matical models is that solving steady states corresponds to solving polynomial functions.
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The exponential functions

f(x) = 1− e− ln[2]x/h and g(x) = e− ln[2]x/h . (18.14)

are as conventional as Hill functions. They may be more convenient for finding solutions of
equations, but they are more cumbersome when it comes to finding steady states. Like Hill
functions we have f(0) = 0. For finding the half maximal value of f(x) one solves 0.5 = e− ln[2]x/h

to find that x = h. The slope in the origin is determined from the derivative ∂x[1− e− ln[2]x/h] =
(ln[2]/h)e− ln[2]x/h which for x = 0 gives a slope of ln[2]/h. The sigmoid form of the exponential
function is known as the Gaussian distribution

f(x) = 1− e− ln[2](x/h)2 , and g(x) = e− ln[2](x/h)2 . (18.15)

Thanks to our scaling with ln[2] these sigmoid functions are also half maximal when x = h (and
x = −h); see Fig. 18.5b.

Finally, in Section 6.3 we have presented the Holling I/II function that can be tuned between a
discontinuous minimum function and a classical saturated Hill function with a single curvature
parameter γ. We have seen that discontinuous saturation functions can easily be written with
minimum and maximum functions. For instance, f(x) = min[1, x/(2h)] has its half-maximal
value f(x) = 0.5 when x = h, but has a sharp corner at x = 2h. Another convenient function is

f(x) = α
√

1− (x/k)α , (18.16)

which declines from one to zero over the interval x = 0 to x = k. When α = 1 the decline is
linear, when α > 1 the function is concave, and when α < 1 it is convex.

18.5 Scaling

Models can be simplified by scaling variables and time such that one loses a number of parame-
ters. Such scaled variables are said to be dimensionless. Reducing the number of parameters of
a model can be very helpful to completely understand its behavior. The technique is explained
by writing a dimensionless logistic growth model.

Write the logistic equation as
dN

dT
= rN [1−N/k] , (18.17)

where r is the per capita maximum rate of increase, and k is the carrying capacity. The
parameter r is a rate, with dimension 1/T , and the parameter k has the dimension “biomass”
or “number of individuals”. First scale the biomass such that the carrying capacity becomes
one. We introduce a new variable n with the property n = N/k such that n = 1 when N = k.
Now substitute N = kn in Eq. (18.17), i.e.,

dkn

dT
= k

dn

dT
= rkn[1− kn/k] , (18.18)

which simplifies into
dn

dT
= rn[1− n] , (18.19)

which indeed has a carrying capacity n̄ = 1.
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Figure 18.6: The function defined by Eq. (18.22) for three values of h. The inflection point is located

at R =
3
√
Kh2.

Having lost one parameter one can scale time, T , such that the parameter r disappears, i.e.,

r
dn

dt
= rn[1− n] , (18.20)

implying that t = rT . This defines a new time scale for which

dn

dt
= n[1− n] . (18.21)

This non-dimensional form of the logistic growth equation proves that its solution is always the
same sigmoid function. Thus, plotting N(T ) as a function of time, the only effect of choosing
different parameter values of r and k is a scaling of the horizontal and vertical axis.

18.6 The prey nullcline with a sigmoid functional response

In Section 6.2 we wrote the prey nullcline of the Holling type III functional response as the
following function

N =
r(h2 +R2)

aR

(
1− R

K

)
, (18.22)

which has a vertical asymptote at R = 0 and is zero when R = K (see Fig. 18.6). The
derivative f ′ of this function is negative when R → 0 and around R = K. The function will
be non-monotonic, and have a minimum and a maximum, when the derivative is positive in the
inflection point. The first and second derivative with respect to R are

f ′ =
r(KR2 − 2R3 − h2K)

aKR
and f ′′ =

2r(h2K −R3)

aKR3
, (18.23)

respectively. Solving f ′′ = 0 shows that the inflection point is located at R =
3
√
Kh2 (see Fig.

18.6). Substituting this value of R into f ′ and solving f ′ > 0 yields h < K
3
√

3
' K

5 , which says

that the function is non-monotonic whenever the saturation constant h is sufficiently small.
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18.7 Mathematical background

Sketching functions

Most models in this course are analyzed graphically by sketching nullclines in phase space. Some
experience with sketching functions is therefore required. To fresh up these techniques we here
discuss the general approach, and give a few examples. Since most of the models have free
parameters, we also have to sketch functions with free parameters. This implies that one cannot
simply resort to a computer program or a graphical calculator.

The general procedure is:
1. Determine the intersects with the horizontal and vertical axes.
2. Check for vertical asymptotes, i.e., x values leading to division by zero.
3. Check for horizontal asymptotes by taking the limit x→∞ and x→ −∞.
4. Check where the function has positive values and where it has negative values.
5. We typically do not need to determine minimum values, maximum values, or inflexion

points.

Example 1
Sketch the function

y =
ax

b− x (18.24)

in a graph plotting y as a function of x:
a. For x = 0 one finds y = 0 as the intersect with the y-axis. This is the only intersect with the

horizontal axis.
b. There exists a vertical asymptote at x = b. When x ↑ b one finds that y → ∞, when x ↓ b

one sees that y → −∞.
c. To find horizontal asymptotes one rewrites the function into

y =
a

b/x− 1
. (18.25)

Both for x→∞ and for x→ −∞ one sees y → −a. Thus, we find one horizontal asymptote
at y = −a.

d. When x < 0 one sees that y < 0, when 0 ≤ x < b one sees that y ≥ 0, and when x > b one
finds y < 0. The function is sketched in Fig. 18.7a.

Example 2
Sketch the system

0 = σ +
aX

b+X
− cY , (18.26)

0 = −α+ βX − γY (18.27)

in one graph. Because both equations can easily be solved for the Y variable, it is most easy to
draw Y as a function of X. For the second equation one finds

Y = −α/γ + (β/γ)X , (18.28)

which is a straight line with slope β/γ.
a. The intersect with the Y -axis −α/γ, and that with horizontal axis X = α/β.
b. No vertical asymptotes.
c. No horizontal asymptotes.
d. When X < α/β one finds Y < 0, otherwise Y ≥ 0.
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(a)

X

Y 0
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(b)

X
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c
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β

−b 0

Figure 18.7: Two examples for qualitatively sketching functions.

For the first equation we also write Y as a function of X

Y = σ/c+
(a/c)X

b+X
. (18.29)

a. The intersect with the vertical axis is Y = σ/c. That with the X axis is X = −bσ/(σ + a).
b. There exists a vertical asymptote at X = −b. When X ↓ −b one finds that Y → −∞ and

when X ↑ −b we see Y →∞.
c. For the horizontal asymptotes one first writes

Y = σ/c+
(a/c)

b/X + 1
, (18.30)

to see that for X →∞ and for X → −∞, Y → (σ + a)/c.
d. One finds that Y > 0 if X > −bσ/(σ + a) or if X < −b.
Although one does not know the parameters for this system, one can be sure that in the positive
quadrant the two curves have to intersect. Thus, qualitatively, there is only one unique situation,
which is depicted in Fig. 18.7b.

Useful mathematical formulas

To fresh up your memory of earlier education in mathematics we provide a few standard formulas

ln 1 = 0 , lnxy = lnx+ ln y , lnx/y = lnx− ln y , eix = cosx+ i sinx , (18.31)

and the two roots of the quadratic equation

ax2 + bx+ c = 0 are x± =
−b±

√
b2 − 4ac

2a
. (18.32)

The standard rules of differentiation are

[cx]′ = c , [cxn]′ = ncxn−1 , [f(x) + g(x)]′ = f ′(x) + g′(x) , (18.33)
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Figure 18.8: The stability of a steady state as a function of the trace and determinant of a 2-dimensional
Jacobi-matrix. The bullets depict the real and imaginary parts of the eigenvalues in so-called Argand
diagrams (where the horizontal axis reflects the real part, and the vertical axis the imaginary part of the
eigenvalue).

where the ′ means ∂x, and

[f(x)g(x)]′ = f ′(x)g(x) + f(x)g′(x) ,

[
f(x)

g(x)

]′
=
f ′(x)

g(x)
− f(x)g′(x)

g(x)2
, (18.34)

and the famous chain rule

f [g(x)]′ = f ′(g) g′(x) , e.g.,
√

1 + ax ′ =

[
1

2
(1 + ax)−

1
2

]
a =

a

2
√

1 + ax
. (18.35)

Trace and determinant

In the accompanying Ebook (Panfilov et al., 2016) we explain that the eigenvalues of an arbitrary
matrix

A =

(
p q
r s

)
(18.36)

are the solutions of the characteristic equation

(p− λ)(s− λ)− rq = λ2 − λ(p+ s) + (ps− rq) = 0 . (18.37)
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Defining the “trace” of the matrix as tr = p + s and the “determinant” as det = ps − rq, the
characteristic equation simplifies into

λ2 − trλ+ det = 0 (18.38)

with solutions

λ± =
tr±

√
tr2 − 4 det

2
=

tr±
√
D

2
, (18.39)

where D ≡ tr2 − 4 det is the “discriminant” of the matrix. If D < 0 the
√
D delivers imaginary

solutions that correspond with oscillations (eix = cos[x] + i sin[x]).

Summing the two eigenvalues λ± yields

tr +
√

tr2 − 4 det

2
+

tr−
√

tr2 − 4 det

2
= tr , (18.40)

and the product gives

tr +
√

tr2 − 4 det

2
× tr−

√
tr2 − 4 det

2
= det . (18.41)

If this matrix was the Jacobian of a steady state, we now observe that to check for stability, i.e.,
λ+ < 0 and λ− < 0, it is therefore in many cases sufficient to know the values of the trace and
the determinant. When det > 0 one knows that either both eigenvalues are negative or that
they are both positive. Having det > 0 and tr < 0 one knows that they cannot be positive, and
therefore that they are both negative and the steady state has to be stable. Summarizing an
easy test for stability is tr[J ] < 0 and det[J ] > 0 (see Fig. 18.8).

18.8 Exercises

Question 18.1. Sketch a few functions
In this course we sketch nullclines from models with free parameters. It is very important
therefore to know how to sketch arbitrary functions with free parameters.
a. Sketch y = h

h+x .
b. Sketch y = x

h+x .
c. Sketch aA− bLA− cL = 0 plotting L as a function of A, and plotting A as a function of L.
d. Sketch 0 = aY (1− Y )− bY X

c+Y . Hint: think beforehand which variable can best be expressed
as a function of the other variable.

e. Sketch y = a k−x
q+k−x − d assuming that a > d.

f. Sketch y = a
√
x(1− x). What is the derivative when x = 0? At what value of x will y have

a maximal value?

Question 18.2. Linearization
Consider the function f(x) = x2.
a. What is the derivative ∂xf(x)?
b. Use linearization around x = 3 to estimate the function value at x = 3.1. What is the true

value at x = 3.1?
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Question 18.3. Scaling
Scale the Lotka-Volterra predator prey model by introducing non-dimensional population den-
sities, and scale time by the natural rate of increase of the prey.
a. Write the new model.
b. How many parameters did you lose?
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Answers to the exercises

Question 2.1. Red blood cells
A possible good answer has the following sketches:
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a. dN/dt = m− dN .
b. See the sketch in Panel (a)
c. See the sketch in Panel (b)

Question 2.2. Pesticides on apples
A possible good answer has the following sketch:
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a. See the sketch in Panel (a)
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b. P̄ = σ/δ.
c. The model becomes dP/dt = −δP with the initial condition P (0) = σ/δ. Solving P (0)/2 =
P (0)e−δt yields t1/2 = ln[2]/δ.

d. From dP/dt = 2σ − δP with P̄ = 2σ/δ, one obtains the same ln 2/δ days for the half life.
e. From 50 = ln 2/δ one obtains δ = 0.014 per day.

Question 2.3. Bacterial growth

a. t = ln[2]/r.
b. From rB − kNB = 0 we neglect the trivial B = 0 solution to obtain N = r/k.
c. The dimension of r is per hour. Since the total term kNB has dimension “number of bacteria

per ml per hour”, the dimension of k should be “per neutrophil per ml per hour”. This can
also be checked from the expression N = r/k that should be “neutrophils per ml” on the
both the left- and right-hand side.

d. “bacteria per neutrophil per hour”. This is the maximum number of bacteria that one
neutrophil can encounter and kill per hour.

e. N = (r/k)(h + B), which is a straight line with slope r/k, intersecting the vertical axis at
N = rh/k. This line is a nullcline: below this line dB/dt > 0, and above it dB/dt < 0.

f. h has the dimension number of bacteria per ml. When B = h the model is dB/dt = rB−kN/2
saying the neutrophils are killing at a rate k/2, i.e., half their half-maximal killing rate.

Question 2.4. Injecting anesthesia
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a. See the sketch.
b. ln 2/e hours.
c. No, it all depends on the clearance rate from the blood, and how

long the operation takes. If c is small one should wait longer than
ln 2/e hours.

d. For δ = 0 everything ends op in the liver: L(∞) = M(0).

Question 2.5. SARS
a. First count the total number of infected patients I(t). R0 = 3 in two weeks means that
β = 1.5 per week. For a time scale of weeks the model therefore is dI/dt = 1.5I − 0.5I = I.
The equation to solve is 3× 109 = I(0)ert, where r = (β − δ) = 1, and where one starts with
one infected individual, i.e., I(0) = 1. Solving 3 × 109 = et yields t = 22 weeks for the time
required to have I(t) = 3× 109.
One could argue that it is more interesting to calculate the time required to have killed half
of the population, but this is more difficult. For that one also should keep track of the total
number of dead individuals dD/dt = δI. With I(t) = e(β−δ)t and D(0) = 0 the solution of

dD/dt = δe(β−δ)t is D(t) = δ[e(β−δ)t−1]
β−δ . Solving I(t) +D(t) = 3× 109 for β = 1.5 and δ = 0.5

per week gives a total time of t = 21 weeks. The difference is small because the number of
dead patients approaches a fixed fraction δ

β−δ = 0.5 of the total number of patients that are
alive.

b. No, it will go slower because the epidemic will limit itself by depleting the number of suscep-
tibles. A better model is to add an ODE for the susceptibles, S, where S(0) = 6× 109 is the
initial population size. Redefining β as the chance to meet and infect a susceptible person
the model becomes

dI

dt
= βIS − δI and

dS

dt
= −βIS .



149

Another improvement of the model that would slow down the epidemic is to allow for an
incubation period, i.e., to introduce a time lag in the two week period during which patients
are not yet infective.

Question 2.6. Physics
a. The dimension of v is m/s and that of a is m/s2.
b. The derivative of the v(t) solution is dv/dt = a and that of the x(t) solution is dx/dt =
at+ v(0).

Question 3.1. Seed bank
Since plants are born from a fixed seed bank, one can use a simple source term for modeling the
growth. Assuming a simple density independent death rate one would write

dN

dt
= s− dN .

Since this has N̄ = s/d as a well-defined carrying capacity, the model seems well-behaved, and
one apparently does not need to invoke any density dependent factors.
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For a more elaborate extension of this model, where seedlings that are growing in the shade of
adult plants take longer to mature, one could write:

dJ

dt
= s− d1J −mJ(1−A/k) and

dA

dt
= mJ(1−A/k)− d2A ,

where J are the (juvenile) seedlings, A are the (adult) plants, and k is the plant density at which
the maturation rate becomes zero. For the juvenile nullcline we solve

s− d1J −mJ +mJA/k = 0 or A = k
m+ d1

m
− ks

mJ
,

which is a function of the form y = a − b/x, i.e., an increasing function with a horizontal
asymptote km+d1

m . For low values of J one obtains negative values, and the nullcline intersects
the line A = 0 at J = s/(m+ d1). For the adult nullcline we solve

mJ −mJA/k − d2A = 0 or A =
mJ

d2 +mJ/k
=

kJ

kd2/m+ J
,
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which is a conventional increasing saturation function with maximum k, saturation constant
kd2/m, and going through the origin. Since the horizontal asymptote of the dA/dt = 0 isocline,
k, is smaller than that of the dJ/dt = 0 isocline, i.e., k < km+d1

m , and the dJ/dt = 0 isocline
intersects the horizontal axis at J = s/(m+ d1), the nullclines will always intersect. The vector
field shows that the —one and only— steady state is stable.

Question 3.2. Carrying capacity
When a population approaches its carrying capacity:
a. the per capita birth rate is minimal
b. the per capita death rate is maximal.
c. The individual well-being is expected to be best in an expanding population: the per capita

birth rate is maximal and the per capita death rate is minimal.
d. With dN/dt = rN [1−N/(k

√
N)] = 0 one obtains the carrying capacity from N/(k

√
N) = 1

or
√
N = k giving N̄ = k2 which is still a finite carrying capacity, at which circumstances are

poor. For the best circumstances the population has to remain below its carrying capacity.

Question 3.3. Assumptions
Every mathematical model comes with assumptions.
a. Unrealistic assumptions of ODEs are

1. All individuals are equal or average.
2. The population size remains so large that discrete effects of having only a few individuals

can be ignored.
3. The parameters are fixed constant.
4. The individuals are well-mixed and there are no spatial effects.

b. Models simplify reality and can therefore help to give insight into population dynamics.

Question 3.4. Fishing herring
A possible good answer has the following sketches:
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a. dN/dt = f(N) = rN(1 − N/K), which is a parabola crossing the horizontal axis at N = 0
and N = K. See the sketch in Panel (a).

b. The maximum of the function, f(N) = rN − rN2/K, is found by setting its derivative,
∂Nf = r − 2rN/K, to zero. This delivers N̂ = K/2 (see Panel (a)). Substituting this
maximum into the population growth function, one obtains the maximum population growth
of f(N̂) = rK/4.

c. The optimal population size is that yielding maximum growth, i.e., N = K/2, and the total
population growth, rK/4, could in principle be harvested.

d. dN/dt = rN(1−N/K)− rK/4.
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e. See the sketch in Panel (b): at the maximum harvest there is a steady state where dN/dt = 0.
Starting at N = K and allowing for this maximum harvest, one mathematically approaches
this steady at N = K/2. This steady state is not structurally stable, however, as any
disturbance of the population size, bringing it below the steady state at N = K/2, will let
the fish go extinct.

f. One should never catch the maximum yield. This allows for a stable population size while
the population is harvested. See the sketch in Panel (c). The population remains vulnerable
to extinction by large perturbations due to the saddle point at low population densities. In
the computer practical you will revisit this problem and discover that by catching an optimal
fraction of the population one can on average catch this maximum yield, without threatening
the population with extinction.

Question 3.5. Owls
An essential element of this question is that you have to implement the statement that the owls
find the tree hollows easily. This calls for a minimum function that switches discontinuously
between all trees occupied and still having some empty trees. A minimum function like y =
min(N,h) allows for that since y = N when N < h and y = h otherwise. A possible good
answer has the following sketches:
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a. See the sketch in Panel (a).
b. A simple model is dN/dt = bmin(N,h)− dN , where b and d are birth and death rates, and
h is the number of tree hollows.

c. The per capita birth rate is b when N < h and bh/N when N ≥ h. See the sketch in Panel
(b).

d. When N ≥ h the population growth becomes maximal, and the curve becomes a straight
line with the slope of the growth at N = h. See the sketch in Panel (c).

e. When N ≥ h the per capita growth slows down due to the death, and dN/dt = bmin(N,h)−
dN approaches the steady state B̄ = bh/d. See the sketch in Panel (d).

Question 3.6. Patches
A possible good answer has the following sketches:
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a. dN/dt = bNL−dN with L = max(0,K−N). Note that bK is the maximum birth rate. The
parameter b would have the usual interpretation of a maximal birth rate when one writes L
as a probability to find an empty patch, i.e., L = max[0, (K −N)/K].

b. The fitness is R0 = bK/d, and the steady states are solved from dN/dt = bN(K−N)−dN = 0
giving N = 0 and K − N = d/b or N̄ = K − d/b = K[1 − d/(bK)] = K[1 − 1/R0]. Note
that N̄ < K so that at this steady state we can ignore the maximum function, i.e., L =
max(0,K−N) = K−N . There is no steady state when N > K and L = max(0,K−N) = 0

c. No, K is not the carrying capacity, the steady state is at N̄ = K(1− 1/R0) which is smaller
than K.

d. The per capita birth rate b(K −N) is a straight line intersecting the vertical axis at y = bK
and the horizontal axis at N = K. The per capita death rate is a horizontal line at y = d. See
the sketch in Panel (a). The lines intersect in the carrying capacity, which is stable because
increasing N decreases dN/dt, decreasing N increases dN/dt.

e. Adopting a saturation function of the form f(L) = L
h+L where L = K − N , one obtains

dN/dt = bN L
h+L − dN . The shape of f(L) when plotted as a function of L is shown in Fig.

18.5a: after increasing almost linearly, it approaches a horizontal asymptote f(L)→ 1 when
L→∞. The half-maximal value f(L) = 1/2 is reached when L = h.

f. The per capita birth rate is

y = b
L

h+ L
=

b(K −N)

h+K −N .

When N = 0 the birth rate is y = bK/(h + K), and y = 0 when N = K. To find the
horizontal asymptote we first divide both the numerator and the denominator by the highest
order of N (here N1) to obtain

y =
bK/N − b

(h+K)/N − 1
which for N →∞ and N → −∞ gives y = b ,

and the function has a vertical asymptote at N = h + K. This enables us to sketch the
biologically relevant part of the per capita birth rate in Panel (b). The death rate is density
independent, and corresponds to the horizontal line in Panel (b).

g. No, see the intersection point in Panel (b). Because the per capita birth rate is zero at
N = K, whereas the per capita death rate is d, N = K cannot be a steady state. The
carrying capacity is again smaller than the total number of patches, and can be solved from
b K−N
h+K−N = d, i.e., N̄ = K − dh

b−d . Note that the first question in Chapter 18 asks for a sketch
of dN/dt versus N .

Question 3.7. Return Time
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a. For dN/dt = bN−dN(1+N/K) with R0 = b/d there are two steady states, the origin N̄ = 0,
and the carrying capacity N̄ = K(R0 − 1). For the return time of the carrying capacity one
computes the derivative ∂N = b−d−2dN/K and substitutes the steady state value to obtain

λ = b− d− 2d

K
K(R0 − 1) = b− d− 2d(b/d− 1) = d− b

The return time

TR =
−1

λ
=

1

b− d =
1

d(R0 − 1)
.

Thus, if R0, or the death rate, is increased the return time will decrease.
b. For dN/dt = s − dN with steady state N̄ = s/d, the derivative ∂N [s − dN ] = −d. This

immediately gives λ = −d and TR = 1/d. Note that one can always scale the population size
by its steady state, i.e., define a scaled population as n = d

sN (hence N = s
dn) obeying the

new ODE s
ddn/dt = s− s

ddn, or dn/dt = d− dn.

Question 3.8. Regulation of birth rates
The model uses a simple Hill function for the decline of the birth rate with the population size.
a. The per capita growth is b/(1 + N) which is maximal if there is no competition, i.e., when
N = 0.

b. R0 is the maximum per capita growth multiplied by the expected life span, R0 = b(1/d) =
b/d.

c. Solving dN/dt = bN
1+N − dN = 0 gives N = 0 and

b

1 +N
− d = 0 giving

b

d
= 1 +N or N̄ = R0 − 1 .

The stability can be obtained from the graphic method shown in Fig. 3.1 or by linearizing.
Defining dN/dt = g(N) the derivative of the growth function g(N) is

∂Ng =
b

1 +N
− bN

(1 +N)2
− d =

b

(1 +N)2
− d ,

which for N̄ = 0 gives a slope λ = b − d, which is positive whenever R0 > 1. Substituting
N̄ = R0 − 1 gives

λ =
b

R2
0

− d =
d

R0
− d = d(1/R0 − 1) ,

which is less than zero whenever R0 > 1. Thus, for R0 > 1, the origin is unstable and the
carrying capacity is stable.

d. We have already computed for the carrying capacity that λ = d(1/R0 − 1). The return time
TR = −1/λ therefore becomes TR = 1/[d(1− 1/R0)], which is positive whenever R0 > 1, and
which approaches a minimum of TR = 1/d when R0 is large.

e. The density at which the growth is maximal is found from setting the derivative ∂Ng to zero,
and solving for N : b

d = (1 +N)2 giving N =
√
R0 − 1.

f. Insert the solution of e into the original growth equation, delivering

dN

dt
=
b(
√
R0 − 1)√
R0

− d(
√
R0 − 1) .

Question 4.1. Lichens
A possible good answer has the following sketches:
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a. Since the total biomass is given by A = cπr2, one obtains that r =
√

A
cπ = c′

√
A, where c′

is a new scaling constant. The total growth rate is proportional to the circumference 2πr,
which after substituting the radius becomes 2πc′

√
A = b

√
A, where b is a “birth rate” that

is proportional to the square root of the biomass. On the other hand, the total death rate is
proportional to the total biomass. A simple model would therefore be dA/dt = b

√
A− dA.

b. The carrying capacity is solved from b
√
A− dA = 0 or b− d

√
A = 0 giving Ā = (b/d)2.

c. The per capita growth dA/dt
A = b√

A
− d. Which for A → ∞ approaches the horizontal

asymptote −d, which seems perfectly reasonable. For small population size, i.e., A→ 0, the
per capita growth blows up, however, which is not a good property of the model. See the
sketch in Panel (a).

d. The initial population growth will not be exponential, and will slow down until the lichen
approaches its equilibrium size. See the sketch in Panel (b).

e. One could make the birth rate linear at low densities: dA/dt = bmin(A,
√
hA)− dA, where

h is the density at which the growth becomes proportional to the circumference.
f. Defining the width of the ring as w, the total biomass would be proportional to A = πr2 −
π(r − w)2 = 2πrw − πw2. For large lichens, w � r, this approaches A = 2πrw, which is
proportional to the radius, i.e., r = A/(2πw) = cA, where c is yet another scaling constant.
The model would therefore approach dA/dt = (β − d)A, i.e., exponential growth.

Question 4.2. Life stages
A possible good answer has the following sketches:
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a. For the larvae, L, and the adults, A, one could write

dL

dt
= rA−mL− d1LA and

dA

dt
= mL− d2A ,

where m is the maturation of the larvae, and r the reproduction of the adults.



155

b. The larvae nullcline is solved from dL/dt = rA−mL − d1LA = 0 giving A = mL
r−d1L , which

is zero when L = 0 and has a vertical asymptote at L = r/d1. The slope in the origin is
computed from the derivative

m

r − d1L
+

md1L

(r − d1L)2
which for L = 0 gives

m

r
.

See the sketch in Panel (a). For the adults dA/dt = mL − d2A = 0 gives A = mL
d2

, which
is a line with slope m/d2. If m/d2 > m/r the two nullclines intersect in a non trivial stable
steady state. Otherwise the origin is the only steady state (see Panel (b)).

c. Assuming a quasi steady state for the larvae, one has to solve L from dL/dt = 0, giving
L̂ = rA

m+d1A
.

d. Substituting L̂ into the adult equation gives dA/dt = mrA
m+d1A

−d2A for the quasi steady state
model. This is one of the models with a density dependent birth rate (see Table 4.1).

e. From A = (m/d2)L we get dL/dt = (r′ −m)L − dL2 where r′ = rm/d2 and d = d1m/d2,
which has the form of a logistic equation.

f. In many insect species the adults live much shorter than the larvae. Then dA/dt = 0 would
be most realistic.

Question 4.3. Allee effect
To develop a model for the whales we have to consider three biological processes: birth, death,
and the likelihood of finding a male. We write a model for the number of females, N , in the
population, and assume that there is a similar number of males. The true population size
would therefore be similar to 2N . The probability that an individual female finds a male should
increases with the number of males, and approach one at large densities of males. A simple
saturation function p = N/(m + N), where p is the probability, and m is the population size
at which there is a 50% probability of finding a male. Assuming density dependent birth one
would write

dN

dt
=

bN

1 +N/h

N

m+N
− dN ,

and assuming density dependent death one would write

dN

dt
= bN

N

m+N
− dN(1 + eN) ,

and in reality one could have a combination of the two.

Question 4.4. Nullcline
A possible good answer has the following sketch:
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Setting dR/dt = bR
1+R/h −dR− cRN = 0 gives R̄ = 0 or b

1+R/h −d− cN = 0 which is most easily
written as

N =
1

c

[
b

1 +R/h
− d
]
.

The intersect with the vertical axis is found by setting R = 0, which gives N = (b − d)/c.
The horizontal asymptote is found by letting R → ∞, which gives a horizontal asymptote at
N = −d

c . There is a vertical asymptote at R = −h giving N →∞. All in all this results in the
sketch depicted above, in which one only needs to consider the positive quadrant.

Question 5.1. Desert
A possible good answer has the following sketches:
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a. If there is no vegetation one sets V = 0 to obtain dW/dt = a − cW with the steady state
W̄ = a/c

b. If there is twice the amount of rain the parameter a becomes 2a, which means W̄ = 2a/c.
c. The steady state is now solved from the system dW/dt = dV/dt = 0. Since V = 0 cancels

from dV/dt = 0 one obtains the steady state W̄ = e/d from the vegetation equation. This is
independent of rain and evaporation!

d. The steady state remains W̄ = e/d and all the extra water ends up in the vegetation.
e. The vegetation nullcline is solved from dV/dt = dWV − eV = 0 which means that V = 0

and W = e/d. The water nullcline is solved from dW/dt = a− bWV − cW = 0 or a− cW =
bWV , i.e., V = a

bW − c
b , which is a decreasing hyperbolic function with horizontal asymptote

V = −(c/b) and vertical asymptote W = 0. There are two possibilities: See the sketch in
Panel (a) and (b). The vector field shows steady state W̄ = a/c without a vegetation is a
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unstable saddle in Panel (a) and is stable in Panel (b). For the non-trivial steady state in
Panel (a) we derive the Jacobian

J =

(
− −
+ 0

)
giving trJ < 0 and detJ > 0 ,

i.e., it is stable.
f. Increased rainfall increases a, which will move the water nullcline up and to the right. Since

the vertical vegetation nullcline is unaffected, the amount of water in the soil remains the
same, and the vegetation increases.

Question 5.2. Monkeys
A possible good answer has the following sketches:
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a. For the monkeys eating unripe fruits, MU , and those eating ripe fruits, MR, one would write

dMU

dt
= i− eMU

1 + U/h
and

dMR

dt
= i− eMR

1 +R/h
,

where e is the maximal emigration rate, and h the fruit density at which the emigration is
half maximal. For the fruits we write

dU

dt
= a− bU − c1MUU and

dR

dt
= bU − c2MRR− dR .

b. The immigration is independent of the amount of fruit available and there is no direct com-
petition (interference) between the two species of monkeys.

c. In absence of monkeys the fruits obey dU/dt = 0 = a− bU dR/dt = bU − dR with nullclines
U = a/b and R = bU/d, respectively. See the sketch in Panel (a).

d. A quasi steady state assumption for both monkey species gives

dMU

dt
= 0 gives i =

eMU

1 + U/h
or MU =

i

e
(1 + U/h) ,

dMR

dt
= 0 gives i =

eMR

1 +R/h
or MR =

i

e
(1 +R/h) .

This is substituted into the equations for the fruits

dU

dt
= a− bU − c1i

e
U(1 + U/h) and

dR

dt
= bU − dR− c2i

e
R(1 +R/h)
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e. For the nullcline of the unripe fruits one sets dU/dt = a − bU − c1iU
e − c1iU2

eh = 0 which is
independent of R and will have one or two solutions. From the quadratic equation,

U± =
b+ c1i/e±

√
(b+ c1i/e)2 + 4ac1i/(eh)

−2c1i/(eh)
,

one can easily see that this has only one positive solution, i.e., U−. Call this root Ū , and
draw a vertical line in Panel (b). For the nullcline of the ripe fruits one sets dR/dt =

bU − c2iR
e − c2iR2

eh − dR = 0, which can easily be expressed in terms of the unripe fruits:

U =
c2iR

2

ehb
+

(
c2i

eb
+
d

b

)
R or U = αR2 + βR ,

which is the parabola depicted in Panel (b). From the vector field we see that the steady
state is a stable node.

f. Because we have monkeys at steady state, their number reacts immediately to changes in R
and U . So if we know R and U we also know how many monkeys there are.

g. In the presence of monkeys there should be an equilibrium with less fruit. See the sketch in
Panel (c): the heavy nullclines represent the situation with monkeys.

Question 5.3. Return time
We calculate the return time of the non-trivial steady state of the Lotka Volterra model consid-
ering both density dependent birth and density dependent death. For simplicity we do this for
the case where this equilibrium is a stable spiral point. To save time we first write the model
in a general form and compute the return time for this general model. The two cases of density
dependent birth and death can then be “substituted” into the general form. A general form of
the Lotka Volterra model is

dR

dt
= rR− γR2 − aRN and

dN

dt
= caRN − δN .

a. For the return time of the general form we first solve the non-trivial steady state by setting
dN/dt = 0 and dR/dt = 0, which gives

R̄ =
δ

ca
and N̄ =

r

a
− γ

a
R̄ =

r

a
− γδ

ca2
,

respectively. The Jacobian of the general model is

J =

(
r − 2γR̄− aN̄ −aR̄

caN̄ caR̄− δ

)
=

(
−γδ
ca − δ

c

cr − γδ
a 0

)
,

where cr − γδ/a > 0 because caN̄ > 0. The trace of this matrix is negative, i.e., tr = −γδ
ca ,

and the eigenvalues of this Jacobian are given by

λ± =
tr±

√
tr2 − 4 det

2
= − γδ

2ca
±
√
D

2
,

where D = tr2 − 4 det is the discriminant of the matrix (and “det” the determinant). Since
we are considering a spiral point, the eigenvalues have to be complex, implying that the
discriminant D < 0. The imaginary part of the eigenvalues defines the period of the dampened
oscillation, and the real part how fast its amplitude grows or contracts, i.e., the return
time depends on the real part only. Thus, for the return time we consider the real part,
Re(λ) = − γδ

2ca , to obtain a return time

TR =
−1

Re(λ)
=

2ca

γδ
=

2

γ

1

R̄
.
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Thus, the return time is independent of the net rate of increase, r, depends on the density
dependence parameter, γ, and is inversely related to the steady state of the prey.

b. We write the model with density dependent birth as

dR

dt
= bR(1−R/k)− dR− aRN = bR− bR2/k − dR− aRN ,

which in the general form means that r = (b− d) and γ = b/k. To obtain the return time of
the non-trivial steady state of this model, we only need to substitute γ = b/k into the general
expression for the return time, because the return time is independent of r, and because R̄
came from dN/dt = 0, which has not changed. We obtain that

TR =
2

b

k

R̄
=

2cak

bδ
,

where k/R̄ is a ratio of prey densities (i.e., k is the density at which the birth rate become
zero). Note that the dimension is correct: k/R̄ is dimensionless and 2/b has the dimen-
sion time. Thus, the return time of this density dependent birth depends on the birth rate
parameters, b and k, and not on the density independent death rate, d.

c. We write the model with density dependent death as

dR

dt
= bR− dR(1 +R/k)− aRN = bR− dR− dR2/k − aRN ,

which in the general form means that r = (b− d) and γ = d/k. Now we substitute γ = d/k
into TR and obtain that

TR =
2

d

k

R̄
=

2cak

dδ
,

where k/R̄ is another ratio of prey densities (i.e., k is the density at which the death rate
doubles). Now the return time depends on the density dependent death rate parameters, d
and k.

d. In both cases the return time is determined by a self-dampening effect of the prey onto itself,
i.e., Re(λ) = −(γ/2)R̄. Increasing the birth rate, or the death rate, decreases the return
time because it speeds up the dynamics around the steady state. Increasing k increases the
return time because it weakens the density dependent regulation. Weakening the predator,
i.e., increasing R̄, decreases the return time because that also increases the self-dampening
effect of the prey.

Question 6.1. Parameters
The biological interpretation and dimension of the parameters are:
a. 1. a1: Maximal per capita growth rate (1/t)

2. K: Carrying capacity (numbers or biomass).
3. b1: Maximal per capita catch rate (1/t).
4. c1: Population density R where N catches/feeds at its half maximal rate (numbers or

biomass).
5. a2: per capita death rate (1/t).
6. b2: Maximum per capita birth rate (1/t).
7. c2: Population R where N grows at half its maximum rate (numbers or biomass).

b. b2 = αb1 where α is the conversion factor. If population sizes are measured in biomass the
normal trophic conversion factor is α = 0.1, i.e., typically there is a 90% loss between tropic
levels. If the population sizes are measured in numbers this could be anything because small
predators could feed on large prey.
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c. c1 = c2 means that the growth of the predator is proportional to what it eats. c1 > c2 means
that the growth rate saturates earlier than the catching rate, which is to be expected when
the birth rate of the predator saturates as a function of its consumption; see Eq. (6.4). c1 < c2

seems strange and means that the catching rate is saturated earlier than the growth rate.

Question 6.2. Eutrophication: 2D
A possible good answer has the following sketches:
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a. For the algae, A, and zooplankton, Z, one writes

dA

dt
= rA(1−A/K)− bZ A2

h2 +A2
and

dZ

dt
= cbZ

A2

h2 +A2
− dZ(1 + eZ) ,

where e is the extra death due to intra-specific competition. The nullcline for the algae has
been constructed in the text. For the zooplankton one obtains from dZ/dt = 0 that Z = 0 or

cb
A2

h2 +A2
− d− deZ = 0 or Z =

cb

de

A2

h2 +A2
− 1

e
,

which is a sigmoid function intersecting the vertical axis at Z = −1/e and the horizontal axis
at A = h/

√
R0 − 1, where R0 = cb/d. When e = 0 the Z-nullcline is a vertical line.

b. the carrying capacity K
c. There are many possibilities. See the sketch in Panel (a) and (b). Eutrophication corresponds

to moving along a sigmoid zooplankton nullcline from the lowest to the highest algae nullcline.
Steady states may stabilize or destabilize and appear or disappear.

d. Models suggest that changing a single parameter can have various different effects, depending
on the precise initial circumstances. It is difficult to generalize, and reliable predictions are
nearly impossible to make. A model plays the important role of suggesting various possible
outcomes; possibly including undesired outcomes.

Question 6.3. Luckinbill
A possible good answer has the following sketches:
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a. The oscillatory behavior suggests a Monod saturation

dP

dt
= aP (1− P/K)− bDP

h+ P
and

dD

dt
=

cDP

h+ P
− dD .

b. Increasing the viscosity of the medium decreases the likelihood of meeting prey, which cor-
responds to increasing the h parameter; see Panel (b). Halving the concentration of food
decreases the K parameter; see Panel (c).

c. See Panels (a)–(c).
d. The agreement between model and data seems perfect; a simple Monod saturated functional

response provides a good explanation.
e. Formally the populations cannot go extinct in the model; the noise in the data would require

stochasticity in the model.

Question 6.4. Filter feeders
A possible good answer has the following sketches:
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a. For the phytoplankton, P , and the copepods, C, one could write

dP

dt
= aP (1− P/K)− b1PC and

dC

dt
= b2 min(P,L)C − dC ,

where L is the phytoplankton level at which the copepods are saturated.
b. Solving dP/dt = 0 one obtains P = 0 or

a− aP

K
= b1C or C =

a

b1

(
1− P

K

)
,

which is a Lotka Volterra type prey nullcline. Solving dC/dt = 0 gives C = 0 and
b2 min(P,L) − d = 0. For P < L this yields P = d

b2
and for P > L there is no solution.
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The case P = L we do not consider because it is not generic. Thus, the P -nullcline exists
when d

b2
< L. See the sketch in Panel (a). The non trivial steady state is stable because the

graphical Jacobian

J =

(
− −
+ 0

)
has a trJ < 0 and detJ > 0 .

The carrying capacity P = K is stable when d
b2
> L because then dC/dt < 0 everywhere.

c. The return time is calculated from a neighborhood stability close to a steady state. The
threshold L has not changed the properties of the steady state, so there is no difference in
the return time.

d. When P > L the vertical arrows in the vector field remain constant. Trajectories in this
region therefore move less slowly upward than when L→∞. This slows the trajectory down
and changes its angle.

e. The mussels would correspond to a normal Holling type I functional response

dP

dt
= aP (1− P/K)− b1C min(P,L) and

dC

dt
= b2C min(P,L)− dC

corresponding to the following nullclines{
C = a

b1

(
1− P

K

)
and P = 0 when P < L and

C = aP
b1L

(1− P
K ) otherwise.

See the sketch in Panel (b).

Question 6.5. Exponential functional response
A possible good answer has the following sketch:
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a. For R → ∞ the functional response (1 − e− ln[2]R/h) → 1, which means that at high prey
densities the per capita predator consumption is a prey per unit of time.

b. Since one can scale time by the natural rate of increase r, the prey density by its carrying
capacity, and the predator by the a parameter, the generic form of both models is:

dR

dt
= R(1−R)− NR

h+R
and

dR

dt
= R(1−R)−N(1− e− ln[2]R/h) ,

which has only one parameter h. Panel (a) shows the nullclines for h = 0.1, 0.2, 0.4, 0.8 and
h = 1.6. The nullclines intersect when R = h because the functional response then equals 0.5.
There is no qualitative difference between the two sets of nullclines, i.e., we expect similar
behavior for these two models.
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Question 7.1. Wolves
A possible good answer has the following sketch:

R

0 0.6 1.2

W

0

0.5

1
(a)

Prey (R)

W
o
lv

es
(W

)

h
R0−1

K

There are many different possibilities. For instance, let R be the prey, and W be the wolves:
a. One could define R̂ = RW/(c + W ) as the number of prey that can be caught, i.e., if there

are enough wolves (W � c) all prey can be caught (R̂ → R). Taking R̂ through a normal
Monod saturation gives

f(R,W ) =
R̂

h+ R̂
=

RW

hc+ hW +RW

dR

dt
= rR(1−R/K)− aRW 2

hc+ hW +RW
and

dW

dt
=

aRW 2

hc+ hW +RW
− dW ,

with R0 = a/d.
b. To sketch the predator nullcline one solves

aRW

hc+ hW +RW
= d or W =

hc

R(R0 − 1)− h ,

which has a vertical asymptote at R = h/(R0 − 1) and a horizontal asymptote at W = 0.
The only intersection with the vertical axis (R = 0) is at the negative value W = −c. The
prey nullcline is not so easy to sketch. We have drawn it with grind.R in the picture above,
where it looks like a parabola. From the vector field one can see that the carrying capacity
is stable. This is an Allee effect because the wolves cannot invade in small numbers. The
upper non-trivial steady state is stable when the intersection points is located at the right
hand side of the top of the parabola. The lower intersection point is a saddle point, with a
separatrix defining the Allee effect.

Alternatively, one could use a mass action predation term and write

dR

dt
= rR(1−R/K)− aRW 2

c+W
and

dW

dt
=
aRW 2

c+W
− dW .

One could even define f(R,W ) = R
h(1−cW )+R as a phenomenological functional response that

decreases the saturation constant when the number of wolves increases (and use a maximum
function to prevent that 1− cW becomes negative).

Question 7.2. Saturation in predators
A possible good answer has the following sketches:
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The prey nullcline is solved from

r(1−R/K) =
aN

h+N
or R = K

(
1− a/rN

h+N

)
,

which is an inverse Hill function intersecting the vertical R-axis at R = K. If a/r < 1 one
obtains a “limited predation” nullcline with an asymptote at R = K(1 − a/r); see Panel (a).
Otherwise the nullcline intersects the horizontal N -axis N = h/(a/r − 1); see Panel (b). The
predator nullcline is solved from

aR

h+N
= d or R = (d/a)(h+N) ,

which is a straight line with slope d/a that intersects the vertical axis at R = dh/a.

For the non-trivial steady states in both panels we derive the Jacobian

J =

(
− +
− −

)
giving trJ < 0 and detJ > 0 ,

i.e., they are stable.

Question 8.1. Nullclines
A possible good answer has the following sketches:
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In Panel (a) we have a situation where d/b > K, or R0 < 1. In Panel (b) we have R0 > 1 and a
top-predator nullcline that is located above the 2-dimensional (R̄, N̄) steady state. In Panel (c)
we have sketched a situation where R0 > 1 and R′0 > 1.
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Question 8.2. Kaunzinger
A possible good answer has the following sketch:
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a. T̄ = 1
c [bR̄− d] = bK

c

[
1− be

rc

]
− d

c , which increases proportional to the carrying capacity K.
b. See the sketch in Panel (a)
c. The figures are close but not identical. The main difference is the saturated increase of N̄

in Panel (a). This is not so important because exact shape of this lines also depends on the
form of the interaction functions.

d. One could add interference competition between the predators.

Question 8.3. Chaos
A possible good answer has the following sketches:
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a. See the sketch in Panel (a). Yes, for their values of b1 the steady state is unstable.
b. See the sketch in Panel (b). Yes, the unstable steady state around which the trajectory cycles

is located above the top-predator nullcline, and we expect the average predator density to be
higher than the top-predator nullcline.

c. use grind.R.
d. use grind.R.
e. use grind.R.

Question 8.4. Detritus
A possible good answer has the following sketches:
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(a) N

R
T

(b) N

R
T

A simple model would be

dR

dt
= [bF − dR − c1N ]R ,

dN

dt
= [c1R− dN − c2T ]N and

dT

dt
= [c2N − dT ]T ,

where F = K−R−N−T . This shows that the dN/dt and dT/dt equations do not change. The
3-dimensional nullclines of the predator, N , and the top-predator T therefore stay the same.
That of the resource is solved from [b(K −R−N − T )− dR − c1N ] = 0, which gives a negative
linear relation in each of the sides of the 3-dimensional phase space. The plane will look like a
triangle (Panel a) that moves vertically when K is changed (Panel b).

For N = T = 0 one now obtains R̄ = K − dR/b, which increases linearly with the total amount
of nutrients, K, in the system. When N > 0 and T = 0, one solves R̄ = dN/c1 from dN/dt = 0,
and from [b(K − R̄−N)− dR − c1N ] = 0 one solves that

N̄ =
c1bK − bdN − c1dR

c1(b+ c1)

which increases linearly with K, and becomes positive when K > (bdN − c1dR)/(c1b). When
N > 0 and T > 0 one again solves N̄ = dT /c2 from dT/dt = 0, T̄ from dN/dt = 0, and R̄ from
dR/dt = 0. The steady state resource density again only depends on K when the food chain
has an odd length.

Question 9.1. Migration
A possible good answer has the following sketches:
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a. The model would become

dN1

dt
= i+ r1N1(1−N1 − γ1N2) and

dN2

dt
= i+ r2N2(1−N2 − γ2N1)

b. Given that i� 1 one obtains the sketches in Panels (a)–(c).
c. From the vector field one can see that the steady states close to the carrying capacity are

stable. The steady state in the middle of Panel (a) is stable, whereas that in the middle of
Panel (c) is unstable.

d. In Panel (a) there is normal coexistence. In the other Panels there is no true competitive
exclusion. However, at the steady state near the carrying capacity the density of the rarest
species is very low.

Question 9.2. Nullclines
a. The dx/dt = 0 nullcline obeys y = −e+ dx which means that e+ y− dx = 0. To explain the
x = 0 part of the nullcline, we could assume that x is a replicating population. Thus a model
would be dx/dt = ex+ yx− dx2. This model in agreement with the vector field in the figure.
The dy/dt = 0 nullcline obeys y = a + bx which means that a + bx − y = 0, and a possible
model would be dy/dt = ay + bxy − y2.

b. They stimulate each other, so this would be a symbiosis or mutualism. These are not oblig-
atory symbionts because they will grow (invade) in the absence of the other.

c. The set of all possible states of x and y.
d. The state at P (x, y) is the value of x and y at point P.
e. The set of (x, y) values where the variable does not change.
f. The set of resource values where the consumer does not change.
g. The consecutive points in phase space defined by the solution of the differential equations.
h. No, at one point in phase space there is only one derivative, and trajectories cannot go

through at different angles.

Question 9.3. r/K selected
A possible good answer has the following sketches:
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a. Using the QSSA model of Eq. (9.2), (9.3), and (9.5), and setting β1 � β2, δ1 � δ2, c1 = c2,
and h1 < h2, N1 is r-selected and N2 is a K-selected species. The trajectory therefore remains
close to the horizontal axis because N1 grows much faster (see Panel a). After crossing the
N1-nullcline, the trajectory moves in the direction of the carrying capacity of N2.

b. Although N1 grows faster, N2 has lower resource requirements, R∗2 and wins.
c. r-selected species can be maintained by short transients if there is enough noise or disturbance

in the system.
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d. By Eq. (9.4), i.e., R∗i = hi/[ci(R0i − 1)], the species with the lowest resource requirements,
hi, the highest R0i and the fastest consumption ci is the best competitor. The carrying
capacity, Ki = s(R0i − 1)/hi − d/ci in Eq. (9.7), is an increasing saturation function of the
consumption rate, ci. Hence by increasing c1 of the r-selected species until it wins, i.e.,
R∗1 < R∗2, the carrying capacity, K1, may still be smaller than than of the K-selected species.
See the sketch in Panel (b).

Question 9.4. Patches
A possible good answer has the following sketch:
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p1 + p2 = 1

a. If L = 1− P1 − P2 is the fraction of empty patches one would write

dP1

dt
= b1L− d1P1 and

dP2

dt
= b2L− d2P2 ,

because the reproduction is not related to the current population size.
b. Solving

dP1

dt
= b1 − b1P1 − b1P2 − d1P1 = 0 gives P2 = 1− P1(1 +

d1

b1
) ,

and solving

dP2

dt
= b2 − b2P2 − b2P1 − d2P2 = 0 gives P2 =

b2
b2 + d2

(1− P1) ,

which intersect the horizontal, P2 = 0, axis at P1 = b1
b1+d1

and P1 = 1, respectively (see the
sketch).

c. There is only one steady state, and the vector field shows that it is stable.
d. The carrying capacities P̄1 = b1

b1+d1
< 1 and P̄2 = b2

b2+d2
< 1, and the steady state lies below

the P1 + P2 = 1 line. Thus the patches are never fully occupied.
e. Because the size of the seed bank is not proportional to population size, these populations

are expanding by a source, and not by replication. Extinction is impossible in the presence
of a source.

Question 9.5. Gradients
A possible good answer has the following sketches:
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a. In gradient 1 there is a sharp transition, as if there is a abrupt change in the environmental
conditions in sample seven. In gradient 2 it seems that environmental conditions change more
gradually.

b. Turn the nullclines in the direction of the arrows, while keeping the carrying capacities the
same. See the sketch in Panel (a)-(f).

c. Both environmental gradients can be gradual. If this gradient affects the inter-specific com-
petition the gradual change in the environment can give rise to the sharp cline in gradient 1
or to the continuous transition in gradient 2.

d. The samples have some variation that could be due to noise.

Question 9.6. Density dependent birth rate
A possible good answer has the following sketches:
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a. R0 = b/d or R0 = b
d

a
h+a , depending on its definition.

b. The QSS of the resource is R = 1− aN which when substituted into

aR

h+ aR
gives

1− aN
H − aN

where H = 1 + h/a, which is larger than one. The new consumer equation becomes

dN

dt
=

[
b

1− aN
H − aN − d

]
N .

c. The maximum birth rate is b/H = ab
a+h . Hence R0 = b

d
a

h+a , which is the same as the second
answer in a.

d. To sketch the per capita birth rate as a function of N we first consider the function y = 1−aN
H−aN

knowing that H > 1. For N = 0 this delivers y = 1/H, and for y = 0 we find N = 1/a. A

horizontal asymptote is found by dividing numerator and denominator by N , i.e., y = 1/N−a
H/N−a ,

and letting N →∞ to find that y → 1. A vertical asymptote is located at N = H/a. Because
H > 1 we know that the intersections with the horizontal and vertical axis fall below the
asymptotes. See the sketch in Panel (a). Finally we multiply (scale) the whole function with
the birth rate b to obtain the sketch in Panel (b).

e. This resembles a sigmoid function.
f. The QSS now equals R = 1/(1 + aN) which gives a per capita birth rate of b

1+h/a+hN which
is convex.

Question 9.7. Tilman’s competition model
A possible good answer has the following sketches:
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a. The red dN1/dt = 0 nullcline has a vertical part at R1 = h11d1
b1c11

where the first resource is

limiting, and a horizontal part at R2 = h12d1
b1c12

where the second resource is limiting. Above
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and on the right hand side of this nullcline dN1/dt > 0 (which is “arbitrarily” indicated by
horizontal arrows). The blue dN2/dt = 0 nullcline as a horizontal part located at R2 = h22d2

b2c22
,

and a vertical part located at R1 = h21d2
b2c21

. The upwards arrows indicate the region where
dN2/dt > 0. The derivatives of the resources are not (yet) defined because this diagram is
based upon Eq. (9.30) only. Both resources are essential because the horizontal and vertical
parts of these nullclines define the minimum amounts the species require for growth. Two
qualitatively different examples with intersecting nullclines are given in Panels (a) and (b).
When these nullclines fail to intersect there is no resource density (R1, R2) where dN1/dt =
dN2/dt = 0.

b. The nullclines in Panels (c) and (d) correspond to Tilman diagrams of (a) and (b), respectively
All Panels were made by assuming that N1 consumes more of resource one, whereas N2

specializes on R2, i.e., c11 = c22 = 0.5, and c12 = c21 = 0.25. All Panels have the same birth
and death rates (b1 = b2 = 0.5, d1 = d2 = 0.1), and we have located the intersection point at
the same resource densities by setting

h11d1

b1c11
=
h21d2

b2c21
=
h22d2

b2c22
=
h12d1

b1c12
= 0.4 ,

i.e., h11 = h22 = 1, and h21 = h12 = 0.1 in Panel (a) and h11 = h22 = h21 = h12 = 0.5 in
Panel (b). The steady state is then located at R̄1 = R̄2 = 0.4 and N̄1 = N̄2 = 2 (this can be
studied with the file tilman.R). In Panels (a & c) each species therefore consumes most of the
resource it requires most. In Panels (b & d) they require the same amount of each resource,
but they consume them at different rates. The former leads to stable co-existence (Panel c),
the latter to a “founder controlled” phase plane with an unstable steady state (Panel d).

c. We can study the difference between the two parameter settings by studying the Jacobian of
the 4-dimensional system. Since N1 consumes more of R1 and N2 more of R2 we obtain that
∂R′1/∂N1 = −c11R̄1 = −0.5×0.4 = −0.2 and that ∂R′1/∂N2 = −c21R̄1 = −0.25×0.4 = −0.1.
For resource two this is just the other way around. The local effect of a specialized consumer
on its resource is thus 2-fold larger than that of the other consumer. This is the same in both
parameter settings. The effect of the resources on the consumers can be read by combing
the graphical Jacobian with the full Jacobian. In Panel (a) where the steady state is located
at the vertical part of the dN1/dt = 0 nullcline and hence R1 is limiting, a small increase of
R1 will increase dN1/dt, i.e., ∂N ′1/∂R1 = (b1c11/h11)N̄1 = (0.5× 0.5/1)N̄1 = 0.25× 2 = 0.5,
whereas ∂N ′1/∂R2 = 0 because R2 is not limiting (and we stay on the dN1/dt = 0 nullcline if
R2 is increased). For the second consumer this is just the other way around. Conversely, in
Panel (b) the steady state is located at the horizontal part of the dN1/dt = 0 nullcline and
hence R2 is limiting, a small increase of R1 will not affect dN1/dt i.e., ∂N ′1/∂R1 = 0 whereas
whereas ∂N ′1/∂R2 = (b1c12/h12)N̄1 = (0.5 × 0.25/0.5)N̄1 = 0.25 × 2 = 0.5. For the second
consumer this is just the other way around. Thus, in Panels (a & c) the species that consumes
most of R1 is also limited by R1, whereas in Panels (b & d) the species that consumes most
of R1 is limited by R2. The former is a stable situation and the latter is not (see Section 9.5
and (Tilman, 1980, 1982)).

Question 10.1. Invasion criterion
A possible good answer has the following sketches:
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a. See the sketch in Panel (a)
b. Since N1 and N3 do not compete the model simplifies to

dN1

dt
= rN1(1−N1−αN2) ,

dN2

dt
= rN2(1−N2−αN1−αN3) and

dN3

dt
= rN3(1−N3−αN2)

c. Because N2 ≈ 0 the steady states before invasion is N̄1 = N̄3 = 1 and dN2/dt ' rN2(1−2α).
For invasion one requires dN2/dt > 0 or 1− 2α > 0 giving that α < 1/2.

d. Since N2 has an overlap of one with itself the total overlap with the other species should be
less than the overlap with itself.

e. For N2 = 0 the nullclines of N1 and N3 are perpendicular lines at N1 = 1 and N3 = 1,
respectively. The N2 nullcline intersects the N1 and the N3 axis at 1/α. At the critical
invasion point the dN2/dt = 0 nullcline should go exactly through the point N2 = 0 and
N1 = N3 = 1. See the sketch in Panel (b) When N2 can invade the dN2/dt = 0 nullcline will
intersect at larger N1 = N3 values, and there will be a stable 3-dimensional steady state.

Question 10.2. Symbiosis
A possible good answer has the following sketches:

N1

0 1 2

N2

0

1

2
(a)

N1

N
2

N1

0 1 2

N2

0

1

2
(b)

N1

N
2

N1

0 1 2

N2

0

1

2
(c)

N1

N
2

a. A simple model makes the birth rate a saturation function of the other species and assumes
density dependent death:

dN1

dt
= N1

[
b1N2

h+N2
− d1(1 + e1N1)

]
and

dN2

dt
= N2

[
b2N1

h+N1
− d2(1 + e2N2)

]
.
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The dN2/dt = 0 nullcline is given by

N2 =
1

e2

[
R02

N1

h+N1
− 1

]
,

where R02 = b2/d2. This is a saturation function starting at N2 = −1/e2 when N1 = 0. See
the sketch in Panel (a).

b. Let N1 be the saprophyte:

dN1

dt
= N1

[
b1N2

h+N2
− d1(1 + e1N1)

]
and

dN2

dt
= N2 [b2 − d2(1 + e2N2)] .

c. The other species could merely increase the birth rate:

dN1

dt
= N1

[
b1 +

β1N2

h+N2
− d1(1 + e1N1)

]
and

dN2

dt
= N2

[
b2 +

β2N1

h+N1
− d2(1 + e2N2)

]
,

where βi is the maximum birth rate due to the presence of the symbiont, and bi is the
maximum birth rate in the absence of the symbiont.

d. Yes, just make sure that R0i = bi/di < 1 in the absence of the other species, and (bi+βi)/di >
1 to enable growth in the presence of the symbiont. Panel (c) depicts the typical phase space
when R0i > 1.

Question 10.3. Larvae and adults
a. A simple model would be:

dL

dt
= rA− dL(1 + eL)−mL and

dA

dt
= mL− δA ,

where we assume density dependent death by competition between the larvae. The steady
state can be solved by first setting dA/dt = 0 delivering A = mL/δ. Substituting this into
dL/dt = 0 gives

L̄ =
1

e

[m
d

(r
δ
− 1
)
− 1
]
, Ā =

m

δ
L̄ ,

which requires α = r/δ > 1 and m(α− 1)/d > 1.
b. Adding two predators changes to model into

dL

dt
= rA− dL(1 + eL)−mL− c1LN1 ,

dA

dt
= mL− δA− c2AN2 ,

dN1

dt
= (c1L− d1)N1 and

dN2

dt
= (c2A− d2)N2 .

Solving the steady state of the latter two gives L̄ = d1/c1 and Ā = d2/c2. Substituting this
into dL/dt = 0 and dA/dt = 0 gives

N̄1 =
rd2

c2d1
− m

c1
− d

c1

(
1 +

ed1

c1

)
and N̄2 =

md1

c1d2
− δ

c2
.

Since one can always choose parameters such that N̄1 > 0 and N̄2 > 0 co-existence seems
possible.
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Question 10.4. Control by parasites
a. Define T = S + I as the total population size of susceptible and infected birds, and write

dS

dt
= bT (1− T )− dS − βSI and

dI

dt
= βSI − δI

b. The R0 of the birds is b/d and the carrying capacity is K = 1− 1/R0.
c. The R0 of the parasites is R′0 = βK/δ.
d. S = δ/β = K/R′0.
e. Defining O as the other species one could write dS/dt = bT (1− T −O)− dS − βSI,dI/dt =
βSI − δI and dO/dt = bO(1 − T − O) − d0O, with d0 > d. Whenever b(1 − T )/d0 > 1 the
other species can invade.

f. Thus, if the infection is sufficiently harmful, i.e., T̄ � K, the other species can invade despite
its lower fitness.

g. If each species is sufficiently down-regulated by its parasite the resource density can stay high
and many species can be maintained (Scheffer & Van Nes, 2006).

Question 10.5. Monopolization
a. Yes, since most competition situations are “founder controlled”, species that grow faster are

more likely to outcompete the species that grow slower.
b. No, one would still have that species will survive in a few patches just because they arrived

there earlier, or in greater numbers, than other species.

Question 10.6. Sex
A possible good answer has the following sketches:
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A model with density dependent death rates would be something like

dN1

dt
= N1

[
b1N1

h+N1
− d1(1 + e1N1 + c1N2)

]
and

dN2

dt
= N2

[
b2N2

h+N2
− d2(1 + e2N2 + c2N1)

]
Note that one has to separate birth from death because the sexual reproduction should only
affect reproduction, and not the death. Assuming that the chance to find a mate approaches
one when the population is close to its carrying capacity, i.e., assuming h � K, the carrying
capacity is approximately Ki ' (R0i − 1)/e1. In the absence of sex, i.e., when h → 0, the
nullclines are solved from bi − di(1 + eiNi + ciNj) = 0 delivering the normal straight lines

N2 =
R01 − 1

c1
− e1

c1
N1 and N2 =

R02 − 1

e2
− c2

e2
N1 ,
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which may or may not intersect, intersect in a stable state when there is resource competition,
and intersect in an unstable steady state when there is interference competition. From these
three situations one can sketch the three Panels depicted above. For instance, the dN1/dt = 0
nullcline is given by

N2 =
1

c1

[
R01

N1

h+N1
− 1

]
− e1

c1
N1 ,

which resembles the straight line with slope −e1/c1 for N1 � h, and which gives N2 = −1/c1

when N1 = 0. Panel (a) would correspond to non-intersecting nullclines, Panel (b) to resource
competition (i.e., ci < ei), and Panel (c) to resource competition (i.e., ci > ei). Note that sex
implies an Allee effect, and that (0,0), and the two carrying capacities are always stable (stable
states are marked by closed boxes, unstable states by open boxes).

Question 10.7. Infinite Niche-matrix
a. The partial derivatives of the off-diagonal elements

∂Nj Ni −
∑
j

AijNiNj are 0, 0, . . . ,−AijNi, 0, . . . .

Because all populations have the same steady state, N̄ , they become −αN̄ , −α4N̄ , −α9N̄ .
The partial derivatives on the diagonal

∂Ni Ni −
∑
j

AijNiNj are 1− 2N̄ −
∑
j 6=i

AijN̄ ,

and hence the Jacobian is:

J =

. . . −αN̄ 1− 2N̄ −∑j 6=iAijN̄ −αN̄ −α4N̄ −α9N̄ . . .

. . . −α4N̄ −αN̄ 1− 2N̄ −∑j 6=iAijN̄ −αN̄ −α4N̄ . . .

. . .


Moving one of the 2N̄ on the diagonal into the sum we obtain

J =

(
. . . −αN̄ 1− N̄ −∑AijN̄ −αN̄ −α4N̄ −α9N̄ . . .
. . . −α4N̄ −αN̄ 1− N̄ −∑AijN̄ −αN̄ −α4N̄ . . .

)
Finally because N̄ = 1/

∑
Aij all diagonal elements can be simplified as −N̄ , i.e.,

J =

(
. . . −αN̄ −N̄ −αN̄ −α4N̄ −α9N̄ . . .
. . . −α4N̄ −αN̄ −N̄ −αN̄ −α4N̄ . . .

)
b. The Jacobian is equal to −N̄A, where A is the interaction matrix. The signs of the eigen-

values of the Jacobian are equal to those of the interaction matrix.

Question 11.1. Non-equilibrium co-existence
The best approach is to first make a system where the Monod saturated predator co-exists with
the prey on a stable limit cycle. Then add the second predator, and make sure that it can invade
on this limit cycle. The nullcline of the Monod saturated predator has to be located at a lower
prey value than that of the linear predator to enable the Monod saturated predator to invade
in the steady state of the linear predator with the prey, i.e., h

a2/d2−1 <
d1
a1

.



176 Answers to the exercises

Question 12.1. Islands in a lake
a. Since there will be a constant source of immigrants from the continent the model would be

something like:
dp

dt
= (C + cp)(1− p)−mp .

b. The steady state is

p̄± =
[c− C −m]±

√
[c− C −m]2 + 4cC

2c
,

and since the term in the square root is larger than [c − C −m]2, there is only one positive
solution.

c. The “per capita” growth f = dp/dt/p as a function of p is f = c−C −m+C/p− cp, which
is a line having the vertical axis as an asymptote and a negative slope approaching −c. Since
the slope λ = −c is negative the steady state is stable.

Question 12.2. Population size
A possible good answer has the following sketches:
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a. The number of migrants should be proportional to the total population size: dp/dt = cN(1−
p)−mp.

b. dN/dt = 0 delivers the diagonal line N = kp(1 − d/r), and the dp/dt = 0 nullcline is
N = mp/[c(1 − p)]. Plotting N as a function of p, the latter line leaves the origin with a
slope m/c, and has a vertical asymptote at p = 1. Whenever m/c < k(1− d/r) there will be
an intersection point (see panel (b)). Otherwise there is no intersection point (see panel (a)).

c. The vector field demonstrates that the non-trivial steady state is stable.
d. When the extinction rate decreases with the average population size per patch, i.e., n = N/p,

we will have a very strong effect with a simple model

dp

dt
= cN(1− p)−mp

n
= cN(1− p)−mp2

N
,

which approaches infinite extinction rates when n→ 0.
e. The p-nullcline now becomes N = p

√
m/[c(1− p)], which when plotted as a function of p

leaves the origin with a slope
√
m/c, and also has a vertical asymptote at p = 1. Whenever√

m/c < k(1− d/r) one obtains the non-trivial steady state shown in panel (c).
f. One should conclude that adding an average population size to the model of Levins & Culver

(1971) hardly changes the behavior of the model. The saddle point obtained by Hanksi (1991),
delivering an Allee effect, was an artifact of this particular model.



177

Question 12.3. Tilman
a. Yes, this can occur when the second species is a better colonizer (i.e., when c2

m2
> c1

m1
).

b. Yes, if the second species is absent in the pristine environment, it can invade after the right
amount of habitat destruction if it is a better colonizer.

c. This declines monotonically, just add the two curves in Fig. 12.1b.

Question 13.1. Geritz & Kisdi (2004)
The quasi steady assumption for the resource gives R = e1−bA/r and dE/dt = cbAe1−bA/r − dE
with solution

E(t) =
cbAe1−bA/r

d

(
1− e−dt

)
and Aj+1 = ρAje

−βAj ,

where ρ = cbe(1− e−dτ )/d and β = b/r.

Question 13.2. Insect population
Since the death rate should increase when the amount of resource declines one could write for
the per capita death rate

d = d0 +
d1

1 + r/h
such that

dn

dt
= −d0n−

d1n

1 + r/h
.

Question 13.3. Periodic forcing

Question 14.1. Biomanipulation
A possible good answer has the following sketches:
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Scheffer (1991) proposed the following model:

dA

dt
= A(1−A/k)− pZ A

1 +A
,

dZ

dt
= −mZ + pZ

A

1 +A
− F Z2

h2 + Z2
.
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For F = 0.15, h = 1, k = 10,m = 0.4 and p = 0.5 the phase space is given by Panel (a), which
has three steady states. Following any of these by changing the carrying capacity k yields the
bifurcation diagram of Panel (b). There is a transcritical bifurcation at k = 4, a saddle-node
bifurcation at k ' 9, a Hopf bifurcation at k ' 11.5, and another saddle-node bifurcation at
k ' 19.5. The stable limit cycle that is born at the Hopf bifurcation dies by a so-called “global
bifurfaction” around k = 12 when it glues with the stable manifold of the saddle point in the
middle. The heavy solid line depicts stable steady states, the light solid line unstable steady
states, and the dots are Z values where the limit cycle crosses a Poincaré plane located at an
average A value.

Question 15.1. Fishing herring
The first thing to think about is the parameters of the model. For instance, one could consider
the Herring population in the North sea, and realize that the population will have a carrying
capacity amounting to an enormous number of individuals, or an enormous amount of biomass.
Fortunately, one can always scale the population density in a model by the carrying capacity of
the population. Thus, we can set the carrying capacity, k = 1, realizing that H = 1 actually
corresponds to this enormous Herring population at carrying capacity in the North sea. The
next parameter is the natural rate of increase, r. We first need to define a time-scale, and for
a Herring population with a yearly reproduction cycle, a time-scale of years seems a proper
choice. If t is measured in years we can think of a growth rate per year, and using our biological
intuition about fish of the size of Herring, it seems obvious that a growth rate of 1% per year
seems slow and that they will not easily grow faster than 100% per year. Thus, setting r = 0.1
per year or r = 0.2 per year seem reasonable choices. One can actually check this by studying
the recovery rate of a crashed Herring population in the absence of fishing: setting H = 0.01
and Q = 0, and run the model for a few decades to test how long it takes for the population to
recover and approach its carrying capacity. Once you think you have found realistic parameters,
you can start on the rest of the exercise.
a. Starting at the carrying capacity, and setting Q = rk/4 to study the impact of this maximum

yearly harvest, one finds that the population approaches H = k/2 in the absence of noise.
However, the population will always go extinct if there is enough noise.

b. Now the population will not go extinct.
c. At the steady state dH/dt = rH(1−H/k)− fH = 0, or H̄ = k(1− f/r), the total harvest

is fH̄. Taking the derivative, ∂f , of fH̄, and setting that to zero gives k − (2k/r)f = 0 or
f = r/2. Substituting that into H̄ gives H̄ = k/2, i.e., half of the carrying capacity.

d. The population will no longer go extinct. Even noise on the “optimal” f will not drive the
population to extinction.

e. The optimal harvest fH̄ at f = r/2 is rk/4, which is equal to Q. Thus, catching a fraction of
the Herring population on average allows for the same maximum harvest, but is much more
robust. Note that a shortcut to the same result is to see that this optimum is reached when
the harvest function, fH, crosses the growth function, rH(1 −H/k), in its maximum rk/4
at H = k/2.

Question 15.2. Allee effect
a. The prey nullcline can be described by N = b/e

1+R/k
R

h+R − d1/e, which indeed reflects the
shape of the per capita growth function.

b. Before you can do this you have to think of a particular population, and about what is
causing the Allee effect. We could continue with the Herring of the previous exercise, and let
k = 1 be the Herring density at which the birth rate has reduced to half its maximum value.
The maximum birth rate we could then set to b = 0.3 per year, and argue that the Herring
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have an expected life span of about ten years, by setting d1 = 0.1 per year. Hence, we would
have a natural rate of increase of b − d1 = 0.2 per year (if you thought this was slow, just
increase b). In the absence of an Allee effect (i.e., for h → 0) the carrying capacity of the
population is K = k(R0−1) (see Table 4.1), which for k = 1, b = 0.3 and d1 = 0.1 boils down
to K = 2. If the Allee effect is due to low rates of sexual reproduction at low population
densities, one would have to set h� 2 because a low density corresponds to a small fraction
of the carrying capacity. The predator, N , could be some predatory fish. It seems natural
to allow for a c = 0.1 trophic conversion factor (or scale this to one), and to give the species
at a higher trophic level a longer expected life-span, e.g., set d2 = d1/2 = 0.05 per year to
have a life span of twenty years. Finally we have to make sure that the predator can actually
persist by giving it an R0 > 1. For the current parameters, the R0 of the predator in a prey
population at carrying capacity is 0.1 × e × 2/0.05, implying that we need to set e > 0.25
per predator per year. Qualitatively different cases can be set by varying e: the predator
nullcline can be placed above the carrying capacity (e < 0.25) or below it (e > 0.25), and
then it can be put in the rising or the declining part of the prey nullcline.

c. Just run grind.R in every regime.
d. To re-interpret the dR/dt equation in terms of whales, we better give them a long life-span,

e.g., setting d1 = 0.02 gives 50 years, and a slow birth rate, e.g., b = 0.04 allowing for a
maximum yearly growth rate of b− d1 = 0.02 per year, which is slightly slower than that of
humans. Scaling the population size such that k = 1 is the density at which the birth rate is
half-maximal, the carrying capacity of such a population of whales, in the absence of the Allee
effect, remains K = k(R0 − 1) (see Table 4.1), which for k = 1, b = 0.04 and d1 = 0.02 boils
down to K = 1. The Allee effect can then be incorporated by setting h � 1. If the whales
were to grow logistically, the maximum quotum would be Q = rK/4, i.e., Q = 0.02/4 = 0.005.
We can study the maximum quotum for whales obeying this non-logistic equation by plotting
the whale nullcline as a function of Q for different values of the Allee effect parameter h. For
instance, set h = 0 and have whales (R) and quotum (Q) on the axes of a 2-dimensional
phase space, and read of what the maximum value of Q is.

Question 15.3. Paradox of enrichment
a. Scale the density of the algae at which the birth rate vanishes to k = 2 and scale time by

their expected life span such that d1 = 1 (which implies a time scale of about one week). We
could give the algae a maximum rate of increase of b − d1 = 1 by setting b = 2. Because
the carrying capacity K = k(1 − 1/R0) (see Table 4.1) we obtain that K = 1. Because the
saturation of the functional response probably occurs at prey densities below the carrying
capacity, it seems wise to set h � K, e.g., h = 0.1. We could scale the predator biomass
such that the trophic conversion factor becomes c = 1, and let us give the predators a 2-fold
longer life span , i.e., d2 = 0.5. To give the predator an R0 = ce/d2 = e/0.5 > 1 we could
set e = 0.6 such that the initial growth rate of the predator at high prey densities is about
0.1, i.e., 10-fold slower than the algae. For these values the predator nullcline is located at
h/(R0− 1) = 0.1/(0.6/0.5− 1) = 0.5, which is just at the right hand side of the maximum of
the prey nullcline at (K − h)/2 = 0.45.

b. Different possibilities for the location of the predator nullcline, without changing that of the
prey, can be made by changing the death rate of the predator.

c. The carrying capacity can be changed by altering the density k at which the birth rate of the
algae vanishes.

d. First settle into a non-trivial steady state by giving proper initial values and then issuing the
f<-newton() command. Then call continue(f,x="k",xmin=0.1,xmax=5,y="N") to define
a horizontal axis (where we avoid k = 0 because the model is dividing by k), and we keep the
predator on the vertical axis.

e. Replace the death rate of the predators by d2(1 + εN).
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f.
g.

Question 15.4. Luckinbill
a. Using the model

dP

dt
= aP (1− P/K)− bDP

h+ P
and

dD

dt
=

cDP

h+ P
− dD ,

we could set a = 1 and K = 1 to scale time and carrying capacity by the growth rate and
carrying capacity of the prey Paramecium. A typical value of h would then be h = 0.1.
Scaling the predator Didinium density such that the conversion factor disappears we could
basically set b = c. This implies that we should keep d < c to allow the predator to possibly
persist.

b. First find values of h and b = c such that the predator nullcline is located at very low prey
densities. Increase h such that it moves to the right, and decrease K such that the top of the
prey nullcline moves to the left.

c. Replacing the saturated functional response with the mass-action bDP term allows for similar
results because the noise will not allow trajectories to approach the stable spiral point. In
the experiments this will look like an oscillation.

Question 15.5. Biomanipulation
A possible good answer has the following sketches:
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a. For F = 0.15 and k = 10 one obtains Panel (a). The “green starting point” where the lake is
turbid due to eutrophication would correspond to the stable steady state close to the carrying
capacity.
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b. Removing the fish by setting F = 0 would lead to a trajectory approach the limit cycle
shown in Panel (b). Setting F = 0.15 after this limit cycle has been approached, leads to
the picture in Panel (c) where the system approaches the steady state with less algae and
much more zooplankton. Thus the lake has switched states and has become much more clear
permanently by a single perturbation.

c. Keeping F = 0.15 one could increase the carrying capacity from k = 5 to k = 15 (see Panel
(d)). At k = 5 the only steady state is the one close to the carrying capacity, which should
now correspond to a relatively clear lake (because A < 5). Increasing the carrying capacity
the system is expected to stay in the same steady state, but when k = 10 or k = 15 we
call the same state the turbid steady state, while a new ”clear” steady state appears at high
values of Z when k ' 9. Note that this analysis is not completely realistic because the fish
density should actually change when we change the carrying capacity. One could try this by
adding a dF/dt equation.

Question 15.6. Non-linear density dependence

a. The four models already have the same natural rate of increase, b− d, and the same fitness
R0 = b/d (see Chapter 16). To rescale the carrying capacities, one can define K = 1, and
compute the corresponding k parameters:
1. 1 = 2k[1− 1/R0] gives k = 1/(2[1− 1/R0]).
2. 1 = k[R0 − 1] gives k = 1/(R0 − 1).
3. 1 = k

√
R0 − 1 gives k = 1/

√
R0 − 1.

4. 1 = k
ln[2] ln[R0] gives k = ln 2

lnR0

b. Computer simulations with models where the carrying capacities and the initial growth rates,
b− d, are identical, will show that the four sigmoid curves are very similar.

Question 15.7. Linear models

The steady state is x = y = 0 and the Jacobian, J =

(
a b
c d

)
, is the same as the interaction

matrix. Use Fig. 18.8 to create an interaction matrix with the eigenvalues corresponding to the
different types of steady states.

Question 15.8. Noise and r and K-selected species
r-selected species recover more quickly from disturbances of the population density, but can also
fluctuate more than K-selected species by tracing the variation in parameter values.

Question 17.1. Space
A possible good answer has the following sketch:
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a. Let N1 be the population size of the large species that grows slowly, N2 be that of the small
species, and define the amount of empty space as L = 1− 2N1−N2, where the total amount
of space as scaled to one. One writes

dN1

dt
= bN1L− dN1 and

dN2

dt
= 2bN2L− dN2 with R01 =

b

d
and R02 = 2R01 .

From the fitnesses one can conclude that the small species N2 should win.
b. Solving dN1/dt = 0 gives N1 = 0 and 1 − 2N1 − N2 − d/b = 0 or N2 = 1 − 1/R01 − 2N1.

Solving dN2/dt = 0 gives N2 = 0 and 1− 2N1 −N2 − d/(2b) = 0 or N2 = 1− 1/R02 − 2N1.
The nullclines are parallel and intersect the N2 axis at N2 = 1− 1/R01 and N2 = 1− 1/R02 ,
respectively. Since R02 = 2R01 the N2 nullcline is the upper line, and N2 wins. See the phase
space, note that the axes have different scales.

c. The carrying capacities are N̄1 = 0.5[1− 1/R01 ] and N̄2 = 1− 1/R02 , respectively. Both are
smaller than one, which was the total amount of space.

d. N2 wins because of its higher fitness, it also has a larger carrying capacity.

Question 17.2. Nitrogen
a. R0 = bi/di
b. From bi

T−Ai
hi+T−Ai − di = 0, or R0i

T−Ai
hi+T−Ai = 1, one obtains Āi = Ki = T − hi

R0i
−1 for each

species.
c. For the intersect of the A1 nullcline with the A2 axis we solve the very similar R01

T−A2
h1+T−A2

= 1

to obtain A2 = K1. From the general R01
T−A1−A2

h1+T−A1−A2
= 1 we solve A2 = K1 − A1. The

A1 nullcline has slope −1 and runs from A2 = K1 on the vertical axis to A1 = K1 on the
horizontal axis. The A2 nullcline runs parallel to this, from A2 = K2 on the vertical axis to
A1 = K2 on the horizontal axis.

d. The nullclines cannot intersect, so there is no equilibrium co-existence. Around the equilib-
rium nitrogen will always be depleted, so it makes no difference that the birth rate saturates
at high nitrogen levels.

e. Because the nullclines run from A2 = Ki to A1 = Ki, the species with the largest carrying
capacity always wins. Computing the critical nitrogen density, N∗i , for the each species from
R0i

N
hi+N

= 1, we find that N∗i = hi
R0i
−1 , and hence that Ki = T −N∗i . Thus, the species with

the lowest resource requirement, N∗i , necessarily has the largest carrying capacity.

Question 17.3. Food chain
A possible good answer has the following sketches:
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R̄ =
s

dR
R̄ =

dN

ca

R̄ =
scb

dRcb + adM

R̄

s s

N̄
N̄ =

dM

cbN̄ =
sca

dN
� dR

a

a. From dR/dt = 0 with N = 0 one solves R̄ = s
dR

.

b. From dN/dt = 0 with M = 0 one solves N̄ = 0 and R̄ = dN
ca .

c. Starting with the simplest equation, i.e., dM/dt = 0, one solves M = 0 N̄ = dM
cb . Substituting

the latter into dR/dt = 0 gives s = R(dR + adM
cb or R̄ = scb

dRcb+adM
.

d. Since their maximum per capita birth rate is caR̄, one obtains R0 = caR̄
dN

= cas
dNdR

.
e. See the sketch in Panel (a). Two transcritical bifurcations, one where the consumer becomes

non-zero, and one where the predator invades.
f. See the sketch in Panel (b)

Question 17.4. Write a natural model

dF

dt
= rF (1− F/K)− aFB and

dB

dt
=

iF

h+ F
− eB ,

where F are the fish, B the birds, h the fish density where immigration (i) is half maximal, and
e is the emigration.

Question 18.1. Sketch a few functions
A possible good answer has the following sketches:
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(d)

Y
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(e)

x
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a− d

q +K0
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a. y = h
h+x = 1 when x = 0. For x → ∞, y → 0. For x → −∞, y → 0. There is an vertical

asymptote at x = −h. See the sketch in Panel (a).
b. y = x

h+x = 0 when x = 0. For x → ∞, y → 1. For x → −∞, y → 1. There is an vertical
asymptote at x = −h. See the sketch in Panel (b).

c. L = aA
c+bA with horizontal asymptote L = a/b or A = cL

a−bL with vertical asymptote L = a/b.
See the sketch in Panel (c).

d. Write Y = 0 and X = (a/b)(1− Y )(c+ Y ). See the sketch in Panel (d).
e. Intersection with x-axis: x = ak−dq−dk

a−d ,

intersection with y-axis: y = ak
q+k − d

Horizontal asymptote: y = a− d, and vertical asymptote: x = q+ k. See the sketch in Panel
(e), where the dashed lines denote the two asymptotes.

Question 18.2. Linearization
a. ∂xx

2 = 2x
b. For x = 3 one obtains x2 = 9
c. y = 9 + 0.1× 2× 3 = 9.6. The true value is 3.12 = 9.61.

Question 18.3. Scaling
The Lotka Volterra equations are

dR

dt
= [r(1−R/K)− aN ]R and

dN

dt
= [caR− d]N

a. Defining x = R/K and dividing all rates by r one obtains

dKx

dt
= [(1−Kx/K)− aN/r]Kx and

dN

dt
= [

ca

r
Kx− d/r]N

and by defining α = a/r this simplifies into

dx

dt
= [(1− x)− αN ]x and

dN

dt
= [cαKx− d/r]N

with only one parameter in the prey equation. Defining y = αN , i.e., N = y/α, we remove
that parameter from dx/dt

dx

dt
= [(1− x)− y]x and

1

α

dy

dt
= [cαKx− d

r
]
y

α

where dy/dt can be simplified by lumping the parameters

dy

dt
= [γx− δ]y ,

where γ = cαK = cKa/r and δ = d/r.
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b. We went from five to two parameters for which we even know that is a scaled fitness R0 = γ/δ,
and that γ/δ > 1 is required for co-existence.
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