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ABSTRACT

The increased use of solar photovoltaic (PV) cells as energy sources on electric grids has created the need
for more accessible solar irradiance and power production estimates for use in power modeling software. In
the present paper, a novel technique for creating solar irradiance estimates is introduced. A solar PV resource
dataset created by combining numerical weather prediction assimilation model variables, satellite data and
high resolution ground-based measurements is also presented. The dataset contains ≈152,000 geographic
locations each with ≈26,000 hourly time steps. The solar irradiance outputs are global horizontal irradiance
(GHI), direct normal irradiance (DNI), and diffuse horizontal irradiance (DIF). The technique is developed
over the United States by training a linear multiple multivariate regression scheme at ten locations. The tech-
nique is then applied to independent locations over the whole geographic domain. The irradiance estimates are
input to a solar PV power modeling algorithm to compute solar PV power estimates for every 13-km grid cell.
The dataset is analyzed to predict the capacity factors for solar resource sites around the USA for the three
years of 2006−2008. Statistics are shown to validate the skill of the scheme at geographic sites independent
of the training set. In addition, it is shown that more high quality, geographically dispersed, observation sites
increase the skill of the scheme.

1. Introduction

Over the last decade the use of solar photovoltaics (PV)
has expanded dramatically. The deployment of solar PV
has societal benefits, such as: no pollution from elec-
tric power production, very little water use, abundant re-
source, silent operation, long lifetime, and little main-
tenance. However, the application of solar PV to elec-
tric grids has down-sides, most notably the variability of
power output, which can add strain to the system. The
variable nature of solar PV could hamper further deploy-
ment or diminish the carbon mitigation potential due to
more reserves needed on the electric grid to compensate
for fluctuations in the power output. For a more detailed
overview of solar PV, see e.g., Dominguez-Ramos et al.
(2010); Lueken et al. (2012); Mills and Wiser (2010);
Parida et al. (2011); Solanski (2009).

When estimating the solar PV power output the follow-
ing two step procedure is generally carried out. First, me-
teorological data is supplied and the solar irradiance is es-
timated, and then the solar irradiance is input into a power
modeling algorithm with information about the solar PV
cell and temperature Deshmukh and Deshmukh (2008);
Huang et al. (2012); Zhou et al. (2007). The solar irra-
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diance can be estimated for a past time (hind-casting), the
present time (analysis), or for a future time (forecasting).
Once the solar irradiance is found, the techniques for cal-
culating the power output are essentially the same. The
technique developed in the present paper takes historical
data and performs the algorithms as if it were the present
time to create an analysis.

If the input solar irradiance for the PV power modeling
is inaccurate then the power output will be incorrect re-
gardless of the precision of the power algorithm. There has
been intensive research into accurate solar irradiance mea-
surements, see e.g., Geuder et al. (2003); Myers (2005)
and improving the prediction of solar irradiance, see e.g.,
Kratzenberg et al. (2008); Paulescu et al. (2013); Wong
and Chow (2001). The prediction of solar irradiance usu-
ally falls in two categories. First, short term prediction
using an array of novel techniques, for example, neural
networks, see e.g., Wang et al. (2011). Secondly, and
more commonly, using satellite data as a proxy the so-
lar irradiance is computed, see e.g., Hammer et al. (1999);
Houborg et al. (2007); Vignola et al. (2007). The afore-
mentioned methods also use basic numerical weather pre-
diction (NWP) model outputs or ground data. The present
paper relies upon NWP assimilation data of hydromete-
ors complemented with satellite data. The solar irradiance
(shortwave and longwave fields) from the NWP assimila-
tion model are not used because at time zero there is not
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a model output for it with the model being used. More-
over, some NWP assimilation models do not currently give
direct-normal (the amount of radiation per unit area re-
ceived by a plane perpendicular to the rays that come from
the sun in a straight line) nor diffuse (the amount of radia-
tion per unit area that does not arrive in a direct path from
the sun) radiation output fields.

Recently, there have been several studies on numeri-
cal weather prediction and solar energy, see e.g., Math-
iesen et al. (2013); Mathiesen and Kleissl (2011); Perez
et al. (2013). In addition, there has been extensive
effort at NREL to produce the national solar radia-
tion database (http://rredc.nrel.gov/solar/old_
data/nsrdb/) and there are commercial products avail-
able that provide resource mapping for the US (from e.g.
Vaisala, Clean Power Research, or GeoModel Solar). All
these products are estimates, are not produced in concert
with other weather-driven renewables, and are subject to
improvement. The improvements could be higher spatial
resolution, higher temporal resolution and reducing biases
or RMSE. Nevertheless, the production of these products
shows the growing need within the US for datasets of so-
lar irradiance and power. In theory, all these products can
have the procedure to be outlined in the present paper ap-
plied to them (to further enhance the accuracy of the re-
sults). The model developed in the present paper finds esti-
mates for the entire US at a spatial discretization of 13-km
and temporal resolution of one hour for three years. The
scale of the model and its inputs is a first and is a demon-
stration that will be applied to much larger datasets in the
near future. It is also the first to combine satellite, NWP
assimilation data, and ground based observations for solar
irradiance estimates using multiple multivariate linear re-
gression over such a wide spatial and temporal range with
high resolution.

To produce accurate solar irradiance estimates the
use of excellent quality solar measurements is funda-
mental. The United States has many such high qual-
ity measurement networks. Two of them are used
in the present paper: the SURFace RADiation budget
(SURFRAD) network [http://www.esrl.noaa.gov/
gmd/grad/surfrad/] and the Integrated Surface Irradi-
ance Study (ISIS) Network [http://www.esrl.noaa.
gov/gmd/grad/isis/]. For more information on these
two networks, see e.g., Augustine et al. (2005); Hicks et al.
(1996); Wang et al. (2012). The present paper uses all
seven of the SURFRAD sites and five of the ISIS sites for
the majority of the solar irradiance measurements. The
locations of the SURFRAD sites are: Bondville IL, Ta-
ble Mountain CO, Desert Rock NV, Goodwin Creek MS,
Fort Peck MT, Penn State University PA, and Sioux Falls,
SD. The locations of the ISIS sites are: Albuquerque NM,
Madison WI, Salt Lake City UT, Sterling VA, Hanford
CA. There are three sites from the ISIS network that were

not active during the study dates of 2006–2008 and, there-
fore, are not included (Seattle WA, Bismarck ND, and Tal-
lahassee FL). The locations of the measurement sites are
shown in Fig. 1.

FIG. 1. Geographic locations of the SURFRAD (blue) and ISIS (red)
network sites. Images courtesy of Global Monitoring Division, National
Oceanic Atmospheric Administration.

To investigate the validity of the scheme employed,
seven other publicly available solar irradiance measure-
ment sites are leveraged to compare the solar irradi-
ance estimates and the observations at these independent
sites. Two sites, Elizabeth NC and Golden CO, were ac-
quired from Measurement and Instrumentation Data Cen-
ter (MIDC) run by the National Renewable Energy Labo-
ratory (NREL) [http://www.nrel.gov/midc/] and the
remaining five sites (Burns OR, Silver Lake OR, Hermin-
ston OR, Moab UT, and Dillon MT) from the University
of Oregon Solar Radiation Monitoring Laboratory [http:
//solardat.uoregon.edu/SolarData.html]. Addi-
tionally, one ISIS (Hanford CA) and one SURFRAD
(Penn State University PA) location were reserved exclu-
sively to serve as further validators. In total, three years of
data (2006–2008) at ten training and nine validation sites
were concatenated for the proposed method.

The primary goal of the present paper is to provide a
novel technique for computing solar irradiance and solar
PV power estimates that can be applied to any weather
model. The secondary goal is to produce a high quality
demonstration resource mapping dataset of solar irradi-
ance and solar PV power over the United States at high
resolution (13-km, hourly). The paper is organized as fol-
lows: section 2 explains the basic methods of the tech-
nique, its mathematical underpinning, and the data pro-
cessing; section 3 contains the procedure carried out for
the solar irradiance estimates, along with the statistics as-
sociated with its implementation; section 4 explains the
power modeling algorithm using the solar irradiance as in-
puts; finally, in section 5, the conclusions and future work
are discussed.
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2. Data and Methods

The method used in the present paper for solar irradi-
ance estimates is linear multiple multivariate regression,
see e.g., Pearson (1908); Stanton (2001). The first task is
to collect all the data that is needed: NWP assimilation
model variables on an hourly basis, GOES-East satellite
data for the continental USA, and ground based measure-
ments of global horizontal irradiance (GHI), direct-normal
irradiance (DNI) and diffuse horizontal irradiance (DIF).
The GHI is the total amount of irradiance falling on a hor-
izontal unit area. The DNI is defined as the amount of
irradiance falling on a unit area that is perpendicular to the
rays propagating in a straight line from the sun. The DIF is
the amount of irradiance falling on a horizontal unit area
that is not directly from the sun. The satellite measure-
ments are at 15 minute temporal resolution for the years
2006–2008. There is a percentage of time when there was
not any satellite data available due to full disk images,
maintenance and other malfunctions which resulted in a
dataset with 87.99% of the hours having all of the wave-
lengths required.

The numerical weather prediction assimilation
model used is the 13-km Rapid Update Cycle (RUC)
[http://ruc.noaa.gov/]. The satellite data is ob-
tained from the Geostationary Operational Environmental
Satellite (GOES) East [http://www.ssec.wisc.edu/
datacenter/archive.html]. All of the data are pub-
licly available. The RUC was used because a dual dataset
with wind and solar PV power that are on a synchronous
temporal scale and spatial grid is desired. Moreover, the
technique (or model) is devised to be as accessible as
possible; so that as many users as possible can utilize it
with different models and geographic areas.

The author at the time of writing were only able to han-
dle the data from the GOES-East satellite. It would have
been beneficial to have a combination of the GOES East
and West satellite data. The parallax effect created by only
having the GOES East data is minimized by NOAA algo-
rithms for use in NWP models, and thus is assumed to
be negligible on the regression results. It is understood,
however, there is still an effect. The regression would
be more successful with blended satellite data. There are
five channels of the satellite data utilized; four in the in-
frared spectrum [3.8− 4.0 µm, 6.5− 7.0 µm (water va-
por), 10.2−11.2 µm, and 11.5−12.5 µm] and one in the
visible spectrum (0.55− 0.75 µm). The data are simply
the unsigned bit count values on a scale of 0 to 255. The
count values (B) can be converted to temperature (T ) using
the formulae:

T =
1
2
(660−B) 0≤ B≤ 176,

T = 418−B 176 < B≤ 255.
(1)

The temperature in Eq. (2) has units of Kelvin. The count
values are used instead of the temperature because they

stretch out the highest temperatures (0.5 K per count) and
map directly (one-to-one) to the lowest temperatures (1 K
per count). The geographic resolution of the satellite data
is 4-km, except for the visible which is 1-km. Since the
spatial resolution of the RUC is at 13-km and the tempo-
ral resolution is 60 minutes, interpolations were performed
to bring the satellite data to the RUC discretization. The
satellite data is re-gridded to the RUC resolution for three
reasons. First, because coarser resolution is computation-
ally easier for the demonstration dataset. Secondly, the
required dataset is designed to be coincident with a wind
dataset Clack et al. (2016) on the 13-km grid which utilizes
the same model physics. Finally, interpolating from a finer
resolution to a coarser one will smooth the data, whereas
the reverse will be an extrapolation of data and is subject
to more errors. The spatial regridding is performed using
weighted data points from nearby cells and a cubic spline
fit from 4-km (and 1-km) to the 13-km grid. The temporal
interpolation was only used if the top of the hour (hh:00)
was not available (when the NWP assimilation model data
is output) due to maintenance of the satellite or full disk
scans. A linear interpolation was applied for successive
15-minute intervals around the top of the hour up to a max-
imum of 45 minutes each side of that hour. If there was no
data for the whole period of (hh-1):15–hh:45 no interpo-
lation is applied and no satellite data is reported. In total,
a dataset was created that contained all five channels on
23,145 hours of the possible 26,304 hours between 2006–
2008. Due to missing satellite data, multiple regressions
were performed to increase the accuracy of the solar ir-
radiance estimates in the absence of some of the satellite
channels.

The RUC is cycled hourly for the whole three-year pe-
riod of 2006–2008. The RUC assimilates thousands of
measurements across the contiguous USA. The 3-D data
assimilation matrix were downloaded for each hour for
the three years. For the purposes of the solar irradiance
modeling, the following variables were extracted from the
data: water vapor, cloud water, rain, cloud ice, snow, grau-
pel, and temperature at 2 m. All the variables, except
temperature, are the total throughout the vertical column
within the model. The variables were chosen because of
their known direct impact on solar irradiance attenuation.
When all the data was extracted there were 25,663 hours
of the 26,304 possible (97.6%).

In addition to the satellite and NWP assimilation data,
the solar irradiance falling onto the top of the atmosphere
is computed for each hour. The irradiance at the top of
the atmosphere takes into account the eccentricity of the
Earth’s orbit. The average extraterrestrial irradiance (I0),
about which the irradiance fluctuates, is 1360.8 Wm−2

(Kopp and Lean 2011; Vignola et al. 2012). The equa-
tion for the extraterrestrial irradiance outside the Earth’s
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atmosphere (normal to the photosphere of the sun) is

DNI0 = I0 ·
(

Rav

R

)2

, (2)

where Rav is the mean sun-earth distance and R is the ac-
tual sun-earth distance at a specific instant. An approxi-
mation for (Rav/R)2 was used:

(
Rav

R

)2

≈ 1.000110+0.034221 · cos(δ )

+0.001280 · sin(δ )+0.000719 · cos(2δ )

+0.000077 · sin(2δ ). (3)

Here δ = 2πd/365.242 radians, and d is the day of the
year (Spencer 1971). The error associated with the Fourier
approximation is very small (0.0001%). Another parame-
ter that was computed for the dataset was the solar zenith
angle (sza). The solar zenith angle is defined as

cos(sza) = sin(lat) · sin(dec)
+ cos(lat) · cos(dec) · cos(ha), (4)

where dec is the declination angle, ha is the hour angle,
and lat is the latitude in radians. The declination angle
can be approximated by (Spencer 1971)

dec = ε · sin[δ +
π

180
· (279.93+1.915 · sin(δ )

−0.0795 ·cos(δ )+0.02 ·sin(2δ )−0.00162 ·cos(2δ ))]
(5)

where ε is the Earth’s axial tilt or obliquity of the ecliptic
in radians (0.409173c). The hour angle is simply com-
puted as

ha = π ·
(

1− hr
12

)
− lon, (6)

with hr being the hour of the day in UTC and lon is the
longitude in radians. Equation (6) applies when lon < 0
(as is the case for the contiguous USA); when lon≥ 0 then
ha = π(hr/12−1)+ lon.

The ground based observations of solar irradiance are
taken from publicly available sites across the contiguous
USA. Both the SURFRAD and ISIS sites have a measure-
ment frequency of 3 minutes. Averages of the solar irra-
diance measurements were taken over time to compensate
for the fact that the SURFRAD and ISIS sites are point
measurements and the NWP assimilation model variables
are over a gridded area. The average are taken from 6
minutes before the top of the hour to 6 minutes after the
top of the hour (5 measurements). The averaging time
was chosen to balance the need for accurate measurements
along with the need for a reliable average value to use in
the regression. It is designed to be short enough that the

clouds do not have enough time (on average) to advect
fully across the RUC cell, but long enough to remove scat-
tered cloud in a small percentage of the box which hap-
pens to be over the measurement site at a single time. The
chosen time scales gave the best overall performance; de-
fined as the lowest bias and RMSE values for the training
set comparisons. Solar irradiance measurement averages
that were produced from all of the data points were used.
All the times of measurements were shifted to Coordinated
Universal Time (UTC) to make sure all data at different lo-
cations match with the NWP and satellite data. Only time
steps which had both measurements of DNI and DIF were
included. The DNI is measured at all sites with a Normal
Incidence Pyrheliometer, while the DIF is measured with
an Eppley 8-48 ”black and white” pyranometer. The ir-
radiance measurements are spectrally integrated between
280 and 3000 nm. The SURFRAD and ISIS sites do mea-
sure GHI, however, the measurements are less accurate
than calculating the GHI from the DNI and DIF measure-
ments, known as the component-sum technique Michalsky
et al. (2003)

GHI = DNI · cos(sza)+DIF. (7)

The instrument errors were taken to be ±1% of the ob-
served value (see documentation at http://www.esrl.
noaa.gov/gmd/grad/instruments.html). The in-
strument errors are in a simplistic form for computational
expedience, however, it is recognized that for a more ac-
curate regression, the errors should be taken for each in-
strument at each site. The SURFRAD and ISIS sites were
chosen because of their high quality, regular servicing and
calibration.

Once the NWP assimilation data, ground measure-
ments, and satellite data are collated, the linear multiple
multivariate regression can be performed. The regression
can be represented mathematically as

Yn×p = Xn×(r+1) ·β(r+1)×p + εn×p (8)

where Yn×p are the endogenous variables or regres-
sands, Xn×(r+1) are the exogenous variables or regressors,
β(r+1)×p are the effects or regression coefficients and εn×p
are the disturbance or error terms. In Eq. (8), n is the num-
ber of observations, p is the number of different properties
modeled and (r+1) is the number of independent inputs.
For our specific cases: Y are the ground based measure-
ments of GHI, DNI, and DIF, X are the NWP assimilation
model variables and satellite data, ε is the residuals from
the model vs data and β are the regression coefficients to
be applied to all other locations when the training set has
been regressed against. It is assumed that the expected
value of the error term is zero; that is E(εi) = 0. It was also
assumed that the errors are independent between species
or irradiance; that is cov(εi,εk) = σikI, i,k = 1,2, ..., p.
The irradiance species are dependent, however, assuming
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they are not does not significantly change the result of the
regression compared with performing them separately (the
RMSE and bias are the same to two decimal places). Com-
putationally, the linear multiple multivariate regression is
more efficient. The solution of the linear multiple multi-
variate regression can be found to be

β̂ =
(
X ′X

)−1 X ′Y, (9)

with β̂ being the estimators of the regression. Equation (9)
is derived by minimizing Eq. (8). The minimization finds
the smallest sum of deviations from all the independent
variables. The estimators are placed into

Iq =
r+1

∑
j=1

β̂ j · x j (10)

to model the irradiance at all locations over the domain be-
ing studied. Iq is the estimated GHI, DNI, or DIF at a sin-
gle instant (hour). There are numerous software packages
that find the solution of Eq. (8). The IDL Advanced Statis-
tics package was used to perform the regressions. The al-
gorithm takes advantage of single value decomposition to
ensure that the matrix inversion is accurate. When the re-
gressions are carried out analysis of variance (ANOVA)
can be performed to determine the performance of the
technique. Once the values for each β̂ j are found, those
values can be applied throughout the contiguous US.

3. Solar Irradiance Estimates

As established in section 2, satellite data, numerical
weather model assimilation data, and ground-based mea-
surement data that have been interpolated to exactly the
same gridded space over the contiguous USA with a tem-
poral resolution of an hour were obtained. The ground-
based measurements are at ten different sites for the re-
gression and nine independent sites for validation pur-
poses. Once the quality control and night-time removal
had taken place, 32 different regressions were performed
for each of the irradiance species. The large number of
regressions was required to account for times when some
(or all) of the satellite data was unavailable. To get the
most comprehensive dataset possible required carrying out
the regression with data being denied to replicate missing
data. Training the regressions in this manner allows for all
eventualities when applying the technique to sites outside
the training cells. In addition, a further regression with
just the satellite data (not assimilation data) was computed
to compare our new technique with the simple technique
of regressing only against satellite data and the extrater-
restrial irradiance. For the sake of brevity, the results of
every single regression is not shown, but rather the results
from the three main regressions are shown; the ones that
includes all the data; the ones that include only the satel-
lite data; and the ones that includes only the assimilation

data. Further to this, comparisons between the overall out-
put from the procedure (which uses the appropriate regres-
sions when necessary) to the measurements at the training
and validation sites is performed.

The regressors, x j, for Eq. (8) are; x0 constant, x1 total
solar irradiance at the top of the atmosphere, corrected for
the variability of the distance of the Earth from the Sun,
multiplied by the cosine of the zenith angle, x2 water va-
por, x3 cloud water, x4 rain, x5 cloud ice , x6 snow, x7
graupel, x8 2 m temperature, x9 4-micron satellite, x10 11-
micron satellite, x11 13-micron satellite, x12 visible satel-
lite and x13 satellite water vapor. Thus, x0 and x1 are cal-
culated, x2− x8 are the RUC assimilation model hydrom-
eteors, and x9− x13 are the satellite measurements.

The linear multiple multivariate regression was per-
formed over the entire three years of 2006–2008 to im-
prove the accuracy of the procedure. The total number
of training data points is 81,434 for each of the irradi-
ance species, which is very dense. However, it was found
that each addition of an extra site improved the regressions
performance in terms of mean biased error (MBE), root-
mean-squared error (RMSE), and coefficient of variation
(CV), and thus the regression has not been saturated or
over fitted. Additional sites would be most beneficial from
areas of poorly sampled climates, that is remote locations
from the existing training set of locations.

Increasing the number of training data points will in-
crease the value of the regular definition of the multi-
ple linear correlation coefficient (the dimensional exten-
sion of R2, so the symbol is retained), thus when analyz-
ing the statistics only the adjusted version is computed,
R2, which takes into account the additional data points by
(Theil 1961)

R2
= 1− (1−R2)

ρ−1
ρ−η−1

= R2− (1−R2)
η

ρ−η−1
(11)

where η is the number of regressors and ρ is the sample
size.

The linear multiple multivariate regression coefficients
are shown in Tables 1–3. The A denotes the regression
that includes all the data, B designates the regression that
includes only the satellite data, and C represents the re-
gression that only includes the assimilation data. To reit-
erate, when the coefficients are applied to locations out-
side the training domain, the model utilizes the best of the
32 multivariate regressions based upon the data available
for that time step. As the linear multiple multivariate re-
gression can result in negative values, a non-negative filter
is applied and set negative values to zero. The tabulated
form of the regression coefficients allows us to compare
which terms significantly change when the regression is
altered. For example, it can be seen that β̂1 is almost com-
pletely unchanged between the three regressions in Table
1, which is to be expected as the coefficient relates how the
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TABLE 1. RUC Assimilation Model GHI Regression Coefficients.
The β̂ j are the coefficients that multiply the regressors x j (written out in
the text) that linearly combine to provide the irradiance estimates. The
regression with both the assimilation and satellite data is GHI A, the
satellite only regression is GHI B, and the assimilation only regression
is GHI C.

β̂0 β̂1 β̂2 β̂3 β̂4

GHI A 7.16E+02 6.94E-01 -2.12E+01 -2.11E+02 9.19E+01

GHI B 1.13E+01 6.96E-01 - - -

GHI C -7.27E+02 6.59E-01 -4.35E+01 -4.47E+02 2.51E+02

β̂5 β̂6 β̂7 β̂8 β̂9

GHI A -7.48E+01 -7.12E+01 6.17E+02 -2.06E+00 8.66E-01

GHI B - - - - 2.37E+00

GHI C -4.02E+02 -1.92E+02 1.52E+03 2.69E+00 -

β̂10 β̂11 β̂12 β̂13

GHI A -3.71E+00 1.83E+00 -1.36E+00 5.28E-01 -

GHI B -4.59E+00 2.21E+00 -1.23E+00 3.78E-01 -

GHI C - - - - -

TABLE 2. RUC Assimilation Model DNI Regression Coefficients.
The β̂ j are the coefficients that multiply the regressors x j (written out in
the text) that linearly combine to provide the irradiance estimates. The
regression with both the assimilation and satellite data is DNI A, the
satellite only regression is DNI B, and the assimilation only regression
is DNI C.

β̂0 β̂1 β̂2 β̂3 β̂4

DNI A 1.17E+03 4.47E-01 -7.50E+01 -2.93E+02 3.75E+02

DNI B 3.34E+02 4.11E-01 - - -

DNI C -2.51E+03 2.80E-01 -1.31E+02 -7.46E+02 7.51E+02

β̂5 β̂6 β̂7 β̂8 β̂9

DNI A -8.76E+00 -9.42E+01 7.19E+02 -1.95E+00 5.58E+00

DNI B - - - - 7.74E+00

DNI C -8.07E+02 -3.42E+02 2.18E+03 1.02E+01 -

β̂10 β̂11 β̂12 β̂13

DNI A -1.15E+01 3.46E+00 -1.63E+00 7.03E-01 -

DNI B -1.35E+01 5.08E+00 -1.45E+00 5.00E-01 -

DNI C - - - - -

solar irradiance at the top of the atmosphere multiplied by
the cosine of the zenith angle affects the irradiance. The
same coefficient is only slightly altered for the DNI and
DIF regressions as well, as shown in Tables 2 and 3. The
satellite coefficients are not changed dramatically between
regressions A and B (order of magnitudes are typically the
same), but their values are sightly altered. To be expected
because the assimilation data was included to provide in-
formation about the optical thickness (water content) of
the clouds that the satellites measure. For the majority of
the time, this results is a important correction, but does not
necessitate a large alteration in the satellite coefficients.
The final use of the Tables 1–3 is to facilitate the proce-
dure to be leveraged without the need to repeat the train-

TABLE 3. RUC Assimilation Model DIF Regression Coefficients.
The β̂ j are the coefficients that multiply the regressors x j (written out in
the text) that linearly combine to provide the irradiance estimates. The
regression with both the assimilation and satellite data is DIF A, the
satellite only regression is DIF B, and the assimilation only regression
is DIF C.

β̂0 β̂1 β̂2 β̂3 β̂4

DIF A -1.79E+02 1.59E-01 1.70E+01 -3.68E+01 -4.94E+01

DIF B -4.43E+00 1.57E-01 - - -

DIF C 7.50E+02 1.85E-01 3.47E+01 1.32E+02 -2.05E+02

β̂5 β̂6 β̂7 β̂8 β̂9

DIF A -3.02E+01 -3.67E+01 -1.62E+00 3.41E-01 -2.10E+00

DIF B - - - - -2.86E+00

DIF C 2.61E+02 4.73E+01 -4.77E+02 -2.76E+00 -

β̂10 β̂11 β̂12 β̂13

DIF A 3.64E+00 -1.06E+00 2.73E-01 -4.12E-02 -

DIF B 4.27E+00 -1.36E+00 8.16E-02 -4.36E-02 -

DIF C - - - - -

ing of the regression for other users. The users would need
satellite and / or RUC assimilation information at their lo-
cation to produce an estimate of the resource at their site
for a time period not encapsulated in the dataset produced
by the present paper.

TABLE 4. Statistics of the regressions over all of the training sites.
The regression with both the assimilation and satellite data is A, the
satellite only regression is B, and the assimilation only regression is C.
MBE is the Mean Biased Error, RMSE is the Root-Mean-Squared Error,
and CV is the Coefficient of Variation.
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A 442.00 -2.82 94.17 20.67 20.48

GHI B 442.00 -3.33 92.96 22.63 22.39

C 442.00 -4.26 91.08 25.60 25.25

A 512.37 -12.41 77.75 41.82 39.94

DNI B 512.37 -15.33 71.80 47.92 45.40

C 512.37 -22.16 54.29 57.46 53.01

A 148.66 -4.19 82.87 42.42 42.21

DIF B 148.66 -4.63 80.83 44.56 44.32

C 148.66 -6.90 69.20 55.40 54.97

To analyze the performance of the linear multiple mul-
tivariate regressions, various statistics are calculated be-
cause a single statistic on its own may improve when the
performance could be considered to be diminished de-
pending upon the eventual use of the data. The most im-
portant statistics are displayed in Table 4 for the training
set only and the values are for the hourly data. Within the
training set, there are 10 different sites, and the accuracy
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of the regression varies from site to site, but the salient
features are captured in the displayed combined statistics
(because it is a requirement that the dataset be as accu-
rate as possible over as many sites as possible). In Table
4 it becomes clear that the regression is best at estimat-
ing the global horizontal irradiance (in terms of all met-
rics shown). The range of GHI MBE is 2-4% for all of
the regressions, which is similar to those found by oth-
ers that consider much smaller geographic areas Vignola
et al. (2007). The adjusted multiple linear correlation co-
efficient is in the high 90% which, with the RMSE and CV
of 20-25%, show great accuracy in predicting the GHI at
the training sites overall.

It can be seen in Table 4 that the regressions get pro-
gressively worse as data is removed from them. The neg-
ative bias gets larger between A and C, R2 decreases, and
both RMSE and CV increase. The regression with only
satellite data (B) is better than the assimilation data only
(C), and both are worse than when satellite and assimila-
tion data (A) are used in concert. The improvement can be
attributed to removal of errors and biases with the combi-
nation of the two data types. The remaining unexplained
variance and error is likely to be due to measurement er-
rors, aerosols, and the averaging of single point data over
a gridded space. It is worth noting that the spatial resolu-
tion of the irradiance estimates is 13 km, yet they are able
to reproduce accurate estimations by other models that are
at higher resolution Vignola and Perez (2004). The direct
normal irradiance estimates are the worst in terms of MBE
and R2. The large negative bias is associated with the spa-
tial resolution of the satellite and assimilation data versus
the single point measurements of DNI. The measurement
site can have small clouds (and aerosols) pass by that spe-
cific site, but not be registered in the estimate. Another
source of error is that the regression uses vertical column
values. Thus, when the irradiance ray is impinging at an
angle it may be attenuated by the atmosphere in neighbor-
ing cells.

The statistics shown so far are for the training set. One
SURFRAD and one ISIS site were retained to perform an
“initial” validation of the procedure at two independent
sites from the training set. In Table 5, the same statis-
tics as in Table 4 are shown, but for the two initial vali-
dation sites. Again, these are for the hourly values. Table
5 shows that in general terms the validation sites perform
as to be expected. That is there are no significant change
in RMSE, CV, or R2. However, there are some differences
that are worth discussing. The sign of the biases of the
GHI and DNI are reversed and the R2 is lower than pre-
viously, which suggests that the procedure is less accurate
at sites independent to the training set, which is to be ex-
pected.

To take a different look at the accuracy, analysis of the
residuals of the estimated irradiance minus the ground-

TABLE 5. Statistics of the regressions over two initial validation
sites. The regression with both the assimilation and satellite data is A,
the satellite only regression is B, and the assimilation only regression
is C. MBE is the Mean Biased Error, RMSE is the Root-Mean-Squared
Error, and CV is the Coefficient of Variation.
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A 458.13 2.41 89.37 19.57 19.42

GHI B 458.13 2.67 88.16 20.67 20.50

C 458.13 1.08 83.91 24.03 24.01

A 468.03 2.35 65.91 39.51 39.44

DNI B 468.03 0.21 58.98 43.27 43.27

C 468.03 -9.80 41.86 52.93 52.01

A 164.60 -9.26 66.26 40.33 39.25

DIF B 164.60 -10.32 63.43 42.08 40.80

C 164.60 -10.60 48.26 49.92 48.78

based measurement was carried out. The probability den-
sity functions (PDFs) of the residual divided by the mea-
surement (relative error) were computed and plotted in
Fig. 2. In the images the black lines are for the regres-
sion with both the assimilation and satellite data (A), the
red lines are for the satellite only version (B), and the blue
lines are for the assimilation only regression (C). The top
panel is the histogram for the training sites and the bottom
panel is for the validation sites. It is clear from the panels
that the training sites histograms are sharper, and the nega-
tive bias can be seen (left of zero-line), which is also listed
in Table 4. The left-hand-tail of the PDF for both training
and validation panels falls off faster than the right-hand-
tail. It becomes apparent that the black histogram (NWP
and satellite data) is more centered about the zero-line,
and the narrowest. The worst is the blue lines (NWP data
only). The two different plots show the same general char-
acteristics, indicating that the technique is working well at
sites that are independent to the training sites.

It is instructive to see the training and validation compu-
tations versus the measurements for comparison. In Fig. 3,
the GHI, DNI, and DIF differences are shown (estimated
minus measurements) versus the measurements for the
three regression types. The panels show the median values
of the differences with solid lines. The 25% and 75% per-
centiles are shown as the horizontal bars. Additionally, the
vertical bars continue to the 10% and 90% percentiles. For
comparison, guidelines are added to the panels that show
25% (dotted), 50% (dot-dashed) and 100% (dashed) rela-
tive errors. The vertical lines are separated for image clar-
ity, but are computed at the same points. Further, Fig. 4
displays the differences (estimated minus measurements)
versus the zenith angle. The same percentiles are shown
as in Fig. 3.
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FIG. 2. Histograms of the difference between the estimated GHI
and the measured at the training sites (top) and verification sites (bot-
tom). The black dotted lines denote the regression with both the assim-
ilation and satellite data (A), the red dashed lines are for the satellite
only regression (B), and the blue solid line is for the assimilation only
regression (C). The relative error is the difference divided by the mea-
surement.

The top panel of Fig. 3 shows the GHI differences ver-
sus the measurement. There are three colors in Fig. 3,
which represent the three regression types being displayed
in the present paper. The black is for regression scheme
A, the red is for scheme B, and blue is for scheme C.
All three are plotted on the same figure to illustrate that
they all have the same overall features with regards to bias
and slope, however, there is increasing accuracy and de-
creasing scatter from scheme C to A. This provides some
verification that the additional data improves the perfor-
mance of the model. It shows that, in general, the esti-
mated GHI is close to the measured with a slight positive
bias (on average) at low irradiance and a slight negative
bias (on average) at high irradiance. Note that the me-
dian of error peaks at 150 W/m2. The range of errors is
largest between 200–400 W/m2, which could be attributed
to scattered cloud within the gridded domain over the ob-
servation site and, possibly, clouds that are not in the grid
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DHI differences versus measured DHI
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FIG. 3. The difference between the estimated irradiance and the mea-
surement versus the measured irradiance. The top panel is for GHI, the
middle panel is for DNI, and the bottom panel is for DIF. The black is
for regression scheme A, red is for scheme B, and blue is for C (similar
to all other figures). The light green line designates the zero-line.

cell, but rather in neighboring cells that are affecting the
measurements whereas the regression has no knowledge
of these clouds. It could also be attributed to the parallax
effect of only using a single satellite data stream. After
400 W/m2, the median errors become negative. It can be
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seen that the median errors remain within 25% of the ob-
servations, with the exception for very low values of ir-
radiance. The distribution of errors is narrower (sharper)
for the combined regressions compared with the other two.
The middle panel of Fig. 3 displays the DNI differences
and the bottom panel shows the DIF differences. The DNI
differences have much larger slopes than the GHI and the
variance of the error is also larger (as shown in Tables 4
and 5). The larger slope, from a positive bias to a negative
bias with increasing irradiance, is predominantly due to
the point-to-grid averaging, the parallax effect of a single
satellite data stream, and non modeled aerosols. The more
extreme values occur in the winter-time. The slope is typ-
ical when this type of computation is carried out Vignola
and Perez (2004); Vignola et al. (2007). The regression
including all the variables is more accurate than the other
regressions; particularly at high DNI values. The DIF dif-
ferences also show a slope after about 200 W/m2 towards
a negative bias and could be explained by the same effects
as the DNI biases.

The information gained by displaying Fig. 4 is the de-
pendency of the errors on the measurement zenith angle.
It is obvious that the GHI and DIF have no statistical de-
pendency on the zenith angle for any of the regressions,
whereas the DNI seems to have a increasingly negative
bias from 20 to 70 degrees and then becomes a positive
bias by 85 degrees. The dependency occurs in all three of
the regression types, but the least effected is the regression
with both satellite and assimilation data. It is thought that
the dip is caused by interference of the beam by clouds,
aerosols and atmospheric disturbances in neighboring grid
cells (nearby locations) that are not in the regression. The
effect is over a large range of zenith angle values due to
(a smaller effect of) high level clouds and then as the sun
progresses through the sky the DNI is blocked by lower,
and usually thicker, atmosphere in surrounding cells. The
same phenomenon is seen in Vignola and Perez (2004);
Vignola et al. (2007), however, due to their smaller data
set, they found it not to be statistically significant. Here it
is shown that it is a real effect, not just anomalous outliers.
One way to correct this would be to perform the regression
not in terms of the vertical column as done in the present
paper, but rather in terms of path integral of the DNI beam
(along the zenith angle), however, this is a substantially
harder problem, which the author plans to address in fu-
ture work. It should be noted that some of the effect may
be attributed to the parallax angle created by using only
the GOES East satellite data, because it is reduced in the
assimilation only regression.

In creating the previous statistics, residuals, and his-
tograms, only the training sites and the two verification
sites have been analyzed. The following part of the present
section will analyze the results from the seven indepen-
dent sites provided by NREL and the University of Oregon
when the full model has been applied to them. The model
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FIG. 4. The difference between the estimated irradiance and the mea-
surement versus the zenith angle. The top panel is for GHI, the middle
panel is for DNI, and the bottom panel is for DIF. The black is for re-
gression scheme A, red is for scheme B, and blue is for C (similar to all
other figures). The light green line designates the zero-line.

applies the best regression (of the 32) with the data avail-
able for each hour and geographic location. The analysis
of these results will give a fuller description of how the
regression model is working at sites completely separate
from the training set (both in terms of location, but also
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agency responsible for the sites). The seven sites have a
different frequency of measurement than the SURFRAD
and ISIS sites, typically being 5 minutes. When necessary
the averaging of the measurements were altered to give ac-
curate top-of-the-hour averages. For the 5 minute output
frequency, averaging was carried out from 15 minutes be-
fore to 15 minutes after (7 measurements). The alteration
of the averaging does have an impact on the metrics of the
performance of the solar irradiance model. Figures 5–7
display time series of measured and estimated solar irra-
diance. The top panels are for the 31 days from January 1
2006 and the bottom panels are for the 31 days following
June 1 2006. The dashed red lines are for the measured
irradiance and the solid blue lines denote the estimated ir-
radiance. The GHI from Burns, OR is shown in Fig. 5, the
DNI from Hermiston, OR in Fig. 6, and the DIF from Eliz-
abeth, NC in Fig. 7. The time series is displayed to give
an absolute comparison between the estimation behavior
and the actual measurements.

It can be seen in Figs 5–7 that the estimated irradiance
performs better in summer than in winter on average. An-
other salient feature that all three irradiance species have
in common is that the estimates appears to be slightly
smoother than the measurements, but retain the general
shape throughout the 31 day period (which continues over
the entire three-year period evaluated). The GHI time se-
ries in Fig 5 shows a very close match between the model
and the observations through time. The estimates are gen-
erally slightly below the measurements, as was seen in the
MBE. The features of variability are captured in the GHI
estimate, albeit smoothed. The June time period is more
accurate than the January time period, which is important,
because the purpose of the irradiance dataset is to supply
a solar PV model for power output and summer time is
more sensitive to errors (as the electric load is highest and
so is the cost of electricity). In Fig. 6, it can be seen
that the DNI is much harder to estimate. The estimated
DNI is almost always lower than the observed in winter
and higher in summer. The smoothness of the estimation
versus the measurements is most apparent in these panels,
simply because the DNI is much more prone to variability
than GHI and DIF. The estimated DNI is accurate with the
overall trend for a specific day, for example day 11 on the
bottom panel shows the estimation including the extreme
reduction in the DNI after clear skies, and then the rapid
increase after the sky clears again before the end of the
day (although the increase was at an earlier time). Finally,
Fig. 7 shows how the DIF estimate can be very accurate
for some time periods (day 15 onwards). It can be seen
in Fig. 7 high values of DIF in the measurements from
days 1–6. In trying to explain this the author found that
the Elizabeth, NC site had a poor quality of data for the
time period we evaluated over. The problem was only dis-
covered after the analysis was carried out, and it is shown

in the results to illustrate that there are two sources of er-
ror for a regression model such as the current proposed
one: measurement error and model error. The data log for
the Elizabeth, NC site can be found at http://rredc.
nrel.gov/solar/new_data/confrrm/ec/.

Figure 8 displays the MBE (top panel) and RMSE (bot-
tom panel) for the seven independent verification sites and
the two initial verification sites from SURFRAD and ISIS.
The metrics are for the complete solar irradiance model.
It can be seen that each site has a different value, illus-
trating the different performance at each geographic loca-
tion. The GHI estimates perform, on average, as well they
did for the training sites. The DNI and DIF are slightly
worse in terms of MBE and RMSE than they were at the
training sites. Overall, there is a reduction in the accu-
racy of the regression technique away from the training
sites, which is to be expected. Some of the reduction seen,
compared to the training sites is due to full dataset be-
ing analyzed, as can be observed by reading the value for
the ISIS (HNX) and SURFRAD (PSU) sites and compar-
ing to the initial verification in Table 5; again highlighting
the importance of being able to obtain all of the possible
measurements. The most important feature from Fig. 8 is
that the regression technique created here performs with
the same order of accuracy as other available techniques,
see e.g., Vignola et al. (2012) with the added benefit of
being created specifically to be temporally aligned with
other datasets on the same spatial grid so that they can
be applied to electric power modeling seamlessly. The
technique was verified against the SUNY dataset provided
by NREL (http://maps.nrel.gov/prospector) for
time periods that overlapped with the one investigated here
at a sample of the seven independent sites. It was found
that the present regression technique is superior in terms of
MBE and RMSE. For example, at the Burns, OR site the
current technique has an MBE of -1.64% for GHI, while
the SUNY dataset over the same period has an MBE of
-2.00%. Similar statistical differences were found with
the other irradiance species and different sites. The differ-
ences are not very large, and a review of the SUNY dataset
statistics can be found in, e.g. Nottrott and Kleissl (2010);
Djebbar et al. (2012). More comparisons need to be done
at more sites to establish if indeed the current technique is
consistently more accurate.

The linear multivariate multiple regression method has
provided estimates of the solar irradiance over the con-
tiguous USA. The dataset is comprised of ≈152,000 geo-
graphic cells that each contain≈26,000 hourly data points.
Figures 9–11 show the three-year average of GHI, DNI,
and DIF over the contiguous USA in kWh/m2/day. To
convert from kWh/m2/day to average W/m2 multiply it
by 41.695; so the range from Fig. 9 is 125–271 W/m2.
Figure 9 shows that the South-West is the best resource
site in terms of GHI, which is very important for solar
PV. All three maps show that the very North West and
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FIG. 5. Time series of measured (dashed red) and estimated (solid blue) GHI for Burns, OR. The top panel is for the 31 days from January 1 2006
and the bottom panel is for the 31 days following June 1 2006. The panels show high correlation between the estimated and the measured.

North East are very poor in terms of irradiance. The maps
are consistent with other datasets, but cover a wider time
period and geographic area with no blending of different
datasets. Figure 10 is interesting because DNI is very im-
portant for Concentrated Solar Power (CSP) and indicates
that the very best locations in terms of resource is the far
South West. The map of Fig. 11 shows how clear the skies
are over the desert South West, and how the Gulf Coast re-
gion is dominated by large amounts of DIF versus DNI,
which means it would be suitable for solar PV (as GHI is
a relatively good resource there), but not as suitable for
CSP. Note that the scale has changed in Fig. 11. Figures
9–11 illustrate the detail within the dataset, but they are
averages of the whole three year period. The true value
of the dataset is the spatial and temporal resolution which
is used in section 4 to model solar PV power output at all
the sites across the contiguous USA. The dataset will be
used in future research to model CSP power output over

the contiguous USA and in detailed electric power system
modeling.

4. Solar Photovoltaic Power Estimates

In the present section, the author will apply the contigu-
ous USA regression derived solar irradiance estimates to a
power output algorithm for a specific solar PV configura-
tion. The formulation of the power model will be briefly
outlined and a resource assessment for a specific configu-
ration will be shown at the end.

To compute the solar photovoltaic power output, the to-
tal, direct, and diffuse solar irradiance estimates from sec-
tion 3 were inserted into Eqs (11)–(20) from King et al.
(2004). In making the power estimates, the author decided
upon a standard solar panel for the year of 2007 taken
from the NREL System Advisor Model (SAM) version
2012.5.11 (https://sam.nrel.gov/); namely the Sun-
Power SPR-315E-WHT. It was assumed that the panels
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FIG. 6. Time series of measured (dashed red) and estimated (solid blue) DNI for Hermiston, OR. The top panel is for the 31 days from January 1
2006 and the bottom panel is for the 31 days following June 1 2006. The panels show high correlation between the estimated and the measured.

would be mounted on a single-axis tracker and would be
orientated north to south whilst being tilted at latitude This
results in the angle of incidence on the panels at all times
of the day being the declination angle of the Sun Masters
(2004). The generic constants used by the power genera-
tion algorithm were obtained from Soto et al. (2005). The
panel-specific constants were taken from the NREL SAM.

An important feature of solar PV panels is that the tem-
perature of the cell greatly influences the power produc-
tion potential. This effect is dealt with by computing the
back of the module temperature using both the 10 m wind
speeds and the 2 m ambient air temperature from the RUC
assimilation model. There is no knowledge in the model of
snow or ice covering the panels. Additionally, the panels
are assumed to be placed far enough apart as to not create
shadowing effects on neighboring panels.

The mathematical formulae for the algorithm of power
production are all contained within King et al. (2004). An
outline the major parts of the algorithm is described. First,
one imports the solar irradiance estimates (GHI, DNI, DIF,
and Solar Zenith Angle) along with the meteorological
data (wind speed at 10m and temperature at 2m). Sec-

ondly, compute the cell temperature and the angle of in-
cidence of the solar irradiance on the tilted and tracked
panel. Thirdly, calculate the power falling onto the panel
from the irradiance fields. Fourthly, the current and volt-
ages within the panel are approximated (the equations in
King et al. (2004) and NREL SAM are empirically de-
rived). Finally, the current and voltage are combined to
calculate the power for the panel. There are equations
within the algorithm, which are based on NREL SAM,
that compute the derating due to the panel structure and
material. The output of the panel is restricted to 115% of
the nameplate capacity. After the algorithm has finished a
post processing derate factor of 95% is applied to estimate
downtimes and other deficiencies such as inverter losses
and bad wiring connections. The algorithm performs the
process at every location within the domain at each time
step and outputs the power estimate into a dataset.

Once the solar PV power estimate algorithm is finished
the average capacity factors were computed for the conti-
nental USA for the three years of 2006–2008. The capac-
ity factor maps show what a hypothetical solar PV plant
made of SunPower SPR-315E-WHT panels would create
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FIG. 7. Time series of measured (dashed red) and estimated (solid blue) DIF for Elizabeth, NC. The top panel is for the 31 days from January 1
2006 and the bottom panel is for the 31 days following June 1 2006. The panels show high correlation between the estimated and the measured.

as an average of the rated capacity in that model grid cell.
For example, if the capacity factor in a grid cell was 10%
that means on average over the whole time period the solar
PV plant will generate 10% of its rated capacity multiplied
by the number of hours running. The efficiency of the pan-
els chosen is 19.3%, which means it can turn 19.3% of the
solar irradiance into electricity in optimal conditions. The
whole power estimate algorithm can be altered, with a few
constants, to produce similar datasets for different panels
and different configurations of tilt, orientation, and track-
ing.

Figure 12 displays the capacity factor maps for the con-
tinental USA. The scale has a range of 14% to 33%. Fig-
ure 12 shows that the South West region of the USA is
the absolute best resource, but the structure is far from
simple. The South East has great potential, particularly
around Lake Okeechobee. The mountainous regions in

Colorado have poorer resources along the front range, due
to summer time clouds over the higher terrain. The Seattle
area is particularly poor for a resource. The far south west
of California has the highest capacity factors which is in
agreement to the climatological data. What is striking is
that the capacity factor map is not the same as any of the
GHI, DNI, or DIF maps (Figs 9–11), and that is because
the capacity factor takes all three into accounts, as well as
the temperature in the local area. A similar map for CSP,
for example, would be expected to look very correlated to
the DNI resource map due to its almost total reliance on
that specific resource.

5. Discussion and Conclusions

The present paper has provided a novel technique for
obtaining solar irradiance species including direct nor-
mal and diffuse horizontal. The underlying engine for
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FIG. 8. Mean Biased Error (MBE) and Root-Mean-Squared Error
(RMSE) for the seven independent verification sites and the initial veri-
fication sites. The light gray is for the GHI, the dark gray is for the DNI,
and the black is for the DIF.

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5

FIG. 9. The average estimated GHI in kWh/m2/day for the contigu-
ous USA over the three year period of 2006–2008. The South West has
the greatest resource while the North West and East have the least. All
boundaries have been removed to display the detail of the data.

the procedure is a linear multiple multivariate regression
trained upon numerical weather prediction (NWP) assimi-

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5

FIG. 10. The average estimated DNI in kWh/m2/day for the contigu-
ous USA over the three year period of 2006–2008. The South West is
the best resource area whereas the rest of the USA is much poorer. All
boundaries have been removed to display the detail of the data.

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

FIG. 11. The average estimated DIF in kWh/m2/day for the contigu-
ous USA over the three year period of 2006–2008 (the range is different
to figs 9 and 10). The Gulf Coast has the most DIF resource, the South
West has the least DIF, and in general the East has more DIF than the
West. All boundaries have been removed to display the detail of the
data.

lation model hydrometeors, satellite measurements where
available, calculated top of atmosphere solar irradiance,
and ground based, high quality, solar measurements. The
choice of regressors is important, and in the present pa-
per care was taken to choose, when possible, the best
combination of model parameters to improve the solar ir-
radiance. The solar irradiance estimates were processed
through a solar PV power output algorithm to obtain a
solar PV capacity factor resource map for the continental
USA.

The method was verified against independent sites that
were not in the training of the regression. The verification
showed that the regression produced estimates that are rep-
resentative of independent sites. An additional set of veri-
fication sites was acted upon when the full suite of regres-
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FIG. 12. The solar PV capacity factor map for the contiguous USA. The scale is from 14-33%. The capacity factor is for the individual panels
described and tilted at latitude, tracking on one axis. Other solar PV panels will perform differently. It shows that the dynamic range over the US
is not large. The Pacific North-West is particularly poor, and the South-West particularly good.

sions was applied (due to different satellite data available
at different time steps). The results of the verification can
be seen in Fig. 8. It shows that the use of the mixed re-
gressions was less accurate than with all the data, but was
consistent over the sites. The model performs as well as
other current satellite models Vignola et al. (2007).

The results from irradiance modeling indicates that the
technique has a bias which could be due to the ground
based measurements, the weather data bias, or even the
parallax effect from the satellite data in the regressions.
The power of the regression procedure can be seen most
clearly in Figs 5–7 where the comparison for GHI, DNI,
and DIF for a summer and winter period can be seen.
There is a tendency for a negative bias in the procedure,
but the estimates reproduced some difficult features; such
as rapid changes in irradiance, scattered cloud irradiance
patterns, and morning fog events. In addition, since the
datasets include almost every hour of the time periods,
more analysis can be performed to investigate seasonal
and geographic variations.

The resource maps of GHI, DNI, DIF, and the ca-
pacity factor maps illustrate the best and worst resource
sites. The accuracy of the data and the time interval over
which the regression model was trained gives the images
some credibility. There are still going to be errors in the
model. Future work will be to increase the resolution of
the weather data to 3 km, incorporate more satellite data,
compute the training over longer time periods, and to as-
similate more ground based observations to include more
climate regimes. Further future work will be to include
path integral calculations of attenuation that will take into
account neighboring cell properties. In an effort to de-
termine if a saturated training set was produced, regres-
sions were performed for the contiguous USA repeatedly
to train the regression and see if there was an improve-
ment. Each time a new site and more data were added,
the overall training set performance improved, however
some specific sites were made worse. In particular, when
all the verification sites were included into the training set
and performed the regression, the estimates improved sub-
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stantially. However, those results were not used because
no sites would be left over to validate against. The ad-
justed correlation coefficient for GHI at each site remained
around 92%, the RMSE and CV decreased to around 17-
19% and the MBE was 1-2%. Future work will incorpo-
rate many more training and validation sites over a wide
geographic region.

The entire dataset that was created for the present
paper is available online from esrl.noaa.gov/gsd/
renewable/news-results/usstudy/Weather_
Inputs/. The files also contain the spatially and tem-
porally aligned wind dataset Clack et al. (2016). The
wind and solar PV power estimates from these datasets
were utilized in studies of the US electric grid Clack et al.
(2015); MacDonald et al. (2016).
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