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ABSTRACT This paper investigates the modelling and forecasting method for non-
stationary time series. Using wavelets, the authors propose a modelling procedure that
decomposes the series as the sum of three separate components, namely trend, harmonic
and irregular components. The estimates suggested in this paper are all consistent. This
method has been used for the modelling of US dollar against DM exchange rate data,
and ten steps ahead (2 weeks) forecasting are compared with several other methods. Under
the Average Percentage of forecasting Error (APE) criterion, the wavelet approach is the
best one. The results suggest that forecasting based on wavelets is a viable alternative to
existing methods.

1 Introduction

Forecasting by time series analysis approach has been developed over several
decades (see Grenander & Rosenblatt, 1957; Box & Jenkins, 1970; Makridakis &
Wheelwright, 1993). The modelling and forecasting methods for stationary time
series have been applied to many different fields and many successful results have
been obtained in diverse areas. Readers may find some interesting case studies in
the book by Xie (1993).

As for the forecasting method of non-stationary time series, we also find many
useful methods for applications. Particularly in the classic work of Box & Jenkins
(1970), several models—for example, ARIMA and the seasonal ARIMA model—
were introduced and have been widely used by statisticians. They are now imple-
mented in many popular software packages, such as SAS, SPSS, S-Plus and so on.
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However, evidently not all non-stationary series may be transformed to stationary
series by the differencing procedure, so alternatives need to be considered. Makri-
dakis er al. (1982) discussed several forecasting methods such as Holt—Winters,
econometric models, etc. These methods also perform reasonably well. However,
from a statistical point of view, they have a lack of theoretical basis and rigorous
mathematical argument. On the other hand, some theories reported in the statistical
literature are relatively complicated to use in practice, even though their large
sample behaviour is impressive (see Li, 1990).

In recent years, wavelet theory developed very rapidly and has shown very strong
applicability in diverse fields. The main advantages for such a mathematical tool
may be comprehended in several aspects. The first is the well-known localization
property and ‘Zoom effect’ of the wavelet functions. Many of these functions may
have finite support in the time domain and also possess very good cancellation in
the frequency domain (or vice versa). Moreover, we know that the wavelet transform
sometimes modifies the non-stationary of the time series, namely, after wavelet
transformations, many non-stationary processes become stationary processes (see
Masry, 1993). Finally, the emergence of many algorithms (e.g. Fast Wavelet
Transform—Meyer, 1993), make the wavelet transformation easier and easier to
apply in practical applications, thus making the wavelet approach a viable alternative
to existing methods.

What is the relationship between wavelet theory and modelling of time series?
How does one use the advantages of wavelet tools in forecasting? These are very
interesting and challenging problems to the time series analysts, and have drawn
the attention of many researchers. Several reports have been published in this field
and very attractive ideas are proposed by these authors (see Dahlhaus ez al., 1995;
Tsatsan ez al., 1993; Li & Xie, 1999; Dijkerman & Mazumdar, 1994).

In this paper, w attempt to bring together the existing literature on statistical
estimation (Brillinger, 1996) and the ongoing work on hidden periodicities analysis
(Li & Xie, 1997) to demonstrate how wavelet theory can be usefully applied to the
modelling and forecasting of time series. Brillinger (1996) suggested the statistical
estimation of a deterministic regression function in the presence of noise. Unlike
some papers published before (see Donoho ez al., 1995), Brillinger considered the
case where the residual series of the model is weakly stationary and not restricted
to the case of iid series. The estimates suggested in his paper are all consistent in
the L? sense. In this paper, we develop his theory further to obtain the strong
consistency of the estimates of the regression function.

Recently, Li & Xie (1997) improved the theory of hidden periodicities analysis
by wavelets analysis, the model suggested in the paper is

b
H@) = Z ockei)'k’+ é’([), t=0,+1,+2,... (1)
s

where {o;,...,0,} are unknown random variables, {p,4;,...,4,} are all unknown
parameters and may be estimated from a finite set of samples, H(z,), H(z,), ...,
H(zy). Under some mild conditions, the estimates are all consistent in the almost
surely sense.

Following the well-known X-11 modelling (see Cleveland & Tiao, 1976) we
assume the observation x(z), z€ Z, may be decomposed into three parts,

x@=T@W+H®@ +e@, teZ 2)
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where T(z) is the trend component, H(z) the harmonic component and &(z) the
irregular component. In the following section, we briefly introduce the theory and
method for detecting the trend component 7(z) by wavelet approach. Theorem 1
shows the strong consistency of the estimate T\ (z). Theorem 2, in section 3, gives
the algorithm for estimating the hidden periodicities by wavelets.

In section 4, we apply our method to the forecasting of exchange rates (US
Dollar against DM) for two weeks ahead prediction, which was based on 512
observation samples for constructing the model. Some of the published literature
(see Mills, 1993) concluded that the best model for exchange rate forecasting is
the random walk model. The authors of this paper do not agree with this conclusion.
It is apparent that a very strong limitation for the random walk model is that it can
only give a one-step ahead prediction, and a longer forecasting horizon is not
entertained. On the other hand, in the final part of this paper, several kinds of
forecasting error are compared; readers may find that even in the forecasting error
respect, the random walk model is not the best one.

2 Trend component estimation by wavelets
2.1 Basic model
Suppose that the samples y(z), t=0, +1,..., + T, follow the model

y® =T® + 10 3)
T@=#<;> 1=0,+1,...,+T @

where f(z) is a real function, f(z) =0, t¢ [ — 1, 1], and #(¢) is stationary noise.

Let {V;},., be an MRA (Multi-resolution Analysis) of L*(R), {¢(t—k), keZ}
forms an orthonormal basis in V, where ¢ () is the scale function. Let /() be the
mother wavelet determined by ¢ (z) and for any given integer /, {¢,,(2), ¥, .(t), 1 =1,
ke Z} provides a complete orthonormal basis in L*(R).

Put
du=;é@4;%@ 5)
[ SV A e ©)
k= e Vir o |Y

Then we have the following empirical wavelet estimation for the function f(z)

fr(®) = Xk‘, Oy p e (1) + ; Xk‘, ﬁj,k Wk () )
or

ﬂ@=2§@wmo ®)
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In practical applications, it can be assumed that there exists an integer ¥
(sufficiently large), such that f(z) € V;. In such a case, equations (7) and (8) may
be written as

F-1

F = i) + 3 Biain 0 ©)

for 1 <% or
Vi =ij ;ﬁj,kw,-,k@ (10)
=2 () 11)

In order to prove Theorem 1, several mathematical assumptions are necessary.

2.2 Statistical properties of the estimates

Assumption 1
f(@ is a real function with bounded variation on [ — 1, 1] and vanishes outside the
interval.

Assumption 2
The scale function ¢ (z) satisfies

(a) ¢ () has finite support on [0,2N — 1], N> 0. (12)
(b) ¢(2) has bounded variation on [0,2N — 1].
© ¢d@eS, ={g(): 6P| </ +|x)skp=0,1,...,7} (13)

Assumption 3
The cumulant functions of the zero mean stationary series 7(z), t€ Z, satisfy

KM:ZZ"‘Z|Cm(ul)u25"‘3umfl)|<+oo,m>2 (14)
uyp  u Um—1
also
Dlul-C,w)| <+ (15)
and
f(0)>0 (16)
where

Cm (un Upy.ons um—l) = Cum M(H‘ ul): VI(I+ 7/‘2), s 77(H‘ um—l)) ’1(5)} (17)

and f,, (1) is the spectral density function of #(z).

Under Assumptions 1 and 3 and parts (a) and (b) of Assumption 2, Brillinger
(1996) proved the L*-consistency of the {d,,}, {ﬁj, +} and f(0).

Now, we propose Theorem 1, which shows that, if the scale function ¢ (?) €S,,
then f,(z) converges to f(z) in an almost sure sense.
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Theorem 1

Suppose that y(z) follows model (3), and {y(z), t=0,+1,..., + T} are sample
points. Under Assumptions 1 and 2, when T — o0,

Fr(®) > f(@) as. (18)

where f}(t} is defined in equations (7) and (8).
The proof of Theorem 1 may be found in the Appendix.

2.3 Time varying filtering by wavelet functions

In practical applications, equations (7)—(9) are not the best formulas for calculation.
The following derivation leads us to establish a relationship between the wavelet
estimation of f(¢) and the time varying filtration.

First, we replace the empirical coefficients of wavelet transformation (5) into (9),
then

]?(f) = Zk: Oz],kd)],k(t)

=§<TMZ qb;k( >y(u>>c/>jk<z>

- Z v (u) <Z¢(27z k>¢<2f;—k>> (19)

T u=_T
where
(D) =2"p (2t —k),Vj, ke Z (20)
Put
gtu) = Z¢(27t—k)q’>< —k> [@2))

then equation (19) may be rewritten as
. T
=2 gtuy (22)
u=—T

Equation (22) shows that the estimation of f(z) is essentially the output of a time
varying filter, the weighted coeflicients; or, in engineering terminology, the impulse
response function of the filter is defined by the scale function.

Accordingly, the estimation of the trend component 7(z) in equation (4) may be
represented as

() =1T 3 w6y =f<;> (23)
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where
w(tyw) =2 3 4)(2?“ _ k>¢<27“ _ k> (24)
T % T T
Suppose that 27 < T for sufficiently large T, then put
D=T/27 (25)
where D is a positive integer
0() = ¢ (/D) (26)

then

W) = §¢<11) (t—Dk)>¢<Il) (u—Dk))

=% >0 (t— Dk)0(u— DE)
k 27
=% > 000U+ u—1) (putz—Dk=1)
=% 20001 — (1 —w) =w(t—uw)
Hence, equation (23) is
@ =f<;> = ;Tw(t —u)y(u) (28)

which shows that the trend component may be estimated by a filter, and the
impulse response function of the filter is

w(x)=%20(l)9(l—x) (29)

3 Hidden periodicities analysis by wavelets

Hidden periodicities analysis has been investigated by many researchers for more
than five decades (see Priestly, 1981). The model is assumed to be

y@ = zq: oycos(Lt+0) +E@), teZ (30)

where the first part of equation (30) is called the harmonic component, () the
noise, {0,} are random phases and usually assumed to be iid uniformly distributed
on [ —11]. Starting from finite observation samples {y(1),v(2),...,y(N)}, how
to estimate the unknown parameters ¢, {;,%}¢ is the main problem in hidden
periodicities analysis. In the usual case, researchers have assumed that ¢ is known
a priori, and £(7) is an iid series or Gaussian random variables (see Priestley, 1981).
However it is worth noting that, in many practical situations, the number of the
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harmonic component ¢ is usually unknown and &(z) deviates from a Gaussian or
iid series.
In the following, we assume

q .y
y(@® =D e+ @) €2
=1
where
— < h<h<...<l<m (32)
0<i<|dp— uls1<myn<gn#m (33)

¢ is an unknown integer, {%;} are complex random variables, satisfying

(1) Var(e) < +00,1=1,2,...,q (34)

(2) {o;} are uncorrelated random variables
P{o,#0} =1,1=1,2,...,q (35)
(3)0<0€<|051|2>l=132:---:61 (36)

where o is a known number.
The noise £(z) in equation (31) satisfies the following conditions.

(1) &(p) is a linear process
E0 = et 37

where {d,} satisfies

JIld| < + o (38)

Mz

=0

(2) &(?) is an ergodic stationary series with
Ee(r) =0, Var(e(d) =d° < + © (39)

and &(z) is uncorrelated with {o,}.

Let i/ (¢) be a mother wavelet, its Fourier transform xﬁ(w) is compactly supported
on a finite interval [ — M, M] and satisfies

J lﬁ(w)dw;ﬁo;J () |do < + (40)

-M -M

Define the periodogram I(4) and its wavelet transform as

2
, —n<A<nm (41)

1 T .
I()=—— e i
r(4) 2nT ,;y()e
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W,,=2"" f e (DI (Z)dA (42)
where
per —1/2 X + T
ok (%) = Z 2m) lpj,k o +n (43)

Then, we have the following theorem.

Theorem 2
Suppose that the observation model is the same as equation (31) and the conditions
(32)—(40) are fulfilled, the sample size T and the resolution level j satisfy

lim 2/ lim 2/
jo jo

T— T

=0 ——=+4+® 44
T \/TlogT (a4)

Then, for sufficiently large j the following results hold:

(1) For all kel(),,2%)

2 M
VVM:';“J (@)dw +o(1), fork=1{0,1,2,...,2/— 1}  (45)
v
-M

where

I(}L1,22f)={k:‘§].27r—n—il <27% or (46)

‘;.Zn—n—).] >2n—221',ke{0,1,...,2f—1}}
(2) For all ke A,
W, = o(1), 47
where
AT=Zﬁ1 {k:Zﬂzé 25].271—71—/11 <2n—2f/z,ke{O,l,...,Zf—l}} (48)

The proof of Theorem 2 may be found in Li & Xie (1997).
This theorem provides a procedure to detect the hidden periodicities.

Step 1. Let ¥=1{0,1,2,...,2' — 1}, for an appropriate integer j,, calculate

{V_Vj,k; kEj}:j:]'Oajo‘l‘l,... (49)



Modelling and forecasting by wavelets 545

Step 2. Let
k(j) = arg{rgg%x (V_Vj,k)} (50)
MW () = max (W) (51)

(a) If MW(y) ~ Constant for j =jy,j0 + 1,0 + 2, ..., then put

A ] 1
=21 <k;{) — 2), for sufficiently large j (52)

J, is an estimate of a hidden frequency.

(b) If MW (j) -0, for j=jy,/o+ 1,jo+ 2,..., then there is no hidden
frequency in the observation data.

Step 3. If /, is an estimate of hidden frequency, put

1 <
b= —— e~ 53
1 2nT;y() (53)
yl([) :y(t) _o’eleiﬁtl) t=1,2,...,T (54)

then repeat the calculation from steps 1 to 3.
Step 4. When MW (;) -0, fO}‘ J=JosJo+ 1,..., then stop.
Suppose {4, 4s,...,4;} have been detected, then
G=q h=72,1=1,2,...,q, as. (55)

Under mild mathematical conditions, He (1987) proved that {¢,} defined in
equation (53) are strongly consistent estimates of the amplitudes of model (30).
For example,

g=2,v@) =2.5@ "+ e + (), t=1,2,...,512 (56)

where &(2) ~ N(0,0.2%), then we have the following results.

j 5 6 7 8 9

MW () 0.84 0.86 0.85 0.72 0.73
136) 8, 24 14, 50 27, 50 53, 103 104, 408
i {—0.25,0.25} {—0.28,0.28% {—0.29,0.29} {—0.29,0.29} {—0.3,0.3}
av(Ay) 0.27 0.27 0.05 0.01 0.004

From the results, we see that when j increases, the maximum values of W, have
very similar magnitudes, and outside the neighbourhood of the frequency, the
average value, denoted as av(A4;) decreases rapidly. Accordingly, we may be assured

that there are at least two hidden frequencies

{f: {—0.3,0.3}

57
g =2.505 ©7)
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Evidently, such estimates of the parameters in equation (56) are good enough for
applications. For ¢ > 2, readers may refer to the simulation results in Li & Zie
(1997). In summary, the above sections show that we can model the trend and
harmonic component of a time series by wavelets.

4 Modelling and forecasting for exchange rate data
4.1 Modelling of exchange rate data

Figure 1 is the US dollar against DM exchange rate data from 1 August 1989 to
31 July 1991.

It is apparent that the exchange rate series is not a stationary series (see Mills,
1993). We may consider that the process can be decomposed as

x@® =T +n@,teZ (58)

where T(z) is the trend component, 7(z) is a stationary series.

Following the statistical detection method introduced in Section 2, it is necessary
to find a suitable wavelet Y () and scale function ¢ (z) which satisfy the conditions
(a), (b) and (c) of assumption 2 (see equation (13)). We introduce the scale
function ¢ (z) suggested by Daubechies (1992). ¢ (¢) possesses finite support on
[0,2N — 1] in the time domain, where we select N = T. Figure 2 illustrates the
scale function ¢ ().

For the trend component 7(z), we use equation (28), where

() =%Ze<z>9(1—x> (59)
T
- (60)
T=512,7=6

The trend component detected by our wavelet method is shown in Fig. 3. The
comparison of the trend component against the original observation is illustrated
in Fig. 4.

From Fig. 4, we see that the trend component detected by our method is quite
satisfactory in following the variation of the exchange rate data.

2

0 100 200 300 400 500

Fi1c. 1. US dollar versus DM exchange rate. (1 August 1989 to 31 July 1991)
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F1G. 2. Daubechies scale function N=7.
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F1G6. 3. Trend component of the exchange rate data of Fig. 1.
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Fi1G. 4. The trend curve and the original data of exchange rate.
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0 100 200 300 400 500

F1G. 5. Trend component detected by X-11.

Figure 5 shows the trend component detected by the well-known X-11 method
(see Cleveland & Tiao, 1976).

Comparing Fig. 3 with Fig. 5, we see that the trend component from the wavelet
approach is smoother than that from the X-11 method, particularly at the two end-
points. Thus, it is reasonable to conclude that, in detecting the trend component
of the exchange rate data, the wavelet method is better than that of the X-11
method.

Now consider the stochastic component 7(z) of model (58). We want to know
whether the harmonic component H(z) is involved in 7(z). Hence, we use the
algorithm introduced in Section 3 for detecting the H(z).

For convenience in calculating the wavelet coefficients of equation (42) we
propose the following approach.

Suppose that {x;,x,,...,xy} are real observation samples of equation (30),
7, denotes the sample auto-covariance

1 T—l#l

sz? > %Xy k=011, +(T—1) (61)
I=1

then the periodogram I;(4) (see equation (42)) may be represented as

T-1

Ly=L Y e (62)

27 k= ST—1)

(see Priestly, 1981). Hence the wavelet coefficient of the periodogram (see
equation (42))

2P, = f YRS (DI (A di

= (2n) 2y szzr w(zf <; ‘;T” + n> — k)IT(z)dz (63)

—T

T—1 n
=@2m "), 2j/2<1 > %J l//<2j <)V Ty n> — k)e’“’di
n 21 = ST . 27
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T—1

- . A s . —ys .
VVJ',kZZﬂ Z (_1):V:X¢<2n2j>el(2nk2 )3 k= {09 1525“-32]_1} (64)

s=—(T—1)

where &(w) is the Fourier transform of the wavelet Y (z).
In the following, we select the Marr wavelet

1 —12/8

10 =e”2/2—§ e (65)

so that
(@) = (" —e ) (66)
W,,=2x27 Til v (— 1)%&(277:23]) cos(2mk x 27%) (67)

since 1/;(0) =0, 79, =7_,.
Then for the residual data, i.e. data obtained after the removal of the trend
component, we have the following results:

J 5 6 7 8 9 10 12

MW () 357x107°1.41 x107° 59%x 1077 49x1077 29x1077 1.96 x10"7 4.8x 10°*

Since the max(W,,) decreases to zero when j— + o0, we conclude that there is
no evident harmonic component in the residual.

Then, by Maximum Entropy (ME) spectral estimation (see Burg, 1972) we also
obtain a similar conclusion (see Fig. 6), i.e. no evident hidden frequency exists in
the residual. Here, we want to emphasize that, after removing the trend by Wavelet
Filtration from the exchange rate data, there is no harmonic component in the
residual. However, this does not mean that if we detect the trend by other methods,
the same conclusion is true.

spect. density
0.00015
1

0.00005

T T T T T T T

0.0 0.5 1.0 1.5 2.0 2.5 3.0
X

F1G. 6. Spectral density estimated by ME + BIC.
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TaBLE 1. Different methods of predictions

Step Real Wavelet State-space Box—Jenkins X-11
1 1.7729 1.7824 1.7933 1.7916 1.769
2 1.7465 1.7743 1.7910 1.7915 1.7811
3 1.7636 1.7666 1.7896 1.7914 1.7919
4 1.7576 1.7590 1.7905 1.7912 1.7683
5 1.7382 1.7511 1.7919 1.7911 1.7613
6 1.7594 1.7432 1.7910 1.7910 1.7641
7 1.7433 1.7351 1.7899 1.7909 1.7786
8 1.7453 1.7266 1.7899 1.7908 1.7910
9 1.7534 1.7179 1.7908 1.7907 1.7829

10 1.7422 1.7089 1.7905 1.7906 1.7844

APE 9.5x107? 2.2x107? 2.2 x 1072 1.48 x 1072

5 Extrapolation
In the general case, when T(¢) and H(z) have been detected, then
CO=x0-TO-H® (68)

which may be considered as a stationary series. Under the ME criterion and order
selection by BIC (see Xie, 1993), we have the following results.

Order p 0 1 2 3 4 5

BIC —8.8416 —10.3912 —10.1021 —9.9212 —9.8491 —9.7940

Thus, we fitted an AR(1) model for the residual &(z):
E@ —(0.6311)¢E(r— 1) =¢(2) (69)
where {&(z)} is a white noise series,
Ee¢(r) =0, Var(e(2)) =5.477 x 103 (70)

In order to make forward forecasting, it is necessary to fit a function for the final
part of the trend 7(z). Under the MSE criterion we have

T(2) = 1.80342 + 0.003045767 — 3.33 x 10 %2 +2.403 x 10~°%°  (71)

Table 1 shows several ten steps (2 weeks) ahead predictions of US dollar against
the DM by different methods (see Makridakis er al., 1982; Xie, 1993), where the
average percentage of predicted error (APE) is defined as

i | Forecast (k) — Real(k) | 72)

APE=L
10 x> Real(k)

It will also be interesting to compare the various methods on their one-step-ahead
prediction errors. In addition to the methods in Table 1, we add the random walk
model and have the following results.

Wavelet State-space Box—Jenkins X-11 Random walk

APE 5.35x 10 ? 1.15x 10?2 1.05 x 10?2 2.25x 103 1.06 x 10~ ?
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6 Conclusions

In this paper we have proposed a modelling and forecasting procedure for non-
stationary series by the wavelet approach. The numerical procedure is fairly easy
to apply for practical data. All the proposed estimators in this paper for detecting
trends and hidden frequencies are strongly consistent. The ten steps ahead predic-
tions for the exchange rate data show that the APE of the wavelet approach is the
minimum compared with a number of well-established methods.
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Appendix
Proof of Theorem 1

Under the Assumptions 1, 3 and (a), (b) of Assumption 2, Brillinger (1996) proved
the following results:

1) E@,,— o) = oR"™xT™"
EByp— i) =0V x T~

where

oy = J P Df (DA, L, ke Z (A1)

Biw= f Vi Of()ds, j ke Z (A2)

are the wavelet coeflicients of f(2), d; ., Bz, » are empirical wavelet coefficients defined
in equations (5) and (6).

(2) 1
Cov (b i) = 27, (0) %, PP (dr+ O2' x T7?) (A3)

i 1
Cov(d, ﬁj,k') = 27Tfm7 0) 5, d)l,k(t)lpj,k'(t)dt + O(Z(Hj)/z x T7?) (A4)

o 1
Cov (B> By,x) = 27, (0) T Vi (de+ OQRUTD? x T7%)  (A5)

Based on these results, the consistency of the estimate 7,(7) (see equations (7)—(9)
in the L? sense has been proved by Brillinger (1996).

3) Efr(®) = X 05y (@) + O x T™1) (A6)

Cov(fr(Ds fr(s)) = 27; I (0) ; D51 (D) P11 (5) (AT)

for sufficiently large 7, the joint cumulants of order m are
O(z(nz—l)]T—nz+l) (AS)

Accordingly, the fourth-, third-, second- and first-order cumulants of /,(¢) are
OR¥ x T73), OR¥ x T2, 027 x T~ and O(1) respectively.

It is well-known that the relationships between moments and cumulants are

my =¢,

My, =y + 3
s (A9)
ms=c;+ 3¢,¢, + ¢}

My = ¢4 + 3¢5 + 4c,c; + 6cic, + cf
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and so on. Hence
E(x — Ex)*=c¢, + 3¢5
i.e.
Elfr(@ —Er@®'=0@"x T )+ 0@ x T?)
By the well-known Markov inequality we have
P{Fr(@) —ERr(@) |28} <c x 27 x T~ /¢!

for any ¢ > 0, so that

S 7 2 © 2%
Y P{R®O-Er@|>e <Y, — <+
r=1 =1 &T
this leads to
Fr @) = Efr (@), as.
namely,
" 2]
fr@=f0+0_—
T
where

@ = Zk: 0y, P ()
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(A10)

(Al1)

(A12)

(A13)

(Al4)

(A15)

(A16)

Then, using a Theorem in Walter (1994, Chapter 2) when ¢ (¢) € S,, r is a positive

integer, and when ¥— oo,

@) - f() a.e.
that shows /(1) » f(?) a.s.
for sufficiently large T; ¥ and 27/T— 0.

(A17)

(A18)
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