

Modelling and Simulation of Rigid and Flexible Multibody Systems in Modelica

Tutorial at the Modelica'2011 Conference Dresden, March 20th, 2011 Dr.-Ing. Andreas Heckmann, German Aerospace Center (DLR) Institute of Robotics and Mechatronics

Contents

- ➤ Modelica Multibody Basics
- Exercise 1: Control of an inverse pendulum
- Modelica Multibody Advanced
- → Exercise 2: The Flying Gull I
- → FlexibleBodies Library: Beams
- Exercise 3: The Flying Gull II
- → Exercise 4: A classic Pitfall
- → Exercise 5: Unbalanced Shaft
- ✓ FlexibleBodies Library: General bodies based on finite element data
- → Exercise 6: The Flying Gull III
- → FE-Preprocessing
- ✓ FlexibleBodies Library extensions at this conference

Modelica Multibody Basics: Orientation

- ✓ Orientation object R¹²
 - describes orientation of coordinate system 2 wrt.1
 - ➤ holds

```
Real T[3, 3] "Transformation matrix from world frame to local frame"; SI.AngularVelocity w[3]
```

"Absolute angular velocity of local frame, resolved in local frame";

- ✓ may be computed using rotation angles or quaternions
- Multibody Lib. contains over 30 functions to operate on orientation objects

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

slide 3 Multibody Systems in Modelica > 20.03.2011

Frames

Orientation

from orientationConstraint

(f) angularVelocity1 (f) angularVelocity2 (f) resolve1

(f) resolveRelative (f) resolveDyade1

(f) resolveDyade2
(f) nullRotation

f) inverseRotation
f) relativeRotation

(f) absoluteRotation

① planarRotationAngle

(f) axesRotationsAngles
(f) smallRotation

(f) planarRotation

(f) axisRotation

f from_nxy

f from_T f from_T2

(f) to_T

(f) to_Q

(f) to_T_inv

f to_vector f to_exy

(f) length
(f) normalize

🕥 axis

(f) from_T_inv
(f) from_Q

axesRotations

(f) resolve2

Modelica Multibody Basics: Connectors I

- ➤ Connectors: the interface to connect components
 - ✓ Position is resolved in world frame
 - ✓ Forces and torques are resolved in local frame

connector Frame

"Coordinate system fixed to the component with one cut-force and cut-torque (no icon)"

SI.Position r_0[3] "Position vector from world frame to the connector frame origin, resolved in world frame"; Frames.Orientation R

"Ortencerton object to rotate the world frame into the connector frame";

flow SI.Force f[3] "Cut-force resolved in connector frame" 8;

flow SI.Torque t[3] "Cut-torque resolved in connector frame";

flow !

end Frame;

Deutsches Zentrum JLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Modelica Multibody Basics: Connectors II

- ➤ Modelica's general connections rules
 - ✓ non-flow variables are set to be equal, i.e. frames coincide
 - since they represent "some kind of potential"
 - - ✓ since they represent time derivatives of preserved quantities
 - ✓ are consequently set to zero if connector is not connected to anything

see Modelica.UsersGuide.Connectors for a comparison of connectors in various domains

Modelica Multibody Basics: Components I

- ➤ Kinematics:
 - Component equations provide relations between connector variables on position level
 - MultiBody.Parts.FixedTranslation
 i.e. fixed translation of frame_b with respect to frame_a

```
fixedTranslation
a
frame_b.r_0 = frame_a.r_0 + Frames.resolvel(frame_a.R, r);
frame_b.R = frame_a.R;
/* Force and torque balance */
r={.1,3,1.5}
/* Force and torque balance */
zeros(3) = frame_a.f + frame_b.f;
zeros(3) = frame_a.t + frame_b.t + cross(r, frame_b.f);
```


Modelica Multibody Basics: Components II

- **>** Dynamics
 - ✓ Newton-Euler equations
 - ➤ MultiBody.Parts.Body

Modelica Multibody Basics: Elementary Components I

- ✓ Modelica.Mechanics.MultiBody.World
 - ✓ defines inertial frame, gravity, animation defaults

- Modelica.Mechanics.MultiBody.Forces

 - several spring/damper configurations

Modelica Multibody Basics: Elementary Components II

- ✓ Modelica.Mechanics.MultiBody.Joints
 - ✓ define specific degree of freedom
 - ✓ capability to set-up initial configuration

- Modelica.Mechanics.MultiBody.Parts
 - → Fixed, FixedTranslation and FixedRotation

Modelica Multibody Basics: Elementary Components III

duration=2

k=1

freqHz=1
Deutsches Zentrum
für Luft- und Raumfahrt e.V.
in der Helmholtz-Gemeinschaft

Modelica Multibody Basics: Analysis Methods

- ✓ Model check
- Experiment setup, translation and time simulation

Modelica Multibody Basics: Analysis Methods

- ✓ Model check
- Experiment setup, translation and time simulation
- ✓ Eigenvalue analysis
 - ✓ Menu: File→Libraries→LinearSystems

Example 1: Control of an inverse pendulum I

- ✓ Initial model
 - → Box: 0.5 x 0.25 x 0.25 m
 - → actuatedRevolute: phi.start =95°, fixed=true
 - ✓ perform time simulation and eigenvalue analysis

Exercise 1: Control of an inverse Pendulum II

Contents

- ➤ Modelica Multibody Basics
- Exercise 1: Control of an inverse pendulum
- Modelica Multibody Advanced
- → FlexibleBodies Library: Beams
- Exercise 3: The Flying Gull II
- → Exercise 5: Unbalanced Shaft
- ✓ FlexibleBodies Library: General bodies based on finite element data
- ▼ FE-Preprocessing
- ✓ FlexibleBodies Library extensions at this conference

Modelica Multibody Advanced: State selection I

- ✓ Joints AND bodies have potential states
 - ✓ number of joints is independent from number of bodies
 - ✓ an assignment of joints to bodies is not mandatory
 - ✓ force elements may be connected to each other
 - **→** e.g.:

here: body coordinates: position, quaternions and their derivatives are used as states

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Modelica Multibody Advanced: State selection II

relative joint coordinates are used as states if possible default: stateSelect = StateSelect.prefer ✓ e.g. Multibody.Joints.Prismatic frame a frame b final parameter Real e[3]=Modelica.Mechanics.MultiBody.Frames.normalize(n) "Unit vector in direction of prismatic axis n"; SI. Position s(stateSelect=if enforceStates then StateSelect.always else StateSelect.prefer) "Relative distance between frame a and frame b"; SI.Velocity v(stateSelect=if enforceStates then StateSelect.always else StateSelect.prefer) "First derivative of s (relative velocity)"; body1 in Tutorial.examples1.ThreeSprings ? X Add modifiers Initialization Animation Advanced General = true, if absolute variables of body object shall be used as states (StateSelect.always) enforceStates false. useQuaternions. = true, if guaternions shall be used as potential states otherwise use 3 angles as potential states hue. sequence_angleStates Sequence of rotations to rotate world frame into frame_a around the 3 angles used as potential states {1.2.3}

Advanced user may influence state selection directly

Modelica Multibody Advanced: Loops I

- ✓ Standard case
 - ✓ no specific action by the user is required
 - every connector is one node in the virtual connection graph

Modelica Multibody Advanced: Loops I

- ✓ Standard case
 - ✓ no specific action by the user is required
 - ✓ every connector is one node in the virtual connection graph

 - ✓ loops are virtually broken

the related constraint equations are provided

$$\Rightarrow$$
 DAE
 $0 = f(\dot{x}, x, y, t, ...)$ dim $(f) = \dim(x) + \dim(y)$

 Equations are rearranged to get a sequence for model evaluation (Block Lower Triangle-partitioning)

Modelica Multibody Advanced: Loops I

- ✓ Standard case
 - ✓ no specific action by the user is required
 - ✓ every connector is one node in the virtual connection graph

 - ✓ loops are virtually broken

✓ the related constraint equations are provided
$$⇒ \mathsf{DAE}$$

$$0 = f(\dot{x}, x, y, t, \ldots) \quad \mathsf{dim}(f) = \mathsf{dim}(x) + \mathsf{dim}(y)$$

- Equations are rearranged to get a sequence for model evaluation (Block Lower Triangle-partitioning)
- Equations to be differentiated are determined (Pantelides algorithm)
- ✓ superflous potential states are deselected dynamically (dummy derivative method) ⇒ ODE:

$$\dot{x} = f(x, t, \ldots)$$

Modelica Multibody Advanced: Loops II

 review Translation Log in order to streamline simulation performance with model adjustments

Modelica Multibody Advanced: Loops III

Modelica Multibody Advanced: Loops IV

✓ Use of aggregrated joint objects

in der Helmholtz-Gemeinschaft

to profit from analytical loop handling according to the "characteristic pair of joints" method by the group of Prof. Hiller r={0,-0.1,0}

Modelica Multibody Advanced: Initialisation

- ✓ Initialisation default:
 - ✓ every state is assumed to be arbitrary unless otherwise provided
 - Newton solver starts with guess value zero in order to find consistent initial states unless otherwise provided
- ✓ If initialisation fails

in der Helmholtz-Gemeinschaft

- determine, i.e. fix, characteristic variables/states in order to influence the system of equations to solve
- ✓ provide "good" guesses for initial states
- ✓ be aware of singular positions, e.g. piston at bottom dead center
- ✓ keep initialisation system consistent

Initialization		
phi.start	□ □ □ □ ■ deg Relative	rotation angle from frame_a to frame_b
w.start	□ □ ► rad/s First deri	ivative of angle phi (relative angular velocity)
a.start	Fixed	derivative of angle phi (relative angular acceleration)
	True: start-value is used to initialize	
	False: start-value is only a guess-value	
	✓ Inherited: (False: start-value is only a guess-value)	OK Info Cancel
Deutsches DLR für Luft- u	s Zentrum nd Raumfahrt e.V.	slide 24

Exercise 2: The Flying Gull

Aufgabe nach Weidemann/Pfeiffer TM 94:

Aufgabe 10

Ein beliebtes Kinderspielzeug ist die 'Fliegende Möwe'. Sie besteht aus zwei identischen Flügeln (schlanke, homogene Balken, jeweils Länge l und Masse m_F), welche um die Längsachse der Möwe drehbar am Zentralkörper (Masse m_K , Schwerpunkt S_K) aufgehängt sind. Die Breite b des Zentralkörpers sei vernachlässigbar klein. Die Möwe ist an zwei masselosen, sehr langen Fäden jeweils im Abstand a vom Zentralkörper so aufgehängt, daß die Aufhängepunkte immer auf der x-Achse des raumfesten x-, y-, z-Koordinatensystems (Ursprung O) liegen. Zur Beschreibung des Systems dient neben der Auslenkung z_K des Zentralkörpers auch der Winkel φ der Flügel gegenüber einer Waagerechten.

- a) Wie lautet die kinematische Abhängigkeit zwischen φ und z_K ?
- b) Wie groß ist die kinetische Energie des Gesamtsystems ?
- c) Wie groß ist die potentielle Energie des Gesamtsystems ?
- d) Wie lautet die Bewegungsgleichung für die Koordinate φ ?

in der Helmholtz-Gemeinschaft

Exercise 2: The Flying Gull I

Multibody Systems in Modelica > 20.03.2011

Contents

- ➤ Modelica Multibody Basics
- Exercise 1: Control of an inverse pendulum
- ➤ Modelica Multibody Advanced
- → FlexibleBodies Library: Beams
- Exercise 3: The Flying Gull II
- → Exercise 5: Unbalanced Shaft
- ✓ FlexibleBodies Library: General bodies based on finite element data
- ▼ FE-Preprocessing
- → FlexibleBodies Library extensions at this conference

The name of the game : 2 types of modelling elements

What do they have in common ?

- Floating frame of reference approach
 - Structure of equations of motion
 - Data structure, so called SID (Standard-Input-Data: Wallrapp '94)

modalBody

In what do they differ ?

- Semi-analytical description implemented in Modelica
- ✓ Modelica generates SID
- Animation uses analytical description

- FEM-based body description (Abaqus-SIDinterface, SIMPACK-FEMBS)
- Modelica reads externally generated SID file
- Modelica reads externally generated animation data (wavefront) file

slide 28

Theory: the equations of motion

 → principle of virtual power

$$\int \delta v \; (oldsymbol{f}-oldsymbol{a}) \; {
m d}m = {
m 0}$$

 → equations of motion: here

$$\boldsymbol{\omega} := \boldsymbol{\omega}_R \,, \quad \tilde{\boldsymbol{\omega}} := \boldsymbol{\omega} \times \boldsymbol{\omega}$$

$$\begin{pmatrix} mI_3 & \text{sym.} \\ m\tilde{d} & J & \\ C_t & C_r & M_e \end{pmatrix} \begin{pmatrix} a_R \\ \alpha_R \\ \ddot{q} \end{pmatrix} + \begin{pmatrix} 2\tilde{\omega}C_t^T\dot{q} + \tilde{\omega}\tilde{\omega}d \\ G_r\dot{q}\omega + \tilde{\omega}J\omega \\ G_e\dot{q}\omega + O_e\Omega \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ K_eq + D_e\dot{q} \end{pmatrix} = \begin{pmatrix} f_a \\ f_\alpha \\ f_q \end{pmatrix}$$

the generalized Newton-Euler-equations of motion of an unconstrained deformable body

✓ SID structure: definition of file format to file volume integrals

 $\boldsymbol{C}_r, \boldsymbol{C}_t, \boldsymbol{J}, \boldsymbol{M}_e, \boldsymbol{K}_e, \boldsymbol{D}_e, \boldsymbol{G}_r...$

Theory: 2nd order beam theory

→ Bending in xy- und xz-plane, torsion and lengthening

$$u(x,t) = \begin{pmatrix} u \\ v \\ w \end{pmatrix} + \begin{pmatrix} -\frac{1}{2} \int_{0}^{x} v'^{2} + w'^{2} dx \\ -\int_{0}^{x} \int_{0}^{\overline{x}} \theta w'' d\overline{x} d\overline{x} + \int_{0}^{x} u'v' d\overline{x} \\ \int_{0}^{0} \theta v'' d\overline{x} d\overline{x} + \int_{0}^{x} u'v' d\overline{x} \end{pmatrix}$$

✓ e.g. for bending in xy-plane: $v(x,t) = Φ_v(x)q_v(t)$ ✓ analytical solutions of the eigenvalue problem the Eule ernoulli-beam

$$\Phi_{i} = \begin{pmatrix} \cosh(\tau_{i}x) \\ \sinh(\tau_{i}x) \\ \cos(\tau_{i}x) \\ \sin(\tau_{i}x) \end{pmatrix}^{T} \begin{pmatrix} c_{1} \\ c_{2} \\ c_{3} \\ c_{4} \end{pmatrix}_{i} \quad u(c,t) = \Phi(c) q(t) + \frac{1}{2} \begin{pmatrix} q^{T} \Phi_{x} \\ q^{T} \Phi_{y} \\ T T \end{pmatrix} q^{T} \Phi_{y}$$

FlexibleBodies Library: Beam Menu I

beam

	General Add modifiers General Add modifiers Component	Parameters crossSection I rho E G G tube Eigenmodes bending_xy Parameters I I I I I I I I I I I I I	m3 m3 m2 m2 es.E
1	Parameters I <thi< th=""><th>Type of cross section beam area length of beam n3 mass density <mark>I beam crossSection</mark> n^2 Young's modulu n^2 Shear modulus</th><th>n ? X</th></thi<>	Type of cross section beam area length of beam n3 mass density <mark>I beam crossSection</mark> n^2 Young's modulu n^2 Shear modulus	n ? X
_	xsi {.5} Eigenmodes bending_xy ryConditionB=FlexibleBodies.Type bending_xz ryConditionB=FlexibleBodies.Type torsion ryConditionB=FlexibleBodies.Type lengthening ryConditionB=FlexibleBodies.Type	specification of Description I-profile cross section es.BoundaryCondition es.BoundaryCondition es.BoundaryCondition t_bar 0.001 height .03 t_flange 0.001	m outer contour dimension in y-direction (along flange) m thickness of central bar m outer contour dimension in z-direction m thickness of flanges

FlexibleBodies Library: Beam Menu II

Multibody Systems in Modelica > 20.03.2011

Boundary Conditions I

✓ 1st Option: tangent frame: clamped-free b.c. correponds to cantilever beam

$$u(c=0,t)=0$$
 $\frac{\partial u}{\partial c}(c=0,t)=0$

 $r(c,t) = r_R(t) + c + u(c,t)$

✓ 2nd Option: chord frame: supported-supported b.c.

$$u(c_1)=0$$
 $u(c_2)\cdot \overline{c_1c_2}=0$

→ 3rd Option: Buckens frame: free-free b.c. $_0C_r = {}^0C_t = {}^1d_C = O$

$$egin{pmatrix} mI_3 & {}^{ ext{sym.}} \ m ilde{d}_C & J & \ C_t & C_r & M_e \end{pmatrix} egin{pmatrix} a_R \ ec{q} \ ec{q} \end{pmatrix} = h_\omega - egin{pmatrix} 0 & \ 0 & \ K_e \, q + D_e \, \dot{q} \end{pmatrix} + egin{pmatrix} f_a \ f_lpha \ f_e \end{pmatrix}$$

✓ Linearisation: choose reference frame in such a way that is as small as possible

 $oldsymbol{u} \ll 1 \quad \Rightarrow \;$ prefer Buckenssystem

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft see Schwertassek/Wallrapp/Shabana99

Boundary Conditions II

- → Helikopter-Rotor (see Examples/Beam)
 - ✓ choose the boundary conditions according to the attachment joint
 - Heckmann2010: On the Choice of Boundary Conditions for Mode Shapes, Mulibody System Dynamics (23)

Exercise 3: The Flying Gull II

Exercise 4: a classic Pitfall I

- Model the following system

Exercise 4: a classic Pitfall II

✓ the system is now extended by an equivalent spring !

Plot the relativeSensor.r_rel[1] ! Gradually increase the number of modes !

Exercise 4: a classic Pitfall III

✓ static deflection: thrust force shortens beam and equivalent spring

Exercise 4: a classic Pitfall IV

- ✓ Mechanical background
 - → static deflections rely on elastic properties only
 - → eigenmodes consider elastic and interia properties
 - \checkmark that's why they are well suited for dynamic problems
- ✓ Geometrical background
 - \checkmark analytically: $u = c \cdot x$
 - → expansion with eigenmodes: $u = \sin(\frac{2x}{\pi l}) + \sin(\frac{2x}{3\pi l}) + \dots$
- ✓ It is proven that Raleigh-Ritz approach converges against true value
 - → but how fast ?
- ✓ Check whether a higher number of modes changes results !

Erxercise 5: unbalanced Shaft

✓ Instability at which rotational velocity ?

Contents

- ➤ Modelica Multibody Basics
- Exercise 1: Control of an inverse pendulum
- ➤ Modelica Multibody Advanced
- ✓ Exercise 2: The Flying Gull I
- → FlexibleBodies Library: Beams

- → Exercise 5: Unbalanced Shaft
- ✓ FlexibleBodies Library: General bodies based on finite element data
- ▼ FE-Preprocessing
- ✓ FlexibleBodies Library extensions at this conference

Recall Theory: the equations of motion

 → principle of virtual power

$$\int \delta v \; (oldsymbol{f}-oldsymbol{a}) \; {
m d}m = {
m 0}$$

 → equations of motion: here

$$\boldsymbol{\omega} := \boldsymbol{\omega}_R \,, \quad \tilde{\boldsymbol{\omega}} := \boldsymbol{\omega} \times \boldsymbol{\omega}$$

$$\begin{pmatrix} mI_3 & \text{sym.} \\ m\tilde{d} & J & \\ C_t & C_r & M_e \end{pmatrix} \begin{pmatrix} a_R \\ \alpha_R \\ \ddot{q} \end{pmatrix} + \begin{pmatrix} 2\tilde{\omega}C_t^T\dot{q} + \tilde{\omega}\tilde{\omega}d \\ G_r\dot{q}\omega + \tilde{\omega}J\omega \\ G_e\dot{q}\omega + O_e\Omega \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ K_eq + D_e\dot{q} \end{pmatrix} = \begin{pmatrix} f_a \\ f_\alpha \\ f_q \end{pmatrix}$$

the generalized Newton-Euler-equations of motion of an unconstrained deformable body

✓ SID structure: definition of file format to file volume integrals

 $\boldsymbol{C}_r, \boldsymbol{C}_t, \boldsymbol{J}, \boldsymbol{M}_e, \boldsymbol{K}_e, \boldsymbol{D}_e, \boldsymbol{G}_r...$

SID-Data from FE: Where do they come from ?

✓ Consider the linear FE-equation

$$M\ddot{u}_{fe} + Ku_{fe} = f_{fe}$$

✓ the related eigenvalue problem

$$[M\omega_i^2 + K]v_i = 0$$

- \checkmark a set of eigenvectors $v_1, v_2, ...$
- \checkmark a selection of nodes $c_1, c_2, ...$
- ✓ for each node mode shapes are collected from set of eigenvectors

 $\boldsymbol{\Phi}(\boldsymbol{c}_1), \boldsymbol{\Phi}(\boldsymbol{c}_2),$

✓ the related rotational terms (non-volume-elements only)

$$\Psi(c_1), \Psi(c_2), \dots$$

the volume integrals are reassembled from (substructure) element inertia and stiffness data

 $C_r, C_t, J, M_e, K_e, D_e, G_r...$

FlexibleBodies Library: ModalBody Menu I

]
--	--	---

😑 wing1 in Tutorial.Fle	kibleBodies.FlyingGull.Step3	? ×		
General MoreAnima	tion Advanced Modeling Sensors Add modifiers			
Component		Icon		
Name wing1 Comment Model	es.ModalBody	ModalBody C		
Comment General flex Parameters SID_fileName	ble body model based on a modal description (including geometric stiffening) "Extras/Data/wing7.SID_FEM" 🔢 • File name of SID file describing the flexible body	dynamics		
WavefrontFile	"Extras/Data/wing.obj" File name of wavefront file describing the flexible	e body animation		
Simulation nodes (= sub:	Simulation nodes (= subset of finite element nodes to be associated with connector array nodes)			
Nodes	(69,76,80,91,102) FE node numbers to be associated to conne	ctor array nodes		
Animation				
Solid animation	Factor to exaggerate deformation 1 Color {0,0,255} Image: Specular coefficient	0.7 💌 🕨		
Wire frame animation	✓ Factor to exaggerate deformation 2.5 Color {155,155,155} ▼ E Specular coefficient	0 🔽 >		
	OK Info	Cancel		

Exercise 6: The Flying Gull III

- → 1st step:
 - ✓ introduce world and ModalBody- model
 - → assign SID-file …/Extras/Data/wing7.SID_FEM
 - → assign OBJ-file .../Extras/Data/wing.obj

Exercise 6: The Flying Gull III

ModalBody example: 4-Cylinder-Engine

- → FEM-models
 - Crankshaft : 106.789 nodes
- Multibody representation
 - **▼** < 1900 Hz
 - - → 2 torsional eigenmodes
 - → 305 simulation nodes
 - → Rod
 - ✓ 4 eigenmodes each
 - 148 simulation nodes each
 - Time-integration with gas forces
 38 states,~6 cpu-s for 1 s

RealTime Modal Body

modalBody

und Raumfahrt e.V.

in der Helmholtz-Gemeinschaft

no external C-Code

- ✓ 2. implementation(= parameter native=true)
- con's: not suitable for large models
- ➤ no file access
 - SID-data filed as Modelica-record
 - \Rightarrow dsmodel.c contains all code and all data

no animation

ModalBody in Tutorial.Flexible	Bodies.RealTime.Step2		?
General Advanced Modelin	ng Sensors Add modifiers		
Component			Icon
Name ModalBody			ModalBody
Comment			
Model			
Path FlexibleBodies.RealTime	ModalBody		
Comment General flexible body m	odel for real time applications		
Data Structure			
modal_mo Willi.modal	➡ handover of the modal data structure for realtime a	pplication	
Simulation nodes (= subset of finite	element nodes to be associated with connector array nodes_cl	amped)	
Nodes	{1,2,12,26,78,84,107,143,149} II · FE n	ode numbers to be associated to cor	nector array nodes_clamped
		OK	Info Concol
		OK	

Contents

- ➤ Modelica Multibody Basics
- Exercise 1: Control of an inverse pendulum
- ➤ Modelica Multibody Advanced
- → FlexibleBodies Library: Beams
- Exercise 3: The Flying Gull II
- ✓ Exercise 5: Unbalanced Shaft
- ✓ FlexibleBodies Library: General bodies based on finite element data
- → FE-Preprocessing
- → FlexibleBodies Library extensions at this conference

FE-preprocessing: in summary

- 1. FE-modelling
- 2. generate wavefront-file (export mesh-information)
- 3. prepare and select nodes to retain
- 4. solve FE-eigenvalue problem
 - ✓ care for boundary conditions and frequency range
- 5. generate FE- substructure
- 6. generate SID-file FE-from substructure
- 7. introduce SID- and wavefront-file in Modelica

FE-preprocessing Step 2: wavefront-file

- - → an open (very) low level geometry format
 - ✓ freely available tools exist
 - ✓ represents geometrical shape of the boby
 - interpolation for animation is completely independent from MBSsimulation
 - ✓ due to limited animation performance,
 - ✓ the "outside" geometry is sufficient, e.g. the mesh of the surface

FE-preprocessing Step 3: retained nodes

- ✓ retained nodes
 - ✓ prepare the body-model for interconnections of the MBS
 - select nodes where MBS-elements are supposed to be attached to
 - ✓ define of such nodes and associated MPCs
 - ✓ consider rotational degrees of freedom if needed
 - select an additional set of nodes necessary to support a "nice animation"
 - ✓ roughly equally distributed over surface of the body

 - you may use the specific Abaqus comand line
 *Nset SID_SELECTED_NODES

12 AttachmentPoints at radius 460 y 750 equally distributed at the circumference of each wheel (to introduce wheel/rail forces and torques)

3 AttachmentPoints # 90000, 90003, 90006 on the axis line of the wheelset (to attach suspension and measurements devices)

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

FE-preprocessing Step 5: substructuring

- → standard FE-capability
 - → Gyuan-, Craig-Bampton-....method
- ✓ Abaqus comand line
 - *SUBSTRUCTURE GENERATE, FLEXIBLE BODY=S

SID assumes	-slength -smass
alternative:	-stime -fmin
modes	-fmax
	-tol
	-help

- h : scaling factor for the length unit (default: 1.0)
 - : scaling factor for the mass unit (default: 1.0)
 - : scaling factor for the time unit (default: 1.0)
 - : lower boundary of the frequency range (default: 0.001Hz)
 - : higher boundary of the frequency range (default: 1.E16Hz)
 - : zero cutoff tolerance (default 1E-12)
- : this usage info

FE-preprocessing Step 6: SID-file-generation

- → abqtoSid
 - additionally provided with Abaqus executable control of SIDgeneration by "substructureName.inp"
 - → ASCII-file with keywords e.g.
 - *NSET
 - *GENERATE
 - *BOUNDARY
 - *SELECT EIGENMODES

Set DEFINITION=MODE NUMBERS / FREQUENCY RANGE

*DAMPING CONTROLS , VISCOUS=FACTOR

*DAMPING, ALPHA=0.0, BETA=0.02

Contents

- ➤ Modelica Multibody Basics
- Exercise 1: Control of an inverse pendulum
- ➤ Modelica Multibody Advanced
- → Exercise 2: The Flying Gull I
- → FlexibleBodies Library: Beams

- → Exercise 5: Unbalanced Shaft
- ✓ FlexibleBodies Library: General bodies based on finite element data
- ▼ FE-Preprocessing
- ✓ FlexibleBodies Library extensions at this conference

FlexibleBodies Library extensions at this conference

- S. Hartweg, Monday HS3 12:00:
- An Annular Plate Model in Arbitrary Lagrangian-Eulerian Description for the DLR FlexibleBodies Library

- L . Reyes Perez, Monday HS2 15:35
 - A thermoelastic annular plate model for the modeling of brake systems

Thank you very much for your attention !

