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Abstract

Numerically modelling the crushing of composite structures is important in crash-

worthiness. In this work, advanced material models are formulated and implemented

into an explicit finite element code to model delamination and ply failure.

A new interface element with mixed mode capabilities is formulated and im-

plemented to model delamination. A 3D ply material model is formulated and is

also implemented into the same code. The material model distinguishes matrix

and fibre tensile and compressive failure, and includes nonlinear behaviour in shear.

Matrix compressive failure is addressed with a phenomenological approach based

on the Mohr-Coulomb failure criterion. For the fibre failure in compression, a 3D

criterion that considers an initial fibre misalignment angle prompting compressive

failure is used. Failure in tensile of the matrix is modelled with a simpler stress

interaction criterion, and no stress interaction is considered for fibre tensile failure.

On the post failure onset behaviour, the failure process is smeared over the finite

element dimension. This allows for constant energy absorption, regardless of mesh

refinement.

Experimental tests were carried to measure the energy release rate associated

with intralaminar fracture, fibre tensile failure and fibre kinking, as these are mate-

rial properties required by the numerical model.

Finally, the validation and applications of the interface element and ply failure

model are presented. Analytical and experimental data are shown to be in good

agreement with the numerical predictions.
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Notation

Lower case Roman letters

a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . fibre direction

a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . crack length

a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dimension of an elliptic region along x

a . . . . length of the initial pre-crack (four point bend, compact tension and compact

compression tests)

ao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . initial crack length

ao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . half length of a slit crack

ao . initial length of the pre-crack (compact tension and compact compression tests)

aL . . . . . . . . . . . . . . . . . . . . . . . . . . . . .dimension of the crack in the longitudinal direction

am . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . fibre direction in the fibre misalignment frame

b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . in-plane transverse direction

b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dimension of an elliptic region along y

b . . . . . . . . . . length of the tabs in a specimen (compression, tension and shear tests)

b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . specimen width (DCB test)

bcal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . width of a calibration specimen (MMB test)

bm . . . . . . . . . . . . . . . . . . . . . . . . . . . . transverse direction in the fibre misalignment frame

bt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . fictitious body force

bψ axis defining the orientation of the fibre-kinking plane, as shown in Fig. 3.15(b)

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . through-the-thickness direction

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dimension of an elliptic region along z

c . . . . distance between a loading point and a support point in an intralaminar test

(Fig. 5.2)

xx
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ci . . . . coefficients, i = 0, 1, 2, 3h thickness of a four point bend specimen (four point

bend, compact tension and compact compression tests)

cψ axis defining the orientation of the fibre-kinking plane, as shown in Fig. 3.15(b)

d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . damage variable

d . . . . . . . . . . . . . . . . . . . . . . . distance between the two load points in a 4ENF specimen

d (t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . damage variable at time t

d(τ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . damage variable at time τ

dinst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . instantaneous value of a damage variable

dinst (t′) . . . . . . . . . . . . . . . . . . . . . . . instantaneous value of a damage variable at time t′

dinst(τ ′) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . damage variable at time τ ′

di . . . . . . . . . . . . . . . . . . . . . . . . damage variable for the i failure mode, i = mat, kink, ft

f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . failure index (failure when f = 1)

ff . . . . . . . . . . . . . . . . . . . . failure index for the fibre failure mode (failure when ff = 1)

fft . . . . . . . . . . . . failure index for the fibre tensile failure mode (failure when fft = 1)

fkink . . . . . . . failure index for the fibre-kinking failure mode (failure when fkink = 1)

fmat . . . . . . . . . . . . . . failure index for the matrix failure mode (failure when fmat = 1)

fmc . . . failure index for the matrix compression failure mode (failure when fmc = 1)

fmt . . . . . . . . .failure index for the matrix tensile failure mode (failure when fmt = 1)

fCL . . . . . . . . . . . . . . . . . . . . . . . . . . . constitutive law for the shear behaviour τ = fCL (γ)

g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .mode ratio for intralaminar fracture, g = GIc/GIIc

h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .half thickness (MMB test)

h . . . . . . . thickness of the tabs in a specimen (compression, tension and shear tests)

h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .total specimen thickness (DCB test)

k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . penalty stiffness

kpos . . . . . . . penalty stiffness for a positive opening mode component of the relative

displacement (i.e. δ1 > 0)

kneg . . . . . . penalty stiffness for a negative opening mode component of the relative

displacement (i.e. δ1 ≤ 0)

k1 . . . . . . . . . . . . . . . . . . . . . . . . . . . parameter for the logarithmic law τ = k1 ln (k2γ + 1)

k2 . . . . . . . . . . . . . . . . . . . . . . . . . . . parameter for the logarithmic law τ = k1 ln (k2γ + 1)

l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . mesh size
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m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . parameter in Williams and Vaziri’s model [146]

m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . slope of the load-displacement curve (MMB test)

m . . . . . parameter for the least squares fit of the experimental data in a 4ENF test

mcal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . slope of the load-displacement curve (MMB test)

n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of layers

n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . normal to an ellipsoid

t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . thickness of a ply

t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . thickness

t . . . . . . . . . . . . . . . . . . . thickness of a specimen (compression, tension and shear tests)

tcal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . thickness of a calibration specimen (MMB test)

ti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . component i of the traction vector, i = 1, 2, 3

to . . . . . . . . . . . . . . . . . . . . . . . .magnitude of the traction vector at the onset of damage

tshear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .shear component of the traction vector

w . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .width

w . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . width of a damage band

x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . geometric coordinate

y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . geometric coordinate

z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . geometric coordinate

Upper case Roman letters

A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . area of a crack

A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . cross-sectional area

Ao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . initial cross-sectional area

C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . compliance

C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .constitutive law tensor

C∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . constitutive tensor of an elliptical inclusion

C0 . . . . . parameter for the least squares fit of the experimental data in a 4ENF test

Csys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . compliance of the loading system (MMB test)

E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Young’s modulus

Ecal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . modulus of a calibration specimen (MMB test)

Ei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Young’s modulus in the i direction, i = a, b, c



NOTATION xxiii

Eint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . interaction energy

Ef . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . bending modulus

F . . . . . . . . . . . . . . . . . . . . . . . total energy transferred to a body through external work

Fi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .parameter for interactive criteria, i = 1, 2, 6

Fii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . parameter for interactive criteria, i = 1, 2, 6

F12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .parameter for interactive criteria

F ∗12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .parameter for interactive criteria

G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . energy release rate

Gc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .critical energy release rate

Gi . . . . . . . . . . . . . . . . . . . . mode i component of the energy release rate, i = I, II, III

Gic . . . . . . . . . . . . mode i component of the critical energy release rate, i = I, II, III

Gij . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Shear modulus in the (i, j) plane, ij = ab, bc, ca

Gi . . . . . . . . . . . . . . . energy release rate for crack growth in direction i, with i = T, L

Gi
I mode I component of the energy release rate for crack propagation in direction

i, with i = T, L

Gi
Ic . mode I component of the critical energy release rate for crack propagation in

direction i, with i = T, L

Gi
II . . . . . . . .mode II component of the energy release rate for crack propagation in

direction i, with i = T, L

Gi
IIc mode II component of the critical energy release rate for crack propagation in

direction i, with i = T, L

Gmatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . shear modulus of the matrix

Gshear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . shear component of the energy release rate

GSc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . shear mode critical energy release rate

GSc . . . . . . . . . . . . . . . . . . . . . . . . . . . shear component of the critical energy release rate

Gtot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . total energy release rate

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .moment of inertia of one arm of a DCB specimen

KIc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . mode I critical stress intensity factor

KII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .mode II stress intensity factor

L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . characteristic length

L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . longitudinal direction



NOTATION xxiv

L . . . . . . half distance between the support points in an intralaminar test (Fig. 5.2)

L . . . . . . . . . . . . . . . . . . . . . length of a specimen (compression, tension and shear tests)

L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .half length of a 4ENF or MMB specimen

Li . . . . . . . . . . . . . . . . . . . . . . . . . . . . length of a brick element along axis i with i = 1, 2, 3

Li . . . . . . . . . . . . . . . . . . . .characteristic length for the i failure mode, i = mat, kink, ft

Li . . . . . . . . . . . . .characteristic length given in Figs. D.1(a), (b) and (c), i = a, cφ, am

N . . . . . . . . . . . . . . . . . . . . . . . . maximum allowable traction for loading in pure mode I

P . . . . . total applied load at failure (four point bend, compact tension and compact

compression tests)

P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . applied load

P tensor used to obtain the stress field in a transformed region; it can by found in

Refs. [188, 189]

Pc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . load at onset of crack propagation

Q . . . . . . . . . . . . . . . . . . . tensor used to obtain the stress field in a transformed region

S . . . . . . . . . . . . . . . . . . . . maximum allowable traction for loading in pure shear mode

S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .compliance

S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . surface

Sij . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . shear strength in plane (i, j), with ij = ab, bc, ca

SLis . . . . . . . . . . . . . . . . . . . . . . . . . . longitudinal shear strength considering in-situ effects

SL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . shear strength for the longitudinal direction

ST fracture plane fracture resistance against its fracture by transverse shear, often

referred to in the text as transverse shear strength

T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . transverse direction

U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . strain energy of a body

U . . . . . . . . . . . . . . . . . . . . . . . . . . . energy absorbed by an element after complete failure

Uo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . strain energy of an uncracked body

V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . volume of an element

V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . volume

Vf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . fibre volume fraction

W . . . . . . . . . . . . . . . . . . . . . width of a specimen (compression, tension and shear tests)

Wo . . . . . . . . . . . . . . . . . . . . . . . . . . uniform strain energy density of the uncracked body



NOTATION xxv

Wo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . initial width of a specimen (shear test)

Ws . . . . . . . . . . . . . . . . . . . . . energy absorbed by a solid to create the surface of area A

X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . strength in the longitudinal direction

Xc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . compressive strength in the longitudinal direction

Xt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . tensile strength in the longitudinal direction

Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . strength in the in-plane transverse direction

Yc . . . . . . . . . . . . . . . . . . . . . . . compressive strength in the in-plane transverse direction

Yt . . . . . . . . . . . . . . . . . . . . . . . . . . . . tensile strength in the in-plane transverse direction

Y t
is . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . in-situ transverse tensile strength

Lower case Greek letters

α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . coefficient of the power law (propagation criterion)

β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . mode ratio

β . . . . parameter in the polynomial relation between the shear strain and the shear

stress proposed by Hahn and Tsai [110]

β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . lamination angle

β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . angle

γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . shear strain

γij . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . shear strain in the (i, j) plane, ij = ab, bc, ca

γuab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . in-plane shear strain at failure

γuab � is . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . in-situ in-plane shear ultimate strain

γmax
ab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .maximum (over time) shear strain

γmax
ab (t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . maximum (over time) shear strain until time t

γab (t
′) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . maximum (over time) shear strain until time t′

γinab . . . . inelastic component of the in-plane shear strainγelab elastic component of the

in-plane shear strain

γelambm . . . . . . . . . . . . . . . . . . elastic component of the shear strain in the (am, bm) plane

γo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . shear strain at failure

γm . . . . . . . . . . . . . . . . . . . . . . . . . shear strain in the fibre misalignment frame at failure

γmc . . . . . . . . shear strain in the fibre misalignment frame at failure for a pure axial

compression case
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γmat . . . . . elastic component of the shear strain acting on the fracture plane, in the

direction of τmat

γelL . . . . . . .elastic component of the longitudinal shear strain component acting on a

fracture plane

γel,oL . . . . . elastic component of the longitudinal shear strain component acting on a

fracture plane at onset of failure

γT . . . . . . . . . . . . . . . . . . . transverse shear strain component acting on a fracture plane

γoT . transverse shear strain component acting on a fracture plane at onset of failure

δ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . relative displacement

δ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . opening displacement (DCB test)

δ (τ ′) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . relative displacement at time τ ′

δi . . . . . . . . . . . . . . . . . . . . . .component i of the relative displacement vector, i = 1, 2, 3

δmax (τ) . . . . . . .maximum historical value of the relative displacement, until time τ

δo . . . . . . . . . . . . . . . . . . . . . . . . . . . relative-displacement corresponding to damage onset

δf . . . . . . . . . . . . . . . . . . . . relative-displacement corresponding to damage propagation

δmax . . . . . . . . . . . . . . . . . . . . . . . maximum historical value of the relative displacement

δshear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . shear component of the relative displacement

δfshear . . . . . shear component of the relative-displacement corresponding to damage

propagation

δoshear shear component of the relative-displacement corresponding to damage onset

δoN relative-displacement corresponding to damage onset for loading in pure mode I

δfN relative-displacement corresponding to damage propagation for loading in pure

mode I

δoS . relative-displacement corresponding to damage onset for loading in pure shear

mode

δfS . relative-displacement corresponding to damage propagation for loading in pure

shear mode

ε . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . small number (b/a)

ε . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . strain

ε . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . total strain tensor

ε∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .uniform strain at infinity



NOTATION xxvii

ε̃ . . . . . . . . . . . . . .perturbation in the strain field due to the presence of an inclusion

εi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . normal strain component, i = a, b, c

εi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . driving strain for the i failure mode, i = mat, kink

εij . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . shear strain component, ij = ab, bc, ca

εoi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . normal strain at onset of failure, i = a, b, c

εoij . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . shear strain at onset of failure, ij = ab, bc, ca

εoti . . . . . . . . . . . . . . . . . . . . . . . . . . normal strain at onset of failure in tension, i = a, b, c

εoci . . . . . . . . . . . . . . . . . . . . . normal strain at onset of failure in compression, i = a, b, c

εoi . . . . . . . . . . . . . . .value of the driving strain for the i failure mode at damage onset,

i = mat, kink, a

εfi . . . . . . . .value of the driving strain for the i failure mode at damage propagation,

i = mat, kink, a

εel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . elastic strain tensor

εf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . strain at failure propagation

εo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . strain at failure onset

εl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . longitudinal strain

εn . . . . . . . . . . . . . . . . . . . . . . . . . . . . normal strain component acting on a fracture plane

εon . . . . . . . . . . normal strain component acting on a fracture plane at onset of failure

εt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .transformation strain tensor

εtr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . transverse train

ηi stress intensity reduction coefficients for propagation in the transverse direction,

i = I, II, III

θ . angle defined by the shear and normal components of the relative displacement

vector, θ = acos 〈δ1〉 /δ
θ . . . . . . . . . angle formed by the shear component of the traction vector, τ , and the

transverse direction in the fracture plane, i.e., θ = arctan (τL/τT )

θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .misalignment frame

θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . lamination angle

θc . . . . . . . . . . . . . . . . . . . . misalignment angle θ at failure for a pure compression case

θi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . initial fibre misalignment angle

κ . . . . . . . . . . . . . . . . . . . . . . variable used in the constitutive law from Refs. [11, 12, 21]



NOTATION xxviii

λ angle of the resultant shear component of the traction, τmat, with the component

τT (see Fig. 4.4(a), λ = arctan τL/τT )

µT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . friction coefficient for the transverse direction

µL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . friction coefficient for the longitudinal direction

ν . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Poisson’s ratio

νij . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Poisson’s ratio in the (i, j) plane, ij = ab, bc, ca

ξi . . . . . . . . stress intensity reduction coefficients for propagation in the longitudinal

direction, i = I, II, III

ρ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . density

σ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . stress

σ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . stress tensor

σ̃ . . . . . . . . . . . . . . perturbation in the stress field due to the presence of an inclusion

σ∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .uniform stress at infinity

σap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . applied stress

σef . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .effective stress

σi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . normal stress component, i = a, b, c, am, bm, bψ, cψ

σitraction associated with the driving strain for the i failure mode, i = mat, kink, a

σn . . normal component of the traction vector in a potential matrix fracture plane

σo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . stress at onset of failure

σoi . . . . . traction associated with the driving strain for the i failure mode at damage

onset, i = mat, kink, a

σon . normal component of the traction vector acting on a fracture plane at onset of

failure

τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . shear stress

τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . shear component of the traction vector

τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . time

τ ′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . time

τij . . . . . . . shear stress component, ij = ab, bc, ca, ambm, bψcψ, abψ, cψa, bmcψ, cψam

τm . . . . . . . . . . . . . . . . . . . . . . . . . shear strain in the fibre misalignment frame at failure

τmat . . . . . shear component of the traction associated with the driving strain for the

matrix failure mode (σmat)
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τmc . . . .shear strain in the fibre misalignment frame at failure by pure longitudinal

compression

τL . . . . . . longitudinal shear component of the traction vector in a potential matrix

fracture plane

τ fric.L . . . . . . . . . . . . . . . . . . . . . . friction stress associated with the longitudinal direction

τT transverse shear component of the traction vector in a potential matrix fracture

plane

τ oLlongitudinal shear component of the traction vector acting on a fracture plane at

onset of failure

τ oT . transverse shear component of the traction vector acting on a fracture plane at

onset of failure

τ fric.T . . . . . . . . . . . . . . . . . . . . . . . friction stress associated with the transverse direction

φ . . . angle of the fracture surface with the through-the-thickness direction, for the

matrix failure mode under a generic state of stress

φo . . angle of the fracture surface with the through-the-thickness direction, for the

matrix failure mode under pure in-plane transverse compression

χ . . . . . . . . . . . . . . . . . . . . . . . . . correction factor for the data reduction in an MMB test

χ (γab) . . . . . . . . . . . . . . . . . . . . . twice the strain energy associated with in-plane shear

χ
(

γuab � is

)

. . . . . . . . . . twice the strain energy associated with in-plane shear at failure

ψ . . . . . . . .angle of the fibre-kinking plane with the b axis, as shown in Fig. 3.15(b)

ψ1 . . . . . . . . . . . . . . . . first root of the angle of the fibre-kinking plane with the b axis

ψ2 . . . . . . . . . . . . . . second root of the angle of the fibre-kinking plane with the b axis

ω . angle defined by the two shear components of the relative displacement vector,

ω = atan δ3/δ2

ω . .angle of the magnitude of the traction σmat with the shear component τmat (see

Fig. 4.4(b), ω = arctan 〈σn〉 /τmat)

Upper case Greek letters

Γ . . . . . . . . . . . . . . . . . . . . . energy per unit area dissipated by a localized damage mode

Γ . . . . . . . . . . . . . . . . . . . . . . . . . correction factor for the data reduction in an MMB test

Γa . . . . . . . . . . . . . . . . . . . . . . . . . . . . energy release rate for the fibre tensile failure mode
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Γb . . . . . . . mode I intralaminar fracture energy release rate (i.e. pure tensile failure,

positive σn acting alone)

Γkink . . . . . . . . . . . . . . . . . . . . . . . . . energy release rate for the fibre kinking failure mode

Γv . . . . . . . . . . . . . . . . . energy per unit volume dissipated by a localized damage mode

ΓL . . . . . . . . . . . . . . . . . . . . . . . . . . . . energy release rate corresponding to τL acting alone

ΓT . . . . . . . . . . . . . . . . . . . . . . . . . . . . energy release rate corresponding to τT acting alone

∆ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .displacement

∆ . . . correction term applied to the crack length, from the ASTM standard for the

DCB test [30]

Λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . tensor used to obtain the interaction energy

Λo
b . parameter used to obtain the energy release rate for an intralaminar slit crack

Λo
bc parameter used to obtain the energy release rate for an intralaminar slit crack

Π . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .potential energy, defined as Π = U − F

Operators

〈·〉 . . . . . . . . . . . . . . . . . . . . . . . . Mc-Cauley bracket defined by 〈x〉 = max {0, x} , x ∈ R
δ (·) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dirac delta function



Chapter 1

Introduction

Advanced composite materials, typically consisting of reinforcing fibres (e.g. carbon

fibres) in a resin matrix (e.g. epoxy), are progressively replacing metals in the

transport and defence industries. For this reason, it is important to understand

and be able to predict the failure of composite structures, under static and dynamic

loads.

The present knowledge on the failure behaviour of composite structures comes

from two main sources: experimental and numerical. The experimental tests suf-

fer from two main drawbacks. Firstly, they are considerably expensive and time

consuming, particularly when different loading situations, impact orientations, ve-

locities and morphologies of the structure are tested. Secondly, they can rarely

be used in the earlier design stages, as the manufacturing capabilities may not be

installed yet, and component testing might require a dedicated test set-up.

The capability to numerically model the failure and energy absorption of com-

posite structures allows savings by postponing testing to final stages of design, and

brings a deeper insight into the knowledge of material and structural failure. Once a

numerical model of a particular component or complete structure is developed, sev-

eral load cases, impact orientations and velocities can in principle be investigated

at low cost. This can result in the definition of response maps, characterizing a

component’s structural and crashworthiness capabilities. The information obtained

can then be used to further enhance the final design.

1
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At the current state of development, numerical models cannot be totally trusted

to model complex static or dynamic failure situations involving composite materials

accurately. To a great extent, this is because the physics of composite materials

failure is complex and not fully understood yet. Furthermore, failure models need

to be implemented into numerical codes, if they are to be used to analyse complex

structures. However, for the most commonly used numerical method, the Finite

Element (FE) method, modelling failure is a complex issue, and raises difficult

problems, which include, for example, mesh dependency, energy absorption and

large element distortions.

The work in this thesis is restricted to laminated composites with unidirectionally

reinforced plies, and its aims are:

• to investigate the physics of failure in laminated composites, and formulate

failure models and criteria for each failure mode, which more accurately incor-

porate the physics of failure;

• to implement these models in an FE code which is used by the industry, and

which should be able to model situations ranging from simple specimens to

complex structures, in static and dynamic loading situations;

• to use, in the FE implementation, formulations which correctly model the

energy absorbed by each failure mode. For delamination, this is achieved by

using decohesion (or interface) elements, and for the other failure modes by

using a smeared formulation;

• if necessary, to develop the experimental tests required to measure the material

properties needed by the model.

In this context, in Chapter 2, a three-dimensional (3D) decohesion element with

mixed mode capabilities is formulated and incorporated into the finite element code

LS-Dyna [1] to model delamination. In Chapter 3, a 3D ply material model is for-

mulated. The material model distinguishes matrix and fibre tensile and compressive

failure, and includes nonlinear behaviour in shear. The matrix compressive failure

mode is addressed with a modified 3D version of the Puck [2] matrix compression
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failure criterion. For the fibre failure in compression, a 3D criterion based on Argon’s

[3] approach considering matrix failure prompted by material imperfections is used

in a framework similar to the one proposed by Dávila et al. [4]. In Chapter 4, the

3D ply material model is implemented in LS-Dyna. On the post-failure behaviour, a

smeared formulation is used, which allows for constant energy absorption, regardless

of mesh refinement. Applications of the interface element and the ply failure model

are presented. Analytical and experimental data are shown to be in good agreement

with the numerical predictions. Experimental tests to measure the energy release

rate associated with intralaminar fracture are presented in Chapter 5. For the ten-

sile and compressive fibre-dominated failure modes, experimental tests to measure

the associated energy release rates are presented in Chapter 6.



Chapter 2

Formulation and implementation

of a decohesion element

2.1 Introduction

Initiation and propagation of delamination is often a precursor to ultimate failure

in laminated composite structures. Knowledge of delamination and ability to model

this aspect of failure therefore deserve particular attention.

In implicit Finite Element (FE) codes, decohesion elements have been success-

fully used to simulate standard delamination toughness tests (Double Cantilever

Beam (DCB), Mixed-Mode Bending (MMB) and End Notch Flexure (ENF)) [5–

10]; debonding of skin/stiffener specimens [6], overlap tests [11], compression after

impact (CAI) of composite plates [5, 12] and crush of composite tubes [13].

In explicit analyses, nonlinear springs have been used to model the interfaces in

layered composites [14]. Some work using a cohesive zone approach is presented in

Refs. [15, 16], in which the applications include MMB specimens and the impact

with penetration of a steel ball in a composite plate. However, very few details are

given on the formulation and implementation. In another work, Borg et al. [17] used

a discrete cohesive zone approach to model delamination. Coincident nodes were

tied together with a penalty formulation before delamination onset. During damage

propagation, the nodal forces were reduced to zero as the amount of dissipated

4
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Figure 2.1: Decohesion model

work approached a value corresponding to the fracture energy, which was obtained

from the energy release rate using the respective nodal area. The model was then

modified to use a damage formulation [18], and was finally implemented within

a contact algorithm [19, 20]. In the present work, a different approach is pursued,

using decohesion elements, because they have proved to be an useful tool for implicit

analyses.

Decohesion elements are typically formulated in terms of a traction vs. relative-

displacement relationship instead of the traditional stress vs. strain relation. Gen-

erally, two surfaces (top and bottom) are considered, as shown in Fig. 2.1. Each

point in each of these surfaces has a corresponding point on the other surface, des-

ignated as homologous. A pair of homologous points is a pair of points that are in

contact before the interface is loaded. The relative displacement between each pair

of homologous points is projected in a local reference system, which expresses the

relative displacement in terms of an opening mode and a sliding mode. Sliding can

be due to mode II or mode III loading (or a combination of both).

Prior to delamination onset, an elastic constitutive law usually relates the relative

displacement of two homologous points with the traction (force per unit area) acting

on both the top and bottom surfaces. For pure mode I or pure shear mode problems,

the interface is usually considered to have an elastic behaviour (linear or not), until

the respective maximum allowable stress is reached. Then, the stiffness is reduced

in such a way that the energy absorbed per unit area is equal to the corresponding

critical energy release rate (GIc or GSc respectively). For mixed-mode problems,
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the elastic relationship is valid until a stress-based initiation criterion is verified.

From this stage onwards, the stiffness is reduced for each mode ratio in such a way

that the energy absorbed in the mixed-mode situation is defined by a propagation

criterion.

LS-Dyna [1] is one of the explicit FE codes most widely used by the industry to

model impact or crash situations in laminated composite materials. However, deco-

hesion elements are not available within this code. In this work, a decohesion element

with a bilinear constitutive law is formulated and implemented in LS-Dyna. The

formulation is based on published work [5, 10, 13]. Due to stability limitations which

are identified with the discontinuities in the bilinear law, two other constitutive laws

are also developed. One of these constitutive laws is a third-order polynomial, and

the other is a combination of linear and third-order polynomial segments. These

two constitutive laws are implemented together with the bilinear law within a new

decohesion element, using an enhanced formalism. The three different constitutive

laws are compared, and applications are presented in mode I, mode II and mixed

mode I and II.

2.2 Bilinear constitutive law

2.2.1 Introduction

The bilinear formulation presented in this section is based on the formulation from

Refs. [5, 10, 13], and a comparison with the work from Refs. [11, 12, 21] is performed.

Consider a point in an interface like the one in Fig. 2.2. The tractions ti between

the top and bottom surfaces of the interface at that point are related to the relative

displacement δi at the same point for i = 1, 2, 3 (Fig. 2.2). The index value i = 1

corresponds to an opening mode (mode I), while the index values i = 2 and 3

correspond to a shear mode (mode II, III, or a combination of both). In decohesion-

element formulations, the sliding mode is usually considered to represent both modes

II and III because the distinction between mode II and III depends on the direction of

the relative displacement between homologous points with respect to the orientation
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Figure 2.2: Bilinear constitutive law in single-mode loading

of the crack front. Without knowing how the crack front is oriented—and in a generic

situation, with multiple crack growth, it might be difficult even to define it—it is

impossible to distinguish between mode II and mode III.

The relative-displacements and tractions corresponding to the onset of damage

are denoted as onset displacements and onset tractions respectively, and identified

with the superscript ‘o’. The relative displacements corresponding to complete de-

cohesion are denoted final displacements and identified with the superscript ‘f ’.

Suppose a point loaded such that a relative displacement δi is applied parallel

to one of the local axes (i = 1, 2 or 3). While the relative displacement has never

exceeded its damage onset value, the point behaves elastically. Once the onset

displacement is exceeded, some energy is dissipated. The total energy that can be

dissipated at each point (per unit area of the interface) equals the critical energy

release rate for the corresponding mode.

When the maximum traction N or S (according to the mode) is reached, the

damage is assumed to start propagating. The corresponding onset displacements

are, for the opening and shear modes respectively:

δoN =
N

k
, δoS =

S

k
(2.1)

where N and S are the mode I and shear mode maximum allowable tractions re-

spectively. (The subscripts N and S on the onset displacements δoN and δoS indicate

that these onset displacements correspond to the normal or shear traction acting

alone, respectively.) When the traction reaches zero, the energy absorbed must



CHAPTER 2. FORMULATION AND IMPLEMENTATION OF A

DECOHESION ELEMENT 8

equal the critical energy release rate. This leads directly to the definition of the

final displacements in a pure-mode loading situation as

δfN =
2GIc

kδoN
and δfS =

2GSc

kδoS
. (2.2)

where GIc and GSc are the mode I and shear mode fracture toughnesses.

The maximum tractions N and S should be an estimate of the tensile and shear

interfacial strengths, respectively. However, when modelling delamination propaga-

tion, it has often been found that the precise value of these strengths has little effect

on the computed response [11].

2.2.2 Mixed mode

In a situation where more than one mode acts simultaneously, the damage starts

propagating even before one of the limit tractions for pure mode loading (N or S)

is attained individually—Fig. 2.3. In order to analyze this situation, the shear

relative-displacement, δshear, and the magnitude of the relative displacement, δ, are

defined as

δshear =

√

(δ2)
2 + (δ3)

2, δ =

√

〈δ1〉2 + (δshear)
2 (2.3)

where the operator 〈·〉 is the Mc-Cauley bracket defined as 〈x〉 = max {0, x} , x ∈ R.
The shear traction is defined as

tshear =

√

(t2)
2 + (t3)

2 (2.4)

and the participation of the different modes β, is defined as

β = max

{

0,
δshear
δ1

}

. (2.5)

The equivalent driving displacement δ leads to a unique definition of the state

of deterioration in mixed mode, as proposed by Allix and Corigliano [22] in the

framework of damage modelling. The onset relative-displacement, δo, is defined by

a mixed-mode initiation criterion and the final relative-displacement, δf , is defined

by a mixed-mode propagation criterion.
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Figure 2.3: Mixed-mode behaviour for the bilinear law

2.2.2.1 Mixed-mode initiation criterion

The following quadratic delamination criterion is used, for it has proven to be suit-

able for delamination onset prediction in composite materials by other authors [23–

25]:
(〈t1〉

N

)2

+

(

tshear
S

)2

= 1. (2.6)

As tractions are a function of the relative displacements, the previous criterion may

be expressed in terms of relative displacements resulting in

δo =















δoSδ
o
N

√

1 + β2

(δoS)
2 + (βδoN)2 ⇐ δ1 > 0

δoS ⇐ δ1 ≤ 0.

(2.7)

2.2.2.2 Mixed-mode propagation criterion

The mixed-mode propagation criterion establishes the state of complete decohesion

for different ratios of applied mode I and shear mode energy release rates. There

are several criteria that establish mixed-mode propagation. One of these, the power

law criterion [11], can be expressed as
(

GI

GIc

)α

+

(

Gshear

GSc

)α

= 1. (2.8)

Consider the energy absorbed up to the complete decohesion in a mixed-mode load-

ing situation, for each mode. As the tractions are a function of the relative displace-
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ments, the mode I and shear mode energy release rates may be expressed in terms of

relative displacements. The energy absorbed by each mode in a mixed-mode loading

is (Fig. 2.3)

GI =
kδo1δ

f
1

2
and Gshear =

kδoshearδ
f
shear

2
. (2.9)

Introducing Eq. 2.9 in the expression of the power law criterion, Eq. 2.8, the

expression for δf can be obtained as

δf =











2 (1 + β2)

kδo

[(

1

GIc

)α

+

(

β2

GSc

)α]−1/α

⇐ δ1 > 0

δ f
S ⇐ δ1 ≤ 0.

(2.10)

For most carbon/epoxy composites, the mixed-mode data can be accurately repre-

sented using 1 ≤ α ≤ 2.

Similar expressions can be derived for other criteria. For instance, Benzeggagh

and Kenane’s criterion [26] uses the parameter η to describe the mixed-mode inter-

face behaviour:

GIc + (GSc −GIc)

(

Gshear

GI +Gshear

)η

= GI +Gshear. (2.11)

Proceeding as before, but now using this criterion, the expression for the final relative

displacement is obtained as

δf =







2

kδo

[

GIc + (GSc −GIc)
(

β2

1+β2

)η]

⇐ δ1 > 0

δ f
S ⇐ δ1 ≤ 0.

(2.12)

2.2.3 Constitutive law

In order to account for irreversibility, the maximum over time value of the mixed-

mode displacement is defined as, at time τ ,

δmax (τ) = max
τ ′≤τ

{δ (τ ′)} . (2.13)

Neglecting the interpenetration that occurs in the eventuality of compression,

the constitutive law could be expressed very simply as

ti = (1 − d) kδi (no sum in i) (2.14)
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where only one damage variable is used, and is defined as

d =



















0 ⇐ δmax ≤ δo

δf (δmax−δo)

δmax(δf−δo)
⇐ δo < δmax ≤ δf

1 ⇐ δmax ≥ δf .

(2.15)

The expression for the damage variable above results directly from the definition of

the onset and final relative-displacements, and the bilinear shape for the constitutive

law. From Eq. 2.15, it follows that d ∈ [0, 1].

In order to avoid interpenetration for compression situations, a simple contact

logic already available in most FE codes could be used. Instead, the following

condition is added to Eq. 2.14:

t1 = kδ1 ⇐ δ1 ≤ 0. (2.16)

This constitutive law expressed by Eqs. 2.14 to 2.16 has only one damage variable

d, and, in a mixed-mode situation, implies that the state of complete decohesion is

attained at the same time for opening and shear loading.

2.2.4 Comparison to other formulations

The decohesion formulation presented is compared to the one proposed by Crisfield

and co-workers in Refs. [11, 12, 21]. In those references, the following relation be-

tween relative displacements and tractions is proposed:

t1 =

(

1 − κ

1 + κ

δfN
δfN − δoN

)

kδ1 (2.17)

tshear =

(

1 − κ

1 + κ

δfS
δfS − δoS

)

kδshear (2.18)

with

κ =

〈[

(〈δ1〉
δoN

)2α

+

(

δshear
δoS

)2α
]1/(2α)

− 1

〉

. (2.19)

This formulation verifies the power law for damage propagation, as expressed in

Eq. 2.8. Fig. 2.4 compares the applications of both implementations in a mixed-

mode loading situation with β = 1/2, for an interface with the following properties:
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Figure 2.4: Comparison of two different decohesion models in mixed mode

GIc = 0.7 kJ/m2 , GIIc = 1.7 kJ/m2 , N = 80 MPa , S = 100 MPa and k = 1 ×
105 N/mm3 . For this comparison, the value α = 1 is used for both formulations, as,

for this case, the damage onset criterion expressed in Eq. 2.6 is also satisfied. Note

that when damage starts propagating, the complete definition of the model requires

the determination of the two different variables δf1 and δfshear. However, only one

equation is available: the one that results from the application of a propagation

criterion. The other condition, implicitly considered in the model presented, is that

the interface should attain the state of complete decohesion at the same time for

normal and shear components of the traction, as can be observed in Fig. 2.4. On

the other hand, for the model proposed in Refs. [11, 12, 21], complete decohesion

is attained at different times for the opening and shear modes. In Ref. [21], it is

recognized that this goes against experimental evidence; it is however argued that

this problem can be simply overcome by considering different penalty stiffness values

for mode I and mode II, so as to achieve δoN/δ
f
N = δoS/δ

f
S. All formulations presented

in the present work avoid this requirement.
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2.2.5 Varying mode ratio

In this formulation, the irreversibility of damage is considered through the definition

of the maximum magnitude of the relative displacement (Eq. 2.13).

Consider a situation where the mode ratio at a given material point is constant

in time. In this case, if unloading occurs after damage onset, then the point will

linearly unload towards the origin and the maximum relative displacement that once

existed at that point is recorded in the variable δmax. When re-loading, no energy is

absorbed until δmax is reached again. When complete decohesion occurs, the energy

absorbed is the one defined by the propagation criterion, and does not depend on

the loading/unloading sequence.

Consider now a more generic situation, where the mode ratio (at a given point)

does change throughout the loading, in the damage propagation phase, Fig. 2.5. In

this figure, a point has been loaded in mode I (vertical axis) and damage started

propagating until it reached the point denoted by ‘1’. Suppose that in a numeric

incremental implementation, the next equilibrium point is ‘2’. There is no trivial

answer to what the memory of damage would be for this new mode ratio, and how

much energy should still be available to be absorbed.

One possibility to address this issue in a decohesion formulation is that, at any

load step, the maximum mixed-mode displacement is considered to provide a mem-

ory of the damage evolution, regardless of the mode ratio. In Fig. 2.5, this methodol-

ogy is represented by the circle drawn from the initial point ‘1’. Another possibility,

from Refs. [12, 21], consists in storing the maximum value in time of the variable

κ in Eq. 2.19. This approach is represented in Fig. 2.5 for the particular case of

α = 1, by the ellipse starting from point ‘1’. Provided the mode ratio does not

change substantially, then the two approaches are very similar.

2.2.6 Implementation

The decohesion model presented has been implemented in LS-Dyna [1] as a user

material within a brick element. This approach for the implementation has the im-

plication of requiring to model the resin rich layer (for the case of delaminations)
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Figure 2.5: Varying mode ratio at a point

as a nonzero thickness medium. However, the resin rich layer has, in fact, a finite

thickness, and mass scaling can be used to obtain faster solutions when applying the

decohesion element to quasi-static situations. Note that the volume associated with

the decohesion element can in fact be set to be very small by using a small thickness

(0.01 to 0.001mm ) and the element’s kinetic energy arising from this be still several

orders of magnitude below its internal energy, which is an important consideration

for quasi-static analyses. Within the user material, the nodal displacements and

the strains are known, and the stress tensor must be provided. The only nonzero

components of the stress tensor correspond to the components of the traction vec-

tor, whose determination is straight-forward using the presented formulation, which

requires storing δmax as a history variable.

2.3 Two other constitutive laws

2.3.1 Introduction

The bilinear constitutive law presented in the previous section allows the modelling

of delamination in composite materials and has been successfully used by several au-

thors in implicit analyses [5, 10, 13]. Several authors have proposed different shapes

for the traction vs. relative displacement laws, e.g. Refs. [9, 27, 28]. Williams and
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Hadavinia [29] derived analytical solutions using different cohesive zone traction laws

for a cantilever beam specimen, using a beam on elastic foundation model. They

concluded that the results showed insensitivity to the form of the traction law, for

any of the five laws studied. It can thus be asserted that the shape of the inter-

face law is not of extreme importance, provided the fracture toughness is correctly

accounted for, and that the initial stiffness and maximum traction are reasonably

consistent with the stiffness and strength of the material being modelled. However,

there is little information on the stability of different shapes of the constitutive law

in explicit FE codes.

It will become evident in the remainder of this work that the two discontinu-

ities existing in the bilinear law (at peak value and complete decohesion) generate

numerical instabilities in an explicit implementation. In certain situations, a stress

wave is generated at those points, and this excites high-frequency vibrations that

completely break the decohesion elements in the vicinity. It is possible to overcome

this problem by using damping algorithms, higher mesh refinement, lower interface

strength, higher fracture toughness or lower load-rate. However, the particular fi-

nite element model that is not affected by these shock waves is not always straight

forward to define.

For those reasons, two alternative constitutive laws are proposed and imple-

mented in LS-Dyna [1]. The shape of the first law is a curve, and is defined by a

third order polynomial function as proposed in Ref. [27]:

t =
27

4
to
(

1 − δ

δf

)2
δ

δf
. (2.20)

It can be easily shown that the maximum value of the traction in Eq. 2.20 is

to, which corresponds to damage onset. It can also be shown that the maximum

traction corresponds to a relative displacement δ = δf/3. The final displacement in

a single-mode loading can be related to to and the energy dissipated per unit area

Gc by

δf =
48

27

Gc

to
. (2.21)

The function in Eq. 2.20 has no discontinuities, and the slope at complete decohe-

sion is zero, which renders the complete failure of the element much smoother—Fig.
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2.6(a) and (b). In order to introduce a damage variable (which is useful to define

the mixed-mode behaviour, irreversibility, for post-processing, and for uniformity of

the implementation), Eq. 2.20 can be expressed as

t = k (1 − d) δ (2.22)

where k = 27to/4δ
f , d = 1 for δ > δf , and

d = 2
δ

δf
−
(

δ

δf

)2

for δ ≤ δf . (2.23)

The second alternative constitutive law proposed and implemented in LS-Dyna

[1] is similar to the bilinear, in the sense that it is characterized by a linear-elastic

behaviour before failure onset. However, it is also similar to the third order poly-

nomial constitutive law, in the sense that discontinuities are smoothed by using a

third-order polynomial. The constitutive law, shown in Fig. 2.6(c) and (d), can be

expressed by Eq. 2.22, but with the damage variable defined as d = 0 for δ ≤ δo,

d = 1 for δ > δf , and

d = 1 − δo

δ

[

1 +

(

δ − δo

δf − δo

)2(

2
δ − δo

δf − δo
− 3

)

]

for δo < δ ≤ δf . (2.24)

The constitutive law defined by Eqs. 2.22 and 2.24 has zero slope at failure onset,

resulting in a discontinuity which is less severe than the one existing for the bilinear

formulation, and the slope at complete decohesion is zero, which renders complete

failure smoother.

2.3.2 Constitutive law

The bilinear formulation presented in the previous section is based on previous work

[5, 10, 13], and for consistency with that work, the mixed-mode ratio was defined as

β = δshear/δ1. However, this definition implies that a division by zero occurs for pure

shear mode loading, which has to be considered as a particular case in the numerical

implementation. An alternative definition is therefore used in this section, which

avoids this division by zero: θ = acos (〈δ1〉 /δ) , θ ∈ [0, π/2]. The contribution of

the different shear components is defined as ω = atan (δ3/δ2) , ω ∈ [0, 2π[ .
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Figure 2.6: Third-order polynomial constitutive law (a) shear mode and

(b) opening mode; linear/ polynomial constitutive law (c) shear

mode and (d) opening mode

The constitutive law of the interface element, expressed on the direction of the

relative displacement, is defined as

t = kpos (1 − d) δ (2.25)

where kpos is an input parameter for the bilinear and the linear/polynomial consti-

tutive laws, but is computed as kpos = 27to/4δ
f for the third order polynomial law.

The traction components are recovered as

t1 = t cos θ, tshear = t sin θ (2.26)

t2 = tshear cosω, t3 = tshear sinω (2.27)

with the following condition added to prevent interpenetration:

t1 = knegδ1 ⇐ δ1 ≤ 0 (2.28)

where kneg is the penalty stiffness, also given to the model as an input parameter.
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2.3.3 Mixed-mode behaviour

2.3.3.1 Initiation criterion

The initiation criterion used in the bilinear constitutive law of the previous section,

Eq. 2.6, is also used here. When applied to this formulation, the expression for the

magnitude of the onset traction is

to =

[

(

cos θ

N

)2

+

(

sin θ

S

)2
]−1/2

. (2.29)

For the bilinear and the linear/polynomial constitutive laws, the onset relative dis-

placement needs to be defined and is obtained as

δo = to/kpos (2.30)

where kpos is the elastic stiffness.

2.3.3.2 Propagation criterion

Using the power law (Eq. 2.8) for the propagation criterion, and using the definition

of the participation of each mode ratio θ, Eq. 2.8 can be manipulated to obtain the

fracture toughness Gc as

Gc =

[(

cos2 θ

GIc

)α

+

(

sin2 θ

GSc

)α]−1/α

. (2.31)

Benzeggagh and Kenane’s criterion [26] (Eq. 2.11) can also be used instead of the

power law, resulting in

Gc = GIc + (GSc −GIc)
(

sin2 θ
)η
. (2.32)

The final relative-displacement can then be obtained as

δf =











2Gc

to
(bilinear and linear/ polyn. laws)

48

27

Gc

to
(3rd order polynomial law).

(2.33)
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2.3.4 Irreversibility

Irreversibility can be addressed by storing the maximum value in time of the mag-

nitude of the relative displacement δ. This approach was followed in the previous

section, for consistency with the work on which it was based [5, 10, 13]. Other similar

approaches are possible, such as storing the maximum value in time of the variable

δ/δo or of the variable δ/δf . With any of these approaches however, it cannot be

always and simultaneously guaranteed that a point at the stage of damage prop-

agation will not become completely undamaged or fully damaged, just as a result

of a change in the mode ratio. Also, with some of the previous approaches, and in

particular with the one implemented in the previous section, a fully damaged point

could become only partially damaged as a result of just a change in the mode ratio.

These assertions can be better visualized using Fig. 2.5.

An approach that avoids the mentioned limitation, and which is eventually more

intuitive, consists of storing the maximum value in time of the damage variable

itself. With the latter approach, the instantaneous value of the damage variables

are defined as

dinst =



















0 ⇐ δ ≤ δo

δf (δ−δo)

δ(δf−δo)
⇐ δo < δ ≤ δf

1 ⇐ δ ≥ δf

(bilinear law) (2.34)

dinst =







2 δ
δf

−
(

δ
δf

)2 ⇐ δ ≤ δf

1 ⇐ δ ≥ δf
(3rd order polynomial law) (2.35)

dinst =























0 ⇐ δ ≤ δo

1 − δo

δ

[

1 +
(

δ−δo

δf−δo

)2 (

2 δ−δo

δf−δo
− 3

)2
]

⇐ δo < δ ≤ δf

1 ⇐ δ ≥ δf

(Linear/polyn. law)

(2.36)

and the damage variable itself is obtained from the instantaneous value as

d(τ) = max
τ ′<τ

{

dinst(τ ′)
}

. (2.37)

For the 3rd order polynomial law, Eq. 2.37 can be modified so that a reversible
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nonlinear elastic behaviour exists before damage onset, resulting in

d(τ) =







dinst(τ) ⇐ d ≤ 5/9

max
τ ′<τ

{dinst(τ ′)} ⇐ d > 5/9
(3rd order polynomial). (2.38)

2.3.5 Implementation

The third-order polynomial, linear/polynomial and bilinear decohesion models pre-

sented have also been implemented in LS-Dyna [1] as a user material within a brick

element. The implementation is similar to the previous bilinear one, except that

the damage variable d is now stored as a history variable, instead of the maximum

displacement δmax. Also, the implementation is made within a single user element,

and the user can specify which constitutive law to use via the input file.

2.4 Benchmark applications (quasi-static)

Even though the decohesion element has been implemented in LS-Dyna for dynamic

analyses essentially, the benchmark tests presented in this section are quasi-static.

Modelling quasi-static problems with an explicit FE code is bounded by some con-

straints. System damping has to be used to damp the dynamic vibrations, and the

analysis requires a large number of time steps (during which numerical errors can

potentially accumulate, and external work can be converted into energy forms other

than internal, such as kinetic, hourglass control, and damping). The displacement

rate in the following examples was chosen in such way that, while guaranteeing that

the kinetic and damping energy are negligible and the vibrations acceptable (thus

guaranteeing the simulation of a quasi-static case), the CPU run time was kept un-

der a few hours. For considerably more complex problems, the analysis time can still

be reasonably low, by using several CPUs in parallel. However, there are advantages

of using explicit codes for quasi-static problems, since decohesion elements imple-

mented in implicit codes usually have difficulties converging for large displacements,

which does not happen for explicit codes. Finally, it is worth mentioning that most

tests in this section could have been modelled more efficiently having used 2D ele-

ments, but, as stated, they are intended as benchmarks. In the following examples,
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Figure 2.7: Total fracture toughness, as a function of mode ratio

the bilinear formulation from Section 3 has been used, as opposed to the one from

Section 2 (note that the two bilinear formulations are coincident for all examples,

since the mode ratio does not change).

2.4.1 Fracture toughness tests

The mechanical properties of a carbon-epoxy prepreg (T300/913, supplied by Hex-

cel) were measured experimentally (see Appendices A and B). Mode I (DCB, [30]),

mode II (4ENF, [31, 32]) and mixed mode (MMB, [33]) tests were carried. The main

results from these tests are presented graphically in Fig. 2.7. To characterize the

mixed-mode behaviour, the power law (with coefficient α = 1.21) was found to give

the best fit to the mixed-mode data. This value of α has therefore been used in the

simulations. The average mode I and mode II fracture toughness were determined

as GIc = 0.258 kJ/m2 and GIIc = 1.08 kJ/m2 .

2.4.1.1 Mode I

One of the DCB specimens from the mentioned test program (Appendix B), was

chosen to be simulated. The specimen was 20 mm wide, 3.1 mm thick and the

pre-crack length was 53 mm —Fig. 2.8. The average mode I fracture toughness

registered during the test is GIc = 0.268 kJ/m2 and the flexural Young’s modulus

is E = 119 GPa . The maximum mode I traction was taken as N = 60 MPa , which
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Figure 2.8: Numerical model of a DCB specimen

is representative of the interface strength, and the penalty stiffness as k = kpos =

kneg = 1 × 105 N/mm3 (the use of much smaller values of maximum traction or

penalty stiffness would result in failing to correctly represent the behaviour of the

specimen before crack propagation). The minimum decohesion-element length in

the numerical model was 0.2 mm , which ensured that at least 4 decohesion elements

were contained in the cohesive zone at any time, thus ensuring a smooth solution

[11]. A displacement-rate of 560 mm/s was applied to the appropriate points of the

model. Each arm of the specimen was modelled using 1-integration point 8-noded

brick elements, with 3 elements across the thickness, and considered isotropic with

E = 119 GPa and ν = 0.3. The model ran in ≈ 5 hours (using a 2.4GHz Pentium

IV computer).

The load vs. displacement curves obtained from the simulation are presented in

Fig. 2.9, together with experimental data and the analytical solution for propaga-

tion.

It can be observed that the numerical curves slightly over-estimate the load

for large displacements. The error in the fracture energy absorbed by each failed

element is monitored and found to be under 0.0025% for all formulations. The

difference between analytical and numerical is thus essentially due to other factors

which include kinetic, hourglass-control and damping energy in the model, as well

as accumulation of round-off errors during the analysis.
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Figure 2.9: Experimental, analytical and numerical load vs. displacement

curves for a DCB specimen

2.4.1.2 Mode II

A particular 4ENF specimen from the mentioned test program (Appendix B) was

chosen to be simulated. The specimen was 20 mm wide, 3.1 mm thick and the pre-

crack length was 25 mm . Part of the loading rig was modelled as well, in order

to account correctly for the boundary conditions, as shown in Fig. 2.10. The

measured fracture toughness, GIIc = 1.11 kJ/m2 , was used in the simulation, and

the flexural modulus was taken as E = 137 GPa . The maximum mode II traction

was taken as S = 60 MPa . The minimum decohesion element length was 0.5 mm . A

displacement-rate of 240 mm/s was applied to the appropriate points of the model.

Each arm of the specimen was modelled using 1-integration point 8-noded brick

elements, with 3 elements across the thickness, and considered isotropic with E =

137 GPa and ν = 0.3. The model ran in ≈ 2 hours (using a 2.4GHz Pentium IV

computer).

The maximum error in the energy absorbed by each element is under 1% for all

formulations. With the exception of the harmonic vibrations related to the dynamic

loading, the numerical results fit very well the analytical and experimental ones,

Fig. 2.11.
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curves, for an ENF specimen
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2.4.1.3 Mixed mode

The simulation of an MMB test also requires modelling of the test fixture, as shown

in Fig. 2.12. The specimen modelled was 20 mm wide, 3.1 mm thick and the pre-

crack length was 33 mm . The distances between loading points are shown in Fig.

2.12. The fracture toughness values used in this simulation were an average of

the tests performed (Appendix B): GIc = 0.258 kJ/m2, GIIc = 1.108 kJ/m2, and,

as reported earlier, the power law parameter α was determined to be 1.21. The

flexural modulus obtained from the test was E = 112 GPa . The maximum mode I

and mode II tractions were taken as N = S = 60 MPa . The minimum decohesion

element length was 0.25 mm . A displacement-rate of 60 mm/s was applied to the

appropriate points of the model. Each arm of the specimen was modelled using 1-

integration point 8-noded thick-shell1 elements, with 1 element across the thickness,

and considered isotropic with E = 112 GPa and ν = 0.3. The model ran in ≈ 3

hours (using a 2.4GHz Pentium IV computer).

There is a good agreement between the numerical, analytical and experimental

data, as shown in Fig. 2.13. Note that in this case, a significant part of the difference

between numerical and analytical curves results from two factors not present in

pure-mode loading situations: the decohesion element (i) interpolates the mixed-

mode fracture toughness using the power law, and (ii) obtains the mode ratio from

the ratio of relative displacements, and the latter ratio might be influenced by the

vibrations in the model.

2.4.2 Isotropic circular plate under transverse point load

An isotropic circular plate is loaded by a single point load at the centre, and a

circular delamination is assumed to start in the mid-surface of the plate. The failure

load is independent of the delamination size and the axissimetric plate boundary

conditions. The failure load at which a delamination starts propagating is given

1Thick-shell elements [1] are 8-noded solid elements with a shell formulation which allows each

arm of the specimen to be modelled with 1 element only, thus saving computational time. These

elements could have also been used for the other examples.
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Figure 2.12: Finite element model of the MMB test and boundary condi-
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Figure 2.13: Experimental, analytical and numerical load vs. displacement

curves for an MMB specimen
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analytically by the expression [34]

P =

√

8π2Et3

9 (1 − ν2)
GIIc (2.39)

which neglects both membrane and geometrically nonlinear effects. In Eq. 2.39,

P is the failure load, E is the Young’s modulus, ν is the Poisson’s ratio, t is the

thickness of the plate and GIIc is the mode II fracture toughness. This benchmark

has been simulated for a simply supported plate with diameter 100 mm , for the

values E = 600 GPa , ν = 0.3, t = 3 mm and GIIc = 0.1 kJ/m2 . These values were

chosen so that the delamination propagates for a small deflection of the plate, well in

the domain of application of Eq. 2.39. The minimum decohesion element length was

0.3 mm . A displacement-rate of 100 mm/s was applied to the appropriate points

of the model. The plate was modelled using 1-integration point 8-noded thick-shell

elements, with 2 element across the thickness. The model ran in ≈ 4 hours (using a

2.4GHz Pentium IV computer).

Figs. 2.14(a)-(e) show the propagation of the delamination, with the colour scale

representing the damage variable, thus identifying the cohesive zone. The fully-failed

elements are deleted from the analysis. The three different material laws give almost

coincident results. It can be observed that the circular shape of the delamination is

also well simulated, even when the mesh is not radial. The load vs. displacement

curve is shown in Fig. 2.14(f), where it can be observed that the crack propagation

load from Eq. 2.39 is well predicted.

2.5 Effect of the constitutive law on numerical

stability

The three different decohesion-element constitutive laws implemented in LS-Dyna

are compared in test cases which are designed to test the limits of their stability. For

decohesion elements implemented in explicit codes, stability is affected negatively by

coarse meshes, high maximum tractions in the interface and low fracture toughness

(because these factors result in fewer elements in the cohesive zone). Discontinuity
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Figure 2.14: Decohesion elements layer, (a) before loading and (b)-(e) dur-

ing crack propagation ((b)-(d) are zoomed in, as represented

in (a)); (f) load vs. displacement curve
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points in the constitutive law, like those in the bilinear formulation, also affect

stability negatively, as shock waves are generated when the elements fail; this effect

is found to be more pronounced at higher load-rates, probably due to the higher

kinetic energy of the model [35]. Increasing the value of the stiffness accentuates

the discontinuity at delamination onset, and thus also affects stability negatively.

However, if extremely low values of stiffness are used, the elastic behaviour before

delamination onset might not be properly captured and interpenetration might result

in compression.

One example examining the limits of stability of the three decohesion laws, con-

sists of a pure mode I DCB test of a carbon-PEEK composite, with material proper-

ties E = 150 GPa , GIc = 0.7 kJ/m2 and density ρ = 103Kg/m3. For the maximum

traction, two values N = 50 MPa and N = 80 MPa are compared. The penalty

stiffness used is k = kpos = kneg = 1 × 105 N/mm3 . The specimen is 25 mm wide

and 3 mm thick, with a pre-crack length of 33 mm . The length of each decohesion

element is 0.37 mm , which ensured that about 3 − 4 decohesion elements were in

the cohesive zone at any time (Mi et al. [11] found that at least 2 decohesion el-

ements had to be included in the cohesive zone in order to achieve a reasonably

smooth solution). A high displacement-rate of 4000 mm/s is applied to the speci-

men, up to an opening displacement of 8 mm . The test lasted 2ms , with increments

of ≈ 2 × 10−5ms . The displacement rate is considered high, in the sense that it

leads to a high relative-displacement rate in the decohesion elements. This high

relative-displacement rate results in fewer interpolation points in the interface law

which, combined with dynamic effects, results in reduced stability.

Fig. 2.15(a) presents the load vs. displacement curve obtained with the three

constitutive laws implemented2, for a maximum traction N = 50 MPa ; and Fig.

2.15(b) presents the same results for a maximum traction N = 80 MPa . Both figures

show the analytical curve corresponding to damage propagation, using simple beam

theory and treating the specimen arm as built-in at the crack tip.

While all formulations were found to be stable at lower imposed displacement-

2The two formulations with the bilinear law (Sections 2 and 3) are coincidental, provided that

the mode ratio does not change during the analysis, as is the case with this example.
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rates, the bilinear formulation leads to a severe instability once the crack starts

propagating, for this fast loading. However, the other constitutive laws are able

to model the smooth and progressive crack propagation. The vibrations observed

during crack propagation for the linear and for the linear/ polynomial laws are more

pronounced for higher maximum tractions in the interface. For the bilinear law,

higher tractions resulted in a more severe instability (bigger crack jump). The crack

jumps can be observed3 in Fig. 2.15(c) for N = 50 MPa , and Fig. 2.15(d) for

N = 80 MPa .

2.6 Conclusions

Three different constitutive laws were implemented within an interface element for-

mulation, into the standard LS-Dyna [1] explicit dynamic code. The formalism used

is relatively simple and modular, allowing other constitutive laws to be added easily.

Initiation criteria (which define the maximum traction in mixed-mode situations),

and propagation criteria (which define the energy absorbed in mixed-mode situa-

tions) can also be added taking advantage of the modularity of the implementation.

When under less favorable numerical conditions (e.g. DCB loaded at 4000mm/s ),

it was observed that the discontinuities existing in the bilinear constitutive law re-

sulted in instabilities. These were not observed for the 3rd order polynomial or

linear-polynomial laws. However, all formulations were shown to model appropri-

ately mode I, mode II and mixed mode I and II quasi-static crack propagation

problems, at lower loading rates.

The decohesion element was shown to accurately model a range of static de-

lamination problems. This element can then be applied to a range of impact and

crash problems, eventually involving in addition in-plane damage. Other applica-

tions include modelling compression after impact (CAI) and the propagation of any

delaminations from the initial impact. However, while parameters such as maximum

tractions, penalty stiffnesses and mesh refinement used for quasi-static analyses can

3The crack length in Figs. 2.15(c) and (d) corresponds to the mid-point of the cohesive zone,

which has a length ≈ 1.1mm for any of the curves presented.
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Figure 2.15: Comparison of the load vs. displacement curves obtained with

different interface models, for (a) N = 50 MPa and (b) N =

80 MPa ; and corresponding crack-length vs. displacement for

(c) N = 50 MPa and (d) N = 80 MPa
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be used for dynamic ones (more refined meshes might be required if the stress

gradients are more accentuated), the dynamic fracture toughness may need to be

determined for a more accurate simulation.

2.7 Publications

The work presented in this chapter resulted in the following publications4:

1. S. T. Pinho, L. Iannucci, P. Robinson. Crashworthiness of Composite Struc-

tures. Poster presented at GSEPS Research Student Research Symposium,

Poster Competition, Imperial College London, 16th July 2003 (won the 2nd

prize); and at Industrial Affiliates Annual Review Meeting, The Composites

Centre, Imperial College London, 25th September 2003

2. S. T. Pinho. MPhil to PhD Transfer Report: Formulation and implementation

of a 3D decohesion element for delamination modelling in explicit FE codes.

Department of Aeronautics, Imperial College London, 14th (interview) and

17th (power point presentation) October 2003

3. S. T. Pinho, L. Iannucci, P. Robinson. Modelling delamination in an explicit

FE code using 3D decohesion elements. CompTest2004, Bristol, 21st - 23rd

September 2004

4. S. T. Pinho, L. Iannucci, P. Robinson. Formulation and implementation of

decohesion elements in an explicit finite element code. In press, Composites

Part A, 2005

4Some of these publications include work from other chapters of this thesis and therefore feature

again in the list of publications at the end of the corresponding chapters.
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Formulation of failure models and

criteria
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3.2 Introduction

The mechanisms that lead to failure in composite materials are not fully understood

yet. This is especially true for compressive failure, both for the matrix and fibre-

dominated failure modes. This has become particularly evident after the World

Wide Failure Exercise (WWFE) [42].

In this chapter, physically-based failure models are discussed and proposed for

each failure mode in laminated fibre-reinforced composites with unidirectional plies,

at the ply level.

If composite materials are to be used in structural applications, then the under-

standing of how each failure mode takes place—i.e. having a physical model for each

failure mode—becomes an important point of concern. These physical models should

establish when failure takes place, and also describe the post-failure behaviour. For

instance, a physical model for matrix compressive failure should predict that failure

occurs when some stress state is achieved, as well as what orientation the fracture

plane should have and how much energy the crack formation should dissipate.

The main failure modes of laminated fibre-reinforced composites are:

Delamination. Composite materials made of different plies stacked together

tend to delaminate. The bending stiffness of delaminated panels can be significantly

reduced, even when no defect is visible on the surface or the free edges. The physics

of delamination is to a certain degree understood, and one of the best numerical

tools to predict the propagation of delamination consists on the use of decohesion

elements.

Matrix compressive failure. What is commonly referred to as matrix com-

pressive failure is actually matrix shear failure. Indeed, failure occurs at an angle

with the loading direction, which is evidence of the shear nature of the failure pro-

cess.

Fibre compressive failure. This failure mode is largely affected by the resin

shear behaviour and imperfections such as the initial fibre misalignment angle and

voids. Typically, kink bands can be observed at a smaller scale, and are the result

of fibre micro-buckling, matrix shear failure or fibre failure.
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Matrix tensile failure. The fracture surface resulting from this failure mode is

typically normal to the loading direction. Some fibre splitting at the fracture surface

can usually be observed.

Fibre tensile failure. This failure mode is typically explosive. It releases large

amounts of energy, and, in structures that cannot redistribute the load, it typically

causes catastrophic failure.

Experimental results from the WWFE [42, 43] indicate that the (admittedly

scarce) data on fibre tensile failure under bi- or multi-axial stress states does not

seem to invalidate the maximum stress criterion. Thus, this chapter focuses on

models for compressive failure, which is of great interest in crashworthiness and

other areas, as well as matrix tensile failure.

Accurate physically-based criteria are developed and preferred to curve-fitting-

based criteria. The main limitation associated with curve-fitting-based criteria is

that their applicability is restricted to the load combinations used in the curve

fitting from which they originate. However, it is impractical to test every material

in enough load combinations to define these criteria for every combination of the six

stress tensor components.

Matrix compressive failure is addressed with a model based on the Mohr-Coulomb

criterion. Puck et al. [2, 44–46] were the first researchers to propose a matrix failure

model based on the Mohr-Coulomb criterion. Further developments were later car-

ried by Dávila et al. [4, 39] for the LaRC02/03 failure criteria. In this present work,

an analysis of both Puck [2, 46] and LaRC02/03 [4, 39] matrix compressive failure

criteria is performed. For the LaRC02/03 criteria, a correction is proposed for the

consideration of friction stresses. This leads to more conservative predictions, and

makes the resulting failure envelope coincide with a simpler criterion that can be

related to the work from Puck and Schürmann [2, 46]. The analysis concludes with

the proposal of the latter as a matrix failure criterion for a three dimensional (3D)

stress state. Matrix tensile failure is addressed combining the action or fracture

plane concept from Puck and Schürmann [2, 46] with experimental evidence from

the WWFE. Also, a failure model for matrix in tension and shear is derived from

Dvorak and Laws [47] fracture mechanics analyses of cracked plies, as a generaliza-
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tion of LaRC03 [39].

For fibre failure in compression, it is assumed that kink-band formation results

from matrix failure, due to small misalignments of the fibres in the composite. Also,

it is suggested that shear nonlinearity should have a considerable effect on failure and

2D analyses of fibre kinking over-simplify the treatment of the problem. A formal

treatment of fibre kinking is presented, that leads to a model for fibre kinking similar

to the one proposed by Dávila et al. [4, 39]. The main differences are that the model

presented here accounts for 3D effects, considers a generic nonlinear shear behaviour,

and uses the matrix failure criteria from this work.

In this chapter, the index a refers to the fibre direction, the index b refers to

the in-plane transverse direction and the index c refers to the through-the-thickness

direction.

3.3 Literature review

The need for predicting failure in composites has led to the proposal of several

failure criteria. These are usually stress-based and expressed as equations or sets

of equations. There is no unique system of classification for failure criteria. The

one presented here classifies the failure criteria based on the approach followed in

their derivations: non physically-based (or not associated with the failure modes, or

non-phenomenological) and physically-based (or associated with the failure modes,

or phenomenological). This classification system has been used before by Echabi et

al. [48] and Paŕıs [49].

Non physically-based failure criteria. These are criteria in which a failure

envelope is defined by using a mathematical expression, usually a polynomial, which

predicts failure by interpolating between a few experimental points. No attempt is

made to predict which failure mode is taking place, and the criterion itself is not

the result of a physically-based failure model.

Physically-based failure criteria. These are criteria which result from models

that, to a smaller or greater detail, aim at describing the physics of the failure

process. Not only these criteria predict failure, as they give information on the
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failure mode and sometimes provide further details characterizing the failure process.

3.3.1 Non physically-based failure criteria

Most non-phenomenological failure criteria are expressed in the form of polynomials,

usually of the second order; for plane stress, they can be expressed as

f = F11σ
2
a + F22σ

2
b + F66τ

2
ab + 2F12σaσb + F1σa + F2σb + F6τab (3.1)

where the coefficients Fii and Fj depend on the specific criterion and failure takes

place for f = 1.

For the Tsai-Hill [50] criterion, where the coefficients depend on whether the

state of stress is tensile or compressive, these are given by

F11 =
1

X2
, F1 = 0, F12 = − 1

2X2
,

F22 =
1

Y 2
, F2 = 0, (3.2)

F66 =
1

S2
ab

and F6 = 0

with

σa ≥ 0 ⇒ X = Xt; σa < 0 ⇒ X = Xc

σb ≥ 0 ⇒ Y = Yt; σb < 0 ⇒ Y = Yc. (3.3)

In the previous equation, Xt, Xc, Yt and Yc are the tensile and compressive strengths,

in the fibre and transverse directions respectively. In the Tsai-Wu [51] criterion, the

coefficients are

F11 =
1

XtXc

, F1 =
1

Xt

− 1

Xc

,

F22 =
1

YtYc
, F2 =

1

Yt
− 1

Yc
, (3.4)

F66 =
1

S2
ab

, F6 = 0,

and the coefficient F12 is given by

F12 =
F ∗12√

XtXcYtYc
(3.5)
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with −1 < F ∗12 < 1 obtained by fitting experimental data. For the Hoffman [52]

criterion, the coefficients are the same, apart from F12 which is given by

F12 = − 1

2XtXc

.

The non physically-based failure criteria presented are given as an overview only.

More non physically-based failure criteria can be found in the reviews by Nahas [53]

or by Paŕıs [49].

3.3.2 Physically-based failure criteria

Physically-based failure criteria distinguish between failure modes. The failure en-

velopes corresponding to these criteria are therefore not always smooth, and the

vertices correspond usually to a change in the failure mode. Hashin and Rotem

[54] are usually credited to have established that the heterogenous nature of fibre

reinforced composite materials means that failure is due to the failure of the dif-

ferent constituents (or their interfaces), and failure criteria should therefore predict

failure of each constituent separately. Hence failure criteria should be composed

of several expressions for the different failure modes. In fact, Puck’s model, which

also distinguishes between failure modes, is originally from 1969 [44, 45] (although

published in German, in a journal that is “not known to the search engines” [2]),

and therefore older than the Hashin-Rotem criterion from 1973 [54]. In any case,

Hashin and Rotem’s work in 1973 [54] and later Hashin’s work in 1980 [55] have

inspired considerable research in failure-mode oriented criteria.

The maximum strain and the maximum stress failure criteria are among the

simplest physically-based failure criteria. In the maximum strain failure criterion,

failure is predicted whenever the failure strain for uniaxial tests is attained, either

in the axial or transverse directions, or in shear:

f = max

(∣

∣

∣

∣

εa
εoa

∣

∣

∣

∣

,

∣

∣

∣

∣

εb
εob

∣

∣

∣

∣

,

∣

∣

∣

∣

εab
εoab

∣

∣

∣

∣

)

(3.6)

with

εa ≥ 0 ⇒ εoa = εota ; εa < 0 ⇒ εoa = εoca

εb ≥ 0 ⇒ εob = εotb ; εb < 0 ⇒ εob = εocb (3.7)
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where εota , εoca , εotb and εocb are the tensile and compressive strains at failure, in the a

and b directions respectively.

The maximum stress failure criterion is similar to the maximum strain, but

replacing strains with stresses:

f = max

(

∣

∣

∣

σa
X

∣

∣

∣ ,
∣

∣

∣

σb
Y

∣

∣

∣ ,

∣

∣

∣

∣

σab
Sab

∣

∣

∣

∣

)

(3.8)

with

σa ≥ 0 ⇒ X = Xt; σa < 0 ⇒ X = Xc

σb ≥ 0 ⇒ Y = Yt; σb < 0 ⇒ Y = Yc. (3.9)

In the already mentioned Hashin and Rotem’s work [54], fibre failure is predicted

by

ff =











σa
Xt

⇐ σa ≥ 0

−σa
Xc

⇐ σa < 0
(3.10)

and matrix failure by

fmat =















(

σb
Yt

)2

+

(

σab
Sab

)2

⇐ σb ≥ 0
(

σb
Yc

)2

+

(

σab
Sab

)2

⇐ σb < 0.

(3.11)

Hashin [55] later modified the expressions for fibre and matrix failure, the result

being the Hashin criteria. Fibre failure is predicted by

ff =















(

σa
Xt

)2

+

(

σab
Sab

)2

⇐ σa ≥ 0

−σa
Xc

⇐ σa < 0
(3.12)

and matrix failure by

fmat =















(

σb
Yt

)2

+

(

σab
Sab

)2

⇐ σb ≥ 0
(

σb
2ST

)2

+

[(

Yc
2ST

)

− 1

]

σb
Yc

+

(

σab
Sab

)2

⇐ σb < 0

(3.13)

where ST is the transverse shear strength.

Since the Hashin-Rotem criteria have been published, several other failure-mode

oriented criteria have been proposed. In particular, Yamada and Sun [56] proposed
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a criterion for the fibre breaking mode which included in-situ effects on the in-plane

shear strength. This criterion was then used to predict the same failure mode in

the Chang and Chang criteria [57–59], which has since been implemented in Ls-

Dyna [1]. Christensen [60] proposed criteria for fibre and matrix dominated failure

modes, which included the effect of hydrostatic pressure. Puck’s model and criteria

[44, 45, 61], were made available in English only recently, as a result of a project in

Germany for the development of failure criteria for composites [62, 63]. Hart-Smith

[64, 65] presented and developed criteria for fibrous composites based on a maximum

shear stress criterion with a number of associated cutoff rules.

More recently, the WWFE [66] was conducted to assess the real predicting ca-

pability of the currently available failure criteria. Leading researchers in failure of

composites were invited to participate in a round-robin in which they presented their

approaches and predictions.

In the exercise, Hart-Smith [67–69] presented the original version of the max-

imum strain criterion, as well as a truncated form and a generalized form of the

criterion. Gotsis et al. [70, 71] used the maximum stress criterion, superposed with

a modified distortion energy (quadratic polynomial) criterion. McCartney [72, 73]

applied the principles of mechanics at the microstructural level to predict damage

formation. Rotem [74, 75] used the Hashin-Rotem criterion originally published in

1973 [54], but with the matrix failure criterion modified in order to account for

axial stresses. Surprisingly, Sun and Tao [76, 77] used the Hashin-Rotem criterion

[54], even though Sun had proposed previously [78] a criterion for matrix crack-

ing that is acknowledged to represent better the matrix failure mode [4]. However,

their predictions were overall particularly good. Liu and Tsai [79] used the Tsai-Wu

[51] failure criterion. Wolfe and Butalia [80, 81] used a strain-energy based failure

criterion, containing a sum on exponents of the longitudinal, transverse and shear

strain energies. Edge [82, 83] used a phenomenological approach based on the stress

interaction within each failure mode, with some similarities to the maximum stress,

the Hashin-Rotem [54] and Hashin [55] criteria. Zinoviev [84, 85] used the simple

maximum stress criterion, together with an also simple post failure-onset model,

obtaining particularly good results. Puck and Schürmann [2, 46] were perhaps the
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authors who achieved better agreement between their predictions and the experi-

ments. Their criterion is phenomenological, as different failure modes are considered

and is characterized by a sound physical basis. Arguably, their model for matrix

compressive failure possesses the most sound physical basis of the theories proposed

in the exercise. In Part C of the exercise, Huang [86, 87] and Mayes and Hansen

[88, 89] used two different micromechanics-based approaches. Bogetti et al. em-

ployed the maximum strain criteria in a progressive failure analysis, obtaining par-

ticularly good results, as well as Cuntze and Freund [90, 91] (with a model similar

to Puck’s [2, 46]).

Several lessons can be learned from the WWFE. Firstly, most criteria were un-

able to capture some of the trends in the failure envelopes of the experimental

results. Secondly, on what concerns phenomenological failure criteria, most expres-

sions proposed to predict each failure mode are still to some extent empirical. It

is somewhat difficult to choose between the criteria due to the lack of experimental

data needed to validate them against each other. Despite several efforts to de-

velop sound phenomenological criteria, non-phenomenological criteria like Tsai-Wu

[51] are often better prediction tools than some phenomenological criteria [79]. Al-

though test results are not provided in the WWFE for several stress combinations

that remain open for discussion, significant progress was made. From the limited

predictive capabilities of the most accurate analyses available, it is clear that further

developments in failure model theories and criteria are required before any analysis

approach can be used with confidence to predict the strength of a typical aerospace

composite component.

3.4 Fibre tensile failure

For fibre tensile failure, it is somewhat difficult to argue whether stresses other

than σa contribute to promote failure and have any influence on the strength. For

instance, Soden et al. [43] obtained experimental data to define the (σa, τab) failure

envelope of carbon fibre reinforced composite, and the (σa, σb) failure envelope of

glass fibre reinforced composite. From their results, it does not seem possible to
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draw sound conclusions on how the different stress components interact to promote

failure. Therefore the maximum stress failure criterion is used:

fft =
σa
Xt

= 1. (3.14)

3.5 Matrix compressive failure

3.5.1 Mohr-Coulomb based criteria

The orientation of the fracture surface of specimens failing by matrix compression

suggests that the Mohr-Coulomb criterion is applicable to matrix compressive failure

[2, 44–46]. Matrix compression specimens fail by shear. For a pure compression

loading, this fact suggests that the angle of the fracture surface with the through-

the-thickness direction should be φo = 45◦, i.e. fracture should occur in the plane

of the maximum shear stresses. However, it is experimentally seen that the angle is

generally φo = 53 ± 2◦ for most technical composite materials [2, 46], Fig. 3.1(a).

This can be explained through the existence of a compressive stress acting on the

potential fracture surfaces, and an associated friction stress.

The designation ‘friction stress’ is here used, as it was by previous authors [2, 46],

even though there is no interface before fracture. At the micro-mechanical level, the

effective macro-mechanical friction stress can be explained, at least partially, as

resulting from the ‘true’ friction stress acting in the micro-cracks in the matrix

before failure.

For a general loading situation, Fig. 3.1(b), the angle of the fracture plane with

the through-the-thickness direction, denoted as φ, might assume a different value

than the one for pure compression (φo). The particular orientation of the fracture

plane depends on the particular combination of shear (τT and τL) and normal (σn)

traction components for each particular value of φ, Fig. 3.1(c).

In a 3D formulation, the traction components are obtained from the components
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Figure 3.1: (a) Pure transverse compressive failure, for a CFRP specimen;

(b) fracture plane for a 3D stress state; (c) traction compo-

nents in the fracture plane; (d) geometrical representation of

the Mohr-Coulomb criterion

of the stress tensor and the fracture plane angle φ as

σn =
σb + σc

2
+
σb − σc

2
cos (2φ) + τbc sin (2φ)

τT = −σb − σc
2

sin (2φ) + τbc cos (2φ)

τL = τab cos (φ) + τca sin (φ) .

(3.15)

The Mohr-Coulomb failure criterion is expressed in terms of the components of

the traction vector in the fracture plane, and can be written in several forms. Con-

sidering first the case where τL = 0, the Mohr-Coulomb criterion can be expressed

as

|τT | + µTσn = ST (σn < 0) (3.16)

where µT is a friction coefficient and ST is the fracture plane fracture resistance

against its fracture by transverse shear1. For simplicity, ST is not considered to

depend on φ, and will be designated as transverse shear strength. For a more

detailed explanation on the difference between fracture plane fracture resistance and

strength, see Ref. [2]. The geometrical representation of this criterion in a (σ,|τ |)
1The fracture plane resistance of a potential fracture plane parallel to the fibres is the resistance

of this plane against its fracture due to a single stressing acting in this plane [46].
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space is a line with negative slope (−µT ), shown in Fig. 3.1(d). In this figure, the

Mohr-Coulomb criterion’s line is tangential to the Mohr circle corresponding to the

case of failure by pure compression. The slope of the Mohr-Coulomb criterion’s line

can be related to the angle of the fracture plane in pure compression, φo, through

tan(2φo) = − 1

µT
. (3.17)

Furthermore, writing Eq. 3.16 for a pure compression case establishes the relation

between ST , Yc and φo [61]:

ST =
Yc

2 tan (φo)
. (3.18)

The angle φo can be easily determined from simple compression tests, Fig. 3.1(a),

and allows the determination of µT and ST by using Eqs. 3.17 and 3.18.

The Mohr-Coulomb criterion (Eq. 3.16) can be expressed in several forms,

namely considering that friction affects (increases) the strength, or that it affects

(decreases) the applied stress. Probably motivated by those two different forms

of expressing the same criterion for τL = 0, Puck and Schürmann [2, 46] initially

proposed for the general case (τL 6= 0)

fmc =

(

τT
ST − µTσn

)2

+

(

τL
SL − µLσn

)2

= 1, (3.19)

whereas Dávila et al. proposed first for the LaRC02 [4] failure criteria and subse-

quently for the LaRC03 [39] failure criteria

fmc =

(〈|τT | + µTσn〉
ST

)2

+

(〈|τL| + µLσn〉
SL

)2

= 1 (3.20)

where SL is the longitudinal shear strength (for simplicity, SL is considered not

to depend on φ) and the operator 〈·〉 is the Mc-Cauley bracket defined by 〈x〉 =

max {0, x} , x ∈ R. Clearly, Puck and Schürmann (Eq. 3.19) consider that the

compression stress (σn) increases the effective strength, while Dávila et al. (Eq.

3.20) consider that the compression stress reduces the effective shear stress. Puck

and Schürmann [2, 46] finally choose to use the following equation, arguing that it

fits the experimental data better:

fmc =
(τT )2

S2
T − 2µTSTσn

+
(τL)2

S2
L − 2µLSLσn

= 1. (3.21)
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Table 3.1: Mechanical properties for an E-glass/DY063 epoxy used in the

WWFE [66], given by Soden et al. [43, 92]

Gab (GPa) Sab (MPa) Xc (MPa) Yc (MPa) φo (o)

5.83 73 800 145 53

For the friction coefficient µL in Eqs. 3.19, 3.20 and 3.21, Puck and Schürmann [2]

proposed to use the following equation

µL
SL

=
µT
ST

(3.22)

in the absence of biaxial experimental data. This suggestion has later been consid-

ered by Dávila et al. for the LaRC02/03 criteria [4, 39].

3.5.2 Comparison and improvements

The comparison of the criteria expressed in Eqs. 3.19, 3.20 and 3.21 is shown in

Fig. 3.2 for a material with the properties presented in Table 3.1. In Fig. 3.2,

the fracture angle for each point in each curve was determined by trying several

tentative angles, as explained later in this subsection.

While the initial and final Puck criteria (Eqs. 3.19 and 3.21) yield similar results,

LaRC02/03 criterion (Eq. 3.20) is less conservative. This is related to the fact that

the effect of friction is over-estimated in Eq. 3.20. Indeed, affecting the shear

traction components by a friction term as in Eq. 3.20 over-estimates the friction

forces whenever both τT and τL are acting simultaneously. As Fig. 3.3(a) represents,

supposing a very simple case with isotropic friction (µT = µL), the friction stresses

are over-estimated by a factor of
√

2 when using Eq. 3.20.

It is interesting to notice the effect that an orthotropic friction model has on

LaRC02/03 criterion (Eq. 3.20). A reasonable model for orthotropic friction is







τ fric.T

τ fric.L







= σn





µT 0

0 µL











τT
τ

τL
τ







∴







τ fric.T = σnµT cos (θ)

τ fric.L = σnµL sin (θ)
(3.23)

where θ is the angle formed by the shear component of the traction vector, τ , and

the transverse direction in the fracture plane, i.e., θ = arctan (τL/τT ). Curiously,
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Figure 3.2: Failure envelopes for transverse compression and in-plane shear
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modifying LaRC02/03 criterion (Eq. 3.20) to account for this more representative

friction stress, i.e., using

fmc =

(〈|τT | + µTσn cos (θ)〉
ST

)2

+

(〈|τL| + µLσn sin (θ)〉
SL

)2

= 1 (3.24)

as a failure criterion yields an envelope that is coincident with Puck’s initial criterion

(Eq. 3.19), see Fig. 3.2.

Also shown in Fig. 3.2 is the much simpler Sun et al. [78] criterion,

fmc =

(

σb
Yc

)2

+

(

τab
SL − µLσb

)2

= 1 (3.25)

which exhibits the correct trend.

The use of one of Eqs. 3.19, 3.20, 3.21, and 3.24 for the failure criterion implies

the use of the set of Eqs. 3.15 for the transformation of stresses. In turn, this means

that the fracture angle has to be known. Puck and Schürmann [2] have performed

an analytical deduction for Eq. 3.21 in a plane stress state, but it is much more

complex to do so for Eqs. 3.19, 3.20 and 3.24 for 3D stress states. However, Dávila et

al. [4] have shown that it is possible to draw the envelope with reasonable accuracy

by using a very small number of trial angles, as shown in Fig. 3.4, drawn using the

data from Table 3.1 and Puck’s initial criterion (Eq. 3.19). The latter approach is

followed in this work.

3.5.3 Selection of a matrix compressive failure criterion

The criterion expressed by Eq. 3.21 is a modified version of the one expressed by

Eq. 3.19 and the failure envelopes for the criteria are almost identical, as shown in

Fig. 3.2. An advantage of the former over the latter consists on the possibility of

calculating the fracture angle φ for each load situation—in plane stress. For a 3D

situation, the advantage does not exist, but the modification introduced means Eq.

3.21 does not correctly represent the Mohr-Coulomb criterion. Therefore, for 3D

applications, Eq. 3.19 is preferred over Eq. 3.21.

As discussed, Eq. 3.20 over-estimates the friction stresses. Correcting this results

in Eq. 3.24, which correctly applies the Mohr-Coulomb criterion, assuming that the
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Figure 3.4: Failure envelope for Puck’s initial matrix failure criterion ( Eq.

3.19), and several values for the angle of the fracture plane, φ,

based on Ref. [4]

compression reduces the shear stresses. Assuming instead that compression increases

the strength results in Eq. 3.19. Both Eqs. 3.19 and 3.24 are physically sound.

Finally, since Eqs. 3.19 and 3.24 yield similar results, but the former is simpler,

Eq. 3.19 is selected as the matrix compressive failure criterion (i.e. for σn < 0) in

this work. This equation has also been chosen as the LaRC04 matrix compression

failure criterion [40].

3.6 Matrix tensile failure

3.6.1 Without in-situ effects

It can be concluded from the WWFE’s experimental results [43], that a quadratic

interaction between the transverse stress σb and the in-plane shear stress τab de-

scribes appropriately the (σb, τab) failure envelope, for the matrix tensile failure

mode. Dávila et al. [4] used this interaction criterion for the LaRC02 failure criteria.

However, for the (σb, τab) failure envelope, the fracture plane is always parallel to
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the (a, c) plane.

For a generic stress state, the matrix tensile fracture plane does not coincide

necessarily with the (a, c) plane. Therefore, it seems reasonable to recast the traction

components expressed in the potential fracture planes—as expressed in Eq. 3.15—

and apply a quadratic interaction as follows:

fmt =

(

σn
Yt

)2

+

(

τT
ST

)2

+

(

τL
SL

)2

= 1. (3.26)

The criterion applies for σn ≥ 0, and Yt is the in-plane transverse tensile strength.

3.6.2 With in-situ effects

3.6.2.1 In-situ effect

The in-situ effect, originally detected in Parvizi’s tensile tests of cross-ply glass fi-

bre reinforced plastics [93], is characterized by higher transverse tensile and shear

strengths of a ply when it is constrained by plies with different fibre orientations in

a laminate, when compared to the strength of the same ply in a unidirectional lam-

inate. The in-situ strength also depends on the number of plies clustered together,

and on the fibre orientation of the constraining plies.

The orientation of the constraining plies and the number of plies clustered to-

gether also affect the crack density and the stiffness reduction of the cracked ply.

Wang’s [94] tests of (0/90n/0) (n = 1, 2, 3, 4) carbon/epoxy laminates have shown

higher crack densities for thinner 90◦ layers. The reduction of the elastic properties

of a cracked ply is normally predicted using elastic analyses of cracked plies [95, 96]

or Continuum Damage Models [97–100].

The in-situ effect is illustrated in Fig. 3.5, where the relation between the in-situ

transverse tensile strength and the total thickness of the 90◦ plies clustered together

is represented.

Accurate in-situ strengths are necessary for any stress-based failure criterion for

matrix cracking in constrained plies. Both experimental [57, 94, 101] and analytical

methods [47, 96, 102] have been proposed to determine the in-situ strengths. In the

following, the in-situ strengths are calculated using fracture mechanics solutions for

the propagation of cracks in a constrained ply.
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Figure 3.5: Transverse tensile strength as a function of number of plies clus-

tered together, with models from Dvorak [47] based on experi-

mental data from Wang [94]; figure from Ref. [40]

3.6.2.2 Fracture mechanics analysis of a cracked ply

The failure criterion for predicting matrix cracking in a ply subjected to in-plane

shear and transverse tension proposed here is based on the fracture mechanics anal-

ysis of a slit crack in a ply, as proposed by Dvorak and Laws [47]. The slit crack

represents a manufacturing defect that is idealized as lying on the (a, c) plane, as

represented in Fig. 3.6 for a thick embedded ply. It has a length 2ao across the

thickness of a ply, t. Physically, this crack represents a distribution of matrix-fibre

debonds that may be present in a ply as a consequence of manufacturing defects

or from residual thermal stresses resulting from the different coefficients of thermal

expansion of the fibres and of the matrix. Therefore, the slit crack is an ‘effective

crack,’ representing the macroscopic effect of matrix-fibre debonds that occur at the

micromechanical level [94].

The transverse tensile stress σb is associated with mode I loading, whereas the

in-plane and transverse shear stresses τab and τbc respectively are associated with

mode II loading. The crack represented in Fig. 3.6 can grow in the a (longitudinal,

L) direction, in the c (transverse, T ) direction, or in both directions.



CHAPTER 3. FORMULATION OF FAILURE MODELS AND CRITERIA 51

 

� � � � �
� � ��

� � �  

� � 	 �


  

� � �

� � 	 �

Figure 3.6: Slit crack geometry after Dvorak [47], from Ref. [40]

The components of the energy release rate for the crack geometry represented in

Fig. 3.6 were determined by Dvorak and Laws [47] for a linear orthotropic material,

and an extension of their analysis for nonlinear shear behaviour is presented in

Appendix C. For mixed-mode loading, the energy release rate for crack growth in

the T and L directions, GT and GL, respectively, are given by

GT = πao
2

[η2
IΛ

o
bσ

2
b + η2

IIΛ
o
bcτ

2
bc + η2

IIIχ (γab)]

GL = πao
4

[ξ2
IΛ

o
bσ

2
b + ξ2

IIΛ
o
bcτ

2
bc + ξ2

IIIχ (γab)]
(3.27)

where Λo
b, Λ

o
bc and χ (γab) are given in Appendix C. It can be observed that the energy

release rate GL for longitudinal propagation is a function of the transverse slit size

and that it is not a function of the slit length in the longitudinal direction. The

parameters ηi, i = I, II, III in Eq. 3.27 are stress intensity reduction coefficients

for propagation in the transverse direction, and the parameters ξi, i = I, II, III are

reduction coefficients for propagation in the longitudinal direction. These coefficients

account for the constraining effects of the adjoining layers on crack propagation: the

coefficients are nearly equal to 1.0 when 2ao ¿ t, and are less than 1.0 when ao ≈ t.

Experimental results [101] have shown an increase in the in-situ transverse tensile

strength of [±θ/90n]s, θ = 0◦, 30◦, 60◦ laminates for increasing stiffness of adjoining

sublaminates ±θ. This implies that the value of the parameter ηi decreases with

increasing stiffness of adjoining sublaminates. Considering that a transverse crack

can promote delamination between the plies, Dvorak and Laws [47] suggested that

the effective value of ηi can be larger than obtained from the analysis of cracks

terminating at the interface, and suggested the use of ηi = ξi = 1.

The mode II and III components of the energy release rate are combined in a

shear mode, Gshear, as Gshear = GII+GIII . Such an approach was initially proposed
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by Li and Sen [103] and Li [104], and used in the simulation of delamination using

the Virtual Crack Closure Technique (VCCT) and decohesion finite elements [10]. In

fact, no conclusive evidence is available showing that GIIc and GIIIc are different and

there is no standard for measuring GIIIc and there is no mixed-mode test method

for mixed mode II and mode III loading. In the following, the notation GII and

GIIc will be used for simplicity, when referring to Gshear and GSc.

The components of the energy release rate for a thick embedded ply are then

obtained for the T -direction using Eq. 3.27 with ηi = 1:

GT
I =

πao
2

Λo
bσ

2
b (3.28)

GT
II =

πao
2

[

Λo
bcτ

2
bc + χ (γab)

]

. (3.29)

The corresponding components of the fracture toughness are given as

GT
Ic =

πao
2

Λo
b

(

Y t
is

)2
(3.30)

GT
IIc =

πao
2
χ
(

γuab � is

)

(3.31)

where Y t
is is the in-situ transverse tensile strength, and γuab � is is the in-situ in-plane

shear ultimate strain.

For propagation in the longitudinal direction, the mode I and mode II compo-

nents of the energy release rate are

GL
I =

πao
4

Λo
bσ

2
b (3.32)

GL
II =

πao
4

[

Λo
bcτ

2
bc + χ (γab)

]

(3.33)

and the components of the fracture toughness are

GL
Ic =

πao
4

Λo
b

(

Y t
is

)2
(3.34)

GL
IIc =

πao
4
χ
(

γuab � is

)

. (3.35)

Having obtained expressions for the components of the energy release rate and

fracture toughness, a failure criterion can be applied to predict the propagation of

the slit crack represented in Fig. 3.6. Under the presence of in-plane and transverse

shear, as well as transverse tension, the critical energy release rate Gc depends
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on the combined effect of all microscopic energy absorbing mechanisms such as

the creation of new fracture surfaces. Relying on microscopic examinations of the

fracture surface, Hahn [105] observed that the fracture surface topography strongly

depends on the type of loading. With increasing proportion of the stress intensity

factor KII , more hackles are observed in the matrix, thereby indicating more energy

absorption associated with crack extension. Hahn proposed a mixed-mode criterion

written as a first-order polynomial in the stress intensity factors KI andKII . Written

in terms of the mode I and mode II energy release rates, the Hahn criterion is

(1 − g)

√

Gi
I

Gi
Ic

+ g
Gi
I

Gi
Ic

+
Gi
II

Gi
IIc

= 1, i = T, L (3.36)

where the material constant g is defined from Eqs. 3.30 and 3.31 or 3.34 and 3.35

as g = GIc/GIIc which leads to the following expression for g:

g =
Λo
b (Y t

is)
2

χ
(

γuab � is

) . (3.37)

In the following sub-sections, it will be shown that in situations where the slit crack

propagates first in the transverse direction (like for UD and thick embedded plies),

the in-situ strengths and thus also g can be obtained as a function of known UD

strengths. However, for situations where microcracks propagate first in the longitu-

dinal direction (like for thin embedded plies and outer plies), the in-situ strengths

and g have to be obtained as a function of GL
Ic and GL

IIc, in which case the interlam-

inar fracture toughness values are recommended to be used as an approximation.

A failure index for matrix tension can be expressed in terms of the ply stresses

and in-situ strengths by substituting either Eqs. 3.28-3.31 or 3.32-3.35 into the

criterion in Eq. 3.36 to get

fmt = (1 − g)
σb
Y t
is

+ g

(

σb
Y t
is

)2

+
Λo
bcτ

2
bc + χ (γab)

χ
(

γuab � is

) = 1. (3.38)

The criterion presented in Eq. 3.38, with linear and quadratic terms in σb, a

quadratic term in τbc and a term on the in-plane shear internal energy, χ (γab), is

similar to the criteria proposed by Hahn [105] and Liu [79] (for transverse tension

and in-plane shear). It can be observed that using g = 1 in Eq. 3.36 results in the
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linear version of the criterion proposed by Wu and Reuter [106] for the propagation

of delamination in laminated composites

GI

GIc

+
GII

GIIc

= 1. (3.39)

Furthermore, using g = 1, assuming linear in-plane shear, and neglecting τbc, Eq.

3.38 reverts to the well-known Hashin-Rotem criterion [54] for transverse matrix

cracking under both in-plane shear and transverse tension, where the ply strengths

are replaced by the in-situ strengths

fmt =

(

σb
Y t
is

)2

+

(

τab
SLis

)2

= 1. (3.40)

Finally, the nonlinear term in Eq. 3.38 is also found to be similar to the strain-

energy based criterion proposed by Sandhu [107], later used by Chang and Scott

[108].

3.6.2.3 Application to unidirectional laminates

The application of the fracture mechanics analysis of a cracked ply to unidirectional

laminates yields expressions relating toughness values to crack dimensions which

can subsequently be used to relate the strength of thick embedded plies to that of

a unidirectional laminate.

Dvorak and Laws [47] regarded the fracture of a unidirectional specimen as the

fracture of an unconstrained thick ply, with the critical initial slit crack located at

the surface of the laminate. For tensile loading, the crack can be located at the

edge of the laminate, which increases the energy release rate when compared with a

central crack. In the case of shear loading, there is no free edge effect, so the crack

is a central crack, as shown in Fig. 3.7. The defect size is 2ao and is considered to

be much smaller than the ply thickness, 2ao ¿ t.

For unidirectional laminates, the crack will grow unstably in the transverse di-

rection [47], and Eqs. 3.30, 3.31, 3.34 and 3.35 apply with a geometric factor which

is obtained from the classic solution of the free edge crack [39, 109], resulting in

GT
Ic = 1.122πaoΛ

o
b

(

Y t
)2

(3.41)
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Figure 3.8: Geometry of slit crack in a thick embedded ply subjected to

tension and shear loads, from Ref. [40]

GT
IIc = πaoχ (γuab) (3.42)

where Yt is the transverse tensile strength and γuab is the in-plane shear strain at

failure, for a unidirectional laminate.

The toughness ratio g can also be calculated in terms of the unidirectional prop-

erties by using Eqs. 3.41 and 3.42, resulting in

g =
GIc

GIIc

= 1.122 Λo
b (Yt)

2

χ (γuab)
. (3.43)

Eq. 3.43 is valid for all situations where the slit crack propagates first in the trans-

verse direction.

3.6.2.4 In-situ strength of thick embedded plies

A thick ply is defined as one in which the length of the slit crack is much smaller

than the ply thickness, 2ao ¿ t, as illustrated in Fig. 3.8. The minimum thickness

for a thick ply depends on the material used. For E-glass/epoxy and carbon/epoxy

laminates, Dvorak and Laws [47] calculated the transition thickness between a thin

and a thick ply to be approximately 0.7mm , or about 5 to 6 plies.

For the geometry represented in Fig. 3.8, the crack can grow in the transverse or

in the longitudinal direction. Comparing Eqs. 3.28 and 3.29 to Eqs. 3.32 and 3.33,
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however, indicates that the energy release rate for the crack slit is twice as large in

the transverse direction as it is in the longitudinal direction. Since Eqs. 3.28 and

3.29 also indicate that the energy release rate is proportional to the crack length,

the crack will grow unstably in the transverse direction. Once the crack reaches the

constraining plies, it can propagate in the longitudinal direction, as well as induce

a delamination.

Crack propagation is predicted using Eq. 3.38, and the in-situ strengths can be

calculated from the corresponding fracture toughness, as expressed in Eqs. 3.30 and

3.31. For mode I, the in-situ transverse tensile strength is defined from Eq. 3.30 as

Y t
is =

√

2GT
Ic

πaoΛo
b

(3.44)

and, taking into account Eq. 3.41,

Y t
is = 1.12

√
2Yt. (3.45)

For a thick embedded ply loaded in pure in-plane shear, the expressions get more

complex due to shear nonlinearity. The in-situ in-plane ultimate strain is obtained

as

γuab � is = χ−1

(

2GT
IIc

πao

)

(3.46)

and, taking into account Eq. 3.42,

γuab � is = χ−1 [2χ (γuab)] . (3.47)

For the definition of g for thick embedded plies, replacing Eqs. 3.45 and 3.47 in Eq.

3.37 results in Eq. 3.43.

Considering the constitutive law for the shear behaviour to be expressed by the

function fCL such that

τ = fCL (γ) , (3.48)

then the in-situ in-plane shear strength is defined as

SLis = fCL
(

γuab � is

)

. (3.49)

As a particular case of nonlinear in-plane shear behaviour, consider the polynomial

relation between the shear strain and the shear stress proposed by Hahn and Tsai
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[110],

γab =
1

Gab

σab + βσ3
ab. (3.50)

With the nonlinear shear law expressed in Eq. 3.50, Eq. 3.46 reverts to

GT
IIc = πao

[

(

SLis
)2

2Gab

+
3

4
β
(

SLis
)4

]

(3.51)

and Eq. 3.42 can be written as

GT
IIc = 2πao

[

(

SL
)2

2Gab

+
3

4
β
(

SL
)4

]

. (3.52)

Equating Eqs. 3.51 and 3.52, the in-situ shear strength of a thick embedded ply,

SLis, can be related to the shear strength of a unidirectional laminate:

(

SL
)2

Gab

+
3

2
β
(

SL
)4

=

(

SLis
)2

2Gab

+
3

4
β
(

SLis
)4
. (3.53)

The in-situ shear strength of a thick embedded ply, SLis, is the positive, real root of

Eq. 3.53:

SLis =

√

√

√

√

√

√

1 + β
(

12(SL)2

Gab
+ 18β (SL)4

)

(Gab)
2 − 1

3βGab

. (3.54)

It can be observed from Eqs. 3.45 and 3.54 that the in-situ strengths of thick

embedded plies—Y t
is, and SLis—are independent of the ply thickness, as has been

observed by Dvorak and Laws [47] and Leguillon [111], and as was shown in Fig.

3.5. The general expression for SLis in Eq. 3.54 can be written for a linear material

by letting β tend to zero, in which case the in-situ in-plane shear strength comes as

SLis =
√

2SL for a linear shear law. (3.55)

Eq. 3.55 is equal to the one obtained by Dvorak and Laws [47] and Dávila et al.

[39] for a linear shear behaviour.

3.6.2.5 In-situ strengths of thin embedded plies

Thin plies are defined as having a thickness smaller than the typical defect, t < 2ao,

so the slit crack represented in Fig. 3.6 extends across the entire thickness t of the

ply, as represented in Fig. 3.9.
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Figure 3.9: Geometry of slit crack in a thin embedded ply, from Ref. [40]

In the case of thin plies, crack defects can only grow in the longitudinal (L)

direction, or trigger a delamination between the plies. The in-situ strengths can be

calculated from the components of the fracture toughness, as expressed in Eqs. 3.34

and 3.35. For transverse tensile loading, the corresponding strength is expressed as

Y t
is =

√

8GL
Ic

πtΛo
b

. (3.56)

For a thin embedded ply loaded in pure in-plane shear, the ultimate in-plane shear

strain is defined as

γuab � is = χ−1

(

8GL
IIc

πt

)

(3.57)

and the in-situ in-plane shear strength is defined as

SLis = fCL
(

γuab � is
)

. (3.58)

Considering again Eq. 3.50 as a particular case of nonlinear in-plane shear behaviour,

Eq. 3.57 can be written as

(

SLis
)2

8Gab

+
3

16
β
(

SLis
)4

=
GL
IIc

πt
. (3.59)

The in-situ shear strength of a thin ply, SLis, is the positive real root of Eq. 3.59:

SLis =

√

√

√

√

√

√

1 + β
48GL

IIc

πt
(Gab)

2 − 1

3βGab

(3.60)

It can be observed from Eqs. 3.56 and 3.60 that the in-situ strengths are dependent

on the thickness t.

Eq. 3.60 can be written for a linear material by letting β tend to zero, in which

case the shear strength come as

SLis =

√

8GabG
L
IIc

πt
for a linear shear law. (3.61)
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Figure 3.10: Geometry of slit crack in a thin outer ply, from Ref. [40]

Eq. 3.61 is equal to the one obtained by Dvorak and Laws [47] and Dávila et al.

[39] for a linear shear behaviour.

If in the absence of specific data, the toughness values GL
Ic and GL

IIc can be

assumed to have the values measured by standard Fracture Mechanics tests, such as

the DCB for mode I and the ENF test for mode II. For the definition of g for thin

embedded plies, the same values can be used to define g as GIc/GIIc. Using Eq.

3.56, Dvorak and Laws [47] obtained a good correlation between the predicted and

experimentally obtained in-situ tensile strengths of both thick and thin 90◦ plies in

[0/90n/0] laminates, as was shown in Fig. 3.5.

3.6.2.6 In-situ strengths of thin outer plies

Outer plies are taken as a special case of thin plies, as represented in Fig. 3.10.

Following the procedure presented for a UD laminate, it is considered that the stress

intensity factor of an outer ply is larger than the stress intensity factor of a thin

embedded ply. The relation between the stress intensity factors are given by classical

fracture mechanics solutions for free-edge cracks. In the case of thin outer plies, crack

defects can only grow in the longitudinal (L) direction, or trigger a delamination

between the plies. The in-situ strengths of thin outer plies were calculated from

the components of the fracture toughness for a linear shear behaviour [41]. For a

nonlinear shear response,

Y t
is = 1.79

√

GL
Ic

πtΛo
b

(3.62)

and

γuab � is = χ−1

(

4GL
IIc

πt

)

. (3.63)

As for thin embedded plies, if in the absence of specific data, the toughness



CHAPTER 3. FORMULATION OF FAILURE MODELS AND CRITERIA 60

values GL
Ic and GL

IIc can be assumed to be similar to the corresponding interlaminar

fracture toughness and used to define g as GIc/GIIc.

3.7 Fibre-kinking failure

3.7.1 Literature review

Fibre compressive failure is a field where significant research is still being performed.

For matrix compressive failure, a relatively simple mechanical model as the one

proposed by Puck and Schürmann [2, 44–46] seems to correctly represent failure, and

can be easily expressed as a failure criterion that can be incorporated in numerical

codes. However, the mechanics of the failure mode involving fibre compression is

more complex. Depending on the material, different fibre compressive failure modes

are possible [112]:

Microbuckling. This failure mode consists of the microbuckling of the fibres in

the elastic matrix. The first mechanical model for this failure mode can be tracked

back to Rosen’s work [113] where the fibres are represented by infinite beams2 in an

elastic matrix and failure is attained when the compressive load equals the buckling

load. This model provides an upper bound for the failure stress, as it generally

predicts a failure stress typically two to three times larger than the experimental

one (for carbon reinforced composites [112]). Models based on microbuckling have

been widely studied over the last decades. For these models, the matrix shear

properties as well as material imperfections play an important role.

Kinking. Kinking can be defined as the localized shear deformation of the

matrix, along a band. Typically, the fibres break at the edges of the band, and

sometimes also in the interior. It should be noted that some authors consider kinking

as a consequence of microbuckling, while others consider it as a separate failure

mode [112]. Argon [3] was the first researcher to develop a mechanical model for

fibre kinking as a separate failure mode. For Argon, failure is the result of matrix

2In fact, Rosen’s approach is 2D, and the fibres are thus represented by layers (plates), and not

beams.
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shear failure, prompted by an initial fibre misalignment. For this model, and those

that follow it, matrix elastic behaviour and initial material imperfections play an

important role.

Fibre failure. Fibre failure can be expected to occur for fibres with low com-

pressive strength, such as Aramid, but is not expected to happen for carbon, glass

or boron fibres [112].

Rosen [113] was the first researcher to propose a mechanical model to describe

fibre microbuckling. By minimizing the internal energy, Rosen obtained the fibre’s

buckling stresses. The analysis was performed for two instability modes: (i) an

extension mode, where the deformed shapes of adjacent fibres are in opposition of

phase; and (ii) a shear mode, where the deformed shapes of adjacent fibres are in

phase. Rosen found that for composites with a high fibre volume fraction, the shear

mode is critical, and the associated failure stress is

Xc =
Gmatrix

1 − Vf
(3.64)

where Gmatrix is the shear modulus of the matrix and Vf is the fibre volume fraction.

Considering the rule of mixtures, Eq. 3.64 reduces to Xc = Gab, i.e., the shear

modulus of the composite. This relation, Eq. 3.64, was later modified to account for

an elastic-perfectly plastic resin [114]. In fact, several modifications were attempted,

in order to incorporate less restrictive hypotheses (see Ref. [112] for a state of the

art review). However, Rosen’s approach yields smaller failure stresses than similar

models assuming linear elasticity and straight fibres [112] and is simpler. Still,

there is little success in predicting the failure stress of advanced composites using

Rosen’s result. The problem is that, when compared to experimental data, Eq. 3.64

gives results typically 1.5 times higher for Boron composites, 2 to 3 times higher

for carbon composites and 4 times higher for glass composites [112]. It was with

the introduction of geometric nonlinearity and initial fibre misalignment that the

prediction got closer to the experimental results.

Schultheisz and Waas [112] pointed out that most buckling models tend to repli-

cate the model-composite that was studied by Greszczuk [115–118]. Greszczuk per-

formed a series of experiments on model-composites whose reinforcements consisted
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of either (i) rods (of steel or aluminum) having diameters in the range 0.5 to 3.2mm ;

or (ii) aluminum plates with thickness in the range of 0.3 to 1mm . The basic idea

was to duplicate the 2D geometries used in the analytical models. Greszczuk found

that the compressive strength of his model-composites exceeded Rosen’s prediction.

However, when including the energy associated with bending of the fibres, Greszczuk

found good agreement. He also concluded that while his model-composites with low-

modulus matrix failed by microbuckling, those with intermediate-modulus matrix

failed by longitudinal cracking (matrix cracking), and composites with high-modulus

matrix failed through compression of the fibres.

Most buckling models follow the 2D approach of Rosen [113]. However, real

technical composites are 3D structures. It has been suggested [119, 120] that 3D

effects may be a cause of the reduction in the failure stress from Rosen model. In-

deed, evidence of the 3D aspect of fibre microbuckling has been reported in the

literature [121, 122]. One important 3D consideration, discussed by Schultheisz and

Waas [112], is the arrangement of fibres and matrix, which induce different types of

interaction (among the fibres and matrix) during the buckling for different packing

densities. Furthermore, the laminated construction may lead to different fibre ar-

rangements within the plane of a lamina and in the through-the-thickness direction.

Fibre misalignment angles have first been reported to be smaller in the through-

the-thickness direction [123], but more recent results suggest they are similar in

magnitude [124]. Models incorporating 3D aspects were attempted [118, 125–129],

and Schultheisz and Waas [112] concluded that FE analysis would be an excellent

candidate to handle the 3D aspect of microbuckling.

In most high fibre-volume-fraction advanced composite materials, compressive

failure is seen as a failure mode which is localized in a band across the specimen

in which the fibres have rotated by a large amount, and the matrix has undergone

large shearing deformation—kinking. A schematic representation of a kink band is

shown in Fig. 3.11(a). In the literature, kinking is often seen as a consequence of

microbuckling, and not a failure mode itself. However, kinking is other times identi-

fied as an independent failure mode. On the discussion on whether or not kinking is

a consequence of microbuckling, the main argument has to do with the orientation
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Figure 3.11: (a) Kink band; (b) fibre misalignment frame

of the kink-band boundary. Indeed, if kinking is a consequence of microbuckling,

then one would expect the kink-band boundary to lie normal to the loading axis

(original fibre direction), i.e., to lie in the plane of highest bending stresses. In Fig.

3.11(a), this would mean an angle β equal to zero. However, it is found that in

most cases β lies in the range of 30◦. On the other hand, the similarity between

the kink bands and shear bands may suggest that shear is the main factor at the

onset of kink-band formation. In this case, it would be expected that kink bands

would occur in the planes of maximum shear stress, i.e., for β = 45◦. Some thick

kink bands have been found near 45◦ [112], but this is generally not the case.

Another argument supporting kinking as a separate failure mode was introduced

by Chaplin [130], who noted that microbuckling should occur everywhere in the

composite at about the same time, whereas kinking in his experiments was clearly

initiated from some kind of defect.

Effendi et al. [131] carried a set of experimental tests on different carbon-fibre

composites and also carried an analytical buckling analysis, which included initial

fibre waviness, and computed the stresses in the fibre and matrix constituents. They

found that before the buckling load was attained, the stress levels in the constituents

exceeded the respective failure stress. To refine the modelling, they conducted a

numerical FE analysis, where a nonlinear matrix behaviour was incorporated. The

results confirmed that constituent failure happened first. Composites with small
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initial imperfections or weaker fibre would fail by fibre failure, while in composites

with large initial imperfections or stronger fibres, the matrix would fail first.

On their review of the state of the art on compressive failure of composites,

Schultheisz and Waas [112] concluded that the experimental observations on the

kinking phenomenon support the contention that kink bands seen in high fibre-

volume-fraction advanced composite materials occur via a mechanism that is differ-

ent from the global microbuckling mode suggested by Rosen [113]. Furthermore, in

advanced composites, kinking seems to be initiated by local microstructural defects,

such as fibre misalignments and longitudinal (matrix or interfacial) cracking. There-

fore, kinking is better understood by treating the problem of stress redistribution,

including dynamics, and including both nonlinear geometry and material response.

Whether kinking is a result of fibre microbuckling or a separate failure mode,

it is the most common failure feature observed after testing. The kink-band angle

and kink width were studied by Hahn [132] for carbon fibre composites (CFC),

glass fibre composites (GFC) and Aramid fibre composites (AFC). The kink-band

angle β, and the band width w, were found to be the smaller for CFC at room

temperature (β ≈ 20◦ and w ≈ 0.07 to 0.2mm ). For GFC, no clear kink bands

were observed at room temperature. However, at 100◦C , a kink angle β ≈ 30◦

and a width w ≈ 1.2mm were observed. For AFC tested at room temperature, the

kink angle was found as β ≈ 40◦ and width w ≈ 0.45mm . Chaplin [130] noted the

angle of rotation of the fibres in the kink band was twice the angle β, so that no

volumetric changes happened in the kinked region.

Argon [3] assumed that an initial fibre misalignment exists in the composite,

which leads to shearing stresses between the fibres. The shearing stresses would

act as to further rotate the fibres, which would in turn lead to further increase in

the shear stresses. This ‘closed loop’ effect could then lead to failure. The main

result from his analysis is the relation between the compressive failure stress, Xc,

the longitudinal shear failure stress, SL, and the initial fibre misalignment angle θi

(in radians):

Xc =
SL
θi
. (3.65)

From Argon’s analysis, a kink-band angle β = 45◦ should also result. Several
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authors since reported the sensitivity of the compressive failure stress to the shear

failure stress [133–136]. Budiansky [135] later extended Argon’s analysis to

Xc =
SL

θi + γo
(3.66)

where γo is the shear strain at failure. Failure occurs when the shear failure stress is

reached in the material coordinate system. In a later analytical work, Budiansky and

Fleck [136] included the effect of strain-hardening, shear loads, kink-band inclination

and finite fibre stiffness, obtaining a non closed-form solution. Another similar

solution was obtained assuming kinking in the transverse direction [137] (but not

for any generic direction). Analytical models for kink-band broadening were also

developed [137]. Kyriakides et al. [138] carried micro-mechanical 2D FE models

of the kinking process (modelling fibre and matrix individually), including matrix

nonlinearity and initial imperfections. The micro-mechanical 2D FE models were

successfully used to predict the propagation stress during kink band broadening

[139, 140].

More recently, Dávila et al. [4, 39] used a very interesting combination of Ar-

gon’s approach [3] and the LaRC02/03 matrix failure criterion. Essentially, Dávila

et al. suppose that the fibres might be misaligned, and that further rotation will

occur during compressive loading. They then compute the stresses in the updated

misalignment frame and check for matrix failure using LaRC02/03 matrix failure

criterion.

3.7.2 2D kinking model

A 2D kinking model is now proposed. It is based on Argon’s [3] approach and the

latter developments by Dávila et al. [4, 39]. In the following, the subscript m applied

to the shear stress and shear strain designates the misalignment frame at failure,

and the subscript mc (also applied to the shear stress and shear strain) designates

the misalignment frame at failure for pure axial compression.

Consider a unidirectional composite with a misaligned region being compressed,

as depicted in Fig. 3.11(b). The stresses in the misalignment frame are, for a generic
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plane stress loading

σam =
σa + σb

2
+
σa − σb

2
cos (2θ) + τab sin (2θ)

σbm =
σa + σb

2
− σa − σb

2
cos (2θ) − τab sin (2θ)

τambm = −σa − σb
2

sin (2θ) + τab cos (2θ) .

(3.67)

3.7.2.1 Determination of the model’s parameters using pure axial com-

pression data

For failure under pure compression (σa = −Xc, σb ≡ τab = 0), Eqs. 3.67 lead to

σam = −Xc cos
2 (θ) ,

σbm = −Xc sin
2 (θ) and (3.68)

τambm = τmc = Xc sin (θ) cos (θ) .

This stress state can now be placed in an appropriate matrix failure criterion. For

a material with linear shear behaviour, placing it in an appropriate matrix failure

criterion leads directly to the expression for the specific value of the misalignment

angle θ at failure for a pure compression case—θc. For a material with nonlinear

shear behaviour, it will become clear at the end of this section that kinking can result

either from (i) matrix failure (i.e. the verification of a matrix failure criterion), or

(ii) instability, due to the loss of (shear) stiffness for larger shear strain values.

Without loss of generality, suppose first the case of failure by the verification of

an appropriate matrix failure criterion.

Case 1: Kinking for pure compression as the result of matrix failure

Using Puck’s initial criterion [2] or LaRC02/3 [4, 39], Eqs. 3.19 and 3.20 respec-

tively (they yield the same result in this case), gives the expression for the specific

value of the misalignment angle θ at failure for a pure compression case—θc :

Xc

(

sin (θc) cos (θc) − µL sin2 (θc)
)

= SL. (3.69)

This angle, θc, is the sum of the initial misalignment and the rotation due to loading.
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Dávila et al. [4] have solved Eq. 3.69 for θc resulting in

θc = arctan









1 −
√

1 − 4
(

SL
Xc

+ µL

)

SL
Xc

2
(

SL
Xc

+ µL

)









. (3.70)

Dávila et al. pointed out that neglecting µL and the shear strain, and assuming θc

to be small (in Eq. 3.69) yields Argon’s equation (Eq. 3.65). In fact, assuming all

the above but now not neglecting the shear strain yields Budiansky’s Eq. 3.66.

Using the shear constitutive law, the shear strain γmc can be obtained from the

shear stress τmc and so the initial misalignment angle, θi, can be calculated. In

practice, the shear constitutive law is usually nonlinear so that the shear strain can

be related to the shear stress by the generic function fCL such that τ = fCL(γ).

From the constitutive law, the shear stress at failure (and in the material axes) is a

function of the shear strain

τmc = fCL(γmc) (3.71)

and from the transformation equations (Eqs. 3.68), the shear stress at an angle θc

is

τmc =
1

2
sin (2θc)Xc. (3.72)

From Eqs. 3.71 and 3.72, the shear strain at failure for a pure axial compression

case, γmc, comes as

γmc = f−1
CL

(

1

2
sin (2θc)Xc

)

. (3.73)

For instance, for a material which is linear in shear, Eq. 3.73 becomes simply

γmc =
sin (2θc)Xc

2Gab

. (3.74)

Dávila et al. [4] assumed small angle approximations and reached a simpler expres-

sion for Eq. 3.74:

γmc =
θcXc

Gab

. (3.75)

The initial misalignment angle can then be calculated using

θi = θc − γmc (3.76)

where γmc can be defined by Eqs. 3.73, 3.74 or 3.75.
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Writing Eq. 3.73 in the form

fCL (γmc) =
1

2
sin [2 (θi + γmc)]Xc (3.77)

and plotting the left and right hand side of it in a (γ, τ ) space provides insight into

the meaning of the solution of Eq. 3.73. Fig. 3.12(a) represents both sides of Eq.

3.77 for a material with linear shear behaviour.

The Left Hand Side (LHS) of Eq. 3.77 is the shear strain vs. shear stress

material law. The Right Hand Side (RHS) of Eq. 3.77 represents the shear stress

resulting from the compressive longitudinal loading, in a rotated coordinate system.

As the compressive stress increases, the ‘RHS’ curve corresponding to a general

stress level shifts up, and the intersection with the ‘LHS’ curve defines the strain in

the misalignment frame γm. At failure (when the compressive stress equals Xc), the

strain in the misalignment frame is defined as γmc and is shown in Fig. 3.12(a).

For a material with nonlinear shear behaviour, there could be more than one

intersection point for each stress level, as represented in Fig. 3.12(b) for the par-

ticular case of failure onset. As the compressive loading increases, the ‘RHS’ curve

corresponding to a general stress level shifts up, and the intersection with the ‘LHS’

curve defines the strain in the misalignment frame γm. At failure (when the com-

pressive stress equals Xc), the strain in the misalignment frame is defined as γmc

and is shown in Fig. 3.12(b). Therefore, γmc has to correspond to the first inter-

section of the two curves (lower energy). However, this is not guaranteed by the

solution of Eqs. 3.70, 3.73 and 3.76. If the mentioned solution corresponds to the

second intersection, then the solution is not valid and failure is due to a different

mechanism, which is now discussed.

Case 2: Kinking for pure compression as the result of instability

A second mechanism that can promote fibre kinking is elastic instability of the

matrix, due to the softening character of the constitutive law. As a composite is

progressively loaded in compression, the curve ‘RHS’ in Fig. 3.12(b) shifts up, also

progressively. Suppose that at the moment the two curves ‘LHS’ and ‘RHS’ are

tangent to each other, Fig. 3.12(c), the matrix compressive failure criterion is not

yet verified. Then, a small increase in the compressive load results in the two curves
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Figure 3.12: Left and Right hand side of Eq. (3.77), for a material with a

(a) linear shear behaviour, (b) nonlinear shear behaviour, and

failure by matrix cracking, and (c) nonlinear shear behaviour,

and failure by instability

not touching each other. Physically, this means that there is no equilibrium position

and catastrophic failure results, due to unstable rotation of the fibres. It is concluded

that the compressive strength measured for pure axial compression is in this case

actually a failure due to instability, rather than matrix failure.

The values of θi and γmc corresponding to this type of failure can be obtained

from the system that results from Eq. 3.77 and the condition that expresses that

the left and right hand side of Eq. 3.77 have the same slope at γmc :















fCL(γmc) =
Xc

2
sin [2 (θi + γmc)]

∂fCL(γ)

∂γ

∣

∣

∣

∣

γmc

= Xc cos [2 (θi + γmc)] .
(3.78)

To summarize, the three variables θi, γmc and θc can be determined by Eqs.

3.70, 3.73 and 3.76 (matrix compressive failure) or by Eqs. 3.76 and 3.78 (elastic

instability).

If the instability solution occurs for fmc < 1 (Eq. 3.19), then the instability

solution must be considered; otherwise the matrix compressive failure solution is

considered. Either way, θi, γmc and θc are always defined. The initial misalignment

angle θi is a material property, and could be regarded as an equivalent angle that

embodies microstructural defects (that can trigger kink-band formation) as well as

the actual initial misalignment, like oscillations in the fibre volume fraction or in

the bonding to the resin, or microcracks in the resin.
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3.7.2.2 Generic plane-stress loading

Knowing θi allows the establishment of an equation defining the shear strain in the

material axes for a generic plane stress situation, γm, by using the transformation

Eqs. 3.67 and the shear law:

fCL(γm) = −σa − σb
2

sin (2 (θi + γm)) + |τab| cos (2 (θi + γm)) . (3.79)

Having solved the previous equation for γm, the misalignment angle θ comes then

as

θ =
τab
|τab|

(θi + γm) . (3.80)

Note that, in Eq. 3.79, a modulus was applied to τab because it is the easiest way

of considering simultaneously the possibility of an initial misalignment ±θi.
For a nonlinear shear response, Eq. 3.79 can be solved by an iterative process

to yield γm. For most practical cases, Eq. 3.79 can be simplified without significant

error by assuming small angle approximations:

fCL(γm) ≈ (θi + γm) (−σa + σb) + |τab| . (3.81)

For a linear shear behaviour, Eq. 3.81 can be solved [4], resulting in

γm =
θiGab + |τab|
Gab + σa − σb

− θi. (3.82)

However, for a nonlinear shear behaviour, there might be no easy way of solving

Eq. 3.81 or 3.79 without iterating. Having determined the misalignment frame, the

stresses can be rotated to that frame, and a matrix failure criterion can be used

to check for possible kink-band formation. Therefore matrix failure can be checked

using Eq. 3.19 for compression (σn ≤ 0) and either Eq. 3.26 (neglecting in-situ

effects) or Eq. 3.38 (including in-situ effects) for tension (σn > 0).

For nonlinear shear behaviour, there might be no easy way of solving Eq. 3.79

or 3.81 without iterating. Furthermore, Eq. 3.79 does not always have a solution,

since failure by instability is also possible. If, for a specific load state, Eq. 3.79 does

not have a solution (this can be easily checked by plotting the left and right hand

side of the equation in a (τ, γ) space), then failure has taken place by instability.
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Figure 3.13: Failure envelopes for longitudinal compression acting with in-

plane shear for (a) linear shear behaviour and (b) nonlinear

shear behaviour

The envelope for failure by instability is defined by the system that results from the

following two conditions: (i) Eq. 3.79 is verified; and (ii) the slope (in a (τ, γ) space)

of the left hand side of Eq. 3.79 is the same as the slope of the right hand side.

Mathematically, the following system results:










fCL(γm) = −σa − σb
2

sin (2 (θi + γm)) + |τab| cos (2 (θi + γm))

∂fCL(γm)

∂γm
= − (σa − σb) cos (2 (θi + γm)) − 2 |τab| sin (2 (θi + γm)) .

(3.83)

This system (Eq. 3.83) defines an envelope for failure by instability. Fibre

kinking is thus predicted not only if the matrix failure criterion (in the misalignment

frame) is verified, but also if the system (Eq. 3.83) is verified.

Fig. 3.13 shows the application of this analysis to a biaxial compression in the

fibre and matrix direction for a E-glass/DY063 epoxy used in the WWFE [66]. The

material properties used are given by Soden et al. [92] and presented in Table 3.1.

For the nonlinear behaviour, the experimental data stress vs. strain points given by

Soden et al. [92] are used directly by the model (Fig. 3.14).

Fig. 3.13(a) shows the different envelopes obtained while using the LaRC04

matrix compressive failure criterion (Eq. 3.19) and the Puck matrix failure criterion

(Eq. 3.21), considering a linear shear behaviour.

Fig. 3.13(b) presents the application of this failure model for a nonlinear shear

behaviour (see Eqs. 3.73 and 3.79). Shear nonlinearity was not considered explicitly;

instead, interpolation and extrapolation was used to get the required information
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Figure 3.14: Linear and nonlinear shear curves for an E-glass/DY063 epoxy

used in the WWFE, experimental points from Soden et al. [92]

from the experimental data points. The linear and nonlinear shear strain vs. shear

stress curves are represented in Fig. 3.14. The effect of the nonlinearity on the

envelope—Fig. 3.13(b)—is seen to be considerable, which reinforces the importance

of a more comprehensive characterization of composite materials under shear load-

ing.

Note the interesting implications of this model: the failure envelope is dependent

on the elastic properties of the material. This is common in fibre compressive failure

models and in this case reflects the fact that failure takes place in a rotating mis-

alignment frame. Indeed, the magnitude of the rotation of the fibres, γmc, depends

on the shear response.

3.7.3 Proposed 3D kinking model

Most fibre-kinking models assume that kinking happens in the plane of the lamina.

On the other hand, most experimental studies mimic this in-plane approach and

constrain the specimens so that out of plane movements are not allowed. However,

many researchers agree on the 3D nature of fibre-kinking failure. A 3D kinking

model based on the previous 2D model is now proposed. This model assumes initial

fibre misalignment and nonlinear shear behaviour. Furthermore, its formulation is

such that an efficient numerical FE implementation is possible.

Consider a unidirectional lamina under a general compressive stress state as
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Figure 3.15: 3D kinking model; (a) solid under generic loading, (b) fibre

kinking plane, (c) stresses on the (a, b, c) coordinate system,

(d) stresses on the (a, bψ, cψ) coordinate system, (e) stresses on

the misalignment frame and (f) matrix fracture plane

shown in Fig. 3.15(a). The fibre-kinking plane is assumed to be at an angle with

the b axis, as shown in Fig. 3.15(b). Fig. 3.15(c) shows the stresses acting on

the (b, c) plane, while Fig. 3.15(d) shows the stresses acting along the bψ and cψ

directions (Fig. 3.15(d) assumes that bψ and cψ are the principal directions in the

plane (b, c)). The rotation to the misalignment plane is shown in Fig. 3.15(e). The

matrix fracture plane is represented in Fig. 3.15(f). The value of the angle ψ depends

on the particular stress state3. A 2D fibre-kinking model—in which through-the-

thickness movements are constrained—assumes that the angle ψ in Figs. 3.15(b),

(c) and (d) is equal to zero. If the composite is constrained so that it cannot move

in the b direction, then the fibre-kinking plane would have an angle ψ = 90◦. For a

general load situation, ψ will have a value between 0 and 180◦.

The set of transformation Eqs. 3.84 can be used to rotate the stresses to a

3In reality, defects such as fibre initial misalignment may not be homogeneously distributed and

the kinking plane could in fact also be influenced by that.
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potential fibre-kinking plane:

σbψ =
σb + σc

2
+
σb − σc

2
cos (2ψ) + τbc sin (2ψ)

σcψ = σb + σc − σbψ

τabψ = τab cos (ψ) + τca sin (ψ)

τbψcψ = −σb − σc
2

sin (2ψ) + τbc cos (2ψ)

τcψa = τca cos (ψ) − τab sin (ψ) .

(3.84)

After defining the fibre-kinking plane, the stresses are then rotated to the misalign-

ment frame. The strain γm is obtained by solving the iterative equation

fCL(γm) = −σa − σbψ

2
sin (2 (θi + γm)) + |τabψ | cos (2 (θi + γm)) (3.85)

and the angle θ comes as

θ =
τabψ

|τabψ |
(θi + γm) . (3.86)

If Eq. 3.85 does not have a solution, then failure has taken place by instability. The

envelope for failure by instability is defined by






fCL(γm) = −σa − σbψ

2
sin (2 (θi + γm)) + |τabψ | cos (2 (θi + γm))

∂fCL(γm)
∂γm

= − (σa − σbψ) cos (2 (θi + γm)) − 2 |τabψ | sin (2 (θi + γm)) .
(3.87)

Having established the orientation of the misalignment frame, the stresses can be

rotated to it using

σam =
σa + σbψ

2
+
σa − σbψ

2
cos (2θ) + τabψ sin (2θ)

σbm = σa + σbψ − σam

τambm = −σa − σbψ

2
sin (2θ) + τabψ cos (2θ)

τbmcψ = τbψcψ cos (θ) − τcψa sin (θ)

τcψam = τcψaψ cos (θ) .

(3.88)

At this point, a check can be performed for matrix failure. For compression (σbm ≤
0), one can apply the already presented matrix compressive failure criterion (Eq.

3.19), while for tensile (σbm > 0) the matrix tensile failure criterion (Eq. 3.26) is

applied (in-situ effects are neglected). The criterion for kinking comes then as:

• for σbm ≤ 0

fkink =

(

τT
ST − µTσn

)2

+

(

τL
SL − µLσn

)2

= 1 (3.89)
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• for σbm > 0

fkink =

(

σn
Yt

)2

+

(

τT
ST

)2

+

(

τL
SL

)2

= 1. (3.90)

In Eqs. 3.89 and 3.90, the traction components in the fracture plane are given by

σn =
σbm + σcψ

2
+
σbm − σcψ

2
cos (2φ) + τbmcψ sin (2φ)

τT = −σbm − σcψ

2
sin (2φ) + τbmcψ cos (2φ)

τL = τambm cos (φ) + τcψam sin (φ)

(3.91)

where the angle φ is obtained by trying a small number of tentative angles in the

interval 0 ≤ φ < π, and the angle ψ has yet to be determined. A possible solution to

determine ψ is to apply the criterion expressed in Eqs. 3.89, 3.87 and 3.90 to a range

of tentative angles ψ in the interval 0 ≤ ψ < π. For a numerical implementation

of the criterion however, the numerical effort dispensed could be cumbersome. It is

now shown that it is possible to define a pragmatic expression for ψ.

The analysis of specimens failed by kink-band formation shows that, in the kink

band, the fibres rotate consistently in the same direction forming planes of kinked

fibres. Consider now an element of volume of a composite, under a generic loading

as in Fig. 3.15(a). The stresses acting on a section in the (b, c) plane are shown

in Fig. 3.15(c). Suppose that the element of volume fails by the formation of a

kink band in its interior; a plane of kinked fibres is shown in Fig. 3.15(b). During

(and after) the failure process, the shear stiffness in the failed band is lower than

outside it. As a result, if the shear stress τbψcψ is nonzero, the lower shear stiffness in

the kink band would result in an out-of-plane movement of the kinked fibres, which

contradicts the assumption that (bψ, cψ) is the plane where fibre kinking takes place.

Therefore, τbψcψ has to be zero, and bψ and cψ are thus the principal directions in

the plane (b, c), Fig. 3.15(d).

Another argument leading to the same conclusion is that a negative stress σbψ will

tend to close any micro-cracks in the matrix (normal to the bψ direction) disfavouring

fibre kinking in that direction, while a positive stress σbψ will tend to open those

same micro-cracks, now favouring fibre kinking. Hence, it is reasonable to expect

that the bψ is the direction corresponding to maximum principal stress in the plane



CHAPTER 3. FORMULATION OF FAILURE MODELS AND CRITERIA 76

Table 3.2: Mechanical properties of a unidirectional E-glass/LY556, from

Soden et al. [43, 92]

Ea (GPa ) Eb (GPa ) Gab (GPa ) Sab (GPa ) Yt (GPa ) Yc (GPa ) φo (◦ )

53.48 17.7 5.83 66.5 37.5 130.3 53

(b, c). Finally, the angle ψ is thus given by

tan (2ψ) =
2τbc

σb − σc
. (3.92)

To conclude, note that the laminated construction may lead to different fibre ar-

rangements within the plane of a lamina and in the through-the-thickness direction.

It is not clear whether initial fibre misalignment angles are smaller in the through-

the-thickness direction or similar in magnitude [123, 124]. The present model as-

sumes that the initial fibre misalignment is equal in magnitude in the transverse

direction, through-the-thickness direction, or in any direction between the two. In

order to apply this model, the only material properties that need to be known, in

addition to the in-plane shear response, are Yc, SL, φo, Yt and Xc. All the remaining

parameters follow from these.

3.8 Applications

3.8.1 Failure envelope (σb, τab)

The matrix failure model (compression and tension) is here used to predict the

(σb, τab) failure envelope for a unidirectional composite E-glass/LY556. Material

properties, Table 3.2, and experimental data, Fig. 3.16, are given by Soden et al.

[43, 92]. Since more than one value is reported for the transverse (compressive and

tensile) and shear strengths, the corresponding average values are used in all models.

The envelope predicted by the model is given in Fig. 3.16, where a good corre-

lation with the experimental results can be observed.
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Figure 3.16: Failure envelopes and WWFE test data for unidirectional com-

posite E-Glass/LY556

3.8.2 Failure envelope (σa, σb)

Testing for biaxial loads presents a number of complexities, and experimental results

are rare. A test case from the WWFE [42] is studied here: the biaxial compression

of a 0◦ E-glass/MY750 epoxy lamina, with material properties given in Table 3.3.

In addition to those properties, the in-plane Poisson’s ratio is νab = 0.278, and

the fracture angle for pure in-plane transverse compression is φo = 53◦. For the

application of the model with nonlinear shear behaviour, the experimental curve

given by Soden et al. [92] is used directly. The linear and nonlinear shear laws are

plotted in Fig. 3.17(a).

For the current kinking model, the kink-band angle is predicted using Eq. 3.92.

The magnitude of σc is unknown, and depends on the existence of constrains on the

c direction. Therefore, the two roots of Eq. 3.92 to be considered are ψ1 = 0◦ and

ψ2 = 90◦, meaning that the kink plane can either be in the plane of the lamina, or

in the through-the-thickness direction.

Assuming first that the kink band develops in the plane of the lamina (ψ = 0◦),

either due to the micromechanics of the material or imposed by the testing, the

failure envelope comes as in Fig. 3.17(b).

If it is assumed that the kink band is formed in the through-the-thickness di-

rection (second root of Eq. 3.92), ψ = 90◦), the envelope shown in Fig. 3.18(a) is



CHAPTER 3. FORMULATION OF FAILURE MODELS AND CRITERIA 78

Table 3.3: Mechanical properties of E-glass/MY750 used in the WWFE [66],

given by Soden et al. [43, 92]

Longitudinal Transverse Shear

Tensile Compression Tensile Compression

Strength (MPa ) 1280 800 40 145 73

Modulus (GPa ) 45.6 16.2 5.83
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Figure 3.17: (a) Linear and nonlinear shear law; (b) biaxial (σa, σb) failure

envelope of 0 ◦ E-glass/MY750 epoxy lamina, assuming a kink

band in the plane of the lamina

predicted. If the orientation of the kink plane is unrestricted, the envelope in Fig.

3.18(b) is obtained.

For biaxial compression, the criteria predicts an increase of the axial compressive

strength with increasing transverse compression only for a kink band developing in

the plane of the lamina.

3.8.3 Axial compression with superposed hydrostatic pres-

sure

Unfortunately, there is not much experimental data on fibre kinking under a multi-

axial stress state. One exception is the compressive behaviour of composite rods,

with superposed hydrostatic pressure. Wronsky and Parry [141] measured the effect
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Figure 3.18: Biaxial (σa, σb) failure envelope of 0◦ E-glass/MY750 epoxy

lamina (a) assuming through-the-thickness kinking; (b) assum-

ing that there are no restrictions to the kinking plane

of hydrostatic pressure on the compressive strength for a glass-reinforced composite.

The compressive strength without superposed hydrostatic pressure was measured

as 1150 MPa. Three values of shear strength are reported, depending on the test

method and specimen dimensions, 42, 48 and 59 MPa. The biggest value of the three

is used herein, for being (arguably) more representative.

These material properties are not enough to completely define the material for

the purposes of the failure model. Therefore, some material properties have been

assumed from typical values as follows: (i) the shear modulus is taken as 6600 MPa,

(ii) the fracture angle in matrix compression is φo = 53◦, (iii) the transverse com-

pressive strength is taken as 140 MPa. To analyse the effect of shear nonlinearity, a

logarithmic law is considered, τ = k1 ln (k2γ + 1), with k1 = 200 MPa and k2 = 33,

which yields the same initial shear modulus. The linear and nonlinear curves are

compared in Fig. 3.19(a).

The effect of the hydrostatic pressure on the compressive strength, as predicted

from the model, is compared with the experimental data from Wronsky and Parry

[141] in Fig. 3.19(b). The comparison suggests that the physics of the compressive

behaviour may have been correctly represented in the model, but clearly, experi-

mental measurements of the assumed material properties are required for a rigorous
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Figure 3.19: (a) Linear and nonlinear shear curves considered; (b) compres-

sive strength as a function of the hydrostatic pressure

validation of the model.

3.8.4 Angle-ply laminate

A last application example is presented, which consists of the compression of carbon-

epoxy AS4/3502 laminates with lay-up (±θ)ns. For these laminates, the failure

can be matrix-dominated or fibre-dominated depending on the angle θ. The ma-

terial properties used by the model are from Shuart [124]: Ea = 127.6 GPa , Eb =

11.3 GPa , Gab = 6.0 GPa , νab = 0.3, Xc = 1045 MPa , SL = 95 MPa and the

shear strain at failure is 4%. In addition to these properties, the model also re-

quires the fracture angle in pure transverse compression, which is considered to be

φo = 53◦. For the nonlinear shear behaviour, the logarithmic law is considered,

τ = k1 ln (k2γ + 1), with the constants k1 and k2 computed such that the nonlinear

curve has the same initial slope as the linear one, and that it passes through the

point (γ = 0.04, τ = 95), which yields k1 = 58.2 MPa and k2 = 103.1. The linear

and nonlinear shear curves are shown in Fig. 3.20(a) and the predictions from the

model are shown to be in good agreement with the experimental data, Fig. 3.20(b).

For this application, the influence of the nonlinear shear behaviour does not appear

to be particularly important.
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Figure 3.20: (a) Linear and nonlinear shear curves; (b) comparison of the

results from the present model to the experimental results from

Shuart [124]

3.9 Conclusions

The criteria proposed, and the physically-based models developed, are shown to ac-

curately predict failure envelopes and trends. The fibre compression failure criterion

proposed emphasizes the need for accurate characterization of the shear behaviour.

The fibre-kinking model can be readily used in a stochastic formulation, since man-

ufacturing defects can be easily accounted for within the model.

The application of these criteria to more complex structures requires the use of

numerical methods. An implementation of these criteria in FE is described in the

next chapter.
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Chapter 4

Implementation of a smeared

failure model

4.1 Introduction

Successfully modelling failure initiation and propagation in composite components

is often only possible through the use of numerical methods, such as Finite Elements

(FE). One of the most widely used FE codes, LS-Dyna [1], has composite material

models with failure already available and applies the Chang and Chang [58, 59]

or Tsai and Wu [51] failure criteria. Once failure is detected, the relevant elastic

properties are reduced to zero over a fixed number of time steps. This approach is

unrealistic, as the post-failure behaviour is completely disregarded.

In order to model damage propagation, continuum constitutive models can fea-

ture internal variables representing, directly or indirectly, the density and/or distri-

bution of the microscopic defects that characterize damage. These are called Con-

tinuum Damage Mechanics (CDM) models. Ladeveze’s CDM model [142], in which

the behaviour of fibres (unidimensional phase) and matrix (orthotropic phase) are

considered separately, is the basis for a large number of CDM models for composites

in the literature, such as that of Coutelier and Rozycki [143] for multi-layered combi-

nations of metallic and composite plies and Johnson’s [144] damage model for fabric

reinforced composites. Another model, by Matzenmiller et al. [145], is notable for

83
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using a damage growth law which is based on a Weibull distribution of strengths.

Williams and Vaziri [146] implemented Matzenmiller et al.’s model in LS-Dyna. In

their model, the volumetric energy associated with a failure mode (area under the

stress-strain curve) is function of a parameter (m). For a constant value of m, they

found that their results were mesh sensitive; however, they argued that, in contrast

to the models implemented in LS-Dyna, their model could make use of the param-

eter m to account for different mesh sizes (m becoming a material property for a

specific mesh density). A detailed review of implementation of CDM models is also

given by Williams and Vaziri [146]. More recently, Williams et al. [147] developed

their model further, addressing in particular the physical significance of the choice of

damage parameter, the ease of material characterization and the effect of stacking

sequence, and identified rate dependence and mesh size dependence as key areas

needing development in the future.

To model failure, the approaches outlined above suffer from a severe mesh de-

pendency problem related to strain localization during the fracture process. Strain

localization occurs whenever failure is preceded by the emergence of narrow and

highly-strained zones. Typical examples of strain localization include shear bands

in metals, the formation of kink bands and the accumulation of damage that results

in fracture in composites. Local damage formulations are not able to describe the

localization phenomena either in a physically or mathematically appropriate way

[148]. In this chapter, an FE implementation in LS-Dyna [1] of the failure crite-

ria developed in the previous chapter is presented. The implementation avoids the

strain localization problem by using a smeared formulation. Due to the importance

of correctly modelling in-plane shear nonlinearity, the implementation accepts any

generic curve for the shear law. The FE model only requires parameters with phys-

ical meaning. Most of them are typically available from standard tests, and the

remaining are shown to either be related to known parameters, or obtainable from

simple tests. Even though the model and approach themselves are more general, the

implementation is made for LS-Dyna’s [1] 8-noded solid brick element with one-point

integration. The resulting FE model is easy to use and is shown to have captured

some key features of the failure process.
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4.2 Failure criteria

The equations relevant to apply the failure criteria developed in the previous chap-

ter are now summarized. As before, the subscript a refers to the fibre direction,

the subscript b refers to the in-plane transverse direction and the subscript c refers

to the through-the-thickness direction. The values of parameters associated with

the onset of failure are denoted with the superscript ‘o’ while the values of param-

eters associated with failure propagation are denoted with the superscript ‘f ’. For

instance, σoa is the stress in the a direction at onset of failure.

4.2.1 Fibre tensile failure

For fibre tensile failure, the simple maximum-stress criterion

fft =
σa
Xt

= 1 (4.1)

is used, where Xt is the axial tensile strength.

4.2.2 Matrix failure

The traction components σn, τT and τL on potential fracture planes are obtained by

rotating the stresses in the plane (b, c), with tentative rotation angles φ such that

0 ≤ φ < π, see Fig. 4.1(a). Following the exposition in the previous chapter, the

FE implementation determines the angle φ by computing the failure criterion for a

few trial angles from that interval.

4.2.2.1 Compression

For matrix compression (σn < 0), the following criterion is used:

fmat =

(

τT
ST − µTσn

)2

+

(

τL
SL − µLσn

)2

= 1 ⇐ σn < 0, (4.2)

where SL and ST are the longitudinal and transverse (to the fibres) shear strengths;

and µT and µL are transverse and longitudinal friction-like parameters.

To apply this criterion, only the compressive strength Yc, the longitudinal shear

strength, SL, and the angle, φo, of the fracture plane for pure compression in the
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Figure 4.1: (a) Traction components in the fracture plane; (b) failure angle,

φo, for pure transverse compression failure; (c) orientation of a

kink band in a 3D space

b direction (typically, φo ≈ 53 ◦) need to be known. This angle is shown in Fig.

4.1(b). All the remaining parameters follow from these:

µT = − 1

tan(2φo)
, ST =

Yc
2 tan (φo)

, µL = SL
µT
ST

. (4.3)

4.2.2.2 Tension

Matrix tensile failure is assumed to occur when the following quadratic interaction

between the normal traction component σn, and the shear traction components τT

and τL is satisfied:

fmat =

(

σn
Yt

)2

+

(

τT
ST

)2

+

(

τL
SL

)2

= 1 ⇐ σn ≥ 0 (4.4)

where Yt is the transverse tensile strength.

4.2.3 Fibre-kinking failure

To predict fibre-kinking failure, the mechanical model presented in the previous

chapter is used, with only one modification that enhances the numerical efficiency.

This simple modification, which avoids iterating in each time step, consists of defin-

ing the misalignment frame orientation θ as the sum of an initial misalignment angle

θi with the shear strain in the initial misalignment frame, γmi. The angles needed
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for the definition of the orientation of a kink band are shown in Fig. 4.1(c). The

criterion for fibre-kinking is

fkink =















(

τT
ST − µTσn

)2

+

(

τL
SL − µLσn

)2

= 1 ⇐ σn ≤ 0
(

σn
Yt

)2

+

(

τT
ST

)2

+

(

τL
SL

)2

= 1 ⇐ σn > 0

(4.5)

where τT , τL and σn are the traction components on potential fracture planes.

To apply this criterion, the only material property that needs to be known,

further to Yc, SL, φo and Yt is the compressive strength in the fibre direction Xc.

All the remaining parameters follow from these.

The stresses in the fibre-kinking plane coordinate system (a, bψ, cψ) are obtained

by rotation in the (b, c) plane by an angle ψ. The angle ψ is obtained either by trying

a small number of tentative angles or using the following approximate expression:

tan (2ψ) =
2τbc

σb − σc
. (4.6)

The stresses are then rotated to the misalignment frame (am, bm, cψ) by rotation

in the (a, bψ) plane by an angle θ defined as

θ =
τabψ

|τabψ |
(θi + γmi) . (4.7)

The initial misalignment angle θi is deduced from experimental data by solving the

following iterative equation1

θi = θc − f−1
CL

(

1

2
sin (2θi)Xc

)

(4.8)

where

θc = arctan









1 −
√

1 − 4
(

SL
Xc

+ µL

)

SL
Xc

2
(

SL
Xc

+ µL

)









. (4.9)

The strain in the initial misalignment frame is defined as

γmi = f−1
CL

(∣

∣

∣

∣

−σa − σbψ

2
sin (2θi) + |τabψ | cos (2θi)

∣

∣

∣

∣

)

(4.10)

1In this model, θi is a material property and is therefore computed only once; hence, it is not

important that iteration is needed to obtain it.



CHAPTER 4. IMPLEMENTATION OF A SMEARED FAILURE MODEL 88

where fCL is the shear law (τ = fCL(γ)).

The traction components in the potential fracture planes are obtained by stress

rotation in the plane (bm, cψ) by an angle φ comprised in the interval 0 ≤ φ < π,

which is obtained by trying a small number of tentative angles.

4.3 Finite element implementation of the smeared

failure model

This section describes in detail the 3D FE implementation of the smeared failure

model in LS-Dyna [1], for brick elements with one point integration.

4.3.1 Elastic behaviour

The compliance matrix [S], which relates the strain vector {ε}T = {εa εb εc γbc γca}
to the elastic or effective stress vector {σ}T = {σa σb σc τbc τca}, is defined as for

any 3D orthotropic material:

[S] =























1/Ea −νba/Eb −νca/Ec 0 0

1/Eb −νcb/Ec 0 0

1/Ec 0 0

SYM. 1/Gbc 0

1/Gca























. (4.11)

The in-plane shear (ab) is not included in the compliance matrix because the model

for this shear mode has been designed to use a full nonlinear shear stress vs. shear

strain response, obtained experimentally.

4.3.2 In-plane shear behaviour

According to experimental evidence, the in-plane shear (ab) behaviour is nonlinear

and irreversible, even before the localization process. Due to the importance of the

nonlinear shear behaviour, this model assumes that the full nonlinear shear stress

vs. shear strain curve is available. The curve is entered in the FE model through the
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coefficients of a set of polynomials, Fig. 4.2(a). The function fCL (γab) represents

the value of shear stress obtained from those polynomials, with γab ≥ 0. The effect

of σb on the in-plane shear curve is not considered. The effect of strain rate is not

directly considered but it can be accounted for by using the shear law corresponding

to the desired strain rate for the function fCL (γab).

There is no trivial answer to what is the behaviour in shear over very com-

plex loading-unloading-reloading paths. A simple model for unloading, considers a

constant unloading modulus (equal to the initial one, Gab) and so needs only the

experimental shear stress vs. shear strain curve. A more general approach con-

sists of defining the slope of the unloading law as a function of the inelastic strain.

However, this approach would require experimental data for its application that is

seldom available. Furthermore, some experimental results suggest that when un-

loading and reloading, the shear modulus is fairly similar to the initial one, though

with some hysteresis [2]. Neglecting the hysteresis, one of the simplest models that

accounts for irreversibility is the one presented in Fig. 4.2(b). To define this shear

response, one has first to define the maximum (over time) shear strain as

γmax
ab (t) = max

t′≤t
{|γab (t′)|} (4.12)

and the inelastic shear strain as

γinab = γmax
ab − fCL (γmax

ab ) /Gab. (4.13)

The material law for shear that reproduces the behaviour shown in Fig. 4.2(b) then

becomes

τab =







γab
|γab|

fCL (|γab|) ⇐= |γab| = γmax
ab

γab
|γab|

Gab 〈|γab| − γinab〉 ⇐= |γab| < γmax
ab

(4.14)

where the operator 〈·〉 is the Mc-Cauley bracket defined as 〈x〉 = max {0, x} , x ∈ R.
Even though in-plane shear nonlinearity and irreversibility are modelled, the

shear unloading model outlined above may need further development in the future,

for situations where the shear stress reverses direction.
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Figure 4.2: (a) Curve fitting of the experimental nonlinear shear behaviour;

(b) irreversibility: loading, unloading and reloading paths

4.3.3 Smeared formulation

To avoid strain localization, a smeared formulation [149, 150] is used. In smeared

formulations, the fracture energy is distributed (smeared) over the full volume of

the element. As a consequence of this approach, a parameter with the dimension of

length, relative to the element dimensions, is introduced into the constitutive law.

The treatment of localization problems with smeared formulations has been widely

used in concrete and in metals [151].

One of the major difficulties related with the smeared-formulation approach is

that the material damage laws have to include a length parameter, in order to

achieve a constant energy released per unit area of crack generated regardless of the

element dimensions. Using the example in Fig. 4.3, matrix tensile fracture, one

can easily understand how the length parameter enters the material law. Suppose

that the whole plate represented in Fig. 4.3 is modelled as one element. Then, the

energy absorbed by the element after complete failure (complete separation), U , is

U = V × σoεf

2
= L1L2L3 ×

σoεf

2
(4.15)

where V is the volume of the element. The basic idea is that this energy is equal to an

energy per unit area, Γ, which is a material property, multiplied by the corresponding

area, A = L1L3, i.e.

U = Γ × A = Γ × L1L3. (4.16)

Equating Eqs. 4.15 and 4.16, one can retrieve the maximum strain, εf , as a function

of the energy per units of area of the surface created, Γ, the material strength σo
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Figure 4.3: (a) Example of a unidirectional composite loaded in transverse

(matrix) tension up to complete failure; (b) material law with

failure

and one element dimension, L2:

εf =
2Γ

σoL2

. (4.17)

With εf defined by Eq. 4.17, the energy absorbed by the plate (per units of cracked

area) in Fig. 4.3 is independent of the mesh refinement U/A = Γ = material

property. The same does not happen with any of the composite material models

currently implemented in LS-Dyna [1].

Another particularly interesting interpretation for this approach is the concept

of width of the damaged zone. In fact, if one considers that the work done per unit

volume of fully damaged material, Γv, is a material property, and that the width, w,

of the band of failed material is also a material property, then Eq. 4.17 also holds,

with Γ = Γv × w.

4.3.4 Damage variables

In CDM models, the stress applied at each point of a structure, which is based on

the applied load and the macroscopic cross-sectional area (as if the material was

undamaged) is usually referred to in the literature as ‘true stress’, ‘real stress’ or

‘applied stress.’ This stress measure is relevant on a macroscopic point of view,

since it represents an average over damaged and undamaged material. In addition,

the stress that is based on the cross-sectional area effectively resisting the loading is
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frequently referred to as ‘effective stress.’ From these definitions, the effective stress,

σef , can be related to the applied stress, σap, by

σap = (1 − d) σef (4.18)

where d is a damage variable.

In order to avoid superscripts (which could be confused with other indexes used

in this work), the operation in Eq. 4.18 will be in the remaining of this chapter

represented as

σ ← (1 − d) σ (4.19)

meaning that the effective stress (in the right) is replaced by a damaged one (in the

left).

Damage variables, d, are defined in this model to degrade linearly the relevant

stress components to zero, as defined by Eqs. 4.18 or 4.19 and as shown in Fig.

4.3(b). For each failure mode, the damage variables are defined such that they have

the value 0 at onset of failure (ε = εo) and value 1 at final failure (ε = εf ). In each

time step after failure onset, the relevant effective stress components are multiplied

by (1 − d). This way, the applied (or damaged) stress components are progressive

and linearly reduced to zero, as in Fig. 4.3(b), without creating a discontinuity. The

instantaneous value of the damage variable, dinst, is defined as

dinst = max

{

0,min

{

1, εf
ε− εo

ε (εf − εo)

}}

. (4.20)

In order to account for irreversibility, the damage variable is defined as

d (t) = max
t′≤t

{

dinst (t′)
}

. (4.21)

The onset stresses and strains are defined by appropriate failure criteria. The final

strain, εf , is defined such that the energy absorbed by the crack formed is correctly

accounted for, and thus depends on the failure mode predicted.
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4.3.5 Modelling the matrix failure mode

After failure is detected (Eqs. 4.2 and 4.4), the traction components in the fracture

plane are degraded:

τT ← (1 − dmat) τT , τL ← (1 − dmat) τL (4.22)

σn ←
(

1 − dmat
〈σn〉
σn

)

σn. (4.23)

Note from Eq. 4.23 that the normal traction component σn is only degraded if it is

positive, in order to correctly account for the contact between the fracture surfaces.

The damage variable for the matrix failure mode, dmat, is obtained from Eqs. 4.20

and 4.21 with the driving strain εmat defined later in this subsection (in Eqs. 4.20

and 4.21, the variables ε, εo and εf are replaced by εmat, ε
o
mat and εfmat respectively).

It is noted once again that the variable dmat has the value 0 at failure onset, and then

grows continuously to 1, as a function of the driving strain, during the numerical

analysis. In each time step, the operations in Eqs. 4.22 and 4.23 are performed and

thus the traction components in the fracture plane are degraded smoothly to zero.

4.3.5.1 Driving strain for the matrix failure mode

From Eqs. 4.20 and 4.21, it follows that a strain variable εmat ‘drives’ the damage

variable. The history of this strain variable during failure, together with its associ-

ated stress σmat, defines the energy absorbed by the failure process. Therefore, σmat

is the magnitude of the traction in the fracture plane

σmat =

√

〈σn〉2 + (τmat)
2 (4.24)

with the shear component of the traction τmat defined as

τmat =

√

(τT )2 + (τL)2. (4.25)

Note in Eq. 4.24 that the normal component of the traction (σn) is only considered to

contribute to σmat if σn is positive. It results that during a compression situation, the

energy will only be absorbed by the shear traction components, which is intended.
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The angle of the resultant shear component of the traction, τmat, with the

component τT (see Fig. 4.4(a)) is λ = arctan τL/τT and the angle of the mag-

nitude of the traction σmat with the shear component τmat (see Fig. 4.4(b)) is

ω = arctan 〈σn〉 /τmat. Defining the angles λ and ω allows the definition of the

strain driving the damage variable. Before proceeding to the definition of the strain

variable which drives damage, care has to be taken on the effect of the nonlinearity

in the in-plane shear strain. Consider a specimen loaded in uniform pure in-plane

shear. For this case, some energy is absorbed uniformly over all the specimen, due

to the shear nonlinear (irreversible) behaviour, Fig. 4.4(c). However, at the onset of

failure, a localized fracture surface starts forming, resulting in further energy being

absorbed. While the energy absorbed due to the nonlinear shear behaviour is pro-

portional to the volume of the specimen, the energy absorbed by the fracture process

is proportional to the area created. Only the elastic internal energy in the element

at onset of failure contributes to the fracture process. Therefore, a definition of the

driving strain considering only the elastic part of γab results.

The elastic strain components acting on the fracture plane are

εn = 1
2
[(εb + εc) + (εb − εc) cos (2φ) + γbc sin (2φ)]

γT = − (εb − εc) sin (2φ) + γbc cos (2φ)

γelL = γelab cos (φ) + γca sin (φ) ,

(4.26)

where the elastic component of the in-plane shear strain is defined as

γelab =
τab
Gab

. (4.27)

From the definition of the angle λ, it follows that the elastic component of the shear

strain acting on the fracture plane, in the direction of τmat, is expressed as

γmat =
∣

∣γT cosλ+ γelL sinλ
∣

∣ . (4.28)

From the definition of angle ω, the driving strain, acting on the direction of σmat is

defined as follows:

εmat =
〈σn〉
σn

εn sinω + γmat cosω. (4.29)
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Figure 4.4: (a) Definition of λ; (b) definition of ω and (c) fracture energy

for in-plane shear

4.3.5.2 Onset strain and final strain for the matrix failure mode

The onset stress and strain are determined from the value of σmat and εmat at the

onset of failure:

σomat = σmat|fmat=1 , εomat = εmat|fmat=1 . (4.30)

Following Eq. 4.17 and Fig. 4.3(b), the expression for εfmat is

εfmat =
2Γ

σomatLmat
. (4.31)

The characteristic length Lmat in Eq. 4.31 (necessary to define εfmat) has to be

determined. For the case when the fibres are aligned with the element direction, it

is clear (see Fig. 4.3(a)) that the characteristic length is Lmat = L2. For a generic

case, the characteristic length should be such that Lmat = V/A, where V is the

element volume and A is the fractured area, and is given in Appendix D.

The fracture toughness Γ in Eq. 4.31 is the last term which needs to be de-

termined. For pure tensile failure (positive σn acting alone), Γ is the mode I in-

tralaminar fracture toughness. For a carbon-epoxy T300/913, the authors have de-

termined this property using four-point bending tests with pre-cracked specimens,

and obtained Γb = 0.22 kJ/m2 , see Chapter 5. This value is similar to the mode

I interlaminar fracture toughness for the same material, which can be attributed

to the similarity in the fracture mode. The situations when either τT or τL act

alone result in a pure mode II intralaminar fracture. It thus seem reasonable to

extrapolate the previous result obtained for mode I to mode II, in the absence of
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experimental data, i.e. to use ΓT = ΓL = GIIc (where the fracture toughness values

ΓT and ΓL correspond to τT and τL acting alone, respectively; and GIIc is the mode

II interlaminar fracture toughness).

For a mixed-mode situation (σn, τT and τL acting all at the same time), mixed-

mode criteria developed for interlaminar fracture such as the power-law [11]

(

GI

GIc

)α

+

(

GII

GIIc

)α

= 1 (4.32)

can be used here resulting in the following expression for Γ

Γ =





(

1

Γb

〈

εonσ
o
n

εomatσ
o
mat

〉2
)α

+

(

1

ΓT

(

γoT τ
o
T

εomatσ
o
mat

)2
)α

+





1

ΓL

(

γel,oL τ oL
εomatσ

o
mat

)2




α



−1/α

.

(4.33)

For a carbon-epoxy T300/913, the authors obtained α by the best fit of mixed-

mode interlaminar experimental results as α = 1.21. For materials where other

propagation criteria are thought to be more appropriate than the power law, these

criteria can be easily implemented in the model, provided they can be expressed

as Γ = f (Γb,ΓT ,ΓL, · · · ). In particular, if no mixed-mode data is known at all, a

simple weighted average of Γb, ΓT and ΓL might be appropriate:

Γ = Γb

〈

σon
σomat

〉2

+ ΓT

(

τ oT
σomat

)2

+ ΓL

(

τ oL
σomat

)2

. (4.34)

4.3.5.3 Discussion

From Eq. 4.31, it results that for very coarse meshes (Lmat → ∞), εfmat tends to

zero. Therefore, there is a critical element size at which εfmat equals εomat, and the

actual elements should be smaller than that. The physical interpretation for this

phenomenon is that for a very coarse mesh, it is possible for an element to have

more elastic energy at failure onset, than the energy necessary for the formation of

a crack across it. In these situations, the only possibility for the element to absorb

the correct amount of energy is the strains decreasing as the stresses are degraded.

However, this is not possible to control via a user-element in an explicit FE code like

LS-Dyna. In the actual implementation of this failure model, a warning is issued if

εfmat < εomat and the analysis continues with εfmat = εomat for the element affected.
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The consequence is that the elements falling in this category will absorb more energy

than they should during failure. It is then up to the user to conclude whether the

results are reasonable (based on the number of warnings), or to re-run the analysis

with a more refined mesh in the region of the elements affected.

Finally, for a simple one dimensional problem, or for a situation where Poisson’s

effects are not considered (this is the case for interface or decohesion elements)

the definition of the damage variable in Eqs. 4.20 and 4.21, with the final strain

computed from Eq. 4.31 yields the exact energy absorption specified. However, for

any 3D material model, the stress vs. strain curves do not have to pass exactly

through the origin due to the Poisson’s effect (for instance, for a zero stress in the

b direction, the corresponding strain εb will be in general nonzero if stresses are

already acting in the a and c directions). A small error results from this fact. In

order to avoid this error in a numerical implementation, the full stress vs. strain

paths would need to be kept in memory, which seems cumbersome. The error can

however be quantified and proven to be small, using a particular example. With

this purpose, consider a carbon-epoxy T300/913 with properties given in Table 4.1,

which fails due to the stress in the b direction, but which has a constant superposed

stress σa in the a direction, existing since before any loading in the b direction was

applied. The error in the energy absorbed can be computed for this simple case,

by considering the area under the εb vs. σb curve. Even for a particularly high

superimposed stress σa = 1000 MPa , the error (which is proportional to σa), is only

about 4%, considering a characteristic length L = 0.5 mm . This aspect warrants

further investigation in the future.

4.3.6 Modelling the fibre-kinking failure mode

Fibre-kinking failure is detected using Eq. 4.5. After failure is detected, the shear

stresses in the kink-band, τambm and τcψam , are degraded, as well as (depending on

the sign of σam) the stress normal to the kink band. This is done using a damage
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variable, dkink:

τambm ← (1 − dkink) τambm , τcψam ← (1 − dkink) τcψam , (4.35)

σam ←
(

1 − dkink
〈σam〉
σam

)

σam . (4.36)

The damage variable for the fibre-kinking failure mode, dkink, is obtained from

Eqs. 4.20 and 4.21 with the driving strain εkink defined later in this subsection

(in Eqs. 4.20 and 4.21, the variables ε, εo and εf are replaced by εkink, ε
o
kink and

εfkink respectively).

4.3.6.1 Driving strain for the fibre-kinking failure mode

During fibre-kinking failure, energy is dissipated by the bending and eventual break-

ing of each individual fibre, as well as by matrix cracking in the kink band. These

failure processes are associated with the rotation of fibres in the kink band, which

is due to the shear stress τambm . Therefore, at the scale of the kink-band, failure

propagation is controlled by the driving stress σkink = τambm . Proceeding like before,

the inelastic component of γab is not considered for the driving strain, which is thus

defined as εkink = γelambm , where γelambm is obtained by rotation of the elastic strains

(γab replaced by γelab as defined by Eq. 4.27).

4.3.6.2 Onset strain and final strain for the fibre-kinking failure mode

The onset stress and strain are defined as

σokink = |σkink||fkink=1 , εokink = |εkink||fkink=1 (4.37)

and the expression for the final strain εfkink is

εfkink =
2Γkink

σokinkLkink
. (4.38)

The characteristic length Lkink in Eq. 4.38 is determined in Appendix D for a

generic orientation of the kink band within a brick finite element.

Finally, the energy Γkink can be obtained by experiments. Soutis and Curtis [152]

loaded a plate of carbon-epoxy T800H/924C with layup (0, 902, 0)3S containing a
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central crack in compression. From their work, it can be concluded (see Chapter 6)

that the critical energy release rate for kinking, for T800H/924C, is about 76 kJ/m2.

For another material, T300/913, the author of this thesis carried out tests using

Compact Compression Specimens (CCS are like Compact Tension Specimens (CTS),

but loaded in compression), having obtained Γkink = 79.9 kJ/m2, see Chapter 6.

4.3.7 Modelling the tensile fibre failure mode

Fibre tensile failure is predicted using the criterion expressed through Eq. 4.1. When

this criterion is fulfilled, the material response is changed to account for the changes

in the structure, i.e., the catastrophic behaviour observed in experimental tests:

{τab, τbc, τca} ← (1 − dft) {τab, τbc, τca} and (4.39)

σi ←
(

1 − dft
〈σi〉
σi

)

σi with i = a, b, c. (4.40)

The damage variable for the fibre tensile failure mode, dft, is directly driven by

the strain εa, since the fibre tensile failure criterion is a function of only σa. It is

obtained from Eqs. 4.20 and 4.21 (with the variables ε, εo and εf replaced by εa, ε
o
a

and εfa respectively).

The onset stress and strain are defined as

σoa = σa|fft=1 , εoa = εa|fft=1 . (4.41)

The final strain εfa is defined as

εfa =
2Γa
σoaLa

(4.42)

where Γa and La still have to be determined. The determination of La is presented

in Appendix D. The fracture toughness associated with the fibre tensile failure mode

(Γa) was obtained by the authors using CTS for a carbon-epoxy T300/913 as Γa =

91.6 kJ/m2, see Chapter 6.
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4.4 Mesh dependency

The formulation presented should avoid the mesh dependency characteristic of most

failure models. Fig. 4.5 shows four different meshes for a square specimen, loaded by

an uniform tensile stress in the b direction (by imposing a uniform displacement).

Mesh (a) consists of a single element, while meshes (b), (c) and (d) have 32, 92

and 272 elements respectively. No artifice is used to trigger failure at any specific

location, or along any particular direction.

It can be seen from Figs. 4.5(b)-(d) that fracture is always predicted in a band

normal to the loading direction, as expected, and is always smeared over the width of

one element. Moreover, the load-displacement curve (and thus the energy absorbed)

is independent of mesh refinement and of the width of the failed region, as shown in

Fig. 4.5(e). This is an important feature, given that complete failure takes place.

A final aspect is worth mentioning. This FE formulation avoids pathological

mesh dependency in the energy absorbed. However, with this FE formulation, as

with any other standard FE formulation, the volume of damaged material is still

mesh dependent. This aspect is a shortcoming of the FE method in representing

reality, and is a consequence of the spacial discretization of the continuum. For

complex structures, the effect of the mesh is expected to be particularly noticeable

when the dimension over which failure is smeared (dependent on mesh size) is not

negligible in comparison to other dimensions of the structure. The need for refined

meshes to capture the correct damage zone/ path is similar to the need for refined

meshes to capture the correct stress gradient.

4.5 Applications

4.5.1 Standard tests

The ability of the material model implemented in LS-Dyna [1] to reproduce the

physics of shear and compression failure is here assessed. Standard experimental

tests were carried with carbon-epoxy T300/913 (see Appendix A). The numerical

models presented in this sub-section reproduce the geometry of specimens that were
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Figure 4.5: Models with different mesh densities; the failed elements are

identified by a lighter colour; (a) shows the material axes; (b),

(c) and (d) show the fracture planes; (e) load vs. displacement

curves for different mesh refinement levels

actually tested, and use the material properties obtained. The objective is to assess

the model’s capability to predict the main failure features observed experimentally,

such as the inclined fracture for the transverse compression test, the ±45 ◦ failure for

the shear specimen and the kink-band formation for the longitudinal compression

specimen. Note that none of these features is directly included in the model.

The elastic properties and strengths, obtained experimentally, are presented in

Table 4.1. The experimental in-plane shear stress vs. strain curve was used as

input for the numerical model, the Poisson’s ratio νba was obtained as 0.021 and the

fracture angle for pure transverse compression was measured as φo = 53 ◦. Regarding

the through-the-thickness (c) direction, the composite was assumed transversely

isotropic, with νbc = 0.4. The shear modulus Gca was taken as being equal to

the (initial) in-plane shear modulus (Gab), and the Poisson’s ratio νca as νba. The

intralaminar toughness was measured experimentally using 4-point bending tests as

Γb = 0.22 kJ/m2 , and Γkink and Γa were obtained using CTS and CCS as Γkink =

79.9 kJ/m2 and Γa = 91.6 kJ/m2 respectively, see Chapters 5 and 6. The toughness

values ΓT and ΓL were taken as the mode II interlaminar fracture toughness for the

same material, ΓT = ΓL = 1.1 kJ/m2 , see Appendix B.

In all the examples that follow, an element with slightly lower strength was used

to trigger failure close to the middle of the specimen.
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Table 4.1: Mechanical properties of T300/913 and HSC/913

Material Ea Eb Gab Xt Xc Yt Yc Sab

(GPa) (GPa) (GPa) (MPa) (MPa) (MPa) (MPa) (MPa)

T300/913 132 8.8 4.6 2005 1355 68 198 150

HSC/913 130 9.2 4.6 1650 1100 60 200 100

4.5.1.1 Modelling shear failure of a (±45)8S test specimen

Shear tests were carried with (±45)8S specimens (angles relative to the loading

direction), tested in tension, according to the appropriate ASTM standard [153],

see Fig. 4.6(a). The shear stress vs. strain curve was nonlinear almost from the

beginning of the test, but no strain localization was present until immediately before

final failure, which happened at a shear strain of about 25%. The data reduction

was done according to the ASTM standard [153], but, in order to obtain the full

strain vs. stress curve, fibre scissoring and width reduction were taken into account.

(Fibre scissoring was taken into account by considering the current orientation of

the fibres in the data reduction (affected by the shear strain), rather than assuming

that they remain at 45 ◦. The applied stress was calculated by dividing the load by

the current cross-sectional area, where the reduction in width was computed using

the strains from the transverse strain gauge.)

An FE model of part of the specimen, containing the failed region, is presented in

Fig. 4.6(b). The model has the same dimensions as the actual specimen—except for

the length, which is smaller. The model has 16 solid elements across the thickness,

in order to simulate each layer individually. The ±45 ◦ failure can be observed in

Fig. 4.6(b), and results from the damage variable affecting the local shear traction

components in the predicted fracture plane, within each element. (In fact, when the

shear stress is reduced at some angle β, it is also reduced at an angle β + 90 ◦. This

may give rise to unrealistic failure patterns, and is a feature typical to CDM-based

models.) The numerical load vs. displacement curve is compared to the experimental

in Fig. 4.6(c). The experimental displacement was computed by multiplying the

strain in the longitudinal strain gauge by the length of the numerical specimen.
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Figure 4.6: (a) Shear specimen; (b) model of the shear specimen; (c) exper-

imental and numerical load vs. displacement curves

For the good agreement obtained, the consideration of fibre scissoring and width

reduction in the data-reduction were key factors, as well as the FE code’s capability

to handle large rotations appropriately.

4.5.1.2 Modelling matrix compression failure

Pure transverse compression tests were carried out, and a typical fracture surface

is shown in Fig. 4.1(b). Fracture occurred at an angle of 53 ◦ with the thickness

direction. A numerical model of this specimen was created, and is shown in Fig. 4.7.

The fracture angle predicted by each failed element, available as a history variable,

is 53 ◦. This correct prediction is a consequence of the matrix compression failure

criterion, expressed in Eq. 3.19, being maximized for this angle, when the material is

subjected to pure transverse compression. The angle of the band of failed material

(smeared fracture surface), which can be observed in Fig. 4.7, is about 50 ◦. In

this case, the correct prediction results from the shear traction components being

degraded in a coordinate system aligned with the predicted fracture plane. If the

failed elements in this example had been deleted immediately after they failed, the

contact between the fracture surfaces would have not been properly modelled during

the propagation of the fracture surface (failed band) across the specimen. The author

has observed this to affect the angle of the failed band observed in the numerical
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Figure 4.7: Model of the transverse compression test specimen

specimen.

4.5.1.3 Modelling fibre compression failure

The formation of kink bands at a small angle β with the normal to the loading

direction is predicted by the model, as a result of the damage variable acting on the

shear stress in the misalignment frame. For T300/913, the author has observed it

to be about 25 ± 5 ◦ for out-of-plane kinking in CCS (see Chapter 6), and 20 ± 5 ◦

for standard axial compression specimens with in-plane kinking, Fig. 4.8(a). Fig.

4.8(b) shows the FE mesh of an axial compression specimen, with the corresponding

loading. The formation of the kink band can be observed in Figs. 4.8(c) to (e). The

predicted kink band angle is about 15 ◦. After the kink band is formed, further

loading leads to kink-band broadening, as observed in Fig. 4.8(e).

Kink fronts have been reported to reorient themselves naturally, as they prop-

agate, before stabilizing in a β direction [154] and the tip of kink bands to lie at

different angles than the rest of the kink band [155]. These observations emphasize

the role of damage propagation within the kink band, for the definition of its final

orientation. Turning to the numerical model, the kink band orientation observed

in Figs. 4.8(c) to (e) is never predicted explicitly, and is the result of the shear

traction component being degraded in the misalignment coordinate system, whose

orientation is updated during damage propagation. The author has observed that

not updating the misalignment frame (where the traction components are degraded)

results in a smaller angle predicted.
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Figure 4.8: (a) Left half of a failed longitudinal compression test specimen;

(b) model of the same specimen; (c) to (e) formation of a kink

band and kink-band broadening

4.5.2 Crush of cantilever column specimens

In this sub-section, the numerical model is applied to simulate the crushing of com-

posite columns. Cantilever columns were manufactured to a nominal thickness of

1mm , free length of 5mm and width 10mm , and were quasi-statically crushed by

a metallic surface (coated with a PTFE spray) with an inclination of 2 ◦, as shown

in Fig. 4.9. Two different situations are studied. The first uses the T300/913

material system with a (−452, 452)S layup. The second uses previous experimen-

tal results from Davies [156], corresponding to a HSC/913 material system with a

(−45, 0, 90, 45)S layup.

The complexity of this type of problem is considerably greater than in the previ-

ous examples, particularly after the peak load is attained. Furthermore, the problem

is markedly chaotic, in the sense that small variations from one specimen to the other

or in the loading and boundary conditions result in damage localizing in different

parts of the specimen, and in different load vs. displacement curves, most notably

after the peak load. However, there should be a common pattern to the form in

which all specimens fail, as well as in the load vs. displacement curves.

4.5.2.1 T300/913 with (−452, 452)S layup

The failure mode of the T300/913 specimens with (−452, 452)S layup observed ex-

perimentally was similar for all specimens, even though damage could localize in dif-

ferent regions for different specimens. It consisted of a small crushed region formed
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Figure 4.9: Representation of the column being crushed by a rigid surface

next to the loading surface; crushing at 45 ◦ to the loading axis on the surfaces of

the specimens; and delaminations at the interfaces between the ±45 ◦ plies. These

features can be observed in Fig. 4.10(a) and (b).

The numerical analysis of this problem also proves to be chaotic—small vari-

ations in certain input parameters to the numerical model result in a completely

different output, at the end of the analysis. For this reason, instead of compar-

ing an experimental load vs. displacement curve with a numerical one, a cloud

of experimental points corresponding to the 23 columns tested is compared to a

cloud of numerical points, corresponding to several numerical analyses, in which

two different values were assigned to a number of parameters. More specifically, two

different levels of mesh refinement were tried (1 and 2 elements per ply thickness),

two different velocities of the impacting surface (500mm/s and 5000mm/s , the ki-

netic energy in the model was negligible compared to the internal energy for both

situations), two different impact angles (2 and 2.5 ◦), two different metallic surface/

composite column friction coefficients (0 and 0.05), and two different approaches to

deal with failed elements. Concerning this last point, failed elements (particularly

those in contact with the impacting surface) have to be deleted at some point in

the analysis, because they typically develop excessive deformations which lead the

numerical analysis to break down. However, there is no clear solution as to when to

remove these elements from the analysis. Here, two possibilities were tried: deleting

them immediately after they have failed completely (ε = εf ) and keeping the failed
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Figure 4.10: T300/913 composite column with (−452, 452)S layup (a) before

crushing and (b) being crushed

elements in the analysis until ε = 2εf . Many other parameters could have also been

subjected to variation, but the ones studied already result in a considerable number

of combinations.

Two different pictures of deformed numerical models are shown in Fig. 4.11.

It can be observed that the formation of debris is successfully simulated. The 45 ◦

failure patterns on the surfaces do appear in the numerical model, even though

the clear formation of a distinct fracture line as observed in the experiments is not

totally reproduced. However, probably the biggest achievement of the model is the

prediction of delamination in the ±45 ◦ interfaces, which is a direct result of the

ability of the matrix failure criterion to search for potential fracture planes.

The two clouds of points corresponding to the experimental and numerical load

vs. displacement curves are presented in Fig. 4.12. It can be observed that the

numerical results have higher initial stiffness than the experimental ones. This is

believed to be essentially due to the compliance of the experimental fixture. The

maximum load is particularly well predicted. The over-prediction of the load after

the peak is essentially due to the growing complexity of the interaction between the
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Figure 4.11: Numerical model of the T300/913 composite column with

(−452, 452)S layup being crushed

rigid surface and the failing/failed elements, and suggests that further developments

of the post-failure behaviour are needed.

4.5.2.2 HSC/913 with (−45, 0, 90, 45)S layup

For the HSC/913 specimens with (−45, 0, 90, 45)S layup, the failure mode was re-

ported as consisting of two main delaminations in the 0/90 ◦ interfaces, as well as

matrix fracture in the outer −45 ◦ layers along the fibre direction [156]. The in-

plane mechanical properties of HSC/913 are given in Table 4.1. For the in-plane

shear response, the full stress vs. strain curve was not available, and so the curve

for T300/913 was used, since the matrix system is the same. As before, in order to

define the through-the-thickness properties, the material was assumed transversely

isotropic. The fracture toughness values for the different failure modes for this ma-

terial are not known, and thus the values for T300/913 presented earlier were used,

and a sensitivity study running models with Γb, ΓT , ΓL, and Γkink at ±10% of their

respective nominal values (Γa was not considered because fibre tensile failure did

not occur; this leads to 1 + 2 × 4 = 9 numerical models in total) was performed.
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Figure 4.12: Experimental and numerical load vs. displacement curves cor-

responding to the T300/913 columns with (−452, 452)S layup

being crushed

To capture the stress field accurately, two solid elements across the thickness of

each composite ply were used in the numerical model, presented in Fig. 4.13 (the

colour map shows matrix failure). The matrix fracture in the outer plies is correctly

predicted. The delamination in the 0/90 ◦ interfaces is approximately simulated by

the matrix failure in the 90 ◦ plies (the matrix fracture plane predicted by these failed

elements is parallel to the 0/90 ◦ interfaces). Fig. 4.14 shows the experimental peak

load and mean post-crushing load for different specimens tested (as well as average

and standard deviation), and the numerical results corresponding to the 9 numerical

models mentioned. While the mean post-crushing load is reasonably predicted, the

predictions for the peak load are particularly good. It can be further noticed that

small variations in the fracture toughness did not affect visibly the peak load, but

did affect the mean post-crushing load. The numerical model also seems to slightly

over-predict the mean post-crushing load, which might be due to the delaminations

in the 0/90 ◦ interfaces not being properly modelled. Since these can be modelled

using decohesion elements, this suggests that some improvement might be achieved.

A layer of decohesion elements is used in the 0/90 ◦ interfaces to investigate
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Figure 4.13: Numerical model of the HSC/913 column with (−45, 0, 90, 45)S
layup being crushed
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Figure 4.14: Experimental (from [156]) and numerical load vs. displace-

ment curves corresponding to the HSC/913 columns with

(−45, 0, 90, 45)S layup being crushed (without using decohe-

sion elements)
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Figure 4.15: Numerical model of the HSC/913 column with (−45, 0, 90, 45)S
layup being crushed, using decohesion elements

whether this brings an improvement on the predicted failure mode (Fig. 4.15)

and post-crushing load (Fig. 4.16). It can be observed from Fig. 4.15 that the

delamination is now predicted, which results in a reduction of the post-crushing load.

Using decohesion elements, the post-crushing load is now slightly under-predicted,

Fig. 4.16.

4.6 Conclusions

This work demonstrates that the current FE model can reproduce the key physi-

cal aspects observed in the failure of laminated composites, provided that sound,

physically-based failure criteria are implemented, and that failure propagation is

handled appropriately. The failure-models implementation is 3D, and allows the

user to incorporate any in-plane shear curve directly. In addition, the pathological

mesh dependency characteristic of CDM models is avoided using a smeared formula-

tion. Finally, all parameters used in the model have clear physical meaning, and this

chapter briefly identifies how they can be obtained from simple tests (a complete

description of the fracture toughness tests for intralaminar matrix fracture is given

in Chapter 5 and for the fibre-dominated failure modes in Chapter 6). The examples
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Figure 4.16: Experimental and numerical load vs. displacement curves

corresponding to the HSC/913 columns with (−45, 0, 90, 45)S
layup being crushed (including models with decohesion ele-

ments)

presented suggest that it might be beneficial to use this failure model together with

decohesion elements in order to model delamination more accurately.
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Chapter 5

Developing a four point bend

specimen to measure the mode I

intralaminar fracture toughness

5.1 Introduction

This chapter is concerned with the measurement of a particular intralaminar fracture

toughness of unidirectional laminated composites. This toughness is the resistance

to a crack growing in the thickness direction of the laminate, labelled ‘transverse

intralaminar crack growth’ in Fig. 5.1. It is important for material characterization

and for numerical modelling. Currently, there is no standard test to determine this

property.

Different testing methods have been used to measure the intralaminar fracture

toughness of laminated composites. The test methods most commonly used are

the centre-notched tension [157], surface-notched tension [157], Compact Tension

(CT) [157–161], Three Point Bending (TPB) [157, 158, 162, 163], Four Point Bending

(FPB) [164, 165], double edge notch [163], double cantilever beam [166] and the

wedge insert fracture [167]. Investigations into size effects for the CT specimen

[157] and for the FPB [165] concluded in both cases that the effect of specimen

dimensions did not affect the fracture toughness appreciably. Furthermore, Garg

114
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Figure 5.1: Transverse and longitudinal intralaminar crack growth

[157] compared the fracture toughness obtained using TPB and CT specimens, and

observed good consistency.

An important characteristic exhibited by some unidirectional composites is an

increasing R-curve in the intralaminar toughness which has been attributed to fi-

bre bridging [163, 166]. In such cases, it is usual to take the initiation toughness

value for use in design as this is conservative. The accurate measurement of the

initiation toughness is therefore a key requirement of an intralaminar toughness test

and it has been shown that a poor initial pre-crack can lead to an artificially high

initiation toughness [159]. However, it is more difficult to introduce a sound and

sharp intralaminar pre-crack than to introduce an interlaminar one, due to the lay-

ered structure of the material; the manufacture of specimens with pre-cracks formed

during the layup and the cure process presents some technical difficulties, while the

introduction of a pre-crack after manufacture of the laminate can cause damage

around the intended crack tip.

In order to introduce an intralaminar pre-crack into a cured composite, breaching

tools [160], wire-blade saws (0.1 mm thick) [163], jeweler saws (0.35 mm thick) [157]

and razor blades (0.06− 0.1 mm thick) [159, 161, 165, 168] have all been used. How-

ever, it has been found that introducing the crack mechanically after the composite

has been cured provokes damage ahead of the crack tip, which can compromise the

toughness values obtained [165, 168].

To produce a pre-crack during layup, previous work [164] has investigated ap-
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plying a PTFE spray onto a cut made along the fibre direction in the pre-preg

assembly (not to the full thickness of the pre-preg assembly), prior to cure. How-

ever, the PTFE spray failed to prevent the sides of the pre-crack from sticking

together in the cured laminate, because of small movements of the plies during the

cure process. A plastic release film placed into a cut in the prepreg assembly was

later tried [165, 168, 169] instead of the PTFE spray, but the resulting pre-cracks

were not straight and resin pockets often occurred at the crack tips. Finally, the use

of a razor blade coated with a release agent, which was inserted into the pre-preg

assembly and held in that position during cure, was investigated [165]. The pre-

crack obtained was straight and sharp, but considerable distortions in the layered

structure of the composite were present, as a result of the introduction of the blade

and the mechanical constraint imposed by the blade during the cure.

In this work, the FPB test is used to measure the intralaminar fracture toughness,

because of its simplicity and accuracy. The test method is briefly described and the

investigations conducted into the manufacture of a sound, embedded pre-crack are

presented. The tests carried out are then described and the results are presented

and discussed.

5.2 Test method

The FPB test, adopted in previous work [164, 165, 168, 169] to determine the in-

tralaminar fracture toughness of laminated composites, is used here. The test spec-

imen, together with the loading conditions, is presented in Fig. 5.2. The test

specimen is composed of a unidirectional laminate, with fibres aligned in the width

direction of the specimen. The nominal dimensions of the specimen are 140mm in

length, width w = 10mm , and thickness h = 3mm . The distances L and c in Fig.

5.2 are L = 60mm and c = 30mm .

The critical stress intensity factor is defined as [170]

KIc =
3Pc

√
πa

wh2
f (a/h) (5.1)

where P is the total applied load at failure (the crack growth is unstable in this
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Figure 5.2: Four point bending test specimen and loading

test), a is the length of the initial pre-crack, and f (a/h) is defined by

f (a/h) = 1.12 − 1.39
(a

h

)

+ 7.32
(a

h

)2

− 13.1
(a

h

)3

+ 14.0
(a

h

)4

. (5.2)

Assuming plane stress, the critical energy release rate is obtained from the critical

stress intensity factor at the onset of crack propagation as

GIc =
K2
Ic

Eb

(5.3)

where Eb is the transverse modulus of the unidirectional laminate.

5.3 Manufacture

5.3.1 Material systems used

Two different carbon-epoxy unidirectional pre-preg systems were used. The system

HSC/ SE84LV (produced by SP systems) was used for most of the tests and T300/

913 (produced by Hexcel), was also used to confirm that the process to insert the

crack into the laminate could be replicated with other materials. Both materials

were cured according to the instructions from the respective suppliers. For the first

material system, a consolidation cycle was also performed in some instances (as

detailed later), and this also followed the instructions from the supplier.

The single material property needed for the data reduction is the in-plane trans-

verse Young’s modulus, which was determined using standard tests: Eb = 8200MPa

for the SE84LV/ HSC, and Eb = 8800MPa for the T300/ 913.
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5.3.2 Manufacture of the test specimens

Laminates with dimensions 200mm × 200mm were manufactured by laying up 24

layers of prepreg. The thickness of each panel was nominally 3mm . Depending

on the method to introduce the pre-crack into the pre-preg assembly, some panels

were manufactured by first stacking up together two or three sub-assemblies. All

laminates were unidirectional, with the pre-crack running at the mid-length position,

parallel to the fibres.

From the panels, specimens for FPB tests were cut using a wet saw. As noted

earlier, the nominal dimensions of the specimens were 140mm in length, 10mm in

width, and 3mm in thickness, with the fibres and the pre-crack oriented along the

width. The actual width and thickness of each specimen, necessary for the data

reduction, were obtained by averaging three individual measurements.

5.3.3 Introduction of the crack tips

Two different approaches to introduce the pre-crack into the laminates were inves-

tigated. In the first one, a plastic non-stick film was used to separate the two sides

of the crack (Fig. 5.3(a)) and in the second one, a metal blade coated with release

agent was used (Fig. 5.3(b)). The plastic film was a fluoroethylene polymer film,

with a thickness of 0.0125mm , and the metal blade was composed of a row of steel

razor blades, with nominal thickness 0.08mm . (The thickness of the blade at the

sharp tip was considerably smaller than 0.08mm ). For the metal-blade approach,

two aluminium plates were used, which held the razor blades so that the depth of

the protruding blade was 0.625mm in one case and 1.00mm in the other, see Fig.

5.3(b).

In previous work [164, 165], the film and metal-blade approaches have not con-

sistently produced good quality cracks. In the current study, several variations of

both approaches were investigated in a systematic way to identify the best method

to produce pre-cracks of good quality. A description of all methods investigated to

introduce the intralaminar pre-crack is now presented.
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Figure 5.3: Methods to introduce a pre-crack to a laminate: (a) method A,

(b) method B, (c) method C, (d) method D, (e) method E and

(f) method F
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Method A This method uses the plastic-film approach. From the 24 layers that

constitute the final laminate, part of them are stacked together in one sub-assembly,

and the remaining are stacked together in another sub-assembly. (The number of

plies in each sub-assembly depends on the required depth of the pre-crack.) The

first sub-assembly is cut at the mid-width position, along the fibres, using a scalpel.

One half of it is then positioned carefully on top of the second (uncut) sub-assembly,

allowing the non-stick film to be positioned as shown in Fig. 5.3(a). The positioning

of the film requires great care to avoid wrinkles of the film at the crack tip, and to

obtain a crack of uniform depth. The second half of the first sub-assembly is then

very carefully positioned next to the film. Care in positioning the second half of the

first sub-assembly is essential to avoid gaps adjacent to the film.

Method B This method uses the metal-blade approach. From the 24 layers that

constitute the final laminate, part are stacked together in one sub-assembly, and

the remaining are stacked together in another sub-assembly. The first sub-assembly

is cut in the middle, along the fibres, using a sharp scalpel. Both halves are then

carefully positioned on each side of the metal blade on the aluminium plate, as

shown in Fig. 5.3(b). Attention must be paid to avoid, as much as possible, any gap

between the laminates and the blade. The second sub-assembly is then positioned

on top, taking care not to move the two halves of the first sub-assembly.

Method C This method also uses the metal-blade approach. The 24 layers are

stacked together to form a single pre-preg assembly. The pre-preg assembly is then

positioned on top of the aluminium plate holding the metal blade as shown in Fig.

5.3(c). Very carefully, pressure is manually applied on the pre-preg assembly to force

the blade to penetrate it, and the upper part of the rig is finally positioned on top.

Method D This method uses the metal-blade approach. From the 24 layers that

constitute the laminate, two sub-assemblies are laid up. In order to create the pre-

crack, the first sub-assembly is cut at the mid-width position, parallel to the fibres,

using a scalpel as shown in Fig. 5.3(d), but the two halves are not separated. The

second sub-assembly, with the remaining layers, is then placed on top of the first
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sub-assembly. Since the two halves of the first pre-preg assembly were not separated

after they were cut, this process leads to a very small and uniform gap between the

two halves, dependent on the thickness of the scalpel only. Fixing the first sub-

assembly to the working surface before performing the cut facilitates the operation,

as it prevents the relative movement of the two halves of the first sub-assembly. A

small pressure can be applied on top of the second sub-assembly to improve the

adhesion to the first one, and this also results in a reduction in the width of the gap

created by the blade. The pre-preg assembly is then lifted off the lay-up surface and

is bent gently so that the gap created by the cut is widened and this is carefully

positioned over the razor blade held in the aluminium plate, as shown in Fig. 5.3(d).

The upper plate is then positioned on top.

Method E This method uses the metal-blade approach. The 24 layers that con-

stitute the laminate are stacked together in three different sub-assemblies. The first

sub-assembly, shown in Fig. 5.3(e) is fixed to the table using tape. On its bottom

side, a backing sheet is used (with a few layers of tape to reinforce the backing sheet

at the intended cut position) to prevent the two halves from separating after the

cut shown in Fig. 5.3(e) is made with the scalpel. As before, the cut is made along

the fibres, at the mid-width position. After the cut is made, a backing sheet is posi-

tioned on top of the (first) sub-assembly, so that it can be moved more easily without

separating the two halves. Very carefully, the two halves of the sub-assembly are

detached from the table and turned over. This operation requires particular atten-

tion, since the two halves are linked together by the backing sheets (and tape) only.

The two halves are again fixed to the table and the backing sheet (with tape) that

is now on the top side is removed, so that the second sub-assembly can be stacked

on top of the first one. The process just described might seem complex, but it pro-

duces a geometry for the cut that more closely matches the shape of the blade in

the plate (i.e. the cut is widest at the lower surface and narrower at the crack tip,

as indicated in Fig. 5.3(e), and in contrast to Fig. 5.3(d)). The same result can in

principle be achieved more easily, by using equipment that controls accurately the

depth of the cut instead of performing it manually. Fig. 5.3(e) represents how the
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two sub-assemblies are then bent to facilitate placing them over the mounted razor

blades, after which they are fixed to the plate (at the edges, using tape), to avoid

any motion between them and the blade. The third sub-assembly is carefully posi-

tioned on top, followed by the upper part of the aluminum rig. Using this method,

the third sub-assembly does not need to be bent, which is intended to reduce any

distortion in the pre-preg layers due to bending.

Method F This method uses the plastic-film approach, and follows the same steps

from method E until the first and second sub-assemblies are stacked on top of each

other (i.e. with the first sub-assembly having been cut along the mid-width, parallel

to the fibres). The two sub-assemblies are then turned over again, so that the cut is

on top. This process is represented in Fig. 5.3(f), but the ‘turning over’ operations

are omitted in the figure for simplicity. The assembly is then slightly bent, to

facilitate the introduction of the plastic film in the gap. The third sub-assembly is

then added below the second, and the whole is positioned between two aluminum

plates.

5.4 Discussion of the suitability of each method

to produce satisfactory crack tips

5.4.1 Comparing the plastic-film and metal-blade approaches

(methods A and B)

The first goal of this work is to compare the ability of the plastic-film and the

metal-blade approaches to produce satisfactory crack tips. For this purpose, two

composite plates were manufactured following methods A and B.

A micrograph representative of the pre-crack obtained by method A (film) is pre-

sented in Fig. 5.4(a). It can be observed that the crack obtained is not straight, and

the orientation of the crack tip is not in the intended crack direction (i.e. vertical in

this figure). The waviness is probably caused by small movements of the plies during

the cure process. Resin pockets at the crack tip have been reported in a previous
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study using the film approach [165], but none were observed in the specimens mi-

crographed in the current investigation. For the laminate manufactured by method

B (metal blade), the aluminium plate with a 1.00mm protruding blade was used.

The sub-assembly to be cut along the fibres (first sub-assembly) had 8 layers, and

the other (second sub-assembly) comprised the remaining 16 plies. When removing

the laminate manufactured by method B from the blade fixture, the laminate broke

but this did not prevent the micrographic examination of the crack obtained. From

the micrograph shown in Fig. 5.4(b), it is clear that significant movement of the

plies has occurred.

For the plastic-film approach, it is not obvious how to overcome the waviness

of the crack, or how to modify the method to obtain a sound crack tip. On the

other hand, it was thought that for the metal-blade approach, modifications in the

manufacturing method could lead to improvements on the crack tip quality and so

methods C-E were investigated. The distortion of the plies next to the crack was

believed to result from two factors: the reduction in thickness due to consolidation

during the curing and any gap between the sub-assemblies and the blade, due to

the manual positioning, that may have enabled excessive movement of the plies to

occur during cure. It was not clear however how much each factor contributed to

the final distorted shape of the layers next to the blade.

5.4.2 Alternative metal-blade approaches

5.4.2.1 Mounting the blade by pressure (method C)

The effect of the reduction in thickness on the distortion of the layers mentioned

in the previous sub-section for the metal-blade approach can be reduced by pre-

consolidating the sub-assemblies that constitute the pre-preg—so that the blade

might be inserted to a depth that is closer to the final one, and less movement

occurs during the curing process. The possibility of a gap between the blade and the

layers of composite can be avoided by forcing the blade into the pre-preg assembly.

For this purpose, method C was used with pre-consolidated sub-assemblies and the

aluminium rig with smaller outstanding blades (0.625mm).
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A micrograph representative of the crack tip obtained is shown in Fig. 5.4(c).

It is clear that mounting the blade by pressure resulted in empty regions at the

root of the blade that were filled by resin during the cure, resulting in considerable

distortion of the layers.

5.4.2.2 Mounting the blade by bending the pre-preg assembly (method

D)

The distortions obtained when mounting the blade by pressure suggested that it

seemed possible to achieve better results if the blade was not forced through the

pre-preg assembly. This led to the idea that bending the composite in order to insert

the blade could be beneficial, resulting in method D to manufacture the crack. Since

the effect of pre-consolidation could not be assessed in the previous trials due to the

poor quality of the cracks obtained, two plates were manufactured by this method

with pre-consolidation used for one.

The distortion of the plies next to the blade for cracks introduced by method

D was found to be reduced but still significant, as shown in the micrograph in

Fig. 5.4(d). Also, pre-consolidating the sub-assemblies did not appear to have a

noticeable effect on the crack tip quality.

During the manufacture using method D, it became evident that, due to the

profile of the scalpel used to cut the sub-assembly, a small gap would result between

the pre-preg assembly and the razor blade, close to the crack tip. This feature is

exaggerated in Fig. 5.3(d) for better understanding. However, it was not clear how

much this aspect contributed to the observed distortion of the layers.

5.4.2.3 Mounting the blade by bending the pre-preg assembly in a mod-

ified way (method E)

It was thought that the small gap between the pre-preg assembly and the blade,

at the crack tip, that resulted from using method D could be avoided if the cut

sub-assembly was reversed before it was mounted on the razor blades. Also, the

compression that resulted in the layers away from the crack during the bending

process may have contributed to ply distortions. Furthermore, during the bending
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process, the considerable stiffness of the uncut layers made the bending process

more difficult. As a result of these considerations, a modified bending procedure

was developed—method E. In this method, only two uncut layers (second sub-

assembly) were holding the (first) cut sub-assembly together before it was mounted

on the aluminium plate. The remaining layers (third sub-assembly) were stacked

immediately afterwards.

This method resulted in the smallest ply distortions obtained so far, as Fig.

5.4(e-1) shows.

In order to investigate if the same crack tip quality could be achieved with other

materials, the same manufacturing procedure (method E) was repeated with another

material, T300/ 913. The pre-crack quality resulting for this material, shown in

Fig. 5.4(e-2) confirms that method E is appropriate to systematically manufacture

a panel with a sound pre-crack without introducing considerable distortions into the

layers of the laminate. A bigger magnification of the crack tip in Fig. 5.4(e-2) is

shown in Fig. 5.4(e-3). It can be observed that the crack tip is sharp, despite some

wearing of the blade in the aluminium plate that occurred during the successive

trials.

5.4.3 Improving the plastic-film approach (method F)

Method E, which uses the metal-blade approach, proved to reduce the distortion in

the layers of the laminate to a minimum, by successfully reducing the empty space

between the pre-preg assembly and the blade. The effect of this procedure on the

plastic-film approach seemed worth investigating, even though this manufacturing

method could not prevent the small ply movements distorting the plastic film during

the cure. As a result, method F was developed, which essentially applies the bending

method E to the plastic-film approach. A plate was manufactured, using material

HSC/ SE84LV, and the corresponding micrograph of the crack is shown in Fig.

5.4(f). It was confirmed that the plastic film was unable to create a straight crack

even with this improved manufacturing process.
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5.5 Testing

5.5.1 Experimental procedure

FPB tests were carried in an Instron machine, with a 1kN load cell. The load was

applied to the specimens using 6mm diameter rollers. The body containing the

upper rollers was free to rotate (about a central horizontal axis parallel to the width

direction of the specimen) in order to accommodate eventual minor misalignments

and guarantee that both loads applied to the left and right side of the specimen

were equal. Rubber fittings were used between the rollers and the specimens, to

avoid stress concentrations due to any minor misalignment. The specimens were

loaded up to failure at 0.5mm/min . The failure loads were recorded, and Eqs. 5.1

to 5.3 were used to obtain the fracture toughness. The actual pre-crack length was

measured individually for each specimen after the tests using an optical microscope.

5.5.2 Results

The average fracture toughness and coefficients of variation obtained for each method,

are presented in Table 5.1. The features on the fracture surface of failed specimens

show features characteristic of mode I fracture, see Fig. 5.5.

5.5.3 Discussion

The test results show low scatter on the intralaminar fracture toughness measured

for all methods used to create the pre-crack. The mode I interlaminar fracture

toughness for HSC/ SE84LV and T300/ 913 have been measured using standard

tests as 235 J/m2 and 258 J/m2 respectively, which is found to be similar to the

intralaminar values obtained here. This similarity in the fracture toughness values

was expected, since the fracture processes are also similar.

The intralaminar fracture toughness values obtained using the plastic-film ap-

proach were found to be similar in magnitude to those obtained using the metal

blade, provided the ply distortions are reasonably small. This contrasts with pre-

vious results [165], where the intralaminar fracture toughness obtained using the
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Figure 5.5: SEM images of the fracture surface of a FPB specimen, showing

evidence of mode I fracture



CHAPTER 5. DEVELOPING A FOUR POINT BEND SPECIMEN TO

MEASURE THE MODE I INTRALAMINAR FRACTURE TOUGHNESS 129

Table 5.1: Fracture toughness values obtained from the tests

a nominal No of speci- Average Coefficient of

Material Method (mm ) mens tested GIc (J/m2 ) variation (%)

A 1.25 5 208 7.2

C (pre-cons.) 0.625 7 257 5.3

D (pre-cons.) 1 6 232 9.9

HSC/ D 0.625 5 218 5.6

SE84LV E 0.625 7 228 8.5

E 1 7 222 6.0

F 1.25 6 213 7.5

All - 43 226 9.3

T300/ 913 E 1 13 211 6.4

plastic-film approach was found to be slightly higher than the one obtained with

the metal-blade approach. In that previous study, the higher values were attributed

to resin pockets at the crack tips, which were not observed here. Possibly, the resin

pockets at the crack tip were avoided in this work because the plastic film was more

precisely aligned with the end of the pre-cut.

For the specimens with a pre-crack obtained by the metal-blade approach, those

with higher ply distortion appear to produce generally higher toughness values.

5.6 Conclusions

This work shows that it is possible to manufacture unidirectional laminated panels

including straight and sharp pre-cracks, without damage ahead of the crack tip and

without causing significant distortion to the layers. This can be achieved following

the process referred to as method E in this chapter.

FPB tests were shown to yield values for the mode I intralaminar fracture tough-

ness with low scatter, which are close to the mode I interlaminar fracture toughness.

The results obtained seem to indicate that there is a correlation between ply dis-

tortion and an increased measured fracture toughness. However, for the specimens
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tested (all specimens had sharp crack tips and no damage ahead of the crack tip

was present), this correlation is not strong.

Using a plastic film to create a pre-crack does not yield a straight pre-crack,

but the fracture toughness values obtained were found to be consistent with those

obtained using the metal-blade approach to create the pre-crack.
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