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Abstract—This paper is a pioneering attempt to utilize a
Brownian motion (BM) process with drift to model the mobile
radio channel under non-stationary conditions. It is assumed
that the mobile station (MS) starts moving in a semi-random
way, but subject to follow a given direction. This moving
scenario is modelled by a BM process with drift (BMD). The
starting point of the movement is a fixed point in the two-
dimensional (2D) propagation area, while its destination is
a random point along a predetermined drift. To model the
propagation area, we propose a non-centred one-ring scattering
model in which the local scatterers are uniformly distributed
on a ring that is not necessarily centred on the MS. The
semi-random movement of the MS results in local angles-of-
arrival (AOAs) and local angles-of-motion (AOMs), which are
stochastic processes instead of random variables. We present the
first-order density of the AOA and AOM processes in closed
form. Subsequently, the local power spectral density (PSD) and
autocorrelation function (ACF) of the complex channel gain are
provided. The analytical results are simulated, illustrated, and
physically explained. It turns out that the targeted Brownian
path model results in a statistically non-stationary channel
model. The interdisciplinary idea of the paper opens a new
perspective on the modelling of non-stationary channels under
realistic propagation conditions.

Index terms — Channel modelling, Brownian motion, non-
stationary channels, local power spectral density, local autocor-
relation function.

I. INTRODUCTION

TO develop mobile communication systems, geometric
channel models are recognized as one of the most

effective candidates, which allow a highly accurate system
performance analysis. As an example, the one-ring scattering
model [1]–[3], in which the local scatterers are uniformly
distributed on a ring centered on the MS, is an appropri-
ate model capturing the propagation effects in rural and
sub-urban propagation areas. The unified disk scattering
model (UDSM) [4] is also one of the most general geo-
metric channel models, which covers numerous circularly-
symmetric scattering models as special cases, including the
one-ring model. In this regard, an overview of the most
important geometric channel models can be found in [5].

Geometric channel models often profit from a common
simplification, namely the stationarity assumption of the
stochastic channel in time. Considering a very short obser-
vation time instant justifies a time-invariant AOA at the MS,
which then results in a statistically stationary channel model.
Many empirical and analytical investigations, e.g., [6]–[8],
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however, show that this property is only valid for very short
travelling distances [9]. This calls for the need to develop
and analyze stochastic channel models under non-stationary
conditions.

Despite the drastic number of investigations on stationary
geometric channel models, the literature lacks studies on non-
stationary geometric channel models. Only a small number
of analytical studies, e.g., [10]–[13], cope with the statistical
properties of non-stationary channels. To the best knowledge
of the authors, except the non-stationary one-ring scattering
model studied in [14], none of the established geometric
scattering models listed in [5] has been analyzed under
non-stationary conditions. In [14], a non-stationary one-ring
channel model has been derived by assuming that the MS
moves from the center of the ring to the ring’s border on
a straight line. In this paper, we further expand the idea
of [14] by allowing the MS to randomly fluctuate around
a straight line, where its starting point is not necessarily the
ring’s center. It can be any point inside the ring of scatterers.
To this end, we let the MS move in a semi-random way, but
subject to follow a given preferred direction. By establishing
an analogy between such a motion and the chaotic movement
of particles suspended in fluids discovered by Robert Brown
(see [15]), we model the travelling path of the MS by a
BMD. We coin the term targeted Brownian path model to
address the proposed path model of the MS. For a given
BM process, the randomness of the path can be controlled
by a single parameter. By eliminating the randomness of the
path, the MS arrives at a fixed destination point via a straight
path. Accordingly, the path model of [14] can be obtained as
a special case of the proposed targeted Brownian path model.

Moving along a targeted Brownian path results in local
AOAs and local AOMs, which are modelled by stochastic
processes rather than random variables. We present the first-
order density of the AOA and AOM processes in closed form.
Expressions for the local PSD of the Doppler frequencies
and ACF of the complex channel gain are also provided.
Numerical computations at 2.1 GHz illustrate the analytical
results and verify the non-stationarity of the channel model. It
is shown that non-stationarity in time contradicts the common
isotropic propagation assumption on the channel. It is also
proved that the one-ring scattering model can be obtained as
a special case of the proposed channel model of this paper.

It is worth mentioning that 3D BM processes have been
used to model fully random motions of mobile users [16].
However, 1D BM processes with drift have never been used
to model semi-random motions of mobile users. Several other
mobility models have also been employed in mobile ad hoc
networks [17], but not in the area of channel modelling. In a
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nutshell, the novelty of this paper arises from the pioneering
utilization of the BMD process as a path model for the
modelling of non-stationary mobile fading channels.

The remainder of this paper is organized as follows.
Section II gives a brief introduction to BM processes as
a physical phenomenon, while Section III utilizes the BM
process for developing the targeted Brownian path model.
Section IV describes the propagation scenario by means
of the non-centred one-ring scattering model. The complex
channel gain of the proposed channel model is then described
in Section V. Section VI investigates the statistical properties
of the channel model. Numerical results are provided in
Section VII. Finally, Section VIII summarizes our main
findings and draws the conclusions.

II. PRINCIPLES OF THE BM PROCESS

BM was originally discovered in 1827 by the famous
botanist, Robert Brown. It describes the chaotic movement
of particles suspended in a fluid or gas [15]. In the 1860s,
there were experimentalists who clearly recognized that the
motion is due to the impact of suspending molecules. Finally,
in 1906, Albert Einstein [18] offered an exact physical
explanation of such a motion based on the bombardment of
the suspended particles by the atoms of the suspending fluid.
In 1908, a mathematical explanation of the BM was provided
by Langevin [19]1. BM processes have a wide range of
applications, such as modelling of stock market fluctuations,
medical imaging, and fractal theory [21]. In mobile ad
hoc networks, 2D BM processes (random walk) are also
employed to model irregular motions of mobile nodes [17].
The model is then used for network layer analysis.

A stochastic process {B(t) : t ∈ [0, T ]} is said to be a
standard BM process if:

1) B(0) = 0.
2) ∀ 0 ≤ s < t ≤ T , the random variable given

by the increment B(t) − B(s) follows the Gaussian
distribution with zero mean and variance t − s, i.e.,
B(t)−B(s) ∼ N(0, t− s).

3) ∀ 0 ≤ s < t < u < v ≤ T , the increments B(t)−B(s)
and B(v)−B(u) are statistically independent.

From the conditions above, it can be concluded that B(t) is a
Wiener process with normally and independently distributed
increments.

III. PATH MODELLING

In what follows, we first provide an equivalent spatial
representation of the temporal BM process. Subsequently,
the proposed local BM process is used to model the targeted
motion of the MS along a predetermined drift.

A. Spatial Representation of the BM Process

To establish an analogy between the BM process and the
MS movement, let us first assume that the MS starts from
a given point with Cartesian coordinates (xs, ys) in the 2D
plane. The aim is to model the random path starting from
(xs, ys) via the BM process described in Section II. For this
purpose, we establish a mapping from the temporal represen-
tation of the BM process B(t) to the spatial representation

1A translation of [19] into English has been provided in [20].

of the BM process B(x) by replacing the temporal variable
t by the spatial variable x. Accordingly, the first condition
of the BM process, i.e., B(0) = 0, changes to B(xs) = 0.
By assuming (xd, yd) as the terminal point of the movement,
we introduce the scalar standard BM process over the range
[xs, xd] by means of the spatial stochastic process B(x),
which satisfies the following three conditions:

1) B(xs) = 0.
2) ∀ xs ≤ xp < x ≤ xd, the random variable given

by the increment B(x)−B(xp) follows the Gaussian
distribution with zero mean and variance x− xp, i.e.,
B(x)−B(xp) ∼ N(0, x− xp).

3) ∀ xs ≤ xp < x < xq < xm ≤ xd, the increments
B(x) − B(xp) and B(xm) − B(xq) are statistically
independent.

For computational reasons, it is useful to consider the BM
process at discrete values of x. To this end, we define
∆x = (xd − xs)/L for some positive integer L. Hence,
Bl = B(xl) denotes the BM process at xl = xs + l∆x (l =
0, 1, ..., L). Now, with reference to Conditions 2 and 3, it can
be concluded that Bl = Bl−1+∆Bl, where each ∆Bl is an
independent normal distributed random variable of the form
N(0,∆x).

B. The Targeted Brownian Path Model
To model the targeted motion of the MS in the 2D plane,

we propose a path with a controllable drift in a preferred
direction, while the fluctuations of the path are modeled by
the spatial BM process Bl. Accordingly, the path P of the
MS is modelled as follows

P :

{
(xl, yl)

∣∣∣∣ xl = xs + l∆x,
yl = axl + b+ σyBl,

}
(1)

where l = 0, 1, ..., L is the position index, the variable a
denotes the slope of the drift, b is a constant shift along
the y-axis, and σy allows to control the randomness of the
path. Considering the fact that the randomness of the path
P originates inherently from the randomness of the BM
process Bl, the parameter σy provides an additional degree of
freedom to control the randomness. For instance, by setting
σy to 0, any point on the line represented by yl = axl+b can
be reached. Whereas, increasing the value of σy reduces the
chance of arriving at that point. However, the mean direction
of the path remains unchanged. It is also noteworthy that the
path model in (1) reduces to that in [14] if σy = 0. The
model also enables to incorporate random fluctuations only
along a specific line. For instance, by increasing a towards
infinity, the fluctuations occur only along the y-axis. The
same behaviour can be attained along any other line (axis)
if we simply rotate the coordinate system.

In mobile communications, the proposed targeted Brow-
nian path can be a very useful model to describe typical
dynamics of users in motion, such as persons walking along
a street, but not necessarily along a very smooth path. In
vehicular communications, the model can also be used to
explain the jittery motion of the vehicle antenna, while the
vehicle is moving along a given direction.

IV. THE PROPAGATION SCENARIO

To cope with the scattering effect caused by the prop-
agation area, we propose a non-centred one-ring scattering
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model, in which the local scatterers are uniformly distributed
on a ring that is not necessarily centred on the MS. The
displacement of the MS from the ring’s center results in a
non-isotropic channel model. This model is an appropriate
geometric scattering model to explain environments, in which
the base station (BS) antenna is highly elevated to scattering-
free levels, while the MS antenna is surrounded by a large
number of local scatterers. This situation occurs mostly in
rural and sub-urban areas.

Fig. 1 shows the proposed non-centred one-ring scattering
model with the uniform distribution of the local scatterers
Sn (n = 1, 2, ..., N) on a ring of radius R centered
on the origin. In this regard, αS

n denotes the angle-of-
scatterer (AOS) associated with the nth scatterer. At a
reference point in time t0, the MS starts its movement from
(x0, y0) and tracks the path P to reach (xL, yL) at time tL.
The position of the MS at time tl ∈ [t0, tL] is described
by Cartesian coordinates (xl, yl). It is also assumed that the
MS is moving with a constant velocity vR in the direction
indicated by the AOM αv[l]. Owing to high path loss, we
assume that at time tl, a wave emitted from the BS reaches
the MS at the AOA αR

n [l] after a single bounce by the
nth randomly distributed scatterer Sn located on the ring.
A realization of the proposed Brownian path P in such a
geometric scattering model is shown in Fig. 2, in which the
starting point (x0, y0) of the path is set to the ring’s center2.

The above mentioned propagation scenario is completely
different from the one-ring scattering model [1]–[3], in which
the MS is located at the center of the ring, while its AOM
is a deterministic variable. Therein, considering a very short
observation time results in a stationary and isotropic channel
model, while herein, the proposed path P justifies a non-
stationary non-isotropic channel model. The proposed jittery
path model P is also different from the smooth path model
of [14]. Indeed, the random behavior of the AOM αv[l] (see
Fig. 2) allows a much more flexible non-stationary channel
model than the one proposed in [14]. In what follows, after
providing an expression for the complex channel gain, we
study the statistical properties of the proposed non-stationary
channel model.

V. THE COMPLEX CHANNEL GAIN

The propagation scenario presented in Section IV is a
non-stationary version of the typical fixed-to-mobile (F2M)
scenario studied in [22, pp. 56–60]. Therein, the complex
channel gain µ(tl) of frequency-nonselective F2M channels
was modeled by means of a complex stochastic process
representing the sum of all scattered components as follows

µ(tl) = lim
N→∞

N∑
n=1

cne
j(2πfntl+θn). (2)

In the equation above, cn denotes the attenuation factor
caused by the physical interaction of the emitted wave
with the nth scatterer Sn, and fn stands for the Doppler

2We have chosen the ring’s center as the starting point of the movement
to enable the verification of our numerical results (see Section VII) with
the ones from the one-ring scattering model. However, the analytical results
provided in the paper are not limited to such a special case.
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Fig. 1. The non-centred one-ring scattering model for a single-bounce
scattering scenario.
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Fig. 2. Realization of a targeted Brownian path P in the ring of scatterers.
The model parameters are L = 100, a = 1, b = 0, σy = 2, xs = 0m,
xd = 150m, and R = 250m.

frequency3 caused by the movement of the MS. In addition,
the random variable θn represents the phase shift of the nth
path, which is often assumed to be uniformly distributed
between 0 and 2π [22, p. 59].

The complex channel gain in (2) suits the proposed
non-stationary one-ring model, if we replace the Doppler
frequency fn by fn(tl). This apparently minor change adds
a great deal of mathematical computations to the statistical
characterization of the channel.

VI. STATISTICAL PROPERTIES OF THE CHANNEL

To investigate the statistical properties of the complex
channel gain described in (2), let us start from the local AOA,
which plays a key role in other statistical quantities. Notice
that we defer the illustration and physical explanation of the
analytical results to Section VII.

3The frequency shift caused by the Doppler effect is given by f =
fmax cos(α), where fmax = f0v/c0 is the maximum Doppler frequency,
f0 denotes the carrier frequency, c0 stands for the speed of light, and α
equals the difference between the AOA and the AOM [23].
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A. The Local AOAs

Referring to the geometric scattering model in Fig. 1, the
AOA αR

n [l] at the point (xl, yl) is given by

αR
n [l] = arctan

(
R sin(αS

n)− yl
R cos(αS

n)− xl

)
. (3)

For a given position l, the only random variable in the
right side of (3) is the AOS αS

n . Since the number N of
local scatterers tends to infinity in the reference model, it
is mathematically convenient to assume that the discrete
AOS αS

n is a continues random variable αS , which is
assumed to be uniformly distributed between −π and π (see
Section IV). By applying the concept of transformation of
random variables [24, p. 130] and performing some math-
ematical manipulations, it can be shown that the first-order
density pαR(αR; l) of the stochastic process αR[l] in (3)
becomes

pαR(αR;l)=
1

2π

1− xl cos(α
R) + yl sin(α

R)√
R2 − (xl sin(αR)− yl cos(αR))

2

 (4)

in which −π ≤ αR < π. It is worth mentioning that
pαR(αR; l) in (4) depends strongly on the position (xl, yl)
of the MS. This means that the AOA αR[l] is not first-
order stationary. As a special case, if the path P crosses the
ring’s center (0, 0), then pαR(αR; l) in (4) reduces to 1/(2π),
which is the AOA probability density function (PDF) of the
one-ring model [1]–[3].

B. The Local AOMs

By performing the linear interpolation scheme, the path P
becomes continues and piecewise differentiable. This allows
us to present the AOM αv[l] at the location point (xl, yl) by
the following expression

αv[l] = arctan

(
yl+1 − yl
xl+1 − xl

)
= arctan

(
a+ σy

Bl+1 −Bl

xl+1 − xl

)
. (5)

In the right side of (5), Bl+1 − Bl is the only random
variable, which follows the Gaussian distribution of the
form N(0,∆x) (see Section III-A). Again, by applying the
concept of transformation of random variables, the PDF
pαv (αv) of the AOM αv[l] in (5) is given by

pαv (αv) =
1√

2πσ cos2(αv)
e

−(tan(αv)−a)2

2σ2 (6)

where −π/2 ≤ αv ≤ π/2 and σ = σy/
√
∆x. Notice that

pαv (αv) in (6) is independent of the position (xl, yl) of the
MS, meaning that the AOM αv is first-order stationary. It
can be shown that the mean αv equals arctan(a), in which
a is the slope of the drift of the path P .

C. The Local PSD

Considering the local AOA αR[l] at the MS and the local
AOM αv[l] of the MS, the local frequency shift f [l] caused
by the Doppler effect is defined by the following expression

f [l] = fmax cos
(
αR[l]− αv[l]

)
(7)

in which αR[l] and αv[l] are statistically described by the
first-order density pαR(αR; l) in (4) and the PDF pαv (αv)
in (6), respectively. The equation above is indeed a non-linear
transformation of the stochastic process α[l] = αR[l]−αv[l]
to the stochastic process f [l]. Fixing the position index l
and applying again the concept of transformation of random
variables results in the first-order density pf (f ; l) of the
stochastic process f [l] presented in (8) [see the top of the
next page], in which pα,αv

(α, αv; l) is given in (9). Notice
that the Doppler frequency f in (8) varies between −fmax

and fmax.
Following the same procedure provided in [22, p. 85], it

can be verified that the first-order density pf (f ; l) of the
Doppler frequencies is directly proportional to the local PSD
Sµµ(f ; l) of the complex channel gain µ(tl), i.e.,

Sµµ(f ; l) = 2σ2
0pf (f ; l) (10)

where 2σ2
0 is the mean power of µ(tl) and pf (f ; l) is

provided in (8). If the path P goes through the ring’s
center (0, 0), the joint PDF pα,αv (α, αv; l) in (9) reduces to
pαv (αv)/(2π). Substituting this result in pf (f ; l) presented
in (8) and then multiplying the answer by the mean power
2σ2

0 , gives the following local PSD

Sµµ(f ; l) =
2σ2

0

πfmax

√
1− (f/fmax)2

. (11)

The equation above represents the PSD of the one-ring
scattering model, which is known as the Jakes PSD [23].
Accordingly, the proposed channel model can locally meet
the one-ring scattering model.

D. The Local ACF

With reference to the generalized Wigner-Ville spec-
trum [25, pp. 282-285], the local ACF rµµ(τ ; l) of the
non-stationary complex channel gain µ(tl) can be attained
by taking the inverse Fourier transform of the local PSD
Sµµ(f ; l) in (10). Accordingly, one can write

rµµ(τ ; l) =

fmax∫
−fmax

Sµµ(f ; l)e
j2πfτdf. (12)

As a special case, if the path P goes across the ring’s center,
the local PSD Sµµ(f ; l) in (11) can be used to compute the
inverse Fourier transform in (12). In this case, the local ACF
rµµ(τ ; l) in (12) is simplified to 2σ2

0J0(2πfmaxτ), where
J0(·) denotes the zeroth-order Bessel function of the first
kind [26, Eq. (8.411.1)].

VII. NUMERICAL RESULTS

Channel modelling at the 2 GHz band is of great impor-
tance in mobile communications. With reference to the oper-
ating frequency of the universal mobile telecommunications
system (UMTS), the carrier frequency f0 = 2.1GHz has
been chosen in our numerical computations. In addition, we
consider the path P shown in Fig. 2 as the travelling path
of the MS. This allows us to have the positions (xl, yl) for
l = 0, 1, ..., L. It is also assumed that the MS is moving
with a velocity vR of 80 km/h, which results in a maximum
Doppler frequency fmax of 155.5 Hz. The mean power 2σ2

0

has been set to unity.
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pf (f ; l) =
1

fmax

√
1− (f/fmax)2

π/2∫
−π/2

(
pα,αv (arccos(f/fmax), αv) + pα,αv (− arccos(f/fmax), αv)

)
dαv (8)

pα,αv (α, αv; l) =
1

2π
√
2πσ cos2(αv)

∣∣∣∣∣∣1− xl cos(α+ αv) + yl sin(α+ αv)√
R2 − (xl sin(α+ αv)− yl cos(α+ αv))

2

∣∣∣∣∣∣ e−(tan(αv)−a)2

2σ2 (9)
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Fig. 3. The behavior of the first-order density pαR (αR; l) in (4) for the
propagation scenario illustrated in Fig. 2.

Fig. 3 illustrates the first-order density pαR(αR; l) of the
AOA process αR[l] provided in (4). With reference to the
path P shown in Fig. 2, the MS starts its movement from the
center of the ring. This circularly symmetric starting point
explains the uniform distribution of the AOA at l = 0. By
moving along the path P , the probability of receiving signals
from the scatterers ahead reduces, whereas the probability of
receiving from the scatterers behind increases. This behavior
continuous up to l = 100, where pαR(αR, 100) takes its
minimum value at αR = arctan(1) = 0.78 radian.

Fig. 4 displays the PDF pαv (αv) of the AOM αv[l] in (6).
The simulated AOM is also shown in this figure. An excellent
match between the simulation and analytical results can be
observed. The mean αv equals arctan(1) = 0.78 radian as
shown in the figure. The plot shows explicitly the tendency
of the MS to follow the predetermined drift of the path P .
This tendency depends solely on the slope a of the drift,
which has been set to 1 herein. It is noteworthy that if the
randomness σy of the path tends to zero, the AOM PDF
approaches the delta function at αv = 0.78 radian.

Fig. 5 depicts the local PSD Sµµ(f ; l) presented in (10).
The classical Jakes PSD with a U-shape can be observed
in the stationary case (l = 0), where the MS is located at
the ring’s center. At this position, Sµµ(f, 0) is a symmetric
function with respect to f , indicating that the channel is
instantaneously isotropic. However, this feature does not hold
if the MS continuous its motion along the path P . In this
regard, by increasing l, an asymmetric behavior of the local
PSD Sµµ(f ; l) can be observed. Notice that moving along
the path P results in confronting a lower number of scatterers
ahead and a higher number of them behind the MS. This
allows a higher and a lower probability of negative and
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Fig. 4. The behavior of the AOM PDF pαv (αv) in (6) for the propagation
scenario illustrated in Fig. 2.

positive Doppler shifts as shown in Fig. 5.
Fig. 4 displays the PDF pαv

(αv) of the AOM αv[l] in (6).
The simulated AOM is also shown in this figure. An excellent
match between the simulation and analytical results can be
observed. The mean αv equals arctan(1) = 0.78 radian as
shown in the figure. The plot shows explicitly the tendency
of the MS to follow the predetermined drift of the path P .
This tendency depends solely on the slope a of the drift,
which has been set to 1 herein. It is noteworthy that if the
randomness σy of the path tends to zero, the AOM PDF
approaches the delta function at αv = 0.78 radian.

Fig. 5 depicts the local PSD Sµµ(f ; l) presented in (10).
The classical Jakes PSD with a U-shape can be observed
in the stationary case (l = 0), where the MS is located at
the ring’s center. At this position, Sµµ(f, 0) is a symmetric
function with respect to f , indicating that the channel is
instantaneously isotropic. However, this feature does not hold
if the MS continuous its motion along the path P . In this
regard, by increasing l, an asymmetric behavior of the local
PSD Sµµ(f ; l) can be observed. Notice that moving along
the path P results in confronting a lower number of scatterers
ahead and a higher number of them behind the MS. This
allows a higher and a lower probability of negative and
positive Doppler shifts as shown in Fig. 5.

Fig. 6 shows the absolute value of the local ACF rµµ(τ ; l)
given in (12). Notice that due to the asymmetric behavior
of the PSD Sµµ(f ; l) (see Fig. 5), the ACF rµµ(τ ; l) is in
general complex. A quite time-varying behavior of the ACF
can be observed. It is also noteworthy that for a given time
difference τ ̸= 0, the correlation increases through some
fluctuations if l grows.
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Fig. 5. The behavior of the local PSD Sµµ(f ; l) in (10) for the propagation
scenario illustrated in Fig. 2.

Fig. 6. The behavior of the absolute value of the local ACF |rµµ(τ ; l)|
(see (12)) for the propagation scenario illustrated in Fig. 2.

VIII. CONCLUSION

In this paper, we have proposed a targeted Brownian path
model to explain the travelling path of the MS. The proposed
path model has a tendency to follow a preferred direction.
To describe the propagation area, we have proposed a non-
centred one-ring scattering model, in which the MS is not
necessarily located at the ring’s center. We have assumed
that the MS is moving along the proposed targeted Brownian
path model in such a geometric scattering model. It has been
turned out that the proposed path model results in a non-
stationary non-isotropic channel model. As a special case,
the stationary isotropic one-ring scattering model can also be
obtained from the proposed non-stationary channel model.
The statistical properties of the proposed channel model
have been derived, illustrated, and discussed extensively. It
has been shown that the AOA process is first-order non-
stationary, while the PDF of the AOM is stationary. The cor-
responding PSD of the Doppler frequencies and ACF of the
complex channel gain have also been provided, showing that
these characteristics are heavily time-dependent. Validating
the analytical results by means of empirical data needs to be
addressed in future works.
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