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SUMMARY 

Mathematical models to simulate the vertical dynamic interaction of railway vehicle-

track-underground system are presented. The emphasis is laid on the dynamic response 

of track structures due to high-speed trains and the effects of subsoil and track irregu-

larities. An existing computer program named DIFF is enhanced by taking account of 

the underground subsystem so that dynamic analysis of the whole vehicle-track-ground 

system can be carried out. The numerical procedures adopted are based on the semi-

discrete finite element method, by which the spatial domain is discretized using finite 

elements and then a solution technique combining modal superposition with time inte-

gration for the first-order system of state-space equations is applied in the time domain. 

Simulations of an X-2000 bogie running on a common Swedish track rested on normal 

as well as soft subsoil are carried out. It is shown that considering vehicle, track and un-
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derground as an integrated system is important in investigating the high-speed train in-

duced track-ground vibration. 

Keywords: railway dynamics, vehicle-track-ground system, finite element, high-speed 

trains, train-related vibration 

1 INTRODUCTION 

One of the primary environmental impacts of railway transport comes from noise and 

vibration [1,2]. Having its origin at the irregular wheel-rail contact, the train-related vi-

bration is transmitted through and damped by the railway track and ground but can also 

be magnified where it resonates with the natural frequency of a structure or rises through 

a flexibly framed building. Especially, when high-speed trains pass over areas with a 

low railway embankment founded on soft soil ground, where surface wave velocities 

may be close to or even lower than the designed train speed, high-level track and ground 

vibrations can become an urgent problem. This phenomenon has been observed on ac-

tual lines in several countries and is considered as similar to the supersonic boom occur-

ring when an airplane reaches the speed of sound. Among a rich literature within this 

field we refer to References [3-11], which are closely related to the topic of high-speed 

train induced ground vibrations. 

The analysis of the generation and propagation of ground vibration from trains is of in-

terest not only to geotechnical engineers but also to track engineers. The increased train 

speeds are likely accompanied by increased dynamic vertical wheel-rail forces, which in 

turn may lead to increased track irregularities and accelerated track deterioration. Hence, 

it is of great importance to understand the dynamics of the railway vehicle-track-ground 
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system and, thereby, find solutions to the increasing problems with track damage like 

wheel unroundness, rail corrugation, degradation and stability of ballast and embank-

ment. In order to consider the dynamic excitation mechanism arising from sleeper-

passing, track irregularities and non-linear wheel-rail contact etc, it requires more ad-

vanced train and track models than those of just a moving constant load and a beam as 

frequently used in the literature on train-related ground vibrations. Researches on vehi-

cle-track dynamic interaction have been very extensive during the past decade. Several 

mathematical models of varying complexity have been developed to simulate vehicle-

track dynamics. Reviews of the state-of-the-art and a rich literature on these issues can 

be found among others in [11-13]. 

In co-operation with the Swedish National Rail Administration (Banverket), several re-

search projects related to the topic of vehicle-track dynamic interaction have been car-

ried out at the competence centre CHARMEC, Chalmers University of Technology. 

Mathematical models to simulate the vertical vehicle-track dynamic interaction and a 

computational program called DIFF have been developed [14]. The DIFF program per-

mits calculation of displacements, velocities, accelerations and forces in various track 

components and enables us to investigate how parameters such as train speed, axle load, 

track irregularities and so on affect the dynamic wheel-rail forces. Full-scale measure-

ments were performed to verify the DIFF model and good agreements are achieved.  

A disadvantage of the track model used in DIFF (and most of other track models avail-

able in the literature) is that the ballast and the subgrade are considered together only as 

a visco-elastic foundation. Consequently, the present version of DIFF cannot be used di-

rectly to investigate the track-ground vibration and wave propagation from high-speed 

trains. 
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The main objective of the present study is to further develop the DIFF program so as to 

obtain an integrated model for the whole train-track-ground system. Following 

[12,15,16], we consider the ballast and the subsoil separately. The ballast is modelled as 

an assembly of parallel rods, while layered subsoil is modelled by two-dimensional fi-

nite elements. We adopt the same numerical algorithms used in the DIFF program, 

which, after FE-discretization in space, applies a solution technique that combines time 

integration for a first-order system of state-space vector equations in conjunction with a 

modal superposition analysis.  

An outline of the rest of the paper follows. In Section 2 we review the mathematical 

models for the train-track-ground system and their respective governing differential 

equations. We then describe the numerical algorithms used for solving the resulting sys-

tem of coupled equations in Section 3. The simulation results of an X2000 bogie run-

ning on a common Swedish track founded on a ground of layered subsoil are presented 

in Section 4. The importance of including train and track models in modelling the gen-

eration and propagation of track-ground vibration from trains is demonstrated. Finally, 

conclusions and future work are discussed in Section 5. 

2 MATHEMATICAL MODELS  

Figure 1 illustrates the model used to study the vertical dynamics of the train-track-

ground system. The model includes bogie, rail, rail pads, sleepers, ballast and layered 

subsoil. Wheel and rail are coupled together at two contact points, where track irregu-

larities are introduced as a dynamic excitation.  
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2.1 Vehicle 

A rigid multibody model is used to simulate the train bogie, which includes a bogie 

frame, two primary suspensions and two unsprung masses. Each unsprung mass repre-

sents half a wheelset and parts of a traction motor.  
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Figure 1. Dynamic model of the railway vehicle-track-underground system 

 
 

Since the dynamic response of the track is of primary interest, a discrete model of the 

vehicle is considered adequate and the inertia of the sprung masses appearing above the 

secondary suspension may be neglected. 

Hence, the governing equations of the vehicle model can be written as 
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where v
ax  is the displacement vector at the massless wheel-rail contact dofs; v

bx  is the 

displacement vector of the vehicle model; Mv, Cv and Kv are the mass, damping and 

stiffness matrices of the vehicle; and Fext is the external force vector representing the 
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part of carbody weight added to the bogie frame. The wheel-rail contact forces are as-

sembled in the vector Fwr and will be treated as independent variables in the analysis. 

We note that Equation (1) is a nonlinear state-dependent system as the stiffness matrix 

Kv contains contributions from the wheel-rail contact. Following the Hertz theory, the 

wheel-rail contact stiffness is determined by 
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where xw is the wheel displacement, xa is the displacement at the wheel-rail contact dof 

and CH is the Hertzian constant calculated according to the elastic modulus and the ge-

ometry of wheel and rail [17]. 

2.2 Track and ground 

The track model used in the study includes one rail discretely supported via rail pads by 

sleepers on ballast. The rail is represented as a Rayleigh-Timoshenko beam with its 

shear deformation and rotary inertia being considered. The rail pads are modelled as a 

discrete spring-damper system, while the sleepers are only rigid mass bodies.  

In summary, the governing differential equations of motion for the track-ground can be 

outlined as follows. 

For the rail,  
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where wr is the vertical displacement of rail, 
�

r the slope of the cross section of the rail, 

ws the vertical sleeper displacement and ls the sleeper spacing. The rail and the sleepers 

are connected at discrete locations via rail pads and the wheel-rail contact forces act at 

two locations as external forces. 

For the sleepers 

( ) ( ) 0=+−+−+ jrsjprsjpsjs Swwkwwcwm ����  (5) 

where Sj denotes the vertical forces between sleeper and ballast. 

For the ballast 
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where wbj is the vertical displacement of ballast, which varies only in the vertical direc-

tion.   

For the subsoil, a linear elastic continuum is assumed and its differential equations of 

motion can be written as 

iijjji ucub ��� +=+ ρρσ ,  (7) 

where ijσ  is the stress tensor, ib  the body force, ρ  the density and iu  the displacement 

of subsoil. 
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3 SOLUTION ALGORITHMS 

As mentioned above, the solution algorithms adopted are based on the semi-discrete fi-

nite element method. First, the spatial domain is discretized by use of finite elements, 

which results in a system of second-order ordinary differential equations in time. A 

complex modal superposition technique is then applied to the track-ground system and 

constraints on contact forces and accelerations between physical components of the ve-

hicle and modal components of the track are introduced. Finally, a first-order initial 

value problem for the whole vehicle-track-ground dynamic system is established and 

solved by using a standard solver for initial value problems. In this study, we choose the 

standard Matlab ODE solver, ode23s, which is based on a modified Rosenbrock formula 

[18]. For more details of the solution algorithms we refer to [14]. For the use of more 

advanced adaptive discontinuous Galerkin space-time FE procedures for solving this 

type of problems, see [19]. 

3.1 FE in space 

Figure 2 illustrates a finite element mesh used for the track-ground system. We note that 

FE-discretization is needed for the rail, the ballast and the subsoil. For the rail we use 

beam elements with standard piecewise cubic Hermite shape functions, for the ballast 

we use two-node rod elements and for the subsoil we use four-node bilinear isoparamet-

ric elements. By doing so, the partial differential equations described above are reduced 

to second-order ordinary differential equations in time. We assemble them together with 

other discrete components (rail pads and sleepers) and obtain the following semi-

discrete dynamic equations 
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 The N coupled second-order equations of motion are reformulated as 2N first-order 

equations of the form 
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3.2 Modal superposition for track-ground  

The modal superposition technique is applied by first solving the following eigenvalue 

problem 
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Figure 2. Finite element mesh used for the track-ground system 
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The solution of the above eigenvalue problem yields N pairs of complex-conjugated sets 

of eigenvalues i � n and eigenvectors � (n). The lowest M modal pairs are accounted for in 

the modal synthesis and assembled in the modal matrix as 
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By introducing the transformation 
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we obtain 2M uncoupled equations of motion of the form  

)()()diag(  )()( diag ttt ttbta nn Qqq =+�  (14) 

 )( diag  , )( diag tTtT PBPPAP == nn ba  (15) 

where an and bn are modal normalisation constants or the so-called modal Foss damping 

and modal Foss stiffness. 

3.3 Wheel-rail coupling 

In order to couple the vehicle and the track-ground models together into an integrated 

system, constraints on contact forces, displacements, velocities and accelerations at 

wheel-rail contact dofs need to be introduced. The contact displacements can be written 

in matrix form as 

irrtwr
a )()( xqNPx += tt  (16) 
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where N are the local finite element shape functions of the rail elements related to the 

contact interfacial dofs, Pwr are the partition of the modal matrix in Equation (13) related 

to the contact dofs and xirr are the prescribed track irregularities at the surface of the rail. 

By assuming a constant train speed v and introducing a local longitudinal coordinate ξ , 

the velocities and accelerations at the wheel-rail contact dofs are calculated as the time 

derivatives of xa(t) and we obtain the following two algebraic equations 

irrtt
a )()(   )()()( xqUqTx ��� ++= ttttt  (17) 

irrtt
a )()(   )()()( xqSqRx ����� ++= ttttt  (18) 
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Finally, an initial value problem for the whole train-track-ground dynamic system is 

formulated by assembling Equation (1) for the vehicle, Equation (14) for the track-

ground together with Equations (17) and (18) for the wheel-rail contact, which in its 

general form can be written as 

( ) ( ) ( )ttt z,FzzBzzA =+ ,, �  (22) 

where 
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In the equations above, z is a mixed state-space vector in the sense that it consists of not 

only modal displacements of the track-ground, physical displacements and velocities of 

the vehicle but also impulses of wheel-rail contact forces. Specifying an initial condition 

z(t=0)=z0, Equation (22) can be solved by using a proper ODE-solver. As mentioned 

previously, the standard Matlab ODE solver ode23 is used in this study.   

4 NUMERICAL RESULTS 

Based on the described algorithms, the program package DIFF has been further devel-

oped and can now be used to simulate the vertical dynamics of the whole train-track-

ground system. In this section, we present numerical results of an X2000 bogie running 
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at a speed of 200 km/h on a typical Swedish track on a layered subsoil ground to dem-

onstrate the performance of the enhanced version of DIFF program. 

Table 1.  Track and vehicle parameters 

__________________________________________________ 
Parameter        Notation   Value    Unit 

__________________________________________________ 
Rail mass per meter      mr    60.34   kg/m 

Young’s modulus of the rail   Er     2.1e11   N/m2 

Poisson’s ratio        ν     0.3 

Moment of inertia of the rail  Ir     3.055e-5  m4 

Rail pad stiffness       kp     500e6   N/m 

Rail pad damping       cp     30e3   Ns/m 

Sleeper spacing       ls     0.65    m 

Sleeper mass        ms    300    kg 

Axle load          P0    18.25   ton 

Wheelset mass        mw    2050   kg 

Boggie mass         mb    8900   kg 

Rotary inertia of Boggie    Jb     135    kgm2
 

Primary suspension stiffness  ks     1.45e6   N/m 

Primary suspension damping  cs     30e3   Ns/m 

__________________________________________________ 
 

 

The track model used here is of 100 sleeper bays and consists of UIC60 rail, Pandrol 

soft rail pads, concrete sleepers and a macadam ballast-bed. Some parameters of the 

track as well as the vehicle are listed in Table 1. A two-layer subsoil ground is consid-

ered. The top layer, representing the embankment, has a depth of 4 m and an elasticity 

modulus of 8e7 N/m2. The bottom layer, representing the subsoil ground, has a depth of 
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4m and an elasticity modulus of 1.2e9 N/m2 for normal ‘stiff’  ground and 1.2e7 N/m2 

for ‘soft’  ground.  

Dynamic track forces due to track irregularities are considered. Figure 3 shows the data 

of the vertical track irregularities used in the simulation, which are taken from the re-

sults registered by Banverket’s measuring wagon STRIX. Their magnitudes have been 

amplified so that the maximum value is about 6 mm, which corresponds to the peak 

value for maintenance of Line class K0.  
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Figure 3. Vertical track irregularities used in the simulation. 
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Figure 4. Calculated vertical wheel-rail contact forces with and without vertical 

track irregularities, stiff subsoil. 
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Figure 5. History of vertical rail displacement above the No. 30 sleeper with and 

without track irregularities, stiff subsoil. 



 
16

0.3 0.35 0.4 0.45
-20

-15

-10

-5

0

5

10

15

20

Time [s] 

S
le
e
pe
r 
a
cc
el
er
a
tio
n 
[m
/s

2]

With irregularity
Without irregularity

 
Figure 6. Calculated acceleration history of sleeper No 30 with and without track 

irregularities, stiff subsoil 
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Figure 7. Displacement response of rail due to vertical track irregularities: a 

comparison of stiff and soft subsoil ground 
 
 

 
 

Responses of the track rested on normal ‘stiff’  ground with and without the presence of 

vertical track irregularities are first calculated. Figure 4 shows the wheel-rail contact 

forces. Figure 5 shows the history of vertical rail displacements above sleeper 30 and 

Figure 6 the history of accelerations of sleeper 30. From these figures we can observe 
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that the track responses show a strong dynamic character and it is not sufficient to repre-

sent the wheel-rail force as a moving constant load in the analysis of the generation and 

propagation of track-ground vibrations. 

A comparison of the rail displacement response with ‘stiff’  and ‘soft’  subsoil ground is 

presented in Figure 7. It is observed that the parameters of subsoil have a substantial in-

fluence on the dynamic behaviour of track structures. A detailed representation of bal-

last and subsoil is thereby needed in the analysis of train-track dynamic interaction. 

5 CONCLUSIONS 

Mathematical models and solution algorithms to simulate the dynamic train-track-

ground system have been presented. The ballast and the layered subsoil ground are 

modelled separately by finite elements. The existing program package DIFF has been 

enhanced and can now be used to analyze the vertical dynamics of the whole train-track-

ground system. Numerical results demonstrate that in modelling the track dynamics it is 

important to use an advanced track model and to include the couplings between the train 

and the track and between the track and the ground. Our future work will involve further 

improvement of the program and more detailed parameter studies regarding the influ-

ence of ballast and subsoil on track dynamics. The effects of other irregularities such as 

rail corrugation and wheel flat will also be investigated. 
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