Title

Modelfing Requirements for CFD Calculations of Spray Dyers

M. Sommerfeld

Mechanische Verfahrenstechnik
Zentrum für Ingenieurwissenschaften Martin-Luther-Universität
Halle-Wittenberg D-06099 Halle (Saale), Germany www-mvt.iw.uni-halle.de

Campinas, Brazil, March 23-27, 2015

Martin-Luther-Universität Halle-Wittenberg

Content of the Lecture

$\stackrel{y}{\Rightarrow}$ Transport processes and physical phenomena in spray dryers
$\stackrel{y}{\Rightarrow}$ Modelling requirements for numerical calculations of spray dryers
${ }^{4}$ Summary of Euler/Lagrange approach
$\stackrel{4}{4}$ New droplet drying model
$\stackrel{H}{4}$ Validation: single droplets and spray dryer
${ }^{4}$ Droplet/particle collision phenomena in spray dryers
${ }^{4}$) Stochastic inter-particle collision model
$\stackrel{(}{)}$ Collisions of high-viscous droplets (experimental and modelling)
$\stackrel{4}{4}$ Structure resolving particle agglomeration model
$\stackrel{y}{\Rightarrow}$ Exemplary spray dryer calculations with agglomeration
$\stackrel{\wedge}{>}$ Conclusions and outlook

Introduction 1

Spray dryers are being used in many industrial areas (e.g. food, pharma, detergents and building) to convert a solution or suspension into a powder of defined properties.

Recycling of fine powder
Collisions and agglomeration

Introduction

雨 A spray dryer is used for converting a solution or suspension into solid powder for further processing, transportation or commercial use.
© desired properties which has certain properties (particle design).
Up to now the design of spray dryers and the determination of the operational conditions are based on a try-and-error approach in pilot-scale experiments.
This procedure is however not very satisfactory since it is time consuming and rather costly.

Since about 20 years, however, numerical approaches based on CFD (computational fluid dynamics) are increasingly applied for dryer design and optimization.
Due to the importance of particle size distribution the Euler/Lagrange approach is beneficial for such simulations.
A thorough computational tool is however not existing due to the numerous elementary processes influencing powder production in a spray dryer.

(a) zero swirl case

Fletcher et al. Applied Mathematical Modelling 30 (2006) 1281-1292

Introduction
 3

Atomisation model (droplet injection)
> Simple blob model
> Spatially resolved droplet size and velocity measurements

Secondary break-up of droplets
> Wave, Rayleigh-Taylor, TAB, ETAB/CAB (Tanner 2004)
> Comparison by Kumzerova et al (2007)
\Rightarrow Droplet tracking
$>$ Relevant fluid forces (i.e. drag, lift, particle shape)
$>$ Turbulence effect (isotropic, anisotropic turbulence)
$\Rightarrow \rightarrow$ Droplet drying
> Change of solids content and droplet properties (μ and σ)
$>$ Turbulence effects (instantaneous temperature field seen by the droplets)
$\Rightarrow \rightarrow$ Droplet collisions
$>$ Bouncing
> Coalescence
$>$ Separation (formation of satellite droplets)
$\rightarrow \Rightarrow$ Collisions of partially dried particles
$>$ Partial or full penetration
> Modelling of agglomerate structure
Droplet/particle wall collisions
$>$ Deposition or rebound collision (wall contamination)

Euler/Lagrange Approach 1

The fluid flow is calculated by solving the Reynolds-averaged conservation equations by accounting for two-way coupling (source terms).

Turbulence model:

$\mathrm{k}-\varepsilon$ turbulence model

$>$ Conservation equations for: $\phi=1, u, v, w, k, \varepsilon, Y, T$

$$
\frac{\partial}{\partial \mathrm{x}}(\rho \mathrm{u} \phi)+\frac{\partial}{\partial \mathrm{y}}(\rho v \phi)+\frac{\partial}{\partial \mathrm{z}}(\rho \mathrm{w} \phi)-\frac{\partial}{\partial \mathrm{x}}\left(\Gamma \frac{\partial \phi}{\partial \mathrm{x}}\right)-\frac{\partial}{\partial \mathrm{y}}\left(\Gamma \frac{\partial \phi}{\partial \mathrm{y}}\right)-\frac{\partial}{\partial \mathrm{z}}\left(\Gamma \frac{\partial \phi}{\partial \mathrm{z}}\right)=\mathrm{S}_{\phi}+\mathrm{S}_{\phi, \mathrm{p}, \mathrm{~m}}+\mathrm{S}_{\phi, \mathrm{p}, \mathrm{ev}}
$$

The Lagrangian approach relies on the trackin representative point-particles (parcels) through for all relevant forces like: + models for small-scale phenomena

Two-way coupling procedure with under-relaxation

> Particle properties and Source Terms result from ensemble averaging

Euler/Lagrange Approach 2

© Dispersed phase (particles):

$$
\frac{\mathrm{d} \overrightarrow{\mathrm{x}}_{\mathrm{p}}}{\mathrm{dt}}=\overrightarrow{\mathrm{u}}_{\mathrm{p}}
$$

Depending on the nature of the dispersed phase and the density ratio different relevant forces have to be used.

$$
m_{P} \frac{d u_{P, i}}{d t}=\frac{3}{4} \frac{\rho}{\rho_{P} D_{P}} m_{P} C_{D}\left(u_{i}-u_{P, i}\right)\left|\overrightarrow{\mathrm{u}}-\overrightarrow{\mathrm{u}}_{\mathrm{P}}\right|+\frac{\rho_{\mathrm{F}}}{2} \frac{\pi}{4} D_{\mathrm{p}}^{2} C_{\mathrm{LS}} D_{P}\left(\left(\overrightarrow{\mathrm{u}}_{\mathrm{F}}-\overrightarrow{\mathrm{u}}_{\mathrm{p}}\right) \times \vec{\omega}_{\mathrm{F}}\right)
$$

(1)

$$
+\frac{\rho_{\mathrm{F}}}{2} \frac{\pi}{4} \mathrm{D}_{\mathrm{p}}^{2} \mathrm{C}_{\mathrm{LR}}\left|\overrightarrow{\mathrm{u}}_{\mathrm{F}}-\overrightarrow{\mathrm{u}}_{\mathrm{P}}\right| \frac{\vec{\Omega} \times\left(\overrightarrow{\mathrm{u}}_{\mathrm{F}}-\overrightarrow{\mathrm{u}}_{\mathrm{P}}\right)}{|\vec{\Omega}|}+\mathrm{m}_{\mathrm{P}} \mathrm{~g}_{\mathrm{i}}\left(1-\frac{\rho}{\rho_{\mathrm{P}}}\right)+\mathrm{F}_{\mathrm{i}}
$$

3
(4) gravity/ buoyancy
(1) drag force

5 other forces, e.g. electrostatic
(3) slip-rotation lift
$>$ The instantaneous fluid velocity is
Fotation: generated by a single-step Langevin model.

$$
\mathrm{u}_{\mathrm{i}, \mathrm{n}+1}^{\mathrm{f}}=\mathrm{R}_{\mathrm{P}, \mathrm{i}}(\Delta \mathrm{t}, \Delta \mathrm{r}) \mathrm{u}_{\mathrm{i}, \mathrm{n}}^{\mathrm{f}}+\sigma_{\mathrm{i}} \sqrt{1-\mathrm{R}_{\mathrm{P}, \mathrm{i}}^{2}(\Delta \mathrm{t}, \Delta \mathrm{r})} \xi_{\mathrm{i}}
$$

$$
\mathrm{I}_{\mathrm{p}} \frac{\mathrm{~d} \vec{\omega}_{\mathrm{p}}}{\mathrm{dt}}=\frac{\rho_{\mathrm{F}}}{2}\left(\frac{\rho_{\mathrm{p}}}{2}\right)^{5} \mathrm{C}_{\mathrm{R}}|\vec{\Omega}| \cdot \vec{\Omega}
$$

Martin-Luther-Universität Halle-Wittenberg

Lecture Content

New droplet drying model with validation for a spray dryer

Martin-Luther-Universität
Halle-Wittenberg

Droplet Drying Model 1

Droplet Drying Model 2

* A Mechanistic model is used to describe the four stages of droplet drying (Darvan \& Sommerfeld, IDS 2014)
$>$ Stage A-B, initial heat-up period (sensible heating)
- $\mathrm{T}_{\mathrm{S}} \longrightarrow$ equilibrium temperature (wet bulb temperature)
- Temperature distribution inside the droplet:

$$
\frac{\mathrm{dT}}{\mathrm{dt}}=\frac{\alpha}{\mathrm{r}^{2}} \cdot \frac{\partial}{\partial \mathrm{r}}\left(\mathrm{r}^{2} \cdot \frac{\partial \mathrm{~T}}{\partial \mathrm{r}}\right)
$$

$$
\begin{aligned}
& \frac{\partial \mathrm{T}}{\partial \mathrm{r}}=0 \quad \text { at }: \quad \mathrm{r}=0 \\
& -\mathrm{k} \frac{\partial \mathrm{~T}}{\partial \mathrm{r}}=\mathrm{h}\left(\mathrm{~T}_{\mathrm{s}}-\mathrm{T}_{\infty}\right) \quad \text { at }: \quad \mathrm{r}=\mathrm{R}
\end{aligned}
$$

α : droplet thermal diffusivity
k: thermal conductivity
h: air heat transfer coefficient
time
Martin-Luther-Universität Halle-Wittenberg

Droplet Drying Model 3

> Stage B-C, quasi-equilibrium evaporation (like liquid droplets), change of droplet temperature (constant rate period):

- T_{S} is slightly higher than the bulb temperature
- Constant further increase due to rising solids concentration
- Change of droplet temperature:

$$
2 \pi \mathrm{RNu} \lambda_{\text {air }}\left(\mathrm{T}_{\infty}-\mathrm{T}_{\mathrm{s}}\right)=\mathrm{mC}_{\mathrm{v}} \frac{\mathrm{dT}}{\mathrm{dr}}+\mathrm{L} \frac{\mathrm{dm}}{\mathrm{dt}}
$$

$$
\mathrm{Nu}=2+0.6 \operatorname{Re}^{0.5} \operatorname{Pr}^{0.33}
$$

- Rate of evaporation by diffusion of vapour through the boundary layer around the droplet (gas phase resistance) depending on vapour concentration $\gamma\left[\mathrm{kg} / \mathrm{m}^{3}\right]$:

$$
\frac{\mathrm{dm}}{\mathrm{dt}}=2 \pi \mathrm{RSh} \mathrm{D}_{\mathrm{air}}\left(\gamma_{\mathrm{s}}-\gamma_{\infty}\right)
$$

$$
\mathrm{Sh}=2+0.6 \mathrm{Re}^{0.5} \mathrm{Sc}^{0.33}
$$

Droplet Drying Model 4

$>$ Stage C-D, crust formation and boiling (falling rate period):

- Surface concentration C_{s} reaches the saturation $\mathrm{C}_{\text {sat }}$
- Crust formation due to crystallisation
- droplet shrinkage is stopped
- Two regions: dry outer crust and inner wet core (fully saturated)
- Discretisation of core and crust region
- Interface tracking
- Calculation of temperature distribution (crust and core region)

$$
\frac{\mathrm{dT}}{\mathrm{dt}}=\frac{\mathrm{r}}{\mathrm{R}_{\mathrm{int}}} \frac{\mathrm{dR}_{\mathrm{int}}}{\mathrm{dt}} \frac{\partial \mathrm{~T}}{\partial \mathrm{r}}+\frac{\alpha}{\mathrm{r}^{2}} \cdot \frac{\partial}{\partial \mathrm{r}}\left(\mathrm{r}^{2} \cdot \frac{\partial \mathrm{~T}}{\partial \mathrm{r}}\right)
$$

$$
\begin{aligned}
& \frac{\partial \mathrm{T}}{\partial \mathrm{r}}=0 \quad \text { at }: \quad \mathrm{r}=0 \\
& -\mathrm{k} \frac{\partial \mathrm{~T}}{\partial \mathrm{r}}=\mathrm{h}\left(\mathrm{~T}_{\mathrm{s}}-\mathrm{T}_{\infty}\right) \quad \text { at }: \quad \mathrm{r}=\mathrm{R} \\
& \mathrm{~T}=\mathrm{T}_{\mathrm{wb}} \quad \text { at }: \quad \mathrm{r}=\mathrm{R}_{\text {int }}
\end{aligned}
$$

Martin-Luther-Universität Halle-Wittenberg

Droplet Drying Model 5

- The heat balance at the interface ($\mathrm{R}_{\text {int }}$) is used to track the interface in time (depending on thermal conductivity of crust and core):
$\left(\omega_{0}-\omega_{\mathrm{b}}\right) \mathrm{L} \rho_{\mathrm{av}} \frac{\mathrm{dR} \mathrm{R}_{\text {int }}}{\mathrm{dt}}=-\left(\left.\mathrm{k}_{\text {crust }} \frac{\partial \mathrm{T}}{\partial \mathrm{r}}\right|_{\mathrm{r}=\mathrm{R}, \text { int }}\right)-\left(\left.\mathrm{k}_{\text {core }} \frac{\partial \mathrm{T}}{\partial \mathrm{r}}\right|_{\mathrm{r}=\mathrm{R}, \text { int }}\right)$
- Vapour diffusion through boundary layer around liquid core and through the crust:

- Solids concentration distribution within the droplet (diffusion):

$$
\frac{\partial \mathrm{C}}{\partial \mathrm{r}}=\frac{1}{\mathrm{r}^{2}} \frac{\partial}{\partial \mathrm{r}}\left(\mathrm{r}^{2} \mathrm{D}_{\mathrm{AB}} \frac{\partial \mathrm{C}}{\partial \mathrm{r}}\right)
$$

Internal diffusion of solids for skimmed milk

$$
\mathrm{D}_{\mathrm{AB}}=\left\{\frac{\left(38.912+323.39 \omega_{\mathrm{A}}\right)}{\left(1+15.8 \omega_{\mathrm{A}}\right)}-\frac{\Delta \mathrm{H}}{\mathrm{R}}\left(\frac{1}{\mathrm{~T}}-\frac{1}{303}\right)\right\}
$$

ω_{A} : moisture content droplet
$\Delta \mathbf{H}$: activation energy diffusion

Droplet Drying Model 6

> Stage D-E, porous particle drying:

- Bounded liquid is evaporated with decreasing rate
- Temperature asymptotically approaches surrounding gas temperature
- Temperature distribution inside the dried particle estimated by taking into account only the crust thermo-physical properties:

$$
\frac{\partial \mathrm{T}}{\partial \mathrm{t}}=\frac{\alpha}{\mathrm{r}^{2}} \cdot \frac{\mathrm{~d}}{\mathrm{dr}}\left(\mathrm{r}^{2} \cdot \frac{\mathrm{dT}}{\mathrm{dr}}\right)
$$

$$
\begin{aligned}
& \frac{d T}{d r}=0 \quad \text { at }: \quad r=0 \\
& -k \frac{d T}{d r}=h\left(T_{s}-T_{\infty}\right) \quad \text { at }: \quad r=R
\end{aligned}
$$

Martin-Luther-Universität Halle-Wittenberg

Droplet Drying Model 7

$>$ Comparison of the new drying model with experiments and „classical models"

Experiments for skim milk (solids 20\% mass) by Chen et al. (1999):
$V_{\text {air }}=1.0 \mathrm{~m} / \mathrm{s}$
$\mathrm{T}_{\text {air }}=343 \mathrm{~K}$
$\mathrm{T}_{\text {drop }, 0}=282 \mathrm{~K}$
$\mathrm{D}_{0}=1.9 \mathrm{~mm}$

Droplet Drying Model 8

$>$ Comparison of the new drying model with experiments:

Droplet Drying Model 9

$>$ Radial distribution of mass and temperature within the droplet

Experiments for skim
milk (solids 30% mass)
by Sano \& Keey (1985)
$\mathrm{V}_{\text {air }}=1.0 \mathrm{~m} / \mathrm{s}$
$\mathrm{T}_{\text {air }}=423 \mathrm{~K}$
$\mathrm{~T}_{\mathrm{drop}, 0}=301 \mathrm{~K}$
$\mathrm{D}_{0}=1.9 \mathrm{~mm}$

14:50

Spray Dryer 1

Air flow, no swirl:

$\dot{\mathrm{m}}_{\text {air }}=226.8 \mathrm{~kg} / \mathrm{h}$

Dryer geometry:
H = 2980 mm
$\mathrm{H}_{\mathrm{cyl}}=2120 \mathrm{~mm}$
$\mathrm{D}=900 \mathrm{~mm}$
$\mathrm{D}_{\text {out }}=95 \mathrm{~mm}$
Annular Air Inlet
$\mathrm{D}_{\mathrm{o}}=100 \mathrm{~mm}$
$\mathrm{R}_{\mathrm{i}}=3.05 \mathrm{~mm}$

718,706 control
 volumes

Two-Fluid Nozzle:

Spray angle $\beta=9^{\circ}$
$\mathrm{D}_{\text {nozzle,air, }}=3.05 \mathrm{~mm}$
$\mathrm{D}_{\text {nozzle, air, }, \mathrm{i}}=1.73 \mathrm{~mm}$
$\mathrm{H}_{\text {nozzle }}=200 \mathrm{~mm}$
Whey Based
Solution: 30 mass-\% solids
$\rho_{\text {drop }}=1002 \mathrm{~kg} / \mathrm{m}^{3}$
$\dot{\mathrm{m}}_{\text {solution }}=7.31 \mathrm{~kg} / \mathrm{h}$
$\mathrm{T}_{\text {solution }}=293 \mathrm{~K}$
$\mathrm{U}_{\mathrm{air}, \mathrm{av}}=29.2 \mathrm{~m} / \mathrm{s}$
Martin-Luther-Universität Halle-Wittenberg

Spray Dryer 2

> Comparison of present calculations with results obtained with Fluent

Lecture Content

Droplet and particle collisions in spray dryer stochastic inter-particle collision model experiments for viscous droplets

Inter-Particle Collisions in Spray Dryers

Properties of droplets injected into a spray dryer (i.e. viscosity and surface tension) are strongly changing along their way through the dryer caused by drying of solution and suspension droplets (increasing solids content).

Collisions of droplets/particles with different drying state

Viscosity dominated droplets

* Middle region of dryer

Droplets and solid particles

* Penetration
* Agglomerate formation
* Particle coating

Solid particles (low moisture content)

* Agglomeration
* van der Waals forces

Martin-Luther-Universität Halle-Wittenberg

Stochastic Inter-Particle Collision Model 1

Stochastic Inter-Particle Collision Model (Sommerfeld 2001)
区 In the trajectory calculation of the considered particle a fictitious collision partner is generated for each time step.
The properties of the fictitious particle are sampled from local distribution functions and correlations with the particle size.

particle diameter particle velocities particle temperature solids content

In sampling the fictitious particle velocity fluctuation the correlation of the fluctuating velocity is respected (LES of Simonin):

$$
\mathrm{u}_{\text {fict, }, \mathrm{i}}^{\prime}=\mathrm{R}\left(\tau_{\mathrm{P}}, \mathrm{~T}_{\mathrm{L}}\right) \mathrm{u}_{\text {real, } \mathrm{i}}^{\prime}+\sigma_{\mathrm{i}} \sqrt{1-\mathrm{R}\left(\tau_{\mathrm{p}}, \mathrm{~T}_{\mathrm{L}}\right)^{2}} \xi_{\mathrm{n}} \quad \mathrm{R}\left(\tau_{\mathrm{p}}, \mathrm{~T}_{\mathrm{L}}\right)=\exp \left(-0.55\left(\frac{\tau_{\mathrm{p}}}{\mathrm{~T}_{\mathrm{L}}}\right)^{0.4}\right)
$$

Calculation of collision probability between the considered particle and the fictitious particle:

$$
\mathrm{P}=\mathrm{f}_{\mathrm{c}} \Delta \mathrm{t}=\frac{\pi}{4}\left(\mathrm{D}_{\mathrm{P} 1}+\mathrm{D}_{\mathrm{P} 2}\right)^{2}\left|\overrightarrow{\mathrm{u}}_{\mathrm{P} 1}-\overrightarrow{\mathrm{u}}_{\mathrm{P} 2}\right| \mathrm{n}_{\mathrm{P}} \Delta \mathrm{t}
$$

$\boxtimes\rangle$ A collision occurs when a random number in the range [0-1] becomes smaller than the collision probability.

Martin-Luther-Universität Halle-Wittenberg

Stochastic Inter-Particle Collision Model 2

$\boxtimes>$ The collision process is calculated in a co-ordinate system where the fictitious particle is stationary.

$$
\begin{aligned}
& \mathrm{L}=\sqrt{\mathrm{Y}^{2}+\mathrm{Z}^{2}} \quad \text { with : } \mathrm{L} \leq 1 \\
& \phi=\arcsin (\mathrm{L})
\end{aligned}
$$

$0<\Psi<2 \pi$

Consideration of impact probability (small and large particles):

$$
\begin{aligned}
\eta & =\left(\frac{2 Y_{c}}{\left(D_{K}+d_{p}\right)}\right)^{2}=\left(\frac{\Psi_{i}}{\Psi_{i}+a}\right)^{b} \\
\Psi_{i} & =\frac{\rho_{p}\left|\overrightarrow{\mathrm{u}}_{\mathrm{p} 1}-\overrightarrow{\mathrm{u}}_{\mathrm{p} 2}\right| d_{p}^{2}}{18 \mu D_{K}}
\end{aligned}
$$

Collision occurs if:

$$
\mathrm{L}_{\mathrm{a}} \leq \mathrm{Y}_{\mathrm{C}}
$$

Martin-Luther-Universität Halle-Wittenberg

Stochastic Inter-Particle Collision Model 3

$区$ In the case of rebound the new velocities of the considered particle are calculated by solving the momentum equations for an oblique collision in connection with Coulombs law of friction.

$$
\mathrm{u}_{\mathrm{P} 1}^{\prime}=\mathrm{u}_{\mathrm{P} 1}\left(1-\frac{1+\mathrm{e}}{1+\mathrm{m}_{\mathrm{P} 1} / \mathrm{m}_{\mathrm{P} 2}}\right)
$$

Sliding collision

$$
\mathrm{v}_{\mathrm{P} 1}^{\prime}=\mathrm{v}_{\mathrm{P} 1}\left(1-\mu(1+\mathrm{e}) \frac{\mathrm{u}_{\mathrm{P} 1}}{\mathrm{v}_{\mathrm{P} 1}} \frac{1}{1+\mathrm{m}_{\mathrm{P} 1} / \mathrm{m}_{\mathrm{P} 2}}\right)
$$

Non-sliding collision

$$
\frac{\mathrm{v}_{\mathrm{P} 1}}{\mathrm{u}_{\mathrm{P} 1}}<\frac{7}{2} \mu(1-\mathrm{e})
$$

$$
\mathrm{v}_{\mathrm{P} 1}^{\prime}=\mathrm{v}_{\mathrm{P} 1}\left(1-\frac{7 / 2}{1+\mathrm{m}_{\mathrm{P} 1} / \mathrm{m}_{\mathrm{P} 2}}\right)
$$

- Re-transformation of the new particle velocities in the laboratory frame of reference.
- Particle rotation is not considered in agglomeration studies, due to the complex momentum exchange for structured agglomerates.

Droplet Collision Modelling 1

The outcome of a droplet collision depends on numerous parameters, namely, the kinetic properties and the thermo-physical properties of gas and droplets.

- Droplet velocities
- Droplet diameter ratio
- Impact angle

Droplet liquid (density and viscosity)

- Surface tension
- Type of gas phase
- Gas phase pressure and temperature

Governing non-dimensional parameters for the collision process:

$$
\mathrm{We}_{\mathrm{C}}=\frac{\rho_{\mathrm{l}} \mathrm{D}_{\mathrm{S}} \overrightarrow{\mathrm{U}}_{\mathrm{rel}}^{2}}{\sigma_{1}}
$$

$$
\mathrm{B}=\frac{2 \mathrm{~b}}{\mathrm{D}_{\mathrm{S}}+\mathrm{D}_{\mathrm{L}}}
$$

$$
\phi=\arcsin (B)
$$

S: small L: large

collision cylinder
\qquad summarised in a phase diagram, i.e. $B=f\left(\mathbf{W e}_{C}\right)$
Due to the large number of relevant properties a unique solution for the collision regimes was not introduced so far !!!

Martin-Luther-Universität Halle-Wittenberg

Droplet Collision Modelling 2

- Determination of the outcome of droplet collision based on B = f(We)

- Calculation of post-collision

Water for Validation

Kuschel \& Sommerfeld Exp. in Fluids, 2013

PVP K30-25 Ma\%

Modelling - Characteristic Points

Extraction of characteristic Triple Points (bouncing, coalescence and stretching separation collapse in one region) from the measurements for all substances

- The crossing point shows a clear dependence on viscosity (solids content) \longrightarrow Development of a maximum or minimum for $u_{r e l}$ and B, respectively

Modelling Onset of Stretching Separation

Summary of Triple Point location for all systems

\Rightarrow Onset of stretching separation:

$$
\begin{aligned}
& \mathrm{Re}=\frac{\mathrm{K}^{2}}{2} \mathrm{Ca} \\
& \mathrm{~K}=6.9451^{-\sqrt{1-\frac{1}{\mathrm{e}^{2}}}} \longrightarrow \mathrm{We}_{\mathrm{C}}
\end{aligned}
$$

Resulting from a theory on maximum of information entropy for competing processes, i.e. interaction of flow structures with the mean flow $\mathrm{K}^{3}=335 \rightarrow$ We for bubble break-up $\mathrm{K}^{4}=2326 \rightarrow$ critical Re for laminarturbulent pipe flow

$$
\begin{array}{|c|c}
\begin{array}{cc}
\mathrm{Re}=\frac{\rho_{1} \mathrm{D}_{\mathrm{S}} \mathrm{U}_{\text {rel }}}{\mu_{1}} & \begin{array}{c}
\text { sliding of two } \\
\text { sluid surfaces }
\end{array} \\
\text { fle }
\end{array} \\
\mathrm{Ca}=\frac{\mu_{1}}{\sigma_{1}} \mathrm{U}_{\text {rel }}=\frac{\mathrm{U}_{\text {rel }}}{\mathrm{U}_{\text {relax }}}
\end{array}
$$

Modelling Onset of Stretching Separation

> Adaptation of the model of Jiang et al. (1992) to match triple

$$
B=\frac{C_{a}}{W^{1 / 2}}\left[1+C_{b} \frac{\mu_{1}}{\sigma_{1}}\left(\frac{\rho_{1} D_{d}}{\sigma_{1}}\right)^{1 / 2}\right]
$$

\Rightarrow Optimal set of parameters for the Jiang model is a function of normalised relaxation velocity (here u^{*} relax $=(\sigma / \mu)^{*}=3.47 \mathrm{~m} / \mathrm{s}$)

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{a}}=2.762-\left(\frac{\mathrm{u}_{\text {relax }}}{\mathrm{u}_{\text {relax }}^{*}}\right)^{-0.175} \\
& \mathrm{C}_{\mathrm{b}}=1.134-0.345\left(\frac{\mathrm{u}_{\text {relax }}}{\mathrm{u}_{\text {relax }}^{*}}\right)^{-0.613}
\end{aligned}
$$

$$
\left(\frac{\mathrm{u}_{\mathrm{relax}}}{\mathrm{u}_{\mathrm{relax}}^{*}}\right)=\left(\frac{\sigma / \eta}{(\sigma / \eta)^{*}}\right)
$$

Martin-Luther-Universität Halle-Wittenberg

Modelling - Onset of Reflexive Separation

Critical We for the beginning of reflexive separation (at $B=0$)

\Rightarrow A correlation for all data can be found for $\mathrm{We}=\mathrm{f}(\mathrm{Ca})$:

$$
\mathrm{We}=\frac{\mathrm{K}^{3}}{3} \mathrm{Ca}+2 \mathrm{~K}
$$

$\mathrm{K}=6.9451$ Deformation of the droplets

\Rightarrow Modifying the model of Ashgriz and Poo to match critical $\mathrm{We}_{\text {crit }}$:

$$
\mathrm{We}=\mathrm{We}_{\text {crit }}+3\left[7\left(1+\Delta^{3}\right)^{2 / 3}-4\left(1+\Delta^{2}\right)\right] \frac{\Delta\left(1+\Delta^{3}\right)^{2}}{\Delta^{6} \eta_{\mathrm{S}}+\eta_{\mathrm{L}}}
$$

Models Versus Experiments 1

FVA 1, 60° $\eta=6.7 \mathrm{mPa} \mathrm{s}$

- The adapted model of Estrade et al. is reasonably good for higher We but shows systematic deviations for lower We

Martin-Luther-Universität Halle-Wittenberg

- The model of Ashgriz and Poo combined with the correlation for reflexive separation predicts the shift of the regime correctly

PVP K30, 15 \% $\eta=12.5 \mathrm{mPa} \mathrm{s}$ 1.0
0.8 We [-]

Models Versus Experiments 2

Lecture Content

New structure agglomeration model with preliminary validation for a spray dryer

Agglomeration Model for Solid Particles

Agglomerate Structure Model

In order to obtain more detailed information on the agglomerate structure, location vectors for all primary particles in the agglomerate with respect to a reference particle are stored.

The agglomerate structure is stored in a linked list

The agglomerate is still treated as point-particle !!!

Most important agglomerate properties

- Porosity of the agglomerate (convex hull)
- Effective surface area
- Agglomerate structure; Shape indicators

Martin-Luther-Universität Halle-Wittenberg

Agglomerate Structure Model 2

Assumptions for the stochastic collision model with respect to structure modelling

- Agglomerates can only collide with primary particles (number concentration of the resulting agglomerates is very low).
- The fictitious particle cannot be an agglomerate, hence it is only sampled from the primary particle size distribution.

Extension of the stochastic collision model

- The collision probability (based on a selected collision sphere of the agglomerate) predicts whether a collision occurs.
- The collision process is calculated in a coordinate system where the agglomerate is stationary.
- The point of impact on the surface of the selected collision sphere of the agglomerate is sampled stochastically

Agglomerate Structure Model 3

- A collision occurs if the lateral displacement L is smaller than the boundary trajectory Y_{C} (impact efficiency).
- Random rotation of the agglomerate in all three directions (since rotation is neglected).
- The particle collides with the primary particle in the agglomerate being closest to the impact point (tracking).
- Possible collision scenarios:

sticking

Martin-Luther-Universität Halle-Wittenberg

Penetration Model for High Viscous Droplets

High viscous droplets penetrates into the low viscous droplet (spherical frame)

- Contact Area:

$$
\mathrm{d}_{\text {cont }}=2 \cdot \sqrt{\mathrm{~h} \cdot \mathrm{~d}_{\text {Low }}-\mathrm{h}^{2}}
$$

- Penetration depth: $\quad X_{P}=\frac{d_{\text {High }}+d_{\text {Low }}}{2}-r$

Low viscosity

Calculation of time-dependent penetration depth:

Radial:

Motion of sphere in viscous liquid

$$
\mathrm{m}_{\text {High }} \cdot \frac{\mathrm{du}_{\mathrm{r}}}{\mathrm{dt}}=-3 \cdot \pi \cdot \mu_{\text {Low }} \cdot \mathrm{d}_{\text {cont }} \cdot \mathrm{u}_{\mathrm{r}}
$$

$$
\frac{\mathrm{dr}}{\mathrm{dt}}=\mathrm{u}_{\mathrm{r}}
$$

Tangential:

Shear force across contact area

$$
\frac{\mathrm{d} \vartheta}{\mathrm{dt}}=\frac{\mathrm{u}_{\vartheta}}{\mathrm{r}}
$$

Martin-Luther-Universität Halle-Wittenberg

Agglomeration Model for Solid Particles

The occurrence of agglomeration may be decided on the basis of an energy balance (dry particles \longrightarrow only Van der Waals forces):

$$
\mathrm{E}_{\mathrm{k} 1} \leq \Delta \mathrm{E}_{\mathrm{vdw}}+\mathrm{E}_{\mathrm{d}} \quad \mathrm{E}_{\mathrm{d}}=\left(1-\mathrm{k}_{\mathrm{pl}}^{2}\right) \mathrm{E}_{\mathrm{k} 1}
$$

Ho and Sommerfeld (2002)

Van der Waals Energie:

$$
\Delta \mathrm{E}_{\mathrm{vdw}}=-\int_{\mathrm{z}_{0}}^{\infty} \frac{\mathrm{A}}{6 \pi \mathrm{z}^{3}} \pi \mathrm{a}^{2} \mathrm{dz}
$$

Restitution ratio:

$$
\mathrm{k}_{\mathrm{pl}}^{2}=\frac{\mathrm{E}_{\mathrm{k} 1}-\mathrm{E}_{\mathrm{d}}}{\mathrm{E}_{\mathrm{k} 1}}
$$

Critical impact velocity:

$$
\left|\overrightarrow{\mathrm{U}}_{\mathrm{kr}}\right|=\frac{1}{2 \mathrm{R}_{1}} \frac{\left(1-\mathrm{k}_{\mathrm{pl}}^{2}\right)^{1 / 2}}{\mathrm{k}_{\mathrm{pl}}^{2}} \frac{\mathrm{~A}}{\pi \mathrm{z}_{0}^{2} \sqrt{6 \mathrm{P}_{\mathrm{pl}} \rho_{\mathrm{p}}}}
$$

Agglomeration if:
$\overrightarrow{\mathrm{U}}_{\text {rel }} \cos \phi \leq\left|\overrightarrow{\mathrm{U}}_{\mathrm{kr}}\right|$

Geometry of the Spray Dryer 1
© Geometry and operational conditions of spray dryer (NIRO Copenhagen):
Dryer geometry:
$\mathrm{H}=4096 \mathrm{~mm}$
$\mathrm{H}_{\text {cyl }}=1960 \mathrm{~mm}$
$\mathrm{D}=2700 \mathrm{~mm}$
$\mathrm{H}_{\text {out }}=3303 \mathrm{~mm}$
$\mathrm{D}_{\text {out }}=210 \mathrm{~mm}$
Annular Air Inlet
$\mathrm{R}_{\mathrm{o}}=527 \mathrm{~mm}$
$\mathrm{R}_{\mathrm{i}}=447 \mathrm{~mm}$

Air flow with swirl:

$\dot{\mathrm{m}}_{\text {air }}=1900 \mathrm{~kg} / \mathrm{h}$
$\phi_{\text {air }}=1.1$ mass-\%
$\mathrm{T}_{\text {air }}=452.5 \mathrm{~K}$
$\mathrm{U}_{\mathrm{ax}}=9.8 \mathrm{~m} / \mathrm{s}$
$\mathrm{U}_{\mathrm{tan}}=2.4 \mathrm{~m} / \mathrm{s}$
$\bigcap \omega$

Fines return:
Annular inlet
around the nozzle
$\mathrm{D}_{\mathrm{o}}=72 \mathrm{~mm}$
$\mathrm{D}_{\mathrm{i}}=63 \mathrm{~mm}$
$\mathrm{U}_{\text {fine }}=37 \mathrm{~m} / \mathrm{s}$
$\rho_{\text {fine }}=440 \mathrm{~kg} / \mathrm{m}^{3}$

Pressure nozzle:

Hollow cone nozzle
$\mathrm{P}_{\text {nozzle }}=85$ bar
Spray angle $\beta=52^{\circ}$
$\mathrm{D}_{\text {nozzle }}=2 \mathrm{~mm}$
$\mathrm{H}_{\text {nozzle }}=270 \mathrm{~mm}$
Maltodextrine DE-18
Solution: 29 mass-\% solids
$\rho_{\text {drop }}=1090 \mathrm{~kg} / \mathrm{m}^{3}$
$\dot{\mathrm{m}}_{\text {solution }}=92 \mathrm{~kg} / \mathrm{h}$
$\mathrm{T}_{\text {solution }}=293 \mathrm{~K}$
$\mathrm{U}_{\mathrm{av}}=127 \mathrm{~m} / \mathrm{s}$

Geometry of the Spray Dryer 2

© Numerical discretisation and boundary conditions of the spray dryer:

Discretisation:
138 blocks
586.564 meshes

Inlet and boundary conditions:

Inlet: assumed velocity profiles
Walls: no-slip velocity
heat transfer coefficient \Rightarrow measurements
$\mathrm{h}=10.5 \mathrm{~W} /\left(\mathrm{K} \cdot \mathrm{m}^{2}\right)$,
Outlet pipe: gradient free

Numerical Results Spray Dryer 1

Calculated flow structure and temperature field in the dryer:

Velocity field

Temperature field

Numerical Results Spray Dryer 2

Particle phase properties throughout the spray dryer

Particle concentration [kg/kg]

Numerical Results Spray Dryer 3

Particle-phase properties throughout the spray dryer

Solids content in the particles

Martin-Luther-Universität Halle-Wittenberg

Local particle mean diameter

Numerical Results Spray Dryer 4

Properties of the agglomerates produced in the spray dryer

30 primary particles
$\varepsilon_{\text {hull }}=0.61$

Porosity:
$\varepsilon=1-\frac{\mathrm{V}_{\text {Part }}}{\mathrm{V}_{\text {Hull }}}$

Numerical Results Spray Dryer 5

Simulated agglomerates compared with agglomerates collected from the spray dryer

Outlook 1

> Sub-models for describing the behaviour of droplets and particles in a spray dryer have been developed and validated; i.e. drying, viscous droplet collisions and agglomeration model.
$>$ The models will be jointly implemented in the in-house code FASTEST/Lag-3D and further validated.
$>$ Extension of the droplet collision model for very high viscosities; i.e. up to several Pa•s.

Coalescence

Stretching

Separation

Outlook 2

$>$ Validation of the droplet collision models using a special laboratory spray dryer with interacting sprays.

Martin-Luther-Universität Halle-Wittenberg

Acknowledgements

DFG

The financial support of projects by the Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged.

The following Ph.D. students have contributed to the presented research:
Dipl.-Ing. Stefan Blei
M.Sc. Ali Darvan
M.Sc. Chi-Ahn Ho

Dipl.-Ing. Matthias Kuschel
Dr.-Ing. Hai Li
Dipl.-Ing. Sebastian Stübing

Workshop 2015

ANNOUNCEMENT

14th Workshop on Two-Phase Flow Predictions

7. - 10. September 2015

Zentrum für Ingenieurwissenschaften Martin-Luther-Universität Halle-Wittenberg
D-06099 Halle (Saale), Germany www-mvt.iw.uni-halle.de

Latice-Boltzman Simulations: Flow about a particle coated with 882 drug particles at $\mathrm{Re}=200$, study related to drug particle detachment in an inhaler.

